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Abstract. MATCRO-Soy is an eco-physiological process-based crop model for soybean (Glycine max L. (Merr.)). It was 

developed by modifying the parameters of MATCRO-Rice, which integrates crop growth processes with a land surface model. 

The original model was modified using data from the literature and field experiments conducted in countries around the world. 

The reliability of the model was extensively validated by comparing the simulated yields with observed yields at global, 

national, and grid-cell levels. Moderate correlations were detected between the yields predicted by MATCRO-Soy and yield 20 

data in the Food and Agriculture Organization’s FAOSTAT database, with correlation coefficients of 0.81 (p < 0.001) for the 

global average yield and 0.45 (p < 0.01) for the global average detrended yield over a 34-year period (1981–2014). Furthermore, 

validation at the grid-cell level revealed a statistically significant correlation between the MATCRO-Soy simulated yield and 

the observed yield in 66 % of the grid cells in the global yield map. These results highlight the model’s ability to reproduce 

soybean yield under different environmental conditions, integrating soil water availability and nitrogen fertilizer levels. The 25 

MATCRO-Soy model may enhance our understanding of crop physiology, especially crop responses to climate change. Its 

application may support efforts to reduce uncertainty in projections of the effects of climate change on soybean crops. 

1 Introduction 

Crop growth models are widely used for estimating yield, optimizing agricultural management practices, evaluating the effects 

of climate change, and informing decision-making about food security strategies (Adeboye et al., 2021; Cuddington et al., 30 

2013; Hoogenboom, 2000). Given the significant impact of weather variability on global crop yields (Müller et al., 2017; Ray 

et al., 2015), process-based models can predict the effects of long-term climate change on productivity by accounting for the 

effects of key climatic factors on physiological processes that are represented in the model (Boote et al., 2013; Cuddington et 

al., 2013; Fodor et al., 2017; Jones et al., 2017; Marin et al., 2014; Stöckle and Kemanian, 2020). Process-based models 

explicitly incorporate the crucial eco-physiological processes of photosynthesis and stomatal conductance. Thus, the predictive 35 

ability of these models is improved under varying climate scenarios compared with that of models that focus on the empirical 
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relationship between absorbed radiation and assimilation through radiation use efficiency (Jin et al., 2018). Hence, crop models 

are useful for capturing the complexity of soil–crop–climate interactions for ensuring food security, optimizing yields, 

promoting sustainability, and planning adaptation strategies (García-Tejero et al., 2011). Global-scale simulations are crucial 

for enhancing these efforts because they reflect the interactions between physiological processes and environmental factors, 40 

thereby supporting adaptive management practices and strengthening agricultural resilience. 

The Agricultural Model Intercomparison and Improvement Project (AgMIP) has examined the performance of global 

gridded crop models (GGCMs) in simulating the potential impact of climate change on crop yields (Müller et al., 2017). The 

AgMIP has demonstrated that the simulated impacts of environmental factors on crop yields using a GGCM generally align 

with measured values, and that a model ensemble reduces uncertainty (Elliott et al., 2015). However, yield changes under 45 

future climate change scenarios show inconsistent results and greater variability in soybean (Glycine max L. (Merr.)) than in 

other crops, because of model discrepancies (Jägermeyr et al. 2021). Despite being a major crop, soybean has been studied less 

extensively than other crops in terms of its response to changing environments (Ruane et al., 2017; Kothari et al., 2022). 

Therefore, the development of a new soybean model is needed to reduce uncertainties in climate change impact assessments. 

It is important to use diverse types of crop models and ensure model diversity to understand the uncertainties of simulations, 50 

because relying on a single model can lead to biased results. To our knowledge, there are only five process-based models for 

global-scale soybean yield estimation with leaf-level photosynthesis and stomatal conductance parameters; namely LPJ-

GUESS (Ma et al., 2022), LPJmL (Wirth et al., 2024), ORCHIDEE-crop (Wu et al., 2016), PRYSBI2 (Sakurai et al., 2014), 

and JULES (Leung et al., 2020). Simulations for soybean using process-based models are relatively uncommon. Thus, further 

development and validation of process-based models that incorporate leaf-level photosynthesis and stomatal conductance 55 

parameters are essential. 

MATCRO-Rice (Masutomi et al., 2016a,b) is an ecosystem process-based model for crops embedded into the land surface 

model of Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO; Takata et al., 2003). The crop growth 

model is further explained in Section 2. MATCRO-Rice uses state variables to exchange information (e.g., temperature, soil 

moisture, transpiration, leaf area index, and photosynthesis rate) between the land surface model and crop growth model. The 60 

MATCRO-Rice model incorporates mechanisms related to photosynthesis and stomatal conductance to assess the impact of 

greenhouse gases on carbon and water fluxes on crop yield. Masutomi et al. (2019) described the implementation of ozone 

effects as one of these mechanisms, highlighting the model’s capability to account for environmental stressors. Furthermore, 

MATCRO-Rice has been applied at the regional scale, and it has been used to measure climate impacts, which are important 

for developing adaptation strategies (Kinose and Masutomi, 2020; Masutomi, et al., 2016b). 65 

Here, we developed a new process-based model for soybean, MATCRO-Soy v.1, which incorporates diverse biological 

processes and environmental interactions that drive plant growth and adaptation to changing conditions. Adapted from 

MATCRO-Rice, the new model was applied to soybean by parameterizing key processes using experimental data and findings 

from the literature. The current version of MATCRO-Soy (v.1) was evaluated in a global-scale simulation, following a 

calibration process that considered essential photosynthesis mechanisms. This paper presents the model description in Sect. 2, 70 

the calibration process in Sect. 3, and the model evaluation in Sects. 4 and 5.  

2 Model description 

MATCRO-Soy is based on MATCRO-Rice, a process-based model for rice growth and yield. Here, the MATCRO-Rice model 

has been modified for use in soybean. MATCRO-Rice is a combined land surface and crop growth model used to explore the 

land–atmosphere interaction in rice fields. Unlike MATCRO-Rice v.1, MATCRO-Soy focuses on yield simulation and omits 75 

the calculation of sensible and latent heat fluxes in the energy balance to reduce computational complexity while maintaining 

accuracy in simulating soybean growth and yield.  
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2.1 Overview of MATCRO-Soy 

MATCRO-Soy includes three main modules: phenology, photosynthesis, and carbon partitioning (Figure 1). The phenology 

module simulates crop phenological development over time based on heat unit accumulation. The module directs the 80 

progression of carbon assimilation and partitioning by monitoring plant developmental stages from sowing to harvest. The 

phenology module simulates developmental stages based on the developmental rate from sowing to harvest. The developmental 

stage influences key processes such as glucose production and allocation across plant organs. The photosynthesis module 

initially estimates gross primary production (GPP) and respiration at the leaf level using the Farquhar model (Farquhar et al., 

1980), and then extends the estimation of net primary production (NPP) to the canopy level, following the concept introduced 85 

by de Pury and Farquhar (1997). It considers the electron-transport-limited rate of photosynthesis, Rubisco-limited 

photosynthesis, and leaf respiration to estimate NPP at the leaf level.  

The photosynthesis and carbon partitioning modules are closely linked, because carbon assimilated from photosynthesis is 

subsequently allocated to different plant organs. The NPP is stored in glucose and starch reserves. The carbon partitioning 

module distributes glucose to different organs (i.e., leaf, stem, root, and storage organ) using a method derived from the school 90 

of de Wit, which simulates biosynthetic processes (de Vries et al., 1989). It also accounts for leaf senescence, which influences 

nutrient cycling, crop productivity, and the leaf area index, thereby affecting canopy photosynthesis. Leaf senescence is 

simulated as a function of crop developmental stage, as defined by the phenology module. MATCRO incorporates the amount 

of nitrogen per leaf area (specific leaf nitrogen, SLN) as a key determinant of photosynthetic capacity. Root depth can indirectly 

affect photosynthesis because it influences the plant’s ability to access water and nutrients from soil layers, further influencing 95 

plant growth within the model framework.  

 

Figure 1. Flowchart diagram of soybean yield simulation by the MATCRO-Soy model. 
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The input data consisted of environmental variables obtained from meteorological forcings, soil type classifications, 

nitrogen fertilizer applications, and agricultural management practices such as irrigation and seed sowing. These inputs were 100 

crucial for setting the initial conditions and boundary parameters for the simulations. The output of MATCRO is crop yield 

(kg ha-1) estimated for both irrigated and rainfed conditions on the basis of soil–crop interactions. First, we processed the 

parameterized growing degree days to maturity using crop calendar data to estimate the harvest time in the phenology module 

(see Sect. 2.2). The photosynthesis module includes limiting factors such as nitrogen fertilization and water stress, as detailed 

in Sect. 2.3. Then, crop growth is calculated based on developmental stage (Sect. 2.4). We conducted a parameterization process 105 

including phenological development, carbon partitioning, and photosynthesis limited by water stress and nitrogen uptake. The 

crop yield was estimated using the parameterized seed:pod ratio (see Sect. 2.5). The adjusted parameters in MATCRO-Soy are 

described in Sect. 2.6, where the key dynamic variables were parameterized over time to ensure a reliable estimate of carbon 

assimilation in soybean. This comprehensive approach allows MATCRO to account for the complex interactions among 

environmental conditions, crop physiology, and management practices, providing a robust framework for predicting crop yields 110 

and assessing agricultural productivity. 

2.2 Crop phenological development  

Phenological development refers to the timing of developmental events in response to environmental inputs. MATCRO 

calculates crop developmental stage (𝐷𝑉𝑆) using an index ranging from 0 to 1, where 𝐷𝑉𝑆=0 is the sowing time and 𝐷𝑉𝑆=1 is 

maturity. This index is based on the integral of the temperature required to exceed the phenological changes. The module uses 115 

a formulation based on Bouman et al. (2001) as outlined in Eqs. (1)–(4) as follows:  

𝐷𝑉𝑆𝑡 = 𝐺𝐷𝐷𝑡/𝐺𝐷𝐷𝑚           (1) 

𝐺𝐷𝐷𝑡 = ∫ 𝐷𝑉𝑅𝑑𝑡′
𝑡

0
           (2) 

𝐺𝐷𝐷𝑚 = ∫ 𝐷𝑉𝑅𝑑𝑡′
𝑚

0
           (3) 

𝐷𝑉𝑅𝑡   = {

0,                       𝑇𝑡 < 𝑇𝑏  | 𝑇𝑡 > 𝑇ℎ
𝑇𝑡 − 𝑇𝑏 ,                   𝑇𝑏 < 𝑇𝑡 < 𝑇𝑜
(𝑇𝑜−𝑇𝑏)(𝑇ℎ−𝑇𝑡)

(𝑇ℎ−𝑇𝑜)
,       𝑇𝑜 < 𝑇𝑡 < 𝑇ℎ

             (4) 120 

where 𝐺𝐷𝐷𝑡 and 𝐺𝐷𝐷𝑚 indicate the growing degree days (°C days) used to estimate the development of plants during the 

growing season at time t and at maturity (m), respectively; 𝐷𝑉𝑅 represents the developmental rate at 𝑡; and 𝑇𝑡 represents the 

temperature at 𝑡 . The parameters 𝑇𝑏 ,  𝑇𝑜 , and 𝑇ℎ  (C) are crop-specific and represent the base, optimum, and highest 

temperatures for crop development, respectively.  
The impact of temperature on phenological stage can differ among crop stages, as Boote et al. (1998) observed that cardinal 125 

temperatures (𝑇𝑏 ,𝑇ℎ , 𝑇𝑜) may differ between vegetative and reproductive stages. We followed de Vries et al. (1989) for cardinal 

temperatures during the growing season. This study parameterized the developmental stages as flowering (𝐷𝑉𝑆𝑓), seed-filling 

