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Abstract. MATCRO-Soy is an eco-physiological process-based crop model for soybean (Glycine max L. (Merr.)). It was 

developed by modifying the parameters of MATCRO-Rice, integrates crop growth processes with a land surface model. These 

modifications were made using data from literature and field experiments across the world. The reliability of the model was 

validated extensively by observed soybean yield data across the global, national, and grid cell levels. A moderate correlation 20 

was observed between the MATCRO-Soy and FAOSTAT yield data with correlation coefficients of 0.81 (p < 0.001) for the 

global average yield and 0.45 (p < 0.01) for the global average detrended yield over a 34-year period (1981-2014). Furthermore, 

the grid-cell level validation revealed that 66 % of the grid cells in the global yield map exhibited a statistically significant 

correlation between the MATCRO-Soy simulated yield and the reference data derived from observational records. These 

results highlight the model’s ability to reproduce soybean yield under different environmental conditions, integrating soil water 25 

availability and nitrogen fertilizer. MATCRO-soy could enhance our understanding of crop physiology, especially crop 

responses to climate change. Its application may support efforts to reduce uncertainty in projections of climate change impacts 

on soybeans. 

  

 30 

1 Introduction 

Crop growth models have been widely used for yield estimation, agricultural management practice optimization, climate 

change impact evaluation, and informing decision-making about food security strategies (Adeboye et al., 2021;  Cuddington 

et al., 2013; Hoogenboom, 2000). Given the significant impact of weather variability on global yield (Müller et al., 2017; Ray 

et al., 2015), process-based models can represent the long-term climate change impacts on productivity via the influence of 35 

key climatic factors on physiological processes that are represented in the model (Boote et al., 2013; Cuddington et al., 2013; 

Fodor et al., 2017; Jones et al., 2017; Marin et al., 2014; Stöckle and Kemanian, 2020). Process-based models explicitly 

incorporate the crucial eco-physiological processes of photosynthesis and stomatal conductance, improving predictions under 

varying climate scenarios compared with models that focus on the empirical relationship between absorbed radiation and 

assimilation through radiation use efficiency (Jin et al., 2018). Hence, crop models are useful for capturing the complexity of 40 
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soil-crop-climate interactions for ensuring food security, optimizing yields, promoting sustainability, and planning adaptation 

strategies (García-Tejero et al., 2011). Global-scale simulations are essential to enhance these efforts by understanding 

interactions between physiological processes and environmental factors, supporting adaptive management practices and 

strengthening agricultural resilience. 

The Agricultural Model Intercomparison and Improvement Project (AgMIP) has examined the performance of global 45 

gridded crop models (GGCMs) in simulating the potential impact of climate change on crop yield  (Müller et al., 2017; Kothari 

et al., 2022). AgMIP has demonstrated that the simulated impacts of environmental factors on crop yields using a GGCM 

generally align with measurements and that a model ensemble reduces uncertainty (Elliott et al., 2015). However, yield change 

under future climate change scenarios shows inconsistent results and greater variability in soybean than in other crops because 

of model discrepancies (Jägermeyr et al. 2021). Despite being a major crop, soybean (Glycine max L. (Merr.)), has been studied 50 

less extensively than other crops in terms of crop response to changing environments (Ruane et al., 2017; Kothari et al., 2022). 

Therefore, the development of a new soybean model is needed to reduce uncertainties in climate change impact assessments. 

It is important to utilize a diverse type of crop models and ensure model diversity to accurately understand the uncertainties 

of simulations, as relying on a single model can lead to biased results. To our knowledge, only five process-based models for 

global-scale soybean yield estimation with leaf-level photosynthesis and stomatal conductance parameters exist, including LPJ-55 

GUESS (Ma et al., 2022), LPJmL (Wirth et al., 2024), ORCHIDEE-crop (Wu et al., 2016), PRYSBI2 (Sakurai et al., 2014), 

and JULES (Leung et al., 2020), making this approach relatively uncommon. Thus, further development and validation of 

process-based models that incorporate leaf-level photosynthesis and stomatal conductance parameters are essential. 