(𝐷𝑉𝑆𝑠), and maturation (𝐷𝑉𝑆𝑚) on the basis of mean values calculated from the available observations for each stage (listed in 

Table 2). Calculations for each stage were based only on experiments where corresponding data were available. MATCRO 

uses these 𝐷𝑉𝑆 parameters to define the period of leaf dry weight loss due to leaf senescence and the remobilization of starch 130 

reserves from the stem (Masutomi et al. 2016a). It was assumed that the corresponding phenological times in soybean are the 

middle of the flowering stage and the seed-filling stage, because leaf loss starts within those periods.    
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2.3 Carbon assimilation process 

In the photosynthesis module of MATCRO-Soy, carbon assimilation is based on canopy photosynthesis, which is estimated 

from leaf-level photosynthesis calculated in sunlit and shaded conditions (Dai et al., 2004). The calculation includes the 135 

stomatal conductance response to relative humidity (Collatz et al., 1991). The net carbon assimilation (𝐴𝑛) in MATCRO is 

calculated using the Farquhar model as further described in Masutomi et al. (2016a), expressed in Eq. (5) as given as 

𝐴𝑛 =  𝑓(𝑃𝐴𝑅, 𝐶𝑂2𝑙𝑒𝑎𝑓 , 𝑉max, Pa, 𝑅𝐻, 𝑇𝑙𝑒𝑎𝑓 , 𝑓𝑤 , 𝐵𝐵𝑎 , 𝐵𝐵𝑏)        (5) 

where 𝐴𝑛 (mol(CO2) m-2 s-1) represents net carbon assimilation contributing to NPP for biomass growth. It is a function of the 

intensity of absorbed photosynthetic active radiation (𝑃𝐴𝑅, in mol(photon) m-2 s-1), the CO2 concentration in the substomatal 140 

chamber (𝐶𝑂2𝑙𝑒𝑎𝑓 , in Pa(CO2) Pa(Air)-1), maximum Rubisco capacity per unit leaf area (𝑉max, in mol(CO2) m-2 s-1), air pressure 

(Pa, in Pa), relative humidity (RH), leaf temperature (𝑇𝑙𝑒𝑎𝑓, in K), water stress factor (𝑓𝑤 , dimensionless), the slope (𝐵𝐵𝑎 , in 

mol(H2O)m-2s-1) and intercept (𝐵𝐵𝑏 , in mol(H2O) m-2 s-1) of the Ball-Berry model of the relationship between crop assimilation 

and stomatal conductance per unit leaf area, relative humidity at the leaf surface, and ambient CO2 concentration (Ball, 1988). 

The leaf temperature is assumed to be the same as the air temperature to simplify the calculation. 145 

Rubisco activity is a key variable used to assess the rate of carbon entry into the photosynthetic pathway, because Rubisco 

catalyzes the crucial initial step of RuBP (ribulose-1,5-bisphosphate) carboxylation in photosynthetic carbon assimilation in C3 

plants (Sage, 2002; Xu et al., 2022). In MATCRO, 𝑉𝑚𝑎𝑥 in Eq. (5) is calculated as follows: 

𝑉𝑚𝑎𝑥 = 𝑉𝑚𝑐𝑓𝑤             (6) 

𝑉𝑚𝑐 = 𝑉̅𝑚𝑐exp (c − ∆H/R𝑇𝑙𝑒𝑎𝑓)             (7) 150 

𝑉̅𝑚𝑐 =
∫  𝑉𝑐𝑚𝑎𝑥(𝐿𝐴𝐼)𝑑𝐿𝐴𝐼
𝐿𝐴𝐼
0

𝐿𝐴𝐼
           (8)  

where 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑐 are, respectively, the maximum Rubisco capacity per unit leaf area with and without the water stress factor 

(𝑓𝑤); 𝑉𝑚𝑐 is determined with a generic temperature response as described by Bernacchi et al. (2001); c and ∆H represent a 

scaling constant (c = 26.35) and activation energy (∆H = 65.33 kJ mol-1) of Rubisco’s activity response to temperature changes; 

R is the molar gas constant in kJ mol-1; 𝑉̅𝑚𝑐 is the maximum Rubisco capacity averaged over the canopy; and  𝑉𝑐𝑚𝑎𝑥(𝐿𝐴𝐼) 155 

denotes the vertical distribution of the maximum Rubisco capacity through the canopy, as determined by the vertical nitrogen 

distribution (see Eqs. (14) and (15)). The water stress factor, 𝑓𝑤, is determined based on the root distribution function (𝑓𝑟(𝑖)) 

multiplied by the water stress function at each soil layer (𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠,𝑡(𝑖)). The results are then summed across five soil layers 

(depths of 0.05, 0.25, 1, 2, and 4 m below the ground surface), as given in Eqs. (9)–(13) as follows: 

𝑓𝑤 = ∑ 𝑓𝑟(𝑖)𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠,𝑡(𝑖)
5
𝑖=1           (9) 160 

𝑓𝑟(𝑖) = (
3

2
)
(𝑧𝑟

2−𝑖2)

𝑧𝑟3
           (10) 

𝑧𝑟 = min{𝑧𝑟𝑜𝑜𝑡𝑚𝑎𝑥 , 𝑟𝑟𝑜𝑜𝑡(𝑡 − 𝑡𝑒)}          (11) 

where 𝑓𝑟(𝑖) is the distribution of roots in soil layer i (with value of 1–5). Root depth (𝑧𝑟 , in m) is calculated based on the root 

growth rate (𝑟𝑟𝑜𝑜𝑡, mm day-1) in timestep 𝑡 (day) after the time of emergence (𝑡𝑒, in d), and is limited by the maximum root 
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depth (𝑧𝑟𝑜𝑜𝑡𝑚𝑎𝑥 , in m). 𝑡𝑒 is assumed to be in the early developmental stage (0.012 of the growing period). The function 165 

𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠,𝑡 represents a simplified version of the relationship between the soybean transpiration ratio and transpirable soil water 

devised by Ray and Sinclair (1998), given in Eq. (12). 

𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠,𝑡(𝑖) = {

1

0.5
 𝐹𝐴𝑊(𝑖),  𝑖𝑓 𝐹𝐴𝑊(𝑖) ≤ 0.5

1,  𝑖𝑓 𝐹𝐴𝑊(𝑖) > 0.5
         (12) 

The value of the water stress function at timestep t (𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠,𝑡) depends on soil water availability at soil layer i (𝐹𝐴𝑊𝑖), which 

is the estimated soil water content based on the water flux between the soil layers during crop growth calculated by  170 

𝐹𝐴𝑊(𝑖) =  
𝑊𝑆𝐿(𝑖)−𝑊𝑆𝐿𝑤𝑖𝑙𝑡

𝑊𝑆𝐿𝐹𝐶−𝑊𝑆𝐿𝑤𝑖𝑙𝑡
           (13) 

where 𝑊𝑆𝐿(𝑖), 𝑊𝑆𝐿𝑤𝑖𝑙𝑡 , and 𝑊𝑆𝐿𝐹𝐶  represent the water levels in the soil layer i, at wilting point, and at field capacity, 

respectively. A value of 𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠 equal to 1 indicates no water stress because the fraction of available soil water is adequate for 

crop growth.  

𝑉𝑐𝑚𝑎𝑥(𝐿𝐴𝐼) is the reference value for maximum Rubisco activity within the canopy (mol(CO2) m-2 s-1) at leaf area index 175 

(𝐿𝐴𝐼, in m2 m-2) depth, limited by the exponential value of vertical distribution of leaf nitrogen (𝐾n), and the reference value 

for maximum Rubisco activity at the top of canopy (𝑉ctop, in mol(CO2) m-2 s-1), calculated as follows: 

𝑉cmax(LAI) = 𝑉ctop exp(−𝐾n𝐿𝐴𝐼)          (14) 

𝑉ctop = max(𝑎𝑆𝐿𝑁2 + 𝑏𝑆𝐿𝑁 + 𝑐, 𝑉𝑐𝑡𝑜𝑝𝑚𝑎𝑥)        (15) 

For soybean, the 𝑉ctop photosynthetic rate limited by the 𝑆𝐿𝑁 is based on the relationship between Rubisco activity and leaf 180 

nitrogen content, as determined from experiments on soybean at the reproductive stage, summarized by Ainsworth et al. (2014), 

and for soybean at the reproductive stage, summarized by Qiang et al. (2022). This relationship is empirically represented by a 

polynomial quadratic equation limited by the maximum value of Rubisco activity at the top canopy (𝑉ctopmax in mol(CO2) m-2 

s-1). 𝑎, 𝑏, 𝑐 are the quadratic coefficient, linear coefficient, and constant, respectively, from the relationship between the two 

variables based on data digitized using WebPlotDigitizer (Rohatgi, 2023).  185 

MATCRO considers nitrogen fertilization input denoted as 𝑁𝑓𝑒𝑟𝑡 (unit: kg(N) ha-1). This influences the amount of 𝑆𝐿𝑁 

(g(N) m-2), particularly under conditions of limited nitrogen availability (La Menza et al., 2023; Thies et al., 1995). The SLN is 

determined by nitrogen supply (including biological nitrogen fixation, soil mineral nitrogen, and nitrogen fertilizer) and by 

plant demand. In MATCRO-Soy, the changes in SLN over the growing period are represented by a function derived from La 

Menza et al. (2023), who observed SLN under wide range of low- and high-nitrogen fertilization conditions (see Supplementary 190 

file Fig. S1). This function adjusts the SLN value during the crop growth period, and higher nitrogen fertilization levels result 

in a higher leaf nitrogen content. In the absence of empirical data for initial growth stages, the model assumes a gradual increase 

in nitrogen content. The simulated SLN under different nitrogen fertilization treatments is defined by 



 

7 

 

𝑆𝐿𝑁 =

{
 
 
 

 
 
 𝑆𝐿𝑁𝑌0 +

(𝑆𝐿𝑁𝑌1−𝑆𝐿𝑁𝑌0)(𝐷𝑉𝑆−𝑆𝐿𝑁𝑋1)

𝑆𝐿𝑁𝑋1
,  𝑖𝑓 𝐷𝑉𝑆 < 𝑆𝐿𝑁𝑋1  

𝑆𝐿𝑁𝑌2 +
(𝑆𝐿𝑁𝑌2−𝑆𝐿𝑁𝑌1)(𝐷𝑉𝑆−𝐷𝑉𝑆𝑓)

(𝐷𝑉𝑆𝑓−𝑆𝐿𝑁𝑋1)
,  𝑖𝑓 𝑆𝐿𝑁𝑋1 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑓

𝑌 +
(𝑌−𝑆𝐿𝑁𝑌2)(𝐷𝑉𝑆−𝐷𝑉𝑆𝑠)

(𝐷𝑉𝑆𝑠−𝐷𝑉𝑆𝑓)
, 𝑖𝑓 𝐷𝑉𝑆𝑓 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑠

𝑆𝐿𝑁𝑌0 +
(𝑆𝐿𝑁𝑌0−𝑌)(𝐷𝑉𝑆−𝐷𝑉𝑆𝑚)

(𝐷𝑉𝑆𝑚−𝐷𝑉𝑆𝑠)
,  𝑖𝑓 𝐷𝑉𝑆𝑠 ≤ 𝐷𝑉𝑆 ≤ 𝐷𝑉𝑆𝑚

       (16) 

Y = 𝑆𝐿𝑁𝑌3,𝑙 +
𝑆𝐿𝑁𝑌3,ℎ−𝑆𝐿𝑁𝑌3,𝑙

𝑁𝑓𝑒𝑟𝑡,ℎ𝑖𝑔ℎ
∗ 𝑁𝑓𝑒𝑟𝑡         (17) 195 

𝑆𝐿𝑁 values vary across different phenological stages, as the developmental stage (𝐷𝑉𝑆) of soybean plants progresses from 

0 (at sowing) to 1 (at harvest). 𝐷𝑉𝑆𝑓 , 𝐷𝑉𝑆𝑠 , 𝐷𝑉𝑆𝑚, and 𝑆𝐿𝑁𝑋1 are defined as the start of flowering, seed-filling, and maturity 

stages, and the point where the 𝑆𝐿𝑁 pattern starts to change; with parameterized values of 0.4, 0.659, 1, and 0.15, respectively. 

𝑆𝐿𝑁𝑌0 , 𝑆𝐿𝑁𝑌1 , 𝑆𝐿𝑁𝑌2 , 𝑆𝐿𝑁𝑌3,𝑙 , and 𝑆𝐿𝑁𝑌3,ℎ  represent 𝑆𝐿𝑁  at the initial stage, early decline, pre-flowering increase, 

subsequent decline phases during the reproductive stage under no (𝑙) and high (ℎ) nitrogen inputs with values of 0.75, 2.25, 200 

1.7, 0.75, and 1.8, respectively. 𝑁𝑓𝑒𝑟𝑡,ℎ𝑖𝑔ℎ refers to the high nitrogen fertilizer input used in the model for parameterization, as 

described in Table 2. Y is the observed gap in SLN between high- and low-nitrogen fertilizer treatments (g(N) m-2) (see 

Supplementary file Fig. S1).  

The growth stages were parameterized based on experimental datasets and align with those reported by Irmak et al. (2013), 

based on the growth stage classifications of Fehr and Caviness (1977). 𝑆𝐿𝑁  primarily depends on nitrogen derived from 205 

biological fixation and soil nitrogen, either from natural sources or applied fertilizers. Nitrogen uptake, including biological 

nitrogen fixation and uptake from soil nitrogen, is implicitly captured through 𝑆𝐿𝑁 that influences 𝑉cmax [Eqs. (14) and (15)], 

and SLN as affected by applied fertilizers [Eqs. (16) and (17)]. 

2.4 Crop growth dynamics 

The products of photosynthesis contribute to glucose reserves, which provide energy for growth during various developmental 210 

stages. The crop growth dynamics include a carbon biomass partitioning module to calculate the dry weight of each soybean 

organ (Worgan in kg ha-1; see Eq. 18). This variable is the cumulative growth rate of dry weight (Gorgan in kg ha-1 s-1) during the 

time from emergence to harvest. Further details on this module can be found in Masutomi et al. (2016a). 

Worgan = f(Gorgan)            (18) 

The Worgan  is calculated separately for each soybean organ (i.e., leaf, stem, and pod including the seed, glucose reserves, and 215 

starch). The growth rate of dry weight (𝐺organ in kg ha-1 s-1) is calculated based on the parameters of conversion factor of dry 

weight from glucose to organ (𝐹glu−organ in kg ha-1(kg ha-1)-1) for leaf, stem, pod, root, and starch (listed in Table 1), and the 

ratio of glucose partitioned to organ (P𝑜𝑟𝑔𝑎𝑛) for shoot, leaf, and pod (listed in Table 2). Shoot refers to aboveground biomass 

parts including the stem, leaf, and pod. 𝐺organ is calculated for each organ and storage fraction (glucose, leaf, stem, pod, root, 

and starch) as described by: 220 

𝐺glu =  𝑓(𝑊𝑙𝑒𝑎𝑓 , Aglu, 𝑅𝑔𝑙𝑢)            (19)  

𝐺leaf = 𝐺glu𝑃shoot𝑃leaf𝐹glu-leaf          (20) 
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𝐺stem = 𝐺glu𝑃shoot(𝑃leaf − 𝑃pod) × (1 − 𝑓starch)𝐹glu−stem       (21) 

𝐺pod = 𝐺glu𝑃shoot𝑃𝑝𝑜𝑑𝐹glu−pod          (22) 

𝐺root = 𝐺glu(1 − 𝑃𝑠ℎ𝑜𝑜𝑡)𝐹𝑔𝑙𝑢−𝑟𝑜𝑜𝑡           (23) 225 

𝐺𝑠𝑡𝑎𝑟𝑐ℎ = 𝐺glu𝑃shoot(𝑃leaf − 𝑃pod)𝑓starch𝐹glu−starch        (24) 

where 𝐺glu (kg ha-1 s-1) is the amount of glucose partitioned to soybean organs and reserves derived from a function of leaf dry 

weight (𝑊𝑙𝑒𝑎𝑓 in kg ha-1), net carbon assimilation in glucose form (𝐴glu in kg(CH2O) ha-1 s-1), and glucose remobilized from 

starch reserves in the stem (𝑅𝑔𝑙𝑢  in kg ha-1 s-1); Aglu is An that has been already converted from CO2 to glucose using the 

conversion factor 1.08 × 106 [kg ha-1 h-1(mol m-2 s-1)-1], which is the physical and chemical constant for the conversion; and 230 

𝑅𝑔𝑙𝑢 is glucose remobilized from starch reserves in the stem, calculated using the ratio of the remobilization value. The 𝑅𝑔𝑙𝑢  is 

subtracted from the dry weight of starch reserves (𝑊starch). 𝑓starch [kg ha-1(kg ha-1)-1] is the fraction of glucose allocated to starch 

reserves, calculated as stem dry weight loss.  

As shown in Eqs. 20–24, 𝐺organ was calculated based on the conversion factor of dry weight (𝐹glu−organ) and ratio of glucose 

partitioned to that organ (𝑃𝑜𝑟𝑔𝑎𝑛). The calculations for 𝑃𝑜𝑟𝑔𝑎𝑛  are shown in Eqs. (25)–(27): 235 

𝑃shoot = {

1 − 𝑃𝑟𝑜𝑜𝑡 ,   𝑖𝑓 𝐷𝑉𝑆 = 0
1−𝑃𝑟𝑜𝑜𝑡(𝐷𝑉𝑆𝑚−𝐷𝑉𝑆)

𝐷𝑉𝑆𝑚
,  𝑖𝑓 0 < 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑚

1,   𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑚

        (25) 

𝑃leaf =

{
 
 

 
 𝑃𝑙𝑒𝑎𝑓0 +

𝐷𝑉𝑆

𝐷𝑉𝑆𝑙𝑒𝑎𝑓1
(𝑃𝑙𝑒𝑎𝑓1 − 𝑃𝑙𝑒𝑎𝑓0),   𝑖𝑓 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑙𝑒𝑎𝑓1

𝑃𝑙𝑒𝑎𝑓2 −
(𝑃𝑙𝑒𝑎𝑓2−𝑃𝑙𝑒𝑎𝑓1)

𝐷𝑉𝑆𝑙𝑒𝑎𝑓2−𝐷𝑉𝑆𝑙𝑒𝑎𝑓1
(𝐷𝑉𝑆𝑙𝑒𝑎𝑓2 − 𝐷𝑉𝑆),  𝑖𝑓 𝐷𝑉𝑆𝑙𝑒𝑎𝑓1 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑙𝑒𝑎𝑓2

0,   𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑙𝑒𝑎𝑓2

    (26) 

𝑃pod = {

0,   𝑖𝑓 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑝𝑜𝑑1
𝐷𝑉𝑆−𝐷𝑉𝑆𝑝𝑜𝑑1

𝐷𝑉𝑆𝑝𝑜𝑑2−𝐷𝑉𝑆𝑝𝑜𝑑1
,  𝑖𝑓 𝐷𝑉𝑆𝑝𝑜𝑑1 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑝𝑜𝑑2

1,   𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑝𝑜𝑑2

       (27) 

𝑃𝑙𝑒𝑎𝑓0, 𝑃𝑙𝑒𝑎𝑓1, 𝑃𝑙𝑒𝑎𝑓2 represent the leaf:shoot glucose partitioning ratio when leaf growth first starts to decline (leaf0), leaves 

stop growing (leaf1), and at maturity (leaf2), respectively. 𝐷𝑉𝑆𝑝𝑜𝑑1 and 𝐷𝑉𝑆𝑝𝑜𝑑2  indicate the DVS values at which the 240 

pod:shoot glucose partitioning ratio begins to increase and eventually saturates, respectively (Fig. 2). Figure 2 in Sect. 3.2 

visually represents the glucose partitioning ratio during crop growth as calibrated in this study.  

During the calibration process, the glucose partitioned to each organ was adjusted for each developmental stage on the basis 

of experimental data, as further described in Sect. 3. However, in this module, the leaf dry weight decreases because of 

senescence. This is calculated as the loss of leaf dry weight (𝐿leaf in kg ha-1 s-1) derived from the calibration of the ratio of 245 

glucose partitioned into the dead leaf (𝑃𝑑𝑙𝑒𝑎𝑓 in s-1), as outlined in Eqs. (28) and (29). 
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𝐿leaf = {
0                    ,   𝑖𝑓 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1

𝑃𝑑𝑙𝑒𝑎𝑓(𝑊𝑙𝑒𝑎𝑓 − 𝑊𝑔𝑙𝑢),  𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1
       (28) 

𝑃𝑑𝑙𝑒𝑎𝑓 = 𝑃𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓2
(𝐷𝑉𝑆−𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1)

(1−𝐷𝑉𝑆𝑑𝑒𝑎𝑙𝑒𝑎𝑓1)
         (29) 

The leaf area index (LAI) represents the leaf surface area relative to the ground area, calculated using Eq. 30. It directly 

influences the plant’s ability to intercept solar radiation for photosynthesis.  250 

𝐿𝐴𝐼 =
𝑊leaf+𝑊glu

𝑆𝐿𝑊
            (30) 

𝐿𝐴𝐼 is calculated from the estimated leaf dry weight (Wleaf, in kg ha-1) and glucose reserves in leaves (W𝑔𝑙𝑢, in kg ha-1) divided 

by the specific leaf weight (SLW, in kg ha-1). Glucose reserves are added to the leaf dry weight as a buffer, and affect leaf 

growth by storing carbohydrates that are not immediately required. SLW is the leaf dry weight per unit leaf area. The value of 

SLW dynamically changes during development according to the following exponential relationship: 255 

𝑆𝐿𝑊 = 𝑆𝐿𝑊max + (𝑆𝐿𝑊min − 𝑆𝐿𝑊max) 𝑒𝑥𝑝(−𝑆𝐿𝑊x𝐷𝑉𝑆)       (31) 

where 𝑆𝐿𝑊max, 𝑆𝐿𝑊min, and 𝑆𝐿𝑊x represent the maximum, minimum, and slope parameters, respectively, that define the values 

observed in the exponential relationship based on the experimental dataset summarized in Table 3. 