MATCRO (Masutomi et al., 2016a), is an ecosystem process-based model for crops embedded into the land surface model 

of minimal advanced treatments of surface interaction and runoff (MATSIRO; Takata et al., 2003) with a crop growth model 60 

for rice, which is further explained in Section 2. MATCRO-Rice uses state variables to exchange information (e.g. temperature, 

soil moisture, transpiration, leaf area index, and photosynthesis rate) between the land surface model and crop growth model. 

The mechanisms that consider photosynthesis and stomatal conductance to assess the impact of greenhouse gases on carbon 

and water fluxes have been incorporated into MATCRO-Rice. Masutomi et al. (2019) described the implementation of ozone 

effects within these mechanisms, indicating the model’s capability to account for environmental stressor. Furthermore, 65 

MATCRO-Rice has been applied at the regional scale, and it has been utilized to measure climate impacts, which are important 

for developing adaptation strategies (Kinose and Masutomi, 2020; Masutomi, et al., 2016b). 

We developed a new process-based model for soybean (MATCRO-Soy v.1) that incorporates diverse biological processes 

and environmental interactions that drive plant growth and adaptation to changing conditions. Adapted from MATCRO Rice, 

this model is applied for soybeans by parameterizing key processes using experimental data and findings from the literature. 70 

The current version of MATCRO-Soy (v.1) was evaluated in a global-scale simulation, following a calibration process that 

considered essential photosynthesis mechanisms. This paper presents the model description in Section 2, the calibration process 

in Section 3, and the model evaluation in Sections 4 and 5.  

 

2 Model Description 75 

MATCRO-Soy is based on MATCRO-Rice, a process-based model of rice growth and yield, which has been modified for use 

in soybeans. MATCRO-Rice is a combined land surface and crop growth model used to explore land-atmosphere interaction 

in rice fields. Unlike the MATCRO-Rice v.1 version, MATCRO-Soy focuses on yield simulation and omits the calculation of 

sensible and latent heat fluxes in the energy balance to reduce computational complexity while maintaining accuracy in 

simulating soybean growth and yield.  80 
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2.1 Overview of MATCRO-Soy 

MATCRO-Soy includes three main modules: phenology, photosynthesis, and carbon partitioning (Figure 1). The 

phenology module simulates crop phenological development over time based on heat unit accumulation. The module directs 

the progression of carbon assimilation and partitioning by monitoring plant developmental stages from sowing to harvest. The 

phenology module simulates developmental stages based on developmental rate from sowing to harvest and influences key 85 

processes such as glucose production and allocation across plant organs. The photosynthesis module initially estimates gross 

primary production (GPP) and respiration at the leaf-level using the Farquhar model (Farquhar et al., 1980), and extends net 

primary production (NPP) estimation to the canopy level following the concept of de Pury and Farquhar (1997). It considers 

the electron-transport-limited rate of photosynthesis, Rubisco-limited photosynthesis, and leaf respiration to estimate NPP at 

leaf-level.  90 

The photosynthesis and carbon partitioning modules are closely linked, as carbon assimilation from photosynthesis is 

subsequently allocated to different plant organs. The NPP is stored in glucose and starch reserves. The carbon partitioning 

module distributes the glucose into each organ (i.e. leaf, stem, root, and storage organ) following the method derived from the 

school of de Wit by simulating biosynthetic processes (de Vries et al., 1989). MATCRO accounts for leaf senescence as it 

influences nutrient cycling, crop productivity, and the leaf area index, which plays an important role in canopy photosynthesis. 95 

Leaf senescence is simulated as a function of crop developmental stage, as defined by the phenology module. MATCRO 

incorporates the amount of nitrogen per leaf area (specific leaf nitrogen) as a key determinant of photosynthetic capacity. Root 

depth can affect photosynthesis indirectly through the plant's ability to access water and nutrients from soil layers, further 

influencing plant growth within the model framework.  