2.5 Soybean yield estimation  

Soybean yield is calculated from the pod dry weight at harvest (𝑊𝑝𝑜𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡, in kg ha-1) multiplied by the seed ratio parameter 260 

(𝑆𝑅), as given in Eq. (32).  

𝑌𝑖𝑒𝑙𝑑 =  𝑊𝑝𝑜𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡 × 𝑆𝑅          (32) 

SR was derived from experimental datasets summarized in Table 3 and represents the ratio of yield (seed, kg ha-1) to 

𝑊𝑝𝑜𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡 at harvest time. 

2.6 Soybean-specific parameters 265 

MATCRO-Soy shares several parameters with MATCRO-Rice because both plants are C3 species. However, unlike cereal 

crops, soybean plants can fix nitrogen. This characteristic is represented through changes in SLN during crop growth, as 

described in Eqs. (16) and (17). The crop-specific parameters reflect the unique physiological and chemical processes involved 

in soybean growth, but still align with the general framework of MATCRO-Rice. Key parameter adjustments are outlined in 

Table 1, where MATCRO employs a set of specific parameters to simulate crop growth and yield. These parameters include 270 

factors related to carbon allocation, root growth characteristics, and crop development based on cardinal temperatures. By 

accurately representing the unique physiological and biochemical characteristics of soybean plants, these parameters improve 

the precision of the model in predicting soybean yield.  

MATCRO-Soy is intended for use in global-scale simulations; hence, it uses a single global parameterization as a 

standardized set of parameters applied worldwide. It uses a unified approach for modelling crop behaviour across different 275 

regions. It is assumed that the parameter values from the different treatments and cultivars are independent. Table 2 lists 
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variables parameterized within the model, including glucose partitioning, nitrogen, and photosynthetic capacity variables. 

Through the parameterization of these variables, the model can be adapted for various growing conditions and employed to 

assess the sensitivity of crop performance to different factors. These parameters are commonly used to evaluate the crop 

model’s sensitivity to environmental changes and require further fine-tuning, as highlighted by simulations using other crop 280 

models (Battisti et al., 2018a).  

 

Table 1. Crop-specific parameters used for MATCRO-Soy.

Parameters Description Value Units Source Eq. 

𝐹𝑔𝑙𝑢−𝑙𝑒𝑎𝑓  conversion factor of dry weight from glucose to leaf 0.871 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (20) 

𝐹𝑔𝑙𝑢−𝑠𝑡𝑒𝑚 conversion factor of dry weight from glucose to stem 0.810 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (21) 

𝐹𝑔𝑙𝑢−𝑝𝑜𝑑 conversion factor of dry weight from glucose to pod 0.759 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (22) 

𝐹𝑔𝑙𝑢−𝑟𝑜𝑜𝑡 conversion factor of dry weight from glucose to root 0.857 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (23) 

𝐹𝑔𝑙𝑢−𝑠𝑡𝑎𝑟𝑐ℎ carbon fraction in the dry matter of starch 0.9 kg ha-1 (kg ha-1)-1 Physical and chemical constant (24) 

𝐾𝑁 vertical distribution of leaf nitrogen 0.11 - Bonan et al. (2011) (14) 

𝑟𝑟𝑜𝑜𝑡 rate of root depth increase 
0.03 mm day-1 Ordóñez et al. (2018) ; Nakano 

et al. (2021) 
(11) 

𝑍𝑟𝑜𝑜𝑡𝑚𝑎𝑥 maximum root depth 1.7 m de Vries et al. (1989) (11) 

𝑇𝑏  base temperature for crop development 10 ℃ de Vries et al. (1989) (4) 

𝑇h highest temperature for crop development 34 ℃ de Vries et al. (1989) (4) 

𝑇𝑜  optimum temperature for crop development 27 ℃ de Vries et al. (1989) (4) 

 

 285 

Table 2. Parameterized variables for soybean in MATCRO. 

Variables Value Units Description 

𝑎 -18.516 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (15) 

𝑏 114.33 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (15) 

𝑐 -73.336 - constant at relationship of rubisco activity and leaf nitrogen in Eq. (15) 

𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1 0.6 - 1st DVS point where the dead leaf ratio pattern changes 

𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓2 1 - 2nd DVS point where the dead leaf ratio pattern changes 

𝐷𝑉𝑆𝑓 0.4 - developmental stage on initial flowering stage 

𝐷𝑉𝑆𝑙𝑒𝑎𝑓1 0.25 - 1st DVS point where the leaf partitioning pattern changes 

𝐷𝑉𝑆𝑙𝑒𝑎𝑓2 0.659 - 2nd  DVS point where the leaf partitioning pattern changes 

𝐷𝑉𝑆𝑚 1 - developmental stage at maturity time 

𝐷𝑉𝑆𝑝𝑜𝑑1 0.48 - 1st DVS point where the pod partitioning pattern changes 

𝐷𝑉𝑆𝑝𝑜𝑑2 0.72 - 2nd  DVS point where the pod partitioning pattern changes 

𝐷𝑉𝑆𝑠 0.659 - developmental stage to start seed filling stage 

𝐷𝑉𝑆𝑆𝐿𝑁1 0.4 - 1st DVS point where the specific leaf nitrogen changes along with DVS 

𝐷𝑉𝑆𝑆𝐿𝑁2 0.4 - 2nd  DVS point where the specific leaf nitrogen changes along with DVS 
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Variables Value Units Description 

𝐷𝑉𝑆𝑆𝐿𝑁3 0.659 - 3rd DVS point where the specific leaf nitrogen changes along with DVS 

𝑓𝑠𝑡𝑎𝑟𝑐ℎ  0.18 - fraction of glucose allocated to starch reserves 

𝑆𝑅 0.68 - seed-pod ratio (SR) accounting harvest index from storage organ 

𝑁𝑓𝑒𝑟𝑡,ℎ𝑖𝑔ℎ  300 𝑘𝑔𝑁ℎ𝑎−1 nitrogen fertilizer value used in high nitrogen fertilizer in La Menza et al. (2023)  

𝑃𝑙𝑒𝑎𝑓0 0.38 - glucose partitioning ratio of leaf toward shoot in the initial DVS point 

𝑃𝑙𝑒𝑎𝑓1 0.6 - glucose partitioning ratio of leaf toward shoot in the 1st DVS point 

𝑃𝑙𝑒𝑎𝑓2 0 - glucose partitioning ratio of leaf toward shoot in the 2nd DVS point 

𝑃𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1 0 𝑠−1 dead leaf ratio value in the 1st  DVS point 

𝑃𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓2 0.000001 𝑠−1 dead leaf ratio value the 2nd DVS point 

𝑆𝐿𝑁𝑌0 0.75 𝑔𝑁𝑚−2 initial specific leaf nitrogen 

𝑆𝐿𝑁𝑌1 2.25 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 1st DVS point  

𝑆𝐿𝑁𝑌2 1.7 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 2nd DVS point 

𝑆𝐿𝑁𝑌3,ℎ 0.75 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 3rd DVS point when using high nitrogen fertilizer 

𝑆𝐿𝑁𝑌3,𝑙 1.8 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 3rd DVS point when using low nitrogen fertilizer 

𝑆𝐿𝑊𝑚𝑎𝑥  550 𝑘𝑔ℎ𝑎−1 maximum specific leaf weight 

𝑆𝐿𝑊𝑚𝑖𝑛 250 𝑘𝑔ℎ𝑎−1 minimum specific leaf weight 

𝑆𝐿𝑊𝑥 2.5 - exponential slope of specific leaf weight to the developmental stage 

𝑉𝑐𝑡𝑜𝑝𝑚𝑎𝑥  103×10-6 𝑚𝑜𝑙(𝐶𝑂2)𝑚
−2𝑠−1 maximum Rubisco capacity at the canopy top in Eq. (15) 

3 Model calibration 

The model’s parameters were tuned using observed values for phenology and seasonality of biomass development. Once 

calibration was complete, the model continued to simulate crop growth, which encompasses phenological development, carbon 

assimilation, assimilate partitioning, and crop yield. We conducted calibrations to include various environmental conditions 290 

and soybean varieties documented in previous experimental studies as detailed in Sect. 3.1 and Table 3. The model calibration 

included parameterizing the dynamic biomass growth partitioning ratio for each organ (𝑃𝑜𝑟𝑔𝑎𝑛), leaf senescence, and specific 

leaf weight  at each 𝐷𝑉𝑆. Other calibrations using the experimental dataset included the phenological stage, and the seed:pod 

ratio (SR). The crucial phenological stages (e.g., flowering and seed-filling) were calculated as the average value of the 

reported values in the experimental dataset. MATCRO applies this crop growth module following the method of the school od 295 

de Wit, comparing biomass growth with the observed values at various developmental stages. Shifts in partitioning and growth 

patterns were identified and used as reference points in the parameterization. 

3.1 Description of site data used for calibration 

The calibration process used experimental datasets reported in previous studies. The data were collected in field experiments 

across six different sites in four countries: Frederico Westphalen and Piracicaba (Brazil), Ya’an (China), Champaign (United 300 

States of America, US), Morioka and Tsukubamirai (Japan) (Table 3). The soybean cultivars grown at these experimental sites 

represented different maturity groups. A variety of management practices related to water management and nutrients were used 

in the field experiments. The farming practices differed among countries. The soybean plants were cultivated with a low 
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planting density in China and Japan, but typically at higher planting densities in the US and Brazil. Nitrogen fertilizers were 

applied at most sites, but the mineral nitrogen content in soil at sites in Brazil and the US was sufficient to support crop growth. 305 

Soybean crops were planted between May and June in the US, China, and Japan, but in October or November in Brazil.  

Weather data were derived from the records at the meteorological station nearest to the experimental site. The climatic 

conditions at the respective sites were as follows: daily mean air temperature ranges during the growing season of 18–30 °C in 

Frederico Westphalen (Brazil), 19–31 °C in Piracicaba (Brazil), 17–27 °C in Tsukubamirai (Japan), 14–25 °C in Morioka 

(Japan), 18–26 °C in Ya’an (China), and 15–28 °C in Champaign (US). The seasonal precipitation (mm) was 1,669 mm in 310 

Frederico Westphalen (Brazil), 679 mm in Piracicaba (Brazil), 453 mm in Morioka (Japan), 865 mm in Tsukubamirai (Japan), 

1,012 mm in Ya’an (China), and 787 mm in Champaign (US). The amount of solar radiation also differed among the 

experimental sites; China received the least solar radiation and Brazil received the most during the experimental period 

(Supplementary file Fig. S2). These data represent the diverse climatic conditions in soybean-producing countries. The field 

data used for calibration were collected across multiple crop seasons, specifically from 2002, 2003 to 2007 and from 2013 to 315 

2016. These time periods were expected to capture the current climatic and environmental variability. 

Table 3. Information about field experiments: Location, crop season, soybean variety and maturity group, water management, and nitrogen 

fertilizer, as well as the number of experiments for calibrating glucose partitioning ratio and evaluating soybean yield simulations. 

Location Crop season Variety (RMG*) Date of planting 

Water management,  

Nitrogen fertilizer 

(g N m-2), Plant Density 

(plant m-2) 

Experiments 

(n) 
Reference 

Brazil (Frederico 

Westphalen) 

2013 BRS284 (6) 1, 18 Oct; 8, 25 Nov, 12 Dec 

(2013) 

Rainfed, 0, 26-28 5 Battisti et al. (2017) 

Brazil (Piracicaba) 2013-2014 BRS284 (6) 18 Oct, 14 Nov (2013);  

8 Jan (2014) 

Irrigated and Rainfed, 0, 

16-37 

6 Battisti et al. (2017) 

China (Ya’an)  2014 11 cultivars (5-8) 11 June (2014) Irrigated, NA, 10 15 Wu et al. (2019)  

2014-2016 Texuan13 (7), 

Jiuyuehang (5), 

Nandou12 (6) 

15 June (2014); 18 June 

(2015); 18 June (2016) 
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United States 
(Champaign) 

2002, 2004-
2007 

Pioneer93B15 (3) 1 June (2002); 28 May 
(2004); 25 May (2005, 2006); 

22 May (2007) 

Rainfed, 0, 25 – 53 8 Morgan et al. (2005); 
Ainsworth et al. (2007) 

Japan 
(Tsukubamirai) 

2013-2015 Enrei (2), 
Fukuyutaka (4), 

Ryuhou (2) 

12 June, 31 July (2013); 17 
June, 17 July (2014); 4, 30 

June (2015) 

Rainfed, 25-27, 9.5 16 Nakano et al. (2021) 

Japan (Morioka) 2013-2016 Ryuhou (2) 13, 28 May (2013); 16, 30 

May (2014); 5, 14, 25, 29 
May (2015); 30 May, and 6, 

27 June (2016) 

Rainfed, 25-30, 9.5 10 Kumagai, (2018); 

Kumagai, (2021) 

*relative maturity group

3.2 Biomass partitioning and specific leaf weight 320 

The MATCRO-Soy model represents carbon assimilation by incorporating the carbon fraction in dry matter and that in glucose 

allocated to various plant organs. The glucose ratio for each organ was parameterized based on measurements of leaf weight, 

leaf senescence, stem weight, pod weight, and specific leaf weight across different developmental stages. To simulate glucose 

partitioning, we used Eqs. (25)–(29) to fit the segmented linear functions to the experimental dataset (Figure 2 and Figure 4) 

and the parameter values as shown in Table 2, as this value is used to obtain the average value of soybean partitioning behaviour. 325 
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The segmented linear functions for glucose partitioning were manually determined by visual inspections of the plot. This 

approach was chosen because of the challenges in applying nonlinear optimization. Breakpoints in the developmental stage 

were determined based on assumed growth characteristics, such as the decrease in leaf development after the seed-filling stage 

and the start of pod formation after flowering. We assumed an increasing trend of glucose allocation to leaf and shoot 

development during the early stage when data were unavailable, with subsequent segments aligned with observed data trends. 330 

The calibrated glucose partitioning ratio varied across the varieties and environmental conditions and was derived by converting 

biomass growth into glucose allocation as outlined in Eqs. (19)–(24).  

The parameterization reflected the observed data, as well as the linear growth of leaves and pods during the developmental 

stages. It was used for seed:pod ratio and phenology parameterization. The dashed lines in Figure 2 and Fig. 3 indicate the 

estimated flowering and seed-filling stages, as determined by calculating the average time of phenological stages across all the 335 

experimental datasets. The independent dataset was used for evaluating the calibrated model at the point-scale level. After 

removing the calibration data, the simulated yield at the site scale showed a correlation coefficient of 0.68 and significant 

consistency (p value < 0.001) with observed data (Supplementary file Fig. S3). The simulated data were also consistent with 

observed data for aboveground biomass weight, pod weight, and leaf area index, with correlation coefficients of 0.60−0.90. 

Assimilated carbon is subsequently allocated to other parts of the plant. Compared with varieties grown at other sites, the 340 

soybean varieties grown in Tsukubamirai (Japan) tended to have lower partitioning to the stem during the vegetative stage. The 

ratio of glucose to leaves in Sichuan (China) was unexpectedly high near maturity in 2016, resulting in a low level of partitioning 

to pods because of low temperature and drought conditions. The storage organ biomass increases during the reproductive stage 

to produce pods and seeds, whereas the shoot senesces at the end of the maturity period. Hence, yield is estimated using seed 

weight (as determined by storage organ weight) and the parameterized seed:pod ratio. In Champaign (US), pod partitioning 345 

tended to occur early during pod initiation in early maturing varieties. It is also observed in another study as the dry weight of 

pods before the seed filling stage was relatively high in early maturing varieties (Kawasaki et al., 2018). Early pod initiation 

occurred in the soybean variety ‘Ryuhou’ in Tsukubamirai in 2013 (Nakano et al., 2021). The dead leaf ratio parameter indicates 

the degree of leaf senescence after the seed-filling stage (Fig. 3), as calculated from the amount of leaf loss observed during the 

growing season. 350 

  

Figure 2. Glucose partitioning expressed as leaf:shoot ratio (a) and pod:shoot ratio (b) during soybean plant development [DVS = 0 (sowing) 

– 1 (maturity)] at different experimental sites (square: Piracicaba, circle: Frederico Westphalen, triangle: Morioka, plus: Tsukubamirai, cross: 
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Champaign, diamond: Ya’an. Red lines are segmented lines used for glucose partitioning in MATCRO-Soy. Dashed lines mark flowering, 

seed filling, and harvest times averaged across all experimental datasets.  355 

     

Figure 3. Dead leaf ratio (s−1) during soybean plant development (DVS = 0 – 1). Abbreviations and symbols are the same as in Fig. 2. 

Specific leaf weight (SLW) is a significant parameter in crop growth parameterization and was calibrated to follow the 

measured data shown in Figure 4. We used the measured leaf weight and leaf area index data from the experimental datasets 

described in 2.4 and Eq. (30) to calculate the ratio of leaf weight to leaf area (SLW) during different phenological stages. These 360 

ratios change over time, and vary among growing seasons and cultivars (Thompson et al., 1996; Slattery et al., 2017). In the 

figure, SLW from Champaign (US) was excluded because of discrepancies in the timing of leaf area and leaf weight biomass 

measurements. While the SLW varied among the sites, we fitted the model of SLW assuming a saturating exponential function 

of developmental stage (red line in Figure 4). This pattern aligned well with the biological process, i.e., the SLW initially 

increases because of rapid biomass accumulation but saturates as the leaves mature.  365 

  

Figure 4. Specific leaf weight (kg ha-1) during soybean plant development (DVS = 0 – 1). Abbreviations and symbols are the same as in Fig. 

2. 
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4 Model evaluation setup 

MATCRO was developed in FORTRAN and coupled with the global climate model’s output, simulated at a spatial resolution 370 

of 0.5° × 0.5° and hourly–daily temporal resolution. The output of the model is gridded crop yield (kg ha-1) as stored in netCDF 

file format in a global map with one harvest simulated per year. We evaluated the model’s performance at global, country, and 

grid-cell levels for 34 years (1981–2014) at 0.5° spatial resolution with yearly harvested yield output. The accuracy of the 

simulated yield was assessed by comparison with reference global and country-level data from the Food and Agriculture 

Organization (FAOSTAT, 2023). The simulated grid-cell level yield was compared with Global Dataset of Historical Yield 375 

(GDHY) data, which are derived from statistical records, FAO data, and remote sensing data (Iizumi, 2019). 

4.1 Simulation settings and data inputs 

The parameters were set as shown in Table 4, covering the period of sowing years from 1980 to 2014, with various planting 

times across different regions. The model incorporated global daily climate data (86400 s) as input data. Although the 

simulation framework was that of the established MATCRO-Rice v.1 (Masutomi et al. 2016b), several modifications were 380 

made to enhance its applicability at a global scale. Notably, the temporal resolution was adjusted from half-hourly (1800 s) to 

hourly (3600 s), allowing the model to maintain consistency in capturing critical processes such as diurnal variations in 

photosynthesis and transpiration, while optimizing computational efficiency. These adjustments ensured that the model was 

suitable for large-scale simulations while preserving essential physiological processes. 

The model simulates soybean yield using input data as described in Table 5. It uses the following global input data: crop 385 

calendar from the Global Gridded Crop Model Intercomparison (GGCMI), which separates rainfed and irrigated systems; 

atmospheric CO2 and climate data from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which provides 

bias-adjusted climate input data for historical data (GSWP3-W5E5 v2.0); soil classifications from the Harmonized World Soil 

Database (HWSD v1.2); and nitrogen fertilization for C3 fixing crops of the ISIMIP, which is derived from the land use dataset 

(Hurtt et al., 2020). ISIMIP bias-adjusted data are used to maintain uniformity in the climate impact data across sectors and 390 

scales in the framework. This dataset, which is provided by ISIMIP, has a spatial resolution of 0.5. To determine the growing 

degree days for maturity, we considered the phenological maturity time from the GGCMI crop calendar for harvest time and 

global ISIMIP climate data over 10 years (2000–2010) to capture the shifts in variability across the current evaluation years.  

Table 4. Parameter settings for simulation.  
Variable Value Unit Description 

Yearsow varied Year year of sowing day 

DOYsow varied Day of Year (DOY) day of year of sowing day 

REStime 3600 s time resolution for simulation 

RESclimate 86400 s time resolution for climate forcing data 

RESwe/ns 0.5 degree spatial resolution north to south or west to east 

Soil layer 5.0 - number of simulated soil layer to calculate soil water content 

WSL 1.0 - soil water content at emergence 

Wleaf0 1.0 kg ha-1 dry weight of leaf at emergence 

Wstem0 1.0 kg ha-1 dry weight of stem at emergence 

Wroot0 1.0 kg ha-1 dry weight of root at emergence 

Wglu0 0.5 kg ha-1 dry weight of glucose reserve at emergence 

Za 3.0 m reference height at which wind speed is observed 

Zmax 4.0 m depth of soil layer 

Zt 0.05 m depth of topsoil layer 

Zb 2.0 m depth from the soil surface to the upper bound of the most bottom layer of soil 
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 395 

Table 5. Data input for MATCRO simulation. 