 100 

 
Figure 1. Flowchart diagram of soybean yield simulation by MATCRO-Soy. 
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The input data consisted of environmental variables obtained from meteorological forcings, soil type classifications, 

nitrogen fertilizer applications, and agricultural management practices such as irrigation and seed sowing. These inputs are 

crucial for setting the initial conditions and boundary parameters for the simulations. The output of MATCRO is the crop yield 105 

(kg ha-1) estimated for both irrigated and rainfed conditions on the basis of soil-crop interactions. First, we processed the 

parameterized growing degree days for maturity using crop calendar data to estimate the harvest time in the phenology module 

(see section 2.2). The photosynthesis module includes limiting factors such as nitrogen fertilization and water stress, as detailed 

in Section 2.3. Then, the crop growth is calculated based on its developmental stage (Section 2.4). We conducted a 

parameterization process encompassing phenological development, carbon partitioning, and photosynthesis limited by water 110 

stress and nitrogen uptake. The crop yield was estimated using the parameterized seed-pod ratio (see section 2.5). The adjusted 

parameters in MATCRO-Soy are described in Section 2.6 where the key dynamic variables are parameterized over time to 

ensure reliable carbon assimilation in soybean. This comprehensive approach allows MATCRO to account for complex 

interactions between environmental conditions, crop physiology, and management practices, providing a robust framework for 

predicting crop yield and assessing agricultural productivity. 115 

2.2 Crop phenological development  

Phenological development defines the timing of developmental events based on environmental inputs. MATCRO calculates 

crop developmental stages (𝐷𝑉𝑆) using an index indicating the sowing time (𝐷𝑉𝑆=0) to maturation time (𝐷𝑉𝑆=1) on the basis 

of the integral of the temperature required to exceed the phenological changes. The module uses a formulation based on Bouman 

et al. (2001) as outlined in Equations (1) to (4).  120 

𝐷𝑉𝑆𝑡 = 𝐺𝐷𝐷𝑡/𝐺𝐷𝐷𝑚           (1) 

𝐺𝐷𝐷𝑡 = ∫ 𝐷𝑉𝑅𝑑𝑡′
𝑡

0
           (2) 

𝐺𝐷𝐷𝑚 = ∫ 𝐷𝑉𝑅𝑑𝑡′
𝑚

0
           (3) 

𝐷𝑉𝑅𝑡   = {

0,                       𝑇𝑡 < 𝑇𝑏  | 𝑇𝑡 > 𝑇ℎ
𝑇𝑡 − 𝑇𝑏 ,                   𝑇𝑏 < 𝑇𝑡 < 𝑇𝑜
(𝑇𝑜−𝑇𝑏)(𝑇ℎ−𝑇𝑡)

(𝑇ℎ−𝑇𝑜)
,       𝑇𝑜 < 𝑇𝑡 < 𝑇ℎ

             (4) 

where 𝐺𝐷𝐷𝑡 and 𝐺𝐷𝐷𝑚 indicate the growing degree days (C days) used to estimate the development of plants during the 125 

growing season at time t and at maturity, respectively. 𝐷𝑉𝑅  represents the developmental rate at 𝑡, whereas 𝑇𝑡 represents the 

temperature at 𝑡 . The parameters 𝑇𝑏 ,  𝑇𝑜 , and 𝑇ℎ  (C) are crop-specific and represent the base, optimum, and highest 

temperatures for crop development, respectively.  
The impact of temperature on phenological stages varies for each crop stage as Boote et al. (1998) observed that cardinal 

temperatures (𝑇𝑏 ,𝑇ℎ , 𝑇𝑜) may differ for vegetative and reproductive stages. We follow de Vries et al. (1989) during the growing 130 

season to simplify the calculation input and also because more detailed data in each phenological stage is lacking. This study 

parameterized the developmental stages at flowering (𝐷𝑉𝑆𝑓), seed filling (𝐷𝑉𝑆𝑠), and maturation (𝐷𝑉𝑆𝑚) stages on the basis 

of the experimental datasets by calculating the mean, values listed in Table 2. MATCRO uses these 𝐷𝑉𝑆 parameters to define 

the period of leaf dry weight loss due to leaf senescence and the remobilization of starch reserves from the stem (Masutomi et 

al. 2016a). We assume that this phenological time in soybean is in the middle of the flowering and seed filling stage 135 

parameterized in this study as leaf loss started within those periods.    