Variable Unit Data source Spatial resolution 

Daily time-step 

Precipitation  kg m-2s-1 

GSWP3–W5E5 (Kim, 2017; Cuchi et al., 

2020; Lange, 2019; Lange et al., 2021) 

0.5 × 0.5 

Near-surface specific humidity kg kg-1 0.5 × 0.5 

Maximum, minimum, and mean temperature  Kelvin 0.5 × 0.5 

Surface downwelling shortwave radiation W m-2 0.5 × 0.5 

Near-surface wind speed m s-1 0.5 × 0.5 

Surface air pressure Pa 0.5 × 0.5 

Yearly time-step 

Atmospheric CO2 concentration ppm ISIMIP (Büchner and Reyer, 2022) - 

Nitrogen fertilizer  kg ha-1 ISIMIP (Volkholz and Ostberg, 2022) 0.5 × 0.5 

Constants 

Latitude and longitude ° - - 

Agricultural management Irrigated or rainfed MIRCA2000 (Portmann et al., 2010) 0.5 × 0.5 

Sowing time, Harvest time DOY GGCMI (Jägermeyr et al., 2021) 0.5 × 0.5 

Growing degree days for harvest time °C days Parameterized in this study 0.5 × 0.5 

Soil type - HWSD (Volkholz and Müller, 2020) 0.5 × 0.5 

4.2 Global yield evaluation methods 

In this study, we assessed the statistical relationship between simulated yields and observed or reference data using the common 

metrics of Pearson’s correlation coefficient (corr) as calculated using Eq. (33) with significance level (p-value), agreement 400 

between the simulated and observed results using root mean square error (RMSE) as calculated using Eq. (34), and relative 

bias, as calculated using Eq. (35), for time-series yield data as follows: 

𝑐𝑜𝑟𝑟 =  
∑ (𝑋𝑖−𝑋̅)
𝑛
𝑖=1 (𝑌𝑖−𝑌̅)

√∑ (𝑋𝑖−𝑋̅)
2𝑛

𝑖=1 (𝑌𝑖−𝑌̅)
2
           (33) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑛
𝑖=1           (34) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =  
1

𝑛
∑ |𝑋𝑖 − 𝑌𝑖| 
𝑛
𝑖=1 ×

1

𝑌̅
         (35) 405 

where 𝑋𝑖 and 𝑌𝑖  indicated simulated and observed values for each measurement; 𝑋̅ and 𝑌̅ denote the mean of simulated and 

observed values for the harvested year annually; and 𝑖 and 𝑛 are the 𝑖-th data point and total number of data, respectively. We 

used 𝑛 = 34 years for global-scale data, while the output after calibration was evaluated at the point-scale using 𝑛 = 14–122 of 

the available experimental datasets.  

Detrended yield represents the time-series yield data for both simulated and observed values after removing the linear trend 410 

by subtracting the slope and intercept of the fitted linear regression (long-term yield trend). This approach enables the 
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separation of short-term yield fluctuations from systemic long-term shifts. To provide a clear interpretation of the model’s 

evaluation errors, yield fluctuations were evaluated separately for the long-term and detrended data using mean squared 

deviation (MSD) and its components (Gauch et al., 2003; Kobayashi and Salam, 2000), as outlined in Eq. (36):  

𝑀𝑆𝐷𝑦 = 𝑆𝐵𝑦 + 𝑆𝐷𝑆𝐷𝑦 + 𝐿𝐶𝑆𝑦           (36) 415 

where 𝑀𝑆𝐷𝑦 is the square of RMSE for each long-term yield trend or detrended yield. Its components include mean squared 

bias (𝑆𝐵𝑦), difference in the magnitude of fluctuation, namely the squared difference between standard deviations (𝑆𝐷𝑆𝐷𝑦), 

and the lack of positive correlation weighted by the standard deviations (𝐿𝐶𝑆𝑦) as proposed by Kobayashi and Salam (2000). 

These terms were calculated using Eqs. (37)–(41), as follows:  

𝑆𝐵𝑦 =  (𝑋̅ − 𝑌̅)
2             (37) 420 

𝑆𝐷𝑆𝐷𝑦 = (𝑆𝐷𝑋 − 𝑆𝐷𝑌)
2            (38) 

𝑆𝐷𝑋 =  √
1

𝑛
∑ (𝑋𝑖 − 𝑋̅)2
𝑛
𝑖=1             (39) 

𝑆𝐷𝑌 =  √
1

𝑛
∑ (𝑌𝑖 − 𝑌̅)2
𝑛
𝑖=1             (40) 

𝐿𝐶𝑆𝑦 = 𝑆𝐷𝑋𝑆𝐷𝑌(1 − 𝑐𝑜𝑟𝑟)          (41) 

Higher 𝑆𝐵𝑦 , 𝑆𝐷𝑆𝐷𝑦, and 𝐿𝐶𝑆𝑦  indicate that model failed to simulate the mean of the measured yield, magnitude of fluctuation 425 

around the mean yield, and pattern of fluctuation in yield across n measurements, respectively. 𝑆𝐷𝑋  and 𝑆𝐷𝑌 denote the 

standard deviation of simulated (𝑋) and observed values (𝑌), respectively, and 𝐿𝐶𝑆𝑦  depends on the correlation coefficient 

(corr).  

5 Evaluation of model performance  

We calculated soybean yield with a global-scale map based on the gridded data of irrigated and rainfed area from the 430 

MIRCA2000 dataset, which represents global agricultural land use around the year 2000 (Portmann et al., 2010), to get the 

actual yield value. We evaluated yield during the period of 1981–2014 because the MIRCA dataset was available within that 

period. The simulated yield at the global scale, and at the country scale for regional comparison, was determined by aggregating 

grid cell data to compute the mean soybean harvested area within each country grid as described below in Eq. (42): 

𝑌𝑖𝑒𝑙𝑑𝑟𝑒𝑔𝑖𝑜𝑛 =
∑ [(𝑌𝑖𝑒𝑙𝑑𝑟𝑓)𝑖(𝐴𝑟𝑒𝑎𝑟𝑓)𝑖+(𝑌𝑖𝑒𝑙𝑑𝑖𝑟)𝑖(𝐴𝑟𝑒𝑎𝑖𝑟)𝑖]
𝑛
𝑖=1

∑ [(𝐴𝑟𝑒𝑎𝑟𝑓)𝑖+(𝐴𝑟𝑒𝑎𝑖𝑟)𝑖]
𝑛
𝑖=1

        (42) 435 

where 𝑌𝑖𝑒𝑙𝑑𝑟𝑒𝑔𝑖𝑜𝑛 is the aggregated yield in a given region (country or global-scale) in kg ha-1 from the grid cell number (𝑖) 

ranging from 1 to 𝑛 (total number of grid cells in the region); 𝑌𝑖𝑒𝑙𝑑𝑟𝑓 and 𝑌𝑖𝑒𝑙𝑑𝑖𝑟  are estimated yield under rainfed and 

irrigated conditions,and 𝑌𝑖𝑒𝑙𝑑𝑖𝑟  respectively; and 𝐴𝑟𝑒𝑎𝑟𝑓  and 𝐴𝑟𝑒𝑎𝑖𝑟  are the soybean rainfed and irrigated area (ha),and 

𝐴𝑟𝑒𝑎𝑖𝑟  respectively.   



 

18 

 

5.1 Model output yield as evaluated at the global and national scales 440 

Figure 5a shows a time-series comparison from 1981 to 2014 between the global mean yields reported by FAOSTAT and 

those simulated by MATCRO-Soy. The results show that the model captured the upwards trend in yields over the period with 

a shallower slope compared with that of the reported yield data. The correlation coefficient was 0.81, and was significant (p < 

0.01); and the errors were RMSE of 298 kg ha-1 and relative bias of 0.12. Notably, the simulated linear increase contributed to 

the higher correlation coefficient for the yield trends. 445 

Figure 5b compares the detrended global mean yield observed by FAOSTAT and the simulated value by MATCRO-Soy 

after removing the long-term linear trend across the study period. The detrended yield is the value after the long-term trend is 

subtracted from the original yield data. It isolates the variability primarily driven by climate fluctuations to evaluate interannual 

variability independent of long-term trends. However, it also removes longer-term signals (e.g., effects of technological 

improvements or increasing CO2 concentrations). The correlation coefficient for the detrended yield data decreased to 0.446 450 

(p < 0.01). The model reproduced the interannual variations well with an RMSE of 137 kg ha-1. Specifically, according to 

observed data, there were significant yield reductions in the years 1983, 1988, 2009, and 2012. Among these, the model 

successfully reproduced the yield reductions in three years (1983, 1988, and 2012), excluding 2009. Severe droughts occurred 

in those years, and the model’s ability to capture these events is noteworthy. 

 455 

Figure 5. Time-series comparison between simulated yields by MATCRO-Soy and FAOSTAT reported yield data: (a) Global yield and 

long-term trend during 1981–2014, and (b) Detrended yield during 1981–2014. Correlation for detrended yield was calculated by subtracting 

linear trend. Symbols ***, **, and * denote p < 0.001, 0.01, and 0.05, respectively. 

We evaluated the model’s performance for 10 major soybean-producing countries; Argentina, Brazil, China, India, 

Paraguay, the US, Italy, Russia, Bolivia, and Canada, which together account for 96 % of global soybean production (based 460 

on total average production from 2012 to 2021 reported in FAOSTAT). Figure 6 compares the simulated average yields per 

country and the reported average yields per country as reported in FAOSTAT for 1981–2014 with the ellipsoids indicating the 

distribution of the simulated yield values within the 90 % confidence range. The model reproduced the national average yield 

levels well for the top 10 producing countries, as indicated by a correlation coefficient of 0.519 (p < 0.001) and an RMSE of 

1,085 kg ha-1. The correlation coefficients were significant for six countries; Argentina, Brazil, India, Italy, Paraguay, and the 465 

US (see Supplementary file Fig. S4 for further evaluation of these six countries). Focusing on the US, Brazil, and Argentina, 

which together account for 69 % of global soybean production, the model’s accuracy showed a correlation coefficient of 0.645 

(p < 0.001) and an RMSE of 916 kg ha-1, although soybean production in Brazil was underestimated. When all 10 countries 
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were considered, the correlation coefficient decreased to 0.291, although it remained statistically significant. These results 

demonstrate that the model performs reasonably well in capturing yield variations in major producing countries and achieves 470 

particularly lower bias in some countries (e.g., the US, Italy, and Canada). 

  

Figure 6. Comparison between average yields simulated by MATCRO-Soy and average yields reported by FAOSTAT for the 10 major 

soybean-producing countries during 1981–2014. Ellipsoid shows 90 % confidence range of annual yield.  

A time series comparison of average yields for each of the 10 major soybean-producing countries is shown in Figure 7. An 475 

evaluation of the long-term trends (Figure 7a) revealed that MATCRO-Soy effectively captured the trends of increasing 

soybean production. The modelled and observed trends showed the strongest agreement in Brazil, followed by Argentina 

(0.62) and the US (0.64). The detrended yields revealed interannual variability (Figure 7b). For these data, the modelled and 

observed data had the highest correlation coefficient in Paraguay (0.61), followed by the US (0.57) and Brazil (0.49), and the 

lowest correlation coefficients in China (0.18) and Bolivia (−0.32). These findings suggest that the model tends to perform 480 

with greater accuracy for countries with higher production levels, even in time series comparisons at the national level. 
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Figure 7. Time-series comparison between yields simulated by MATCRO-Soy (red circle) and yields reported by FAOSTAT (open circle) 485 

in 10 top soybean-producing countries during 1981–2014: (a) Long term yield trend in kg ha-1 (solid line), (b) Detrended yield in kg ha-1 

after subtracting linear trend. Correlation coefficient and RMSE are shown in each panel. Symbols ***, **, and * denote p < 0.001, 0.01, 

and 0.05, respectively. Shading near solid line is standard error with confidence interval of 95 %. 