2.3 Carbon assimilation process 

In the photosynthesis module of MATCRO-Soy, carbon assimilation is based on leaf-level photosynthesis calculations in sunlit 

and shaded conditions (Dai et al., 2004) to predict canopy photosynthesis. The calculation includes the stomatal conductance 
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response to relative humidity (Collatz et al., 1991). The net carbon assimilation (𝐴𝑛) in MATCRO is calculated using the 140 

Farquhar model as further described in Masutomi et al. (2016a), expressed in Eq. (5). 

𝐴𝑛 =  𝑓(𝑃𝐴𝑅, Pa, 𝑇𝑙𝑒𝑎𝑓 , 𝐶𝑂2𝑙𝑒𝑎𝑓 , 𝑉cmax , 𝐵𝐵𝑎 , 𝐵𝐵𝑏)         (5) 

𝐴𝑛 (mol(CO2) m-2 s-1) represents net carbon assimilation that contributes to NPP for biomass growth. It is a function of the 

intensity of absorbed photosynthetic active radiation (𝑃𝐴𝑅, in mol(photon) m-2 s-1), air pressure (Pa, in Pa), leaf temperature 

(𝑇𝑙𝑒𝑎𝑓, in K), CO2 concentration at the substomatal chamber (𝐶𝑂2𝑙𝑒𝑎𝑓 , in Pa(CO2) Pa(Air)-1), maximum Rubisco activity (𝑉cmax, 145 

in mol(CO2) m-2 s-1), the slope (𝐵𝐵𝑎 , in mol(H2O)m-2s-1) and intercept (𝐵𝐵𝑏 , in mol(H2O) m-2 s-1) of the Ball-Berry model of 

the relationship between crop assimilation, stomatal conductance per unit leaf area, relative humidity at the leaf surface, and 

ambient CO2 concentration (Ball, 1988). In this study, we assume the leaf temperature is the same as air temperature to reduce 

the complexity of the calculation. 

Rubisco activity (𝑉cmax) is a key variable used to assess the carbon rate entering the photosynthetic pathway, as it catalyzes 150 

the crucial initial step of RuBP (Ribulose-1,5-bisphosphate) carboxylation in photosynthetic carbon assimilation for C3 plants 

(Sage, 2002; Xu et al., 2022). In MATCRO, 𝑉𝑐𝑚𝑎𝑥 is calculated as follows: 

𝑉cmax = 𝑉ctop exp(−𝐾n𝐿𝐴𝐼)          (6) 

𝑉ctop = max(𝑎𝑆𝐿𝑁2 + 𝑏𝑆𝐿𝑁 + 𝑐, 𝑉𝑐𝑡𝑜𝑝𝑚𝑎𝑥)        (7) 

𝑉𝑐𝑚𝑎𝑥 is the maximum Rubisco activity within the canopy (mol(CO2) m-2  s-1) limited by the exponential value of vertical 155 

distribution of leaf nitrogen (𝐾n), leaf area index (𝐿𝐴𝐼, in m2 m-2), and maximum Rubisco activity at the top of canopy (𝑉ctop, 

in mol(CO2) m-2  s-1). We determined the 𝑉ctop for photosynthetic rate limited by the specific leaf nitrogen (𝑆𝐿𝑁) in Eq. (7) for 

soybean using the relationship between two parameters of rubisco activity and leaf nitrogen from experiments summarized 

from Ainsworth et al. (2014) in the reproductive stage and Qiang et al. (2022) in the vegetative stage. This relationship is 

empirically represented with a polynomial quadratic equation limited by maximum value of Rubisco activity at the top canopy 160 

(𝑉ctop in mol(CO2) m-2 s-1). 𝑎, 𝑏, 𝑐 are quadratic coefficient, linear coefficient, and constant respectively from the relationship 

of both variables where the data has been digitized from WebPlotDigitizer (Rohatgi, 2023).  

MATCRO considers nitrogen fertilization input denoted as 𝑁𝑓𝑒𝑟𝑡 (unit: kg(N) ha-1) which influences the amount of specific 

leaf nitrogen (𝑆𝐿𝑁, g(N) m-2), particularly under conditions of limited nitrogen availability (La Menza et al., 2023; Thies et al., 

1995). SLN was determined by nitrogen supply (including biological nitrogen fixation, soil mineral nitrogen, and nitrogen 165 

fertilizer) and by plant demand. The changes in SLN over the growing period in MATCRO-Soy simulated a function derived 

from La Menza et al. (2023) which observed SLN under wide range of low and high nitrogen fertilization conditions (see 

Supplementary file Figure S1). It shows the specific leaf nitrogen value toward the crop growth period where higher nitrogen 

fertilizer results in a higher leaf nitrogen content. In the absence of empirical data for initial growth stages, the model assumes 

a gradual increase in nitrogen content. The simulated SLN under different nitrogen fertilization treatments is described in Eq. 170 

(8) and (9). 

𝑆𝐿𝑁 =

{
 
 
 

 
 
 𝑆𝐿𝑁𝑌0 +

(𝑆𝐿𝑁𝑌1−𝑆𝐿𝑁𝑌0)(𝐷𝑉𝑆−𝑆𝐿𝑁𝑋1)

𝑆𝐿𝑁𝑋1
,  𝑖𝑓 𝐷𝑉𝑆 < 𝑆𝐿𝑁𝑋1  

𝑆𝐿𝑁𝑌2 +
(𝑆𝐿𝑁𝑌2−𝑆𝐿𝑁𝑌1)(𝐷𝑉𝑆−𝐷𝑉𝑆𝑓)

(𝐷𝑉𝑆𝑓−𝑆𝐿𝑁𝑋1)
,  𝑖𝑓 𝑆𝐿𝑁𝑋1 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑓

𝑌 +
(𝑌−𝑆𝐿𝑁𝑌2)(𝐷𝑉𝑆−𝐷𝑉𝑆𝑠)

(𝐷𝑉𝑆𝑠−𝐷𝑉𝑆𝑓)
, 𝑖𝑓 𝐷𝑉𝑆𝑓 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑠

𝑆𝐿𝑁𝑌0 +
(𝑆𝐿𝑁𝑌0−𝑌)(𝐷𝑉𝑆−𝐷𝑉𝑆𝑚)

(𝐷𝑉𝑆𝑚−𝐷𝑉𝑆𝑠)
,  𝑖𝑓 𝐷𝑉𝑆𝑠 ≤ 𝐷𝑉𝑆 ≤ 𝐷𝑉𝑆𝑚

       (8) 

Y = 𝑆𝐿𝑁𝑌3,𝑙 +
𝑆𝐿𝑁𝑌3,ℎ−𝑆𝐿𝑁𝑌3,𝑙

𝑁𝑓𝑒𝑟𝑡,ℎ𝑖𝑔ℎ
∗ 𝑁𝑓𝑒𝑟𝑡         (9) 

𝑆𝐿𝑁 values vary across different phenological stages, with the developmental stage (𝐷𝑉𝑆) value of soybean growth ranges 

from 0 (sow) to 1 (harvest). We define 𝐷𝑉𝑆𝑓 ,𝐷𝑉𝑆𝑠 , 𝐷𝑉𝑆𝑚, and 𝑆𝐿𝑁𝑋1 as the start of flowering, seed filling, maturity time, and 175 
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the point where the 𝑆𝐿𝑁 pattern started to changes with the parameterized values of 0.4, 0.659, 1, and 0.15 respectively. While 

𝑆𝐿𝑁𝑌0, 𝑆𝐿𝑁𝑌1, 𝑆𝐿𝑁𝑌2, 𝑆𝐿𝑁𝑌3,ℎ, 𝑆𝐿𝑁𝑌3,𝑙 represent the 𝑆𝐿𝑁 at the time of initial stage, early decline, pre-flowering increase, 

subsequent decline during the reproductive stage under no and high (ℎ) nitrogen inputs with the value of 0.75, 2.25, 1.7, 0.75, 

and 1.8, respectively. 𝑁𝑓𝑒𝑟𝑡,ℎ𝑖𝑔ℎ refers to the high nitrogen fertilizer input used in the model for parameterization, as described 

in Table 2. Y denotes the observed gap function in specific leaf nitrogen under high and low nitrogen fertilizer treatments (g(N) 180 

m-2) in Supplementary file Figure S1.  