5.2 Temporal trends and variability 

The model’s performance was further assessed with the MSD components for yield, separated into yield, long-term yield trend, 490 

and detrended yield for both the global (Supplementary file Table S1) and country scales (Supplementary files Tables S2, S3, 

and S4). We separated the MSD into SB, SDSD, and LCS, which reflect errors in mean yield, magnitude of yield variability, 

and the pattern of year-to-year fluctuations, respectively. The greatest contributor to error at the global scale was SB, 

contributing approximately 71 % and 77 % of total MSD for yield and detrended yield, respectively (Supplementary file Table 

S1).  495 

 Figure 8 shows MSD components in the top six soybean-producing countries. In most countries, SB was the primary source 

of error. The highest MSD was in Paraguay, and was largely driven by SB, with a notable contribution from LCS. This indicates 

that the model simulated variability well but poorly captured the mean yield. The low MSD in the US was also driven by SB, 

but LCS also contributed to year-to-year variability. Meanwhile, LCS was the greatest contributor to yield error in Canada and 

Italy (Supplementary file Table S2) because of pronounced discrepancies in the simulated interannual variability. SDSD 500 

contributed to error only in Brazil, where the model underestimated the mean yield and the deviation. These results highlight 

that the mean yield bias is main source of error at the global and country scales, while LCS and SDSD contribute notably in 

specific regions where the model fails to capture the variability or the temporal pattern.  
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Figure 8. Mean squared deviation (MSD) components of squared bias (SB), sum of difference in standard deviation (SDSD), and lack of 505 
positive correlation (LCS) for yield error in top six soybean-producing countries. 

5.3 Model performance at the grid-cell level   

We evaluated MATCRO-Soy at the grid-cell level by comparing simulated yields with observed ones from the GDHY dataset 

reported by Iizumi (2019). Figure 9a and b show the simulated and observed yields averaged over 34 years, and Figure 9c 

shows relative bias between them. Figure 10 shows the interannual correlation between simulated and observed yields for 34 510 

years. The simulated yield was calculated for soybean-growing areas from the MIRCA2000 dataset, which offers broad spatial 

coverage where yield data for certain regions, including Canada, Russia, Australia, and many European and Asian countries, 

are missing in the GDHY dataset (Iizumi and Sakai, 2020). The density plot of the simulated yield showed more variability 

than did the GDHY data in Figure 9. However, both datasets exhibited a density peak of approximately 2,000 to 3,000 kg ha-

1 and the simulated yield mostly overestimated the higher yield value. Figure 9 a, b, and c also show the distribution of 515 

simulated and observed yields. 

The relative bias map (Figure 9c) highlights that overestimation was prominent in parts of South America (particularly 

Argentina), Russia, and China. In contrast, the model tended to underestimate yields in South Africa, India, and Brazil. Most 

of the grid cells in Brazil showed low yields, likely due to shorter growing periods in the input data compared with those in 

the field experimental data. These results aligned with the trends observed at the national scale, which were influenced by the 520 

aggregation process. During aggregation, the national-scale results represent the average performance across all grid cells, 

weighted by the number of grids within each region. Most grids had a relative bias of −0.2 to 0.2, accounting for 37 % of the 

total grid area. For areas shown in grey, the correlation was statistically insignificant. The density plot of simulated yield 

showed more variability compared with the GDHY data. However, both datasets exhibited a density peak at approximately 

3,000 kg ha-1, and the simulated yield mostly overestimated the observed yield. Correlation coefficients were calculated for 525 

each grid cell between the simulated yield and the GDHY dataset after removing the moving-average to reveal interannual 

variation (Figure 10). The correlation was significant in 66 % of the grid cells (p < 0.05).  
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Figure 9. Global map of 34-year averaged (1981–2014) yield of GDHY dataset (a), simulated by MATCRO-Soy (b), and relative bias (c) 530 

with each density plot distribution. In (c), areas in grey are those where the correlation between simulated and observed yields was non-

significant (p > 0.05).  
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Figure 10. Time-series correlation between simulated and observed yield in 1981–2014 after removing trends from 5-year moving average 

(c). Grey colour depicts regions with non-significant correlations (p > 0.05) in the map. Red dashed line shows the border of p = 0.05 for the 535 
number of years (n = 34) in the density distribution plot. 

Figure 11 presents the relative RMSE (RMSE value compared with the observation value) between the simulated yields 

and GDHY datasets for detrended yield at the grid-scale. The RMSE values were relatively higher in some parts of Africa 

(particularly in Nigeria), the US, India, and China, and relatively lower in Brazil and Argentina. India and the US showed low 

RMSEs at the national-level, but some grid cells within both countries had higher relative RMSEs at the grid-cell level. 540 

Detailed information on the spatial variation in error and its components is provided in Supplementary File Fig. S6 for the 

long-term yield trend and Supplementary File Fig. S7 for the detrended yield. 

 

Figure 11. Relative RMSE calculation between simulated and observed yield for detrended yield at the grid-cell level. 

5.4 Model performance at the leaf-level   545 

We simulated the leaf-level variation in Vcmax at the site-scale for Champaign, US (the country with the highest soybean 

production), for the 2002 growing season. The global parameterization of MATCRO-Soy was used for this simulation (Figure 
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12). The leaf-level simulated Vcmax values aligned closely with the measured data reported by Bernacchi et al. (2005) during 

the vegetative stage, but showed some deviations during the flowering to seed-filling stages (dotted line in Figure 12). This 

alignment highlighted the ability of the model to represent essential photosynthetic processes influenced by leaf nitrogen 550 

content. 

 

Figure 12. Maximum carboxylation capacity of Rubisco (𝜇𝑚𝑜𝑙(𝐶𝑂2)𝑚
−2𝑠−1) during the growing period in Champaign (US) in 2002 as 

simulated using MATCRO-Soy (black line) and as measured (grey dots) by Bernacchi et al. (2005). 

6 Discussion 555 

6.1 Validation of MATCRO-Soy 

In prior studies, soybean yield predictions often faced challenges in capturing crop responses to climatic variables. Our results 

show that the MATCRO-Soy model effectively captures the linear trend in soybean yields, with higher accuracy for long-term 

trends (corr = 0.812) than for detrended yields (corr = 0.446) (Figure 5). This result for the global detrended yield improves 

upon that of the benchmark study of Müller et al. (2017), indicating that there is less variation in process-based models based 560 

on their statistical correlations. Another crop model, PRYSBI2, reached a significant correlation of 0.57 (p < 0.050) based on 

long-term trends. However, model accuracy is enhanced when site-specific parameters are used. This has been demonstrated 

in regional-scale evaluations in previous studies, which were used for parameterization in this global simulation (Battisti et al., 

2017; Kumagai, 2018, 2021; Morgan et al., 2005; Nakano et al., 2021; Wu et al., 2019). Those studies showed that integrating 

factors such as cultivar differences, ensembles of multiple crop models, nitrogen content, and more accurate measurement 565 

methods allow for a more reliable representation of local growing conditions and climate variability.  

We examined the model’s performance in predicting soybean yields for the 10 largest soybean-producing countries. As 

shown in Figure 6, the RMSE was 1,085 kg ha-1 (average yield over 34 years). This value is similar to that reported in another 

study using the LPJ-GUESS model incorporating a biological nitrogen fixation module (Ma et al., 2022), where the RMSE 

was approximately 800 kg ha-1 (average yield over 10 years). Evaluation of MATCRO-Soy’s performance at the grid-cell 570 

level, as shown in Figure 9, revealed that the correlation between simulated and observed yields was significant (p < 0.05) in 

66 % of the grid cells, with the value in most grid cells within the range of 0.2–0.6. These findings align with those of the 

benchmark study of Müller et al. (2017), who found that time-series correlations in GGCM-simulated soybean yields ranged 

from 0.25 to 0.65 because of various discrepancies in the data. These correlations were calculated using detrended values, 

which is a useful strategy for evaluating interannual variability and the model’s sensitivity to climate fluctuations. However, 575 

detrending removes important long-term signals related to genetic improvements, cultivar and management changes, and/or 

increased CO₂ levels. 
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Analyses of the correlations between yield and detrended yield (Figure 5 and Figure 6) indicate that the model performed 

better (i.e., a higher correlation coefficient) when predicting long-term yield trends. MATCRO-Soy was able to capture the 

trend of increased atmospheric CO2 and nitrogen fertilizer inputs, despite the interannual variability in climate conditions. 580 

Analyses of MSD and its components revealed that the lack of positive correlation was the major contributor to error in Canada 

and Italy among the 10 top soybean-producing countries (Supplementary file Table S2). The SB values were small for both 

Canada and Italy, suggesting that MATCRO-Soy accurately represents the average productivity despite its inability to capture 

the variability or amplitude of the yield trend over time within those regions. Factors such as changes in sowing date, land use, 

pest management, cultivar maturity group, and planting density may contribute to discrepancies in soybean yield under climate 585 

change (Battisti et al., 2018a; Marin et al., 2022). Hence, there is a need for improved parameterization to better represent the 

dynamics of yield variability in countries such as Canada and Italy.  

The high yields in Argentina and Paraguay reflect the consistency of favourable growing conditions in those countries 

(Figure 7a), particularly the alignment of daily temperatures and seasonal precipitation with critical growth stages. This result 

suggests that these regions are less susceptible to interannual variability, as well as being located in areas that receive more 590 

radiation for photosynthesis. The comparison of simulated and observed yields at the grid-cell level (Figure 10) revealed weak 

correlations with no statistical significance in high-latitude countries with a low number of grid cells (e.g., Canada and Russia). 

Models that do not include daylength have a higher level of uncertainty (Battisti et al., 2018b). Moreover, the low simulated 

yield in India, which has a hot climate characterized by high mean daily temperatures of 27–28 °C (Supplementary file Fig. 

S5) and low soil moisture during the growing season, highlights the capacity of the model to capture regional climatic 595 

challenges that impact productivity. These climatic challenges likely exacerbate heat stress during critical phenological stages, 

such as flowering and pod development, leading to reduced yields (Sinclair, 1986; Egli and Bruening, 2004). The contrasting 

regions of high and low soybean yields underscore the ability of the model to capture the complex interplay between climate 

and crop yields across diverse agroecological zones.  

6.2 Model strength and application 600 

MATCRO-Soy v.1 was developed as a process-based eco-physiological model that uses the Farquhar equation to simulate 

leaf-level photosynthesis. The Farquhar equation is a widely recognized framework in plant physiology that simulates the 

biochemical mechanisms of photosynthesis by describing the relationships among light intensity, CO2 assimilation, and 

Rubisco activity (Farquhar et al., 1980; Scafaro et al., 2023). Through the integration of this equation into a gridded global 

crop model, MATCRO-Soy enhances the simulation of soybean growth and productivity under environmental changes in 605 

atmospheric CO2 levels, temperature, and water availability. These factors are important for predicting and understanding how 

climate changes affect productivity. The calibration of MATCRO-Soy successfully represented the response of soybean plant 

growth to a wide range of climatic conditions, resulting in reliable global yield simulations using a single parameterization. 

While simplification may introduce errors, global tuning effectively minimizes these discrepancies in specific regions. This 

conclusion was also observed in Smith et al. (2014). 610 

Improving photosynthetic efficiency is a key goal for crop improvement, particularly through enhancing stomatal 

conductance and modifying Rubisco, the enzyme responsible for carbon fixation (Xu et al., 2022). We used Vcmax as a 

photosynthetic parameter because it quantifies the activity of Rubisco, which catalyzes the conversion of CO2 into organic 

compounds. The peak Rubisco activity during the reproductive stage corresponds with trends in SLN, and is implicitly affected 

by additional nitrogen fertilizer (La Menza et al., 2023). It is also important to consider nitrogen fixation, because it is reduced 615 

under adverse environmental conditions such as flooding, water deficit, and low temperatures (Santachiara et al., 2019).  