The growth stages are parameterized based on experimental datasets and align with study from Irmak et al. (2013) using 

the growth stage classification by Fehr and Caviness (1977).  𝑆𝐿𝑁 primarily depends on nitrogen derived from biological 

fixation and soil nitrogen, either from natural sources or applied fertilizers. Nitrogen uptake, including biological nitrogen 

fixation and uptake from soil nitrogen, is implicitly captured through 𝑆𝐿𝑁 that influence 𝑉cmax in Eq. (7) and (8), while the 185 

effect of applied fertilizers in Eq. (8) and (9). 

2.4 Crop growth dynamics 

The products of photosynthesis contribute to glucose reserves, which provide energy for growth during various developmental 

stages. The crop growth dynamics include a carbon biomass partitioning module to calculate the dry weight of each soybean 

organ (Worgan in kgha-1). This variable is the accumulated value of growth rate of dry weight (Gorgan in kg ha-1 s-1) during the 190 

time from emergence to harvest. Further details on this module can be found in Masutomi et al. (2016a). 

Worgan = f(Gorgan)            (10) 

We calculate the Worgan in each soybean organ (i.e. leaf, stem, pod including the seed, glucose reserves and starch). Growth 

rate of the dry weight (Gorgan  in kg ha-1 s-1) is calculated based on the parameters of conversion factor of dry weight from glucose 

to organ (Fglu−organ  in kgha-1(kg ha-1)-1) for leaf, stem, pod, root, and starch (listed in Table 1), and ratio of glucose partitioned 195 

to organ (P𝑜𝑟𝑔𝑎𝑛) for shoot, leaf, and pod (listed in Table 2). Shoot refers to aboveground biomass parts including the stem, 

leaf, and pod. Gorgan for each organ and storage, leaf, pod, root, stem, and starch, are expressed below: 

𝐺glu =  𝑓(𝑊𝑙𝑒𝑎𝑓 , Aglu, 𝑅𝑔𝑙𝑢)            (11)  

𝐺leaf = 𝐺glu𝑃shoot𝑃leaf𝐹glu-leaf          (12) 

𝐺stem = 𝐺glu𝑃shoot(𝑃leaf − 𝑃pod) × (1 − 𝑓starch)𝐹glu−stem       (13) 200 

𝐺pod = 𝐺glu𝑃shoot𝑃𝑝𝑜𝑑𝐹glu−pod          (14) 

𝐺root = 𝐺glu(1 − 𝑃𝑠ℎ𝑜𝑜𝑡)𝐹𝑔𝑙𝑢−𝑟𝑜𝑜𝑡           (15) 

𝐺𝑠𝑡𝑎𝑟𝑐ℎ = 𝐺glu𝑃shoot(𝑃leaf − 𝑃pod)𝑓starch𝐹glu−starch        (16) 

𝐺glu (kg ha-1 s-1) is the amount of glucose partitioned to soybean organ and reserve derived from function of dry weight of leaf 

(𝑊𝑙𝑒𝑎𝑓 in kg ha-1), net carbon assimilation in glucose form (𝐴glu in kg(CH2O) ha-1 s-1), and the remobilization from starch reserve 205 

in the stem after conversion to glucose (𝑅𝑔𝑙𝑢 in kg ha-1 s-1). Aglu is An that has been already converted using the conversion 

factor from CO2 to glucose using the value of 1.08 × 106 [kg ha-1 h-1(mol m-2 s-2)-1] that is the physical and chemical constant 

for the conversion. 𝑅𝑔𝑙𝑢  is the remobilization from starch reserve in the stem after converted to glucose using ratio of 

remobilization value. This 𝑅𝑔𝑙𝑢 is subtracted from the dry weight of starch reserves (𝑊starch). 𝑓starch [kg ha-1(kg ha-1)-1] is the 

fraction of glucose allocated to starch reserves calculated in stem dry weight loss. Each growth rate of dry weight (𝐺organ) is 210 

calculated based on the parameters conversion factor of dry weight (Fglu−organ) and ratio of glucose partitioned to organ (𝑃𝑜𝑟𝑔𝑎𝑛) 

value as follow in Eq(17) –(19): 
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𝑃shoot = {

1 − 𝑃𝑟𝑜𝑜𝑡 ,   𝑖𝑓 𝐷𝑉𝑆 = 0
1−𝑃𝑟𝑜𝑜𝑡(𝐷𝑉𝑆𝑚−𝐷𝑉𝑆)

𝐷𝑉𝑆𝑚
,  𝑖𝑓 0 < 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑚

1,   𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑚

        (17) 

𝑃leaf =

{
 
 

 
 𝑃𝑙𝑒𝑎𝑓0 +

𝐷𝑉𝑆

𝐷𝑉𝑆𝑙𝑒𝑎𝑓1
(𝑃𝑙𝑒𝑎𝑓1 − 𝑃𝑙𝑒𝑎𝑓0),   𝑖𝑓 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑙𝑒𝑎𝑓1

𝑃𝑙𝑒𝑎𝑓2 −
(𝑃𝑙𝑒𝑎𝑓2−𝑃𝑙𝑒𝑎𝑓1)

𝐷𝑉𝑆𝑙𝑒𝑎𝑓2−𝐷𝑉𝑆𝑙𝑒𝑎𝑓1
(𝐷𝑉𝑆𝑙𝑒𝑎𝑓2 − 𝐷𝑉𝑆),  𝑖𝑓 𝐷𝑉𝑆𝑙𝑒𝑎𝑓1 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑙𝑒𝑎𝑓2

0,   𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑙𝑒𝑎𝑓2

                           (18) 

𝑃pod = {

0,   𝑖𝑓 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑝𝑜𝑑1
𝐷𝑉𝑆−𝐷𝑉𝑆𝑝𝑜𝑑1

𝐷𝑉𝑆𝑝𝑜𝑑2−𝐷𝑉𝑆𝑝𝑜𝑑1
,  𝑖𝑓 𝐷𝑉𝑆𝑝𝑜𝑑1 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑝𝑜𝑑2

1,   𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑝𝑜𝑑2

       (19) 215 

𝑃𝑙𝑒𝑎𝑓0, 𝑃𝑙𝑒𝑎𝑓1, 𝑃𝑙𝑒𝑎𝑓2 represent the glucose partitioning ratio of leaf toward shoot at the time of initial stage when leaf growth 

starts to decline (leaf0), stop growing (leaf1), and at maturity (leaf2), respectively. While 𝐷𝑉𝑆𝑝𝑜𝑑1and 𝐷𝑉𝑆𝑝𝑜𝑑2 indicate the 

developmental stage values at which glucose partitioning of pod to the shoot begins to increase and eventually saturates (Figure 

2). Figure 2 in section 3.2 visually represented the glucose partitioning ratio during crop growth as calibrated in this study.  

The glucose partitioned in each organ is adjusted during the developmental stage using experimental data in the calibration 220 

process, further described in Section 3. However, the dry weight of leaf in this module is reduced due to leaf senescence by 

calculating loss of leaf dry weight (𝐿leaf in kg ha-1 s-1) derived from the calibration of partitioned glucose ratio to the ratio of 

dead leaf (𝑃𝑑𝑙𝑒𝑎𝑓 in s-1), as outlined in Eq. (20) and (21). 

𝐿leaf = {
0                    ,   𝑖𝑓 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1

𝑃𝑑𝑙𝑒𝑎𝑓(𝑊𝑙𝑒𝑎𝑓 − 𝑊𝑔𝑙𝑢),  𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1
       (20) 

𝑃𝑑𝑙𝑒𝑎𝑓 = 𝑃𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓2
( 𝐷𝑉𝑆−𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1)

(1−𝐷𝑉𝑆𝑑𝑒𝑎𝑙𝑒𝑎𝑓1)
         (21) 225 

Then we calculate the leaf area index (LAI) that serves as a parameter to assess the leaf surface area relative to the ground area. 

It directly influences the plant ability to intercept solar radiation for photosynthesis.  