Prior to the global scale evaluation, the yield, LAI, aboveground biomass, and pod biomass simulated by MATCRO-Soy 

were further compared at the point-scale level with experimental datasets, with distinct datasets used for each step of calibration 

and evaluation (Supplementary file Fig. S3). While point-scale simulations employed the unified global parameters, the results 
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demonstrated reasonable agreement with p < 0.01 and bias of 30 %–63 % for harvested yield, seasonal LAI, aboveground 620 

biomass, and pod biomass. The highest bias was observed for seasonal LAI, which aligns with the underestimation of Vcmax 

during critical growth stages. Thus, MATCRO-Soy can reproduce photosynthesis parameters comparable to those of observed 

data at the site scale, although it overestimates these parameters at the reproductive stage (Figure 12). 

MATCRO-Soy uses high-quality data related to climatic factors, soil, and nitrogen fertilization to capture biophysical 

processes involved in soybean growth and yield formation. Its flexibility in terms of spatial resolution allows it to be applied 625 

across various scales, from grid-level to country to global. Moreover, MATCRO is easily coupled with climate and atmospheric 

CO₂ models to increase the accuracy of yield predictions through high-quality data inputs. This adaptability also enables 

integration with other land models, making it a valuable tool in both ecological and agricultural research. MATCRO-Soy can 

be continuously refined with new data and plant physiological knowledge, ensuring that it remains robust and adaptable. This 

adaptability makes it a valuable tool for researchers and policy-makers working towards sustainable agriculture and global 630 

food security.   

The strength of MATCRO-Soy lies in its ability to simulate key physiological processes of soybean growth (e.g., 

photosynthesis, phenology, and biomass partitioning) under varying climatic conditions. Its process-based structure allows for 

sensitivity analysis for evaluation of further environmental impacts, such as effects of elevated CO2 and temperature stress. 

MATCRO-Soy reasonably captures the temporal dynamics of yield formation. Fluctuations in yield are influenced not only 635 

by climatic conditions, but also by advances in technology, evolving agricultural practices, and modifications to crop 

management approaches. Although these impacts are outside the scope of model, their inclusion can further improve accuracy 

at the local scale. For example, including pest and crop interactions may enhance the model’s capability to reflect local yield 

responses to climate-driven pest dynamics (Chen and Mccarl, 2001). The integration of crop models with remote sensing data 

will enhance their capability for monitoring and predicting crop productivity at finer spatial scales (Basso et al., 2001). 640 

However, it is important to acknowledge the limitations of the MATCRO-Soy model, particularly its ability to predict yield 

variations under extreme or rapidly changing climatic conditions. Continuous updates of the experimental dataset are necessary 

to maintain its relevance and accuracy in predicting future soybean yields. 

6.3 Model challenges and future directions 

In the evaluation process, we observed considerable interannual variability and spatial variability. In Brazil, there were many 645 

grid cells with a low, non-significant correlation between simulated and observed soybean yields (Fig. 9), but the correlation 

at the national-scale level was high (Figure 7). This means that local climatic factors affect soybean yield in Brazil. However, 

MATCRO-Soy recognizes broader regional trends, fulfilling its aim to represent yield behaviour (Figure 11). These findings 

highlight that the number of grid cells significantly influences the model’s performance, with regions containing fewer grids 

being more sensitive to localized factors and spatial heterogeneity during aggregation. This emphasizes the importance of 650 

considering spatial resolution and representation when evaluating model performance. 

Uncertainty in MATCRO-Soy is reflected by the challenges in evaluating the model at a global scale, particularly due to 

its assumption of globally homogeneous crop cultivars and the upscaling processes due to limited observed data. This means 

it is unrealistic to reproduce variability at the regional scale with high accuracy (Müller et al., 2017; Zaehle and Friend, 2010). 

This uncertainty is notably pronounced in the global aggregation of yield simulations at the grid-cell scale. Global aggregation 655 

can escalate substantially for specific combinations of aggregation units, crop model limitations, and years (Porwollik et al., 

2017). Future assessments of models and projections of crop yields will require careful consideration of the significant contrast 

between different aggregation approaches used for individual countries or regions. To address this, we used harmonized 

ISIMIP data to minimize methodological bias, and developed the model with sufficient flexibility to reduce uncertainty (Yin, 

2013).  660 
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Comparison of soybean yields simulated using bias-corrected climate data with FAO data revealed a large underestimation 

in 2002 and an overestimation in 2009 (Figure 5). One possibility for these discrepancies in interannual variability is the 

influence of not accounted for extreme climatic events. Climatic events indicated by the Oceanic Niño index, a three-month 

running mean of SST anomalies in the Niño 3.4 region, show that La Niña was present at the end of 2002 and that El Niño 

occurred at the end of 2009 (NOAA, 2024). Some regions within major soybean-producing countries are significantly affected 665 

by El Niño events, further influencing yield variability (Anderson et al., 2017; Iizumi et al., 2014). Another reason why 

MATCRO-Soy tends to overestimate long-term yield trend is that its carbon assimilation module is sensitive to changes in the 

atmospheric CO2 concentration.  

While nitrogen fixation and uptake are implicitly constrained by the SLN parameter, the carbon cost economic approach 

explicitly represents the respiratory cost due to different nitrogen uptake pathways (Fisher et al., 2010). MATCRO-Soy 670 

simplifies the nitrogen fixation mechanism, and this may have contributed to yield overestimation in countries with low 

nitrogen inputs (e.g., Bolivia and Russia). However, the model still showed a relatively small bias in countries with high 

nitrogen fertilizer application (e.g., China), as well as in countries with low nitrogen fertilizer input (e.g., the US). This 

highlights an opportunity for future model development to incorporate a variable for the respiratory costs of biological nitrogen 

fixation. There are limited empirical data across cultivars, environments, and management systems, and this poses a challenge 675 

for yield predictions at the global scale. Further experiments on the respiratory costs of nitrogen fixation would improve our 

understanding of the physiological mechanisms of soybean plants under nitrogen-limited conditions. 

Simulated yield increases throughout the year driven by the positive effects of increased atmospheric CO2, a phenomenon 

known as the CO2 fertilization effect, were reported in studies by Long et al. (2005) and Sakurai et al. (2014). The CO₂ 

fertilization response may become a more prominent source of overestimation in future projections if the model overestimates 680 

the crop response to elevated CO₂. Compared with simulations using statistical radiation use efficiency (Ai and Hanasaki, 

2023), process-based models have this tendency because of the greater effect of CO2 on photosynthesis. Therefore, further 

investigation is needed to fine-tune the CO₂ sensitivity of MATCRO-Soy and other process-based models, because 

photosynthesis is known to be downregulated under elevated CO2 (Ainsworth et al., 2002; Zheng et al., 2019). This is 

especially important for adaptation studies, as reliable yield projections are critical for designing effective adaptation strategies 685 

under future climate scenarios.  

Analyses of MATCRO-Soy simulation errors showed that the MSD component SB was the dominant contributor to errors 

in yield prediction at the global and country scales. This indicates that the bias was in the over- or underestimation of average 

yield, rather than in yield variability or the year-to-year yield pattern (Figure 8). These results highlight the model’s uncertainty 

in simulating mean yield in major soybean-producing countries with large cultivation areas. The model overestimated the long-690 

term yield trend in some countries. Inaccurate representation of CO₂ fertilization effect may have contributed to the mean yield 

bias. Other factors that may contribute to this bias are the simplified assumption of no respiratory costs for symbiotic nitrogen 

fixation and insufficient representation of water stress responses. The accuracy of data inputs may partly reflect the inherent 

gap between field experiment data and national average yields, which are influenced by local farming practices. While these 

discrepancies between the country and global levels are insightful, it provides a valuable opportunity for model improvement.  695 

The simulated yield was compared with that of the GDHY dataset at the grid-cell level. The GDHY dataset is derived from 

census and remote sensing data, and may have introduced uncertainties into the evaluation results. Comparative studies with 

other soybean models and refining MATCRO-Soy on the basis of these findings will contribute to a more comprehensive 

understanding of its capabilities and limitations. Incorporating additional datasets will further enhance the MATCRO-Soy 

model’s representation of real-world conditions. McCormick et al. (2021) suggested that integrating machine learning models 700 

will improve accuracy through the calibration process with numerous datasets. However, the use of mechanistic models 

embedded in MATCRO to simplify the process has proven valuable for understanding and predicting the impacts of 

environmental factors on agricultural systems. This model can be used to identify potential adaptation strategies, such as 
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changes in planting dates or the development of new crop varieties, to mitigate the adverse effects of climate change on soybean 

production. However, the application of this model at the field-scale requires high-quality data inputs and local parameter data.  705 

7 Conclusions 

We used MATCRO, which incorporates carbon assimilation modules based on C3 photosynthesis of the Farquhar model, to 

simulate global soybean yield. The inputs were eco-physiological integrated gridded data related to climate, soil type, and 

nitrogen fertilization. Experimental datasets and information from previous studies were used to refine MATCRO-Soy so that 

it represents soybean growth under various environmental conditions. An evaluation of the global mean yields revealed a 710 

statistical correlation of 0.81 (p < 0.001) between the simulated yields and yields reported by FAOSTAT without subtracting 

the long-term yield trend. The correlation value was lower between simulated yields and detrended yield data. On the basis of 

comparisons of modelled and observed yields over a 34-year period (1981–2014), the correlation coefficients were 0.45 (p < 

0.050) on the global scale and 0.52 (p < 0.001) for the top 10 soybean-producing countries. At the grid-cell level, the correlation 

between modelled and observed yields were significant in 66 % of grid cells. Therefore, the model successfully captured long-715 

term trends and interannual variability, demonstrating its capacity to reflect the impacts of climate factors. Moreover, 

MATCRO-Soy also modelled reasonable photosynthetic processes at the site-scale, demonstrating its ability to represent 

temporal variations. This result highlights the model’s reliability and adaptability as a tool for understanding soybean growth 

and yield dynamics. 

While MATCRO-Soy presents a valuable framework for understanding the impacts of climate change on global soybean 720 

production, many localized factors that influence soybean yield resulting from shifts in climate (e.g., pests and diseases) can 

lead to discrepancies in yield prediction. This highlights the need for high-quality data inputs. The integration of CO2 dynamics 

in MATCRO enhances crop response modelling because it includes the carbon fertilization effect. This warrants further 

investigation, along with analyses of the effects of other greenhouse gases. The model may benefit from further refinement, 

particularly in its treatment of temperature extremes, transpirable soil water, and nitrogen uptake during the photosynthesis 725 

process. Integrating MATCRO with other environmental models will enhance its applicability in agricultural management, 

although we emphasize the necessity for field-scale calibration to improve its reliability. MATCRO-Soy provides an 

opportunity to estimate changes in global soybean production under future land-use or climate change scenarios to address the 

complexities of climate interactions with agricultural systems. Overall, MATCRO-Soy has proven to be useful in 

understanding eco-physiological processes at the global, country, and grid-cell levels, providing valuable insights for 730 

agricultural management and climate change adaptation.  
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