LAI is computed as follow: 

𝐿𝐴𝐼 =
𝑊leaf+𝑊glu

𝑆𝐿𝑊
            (22) 

𝐿𝐴𝐼 is calculated from the estimated leaf dry weight (Wleaf, in kg ha-1) and glucose reserves in leaves (W𝑔𝑙𝑢, in kg ha-1) divided 230 

with specific leaf weight (SLW, in kg ha-1). SLW indicates leaf dry weight per unit leaf area. The value of SLW dynamically 

changed during the developmental stage following exponential relationship: 

𝑆𝐿𝑊 = 𝑆𝐿𝑊max + (𝑆𝐿𝑊min − 𝑆𝐿𝑊max) 𝑒𝑥𝑝(−𝑆𝐿𝑊x𝐷𝑉𝑆)       (23) 

𝑆𝐿𝑊max , 𝑆𝐿𝑊min , and 𝑆𝐿𝑊x  represent the maximum, minimum, and slope parameters, respectively, that define the values 

observed in the exponential relationship based on experimental dataset in Table 3. In addition to LAI, photosynthesis is also 235 

indirectly affected by the root depth (𝑧root, in m) that determines the plant capacity for water and nutrient uptake. Root depth is 

calculated as follow: 

𝑧root = 𝑓(𝑟root , 𝑧rootmax)           (24) 

𝑧root is the accumulative value from growth rate of root depth (𝑟root, in mm day-1) limited by maximum possible root depth 

(𝑧rootmax, in meter).   240 

2.5 Soybean yield estimation  

The soybean yield is calculated from the pod dry weight at harvest (𝑊𝑝𝑜𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡, in kg ha-1) via the seed-pod ratio (SR) in 

MATCRO-Soy. The yield is further affected by water stress (𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠) in Eq. (25).  
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𝑌𝑖𝑒𝑙𝑑 =  𝑓(𝑊𝑝𝑜𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡 , 𝑆𝑅, 𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠 ,𝑇)         (25) 

The yield was calculated using the parameter SR, which is the ratio of yield (seed, kg ha-1) to the storage organ of the pod 245 

(𝑊𝑝𝑜𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡) at harvest time and was derived from experimental datasets in  Table 3. T is the temperature (Kelvin) that limits 

heat and cold damage to the yield of soybean. The water stress factor (𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠) was determined on the basis of the fraction of 

available soil water at the soil layer -i (𝐹𝐴𝑊𝑖) over crop yield in timestep t during the crop growth, based on a previous study 

on the relationship between the soybean transpiration ratio and transpirable soil water conducted by Ray and Sinclair (1998), 

given in Eq (26). 250 

𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠,𝑡 = {
1

0.5
 𝐹𝐴𝑊𝑖 ,   𝑖𝑓 𝐹𝐴𝑊𝑖 ≤ 0.5

1,  𝑖𝑓 𝐹𝐴𝑊𝑖 > 0.5
          (26) 

The value of 𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠,𝑡 depends on soil water availability at soil layer-i (𝐹𝐴𝑊𝑖), which is the estimated soil water content based 

on the water flux between the soil layers (Masutomi et al., 2016a)  during the crop growth calculated via Eq. (27):  

𝐹𝐴𝑊𝑖 = 
𝑊𝑆𝐿𝑖−𝑊𝑆𝐿𝑤𝑖𝑙𝑡

𝑊𝑆𝐿𝐹𝐶−𝑊𝑆𝐿𝑤𝑖𝑙𝑡
           (27) 

where 𝑊𝑆𝐿𝑖 , 𝑊𝑆𝐿𝑤𝑖𝑙𝑡, and 𝑊𝑆𝐿𝐹𝐶  represent the water level in the soil layer -i, wilting point, and field capacity, respectively. 255 

A value of 𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠 equal to 1 indicates no water stress as the fraction of available soil water is adequate for crop growth. Hence, 

yield is calculated as the potential yield constrained by water stress.  

2.6 Soybean-specific parameters 

MATCRO-Soy shares several parameters with MATCRO-Rice as both are C3 species. However, soybean differs from 

cereal crops because of its nitrogen-fixing ability. This characteristic is represented through specific leaf nitrogen during the 260 

crop growth, as described in Eqs. (8) and (9). The crop-specific parameters reflect the unique physiological and chemical 

processes involved in soybean growth. but still align with the general framework of MATCRO-Rice. Key parameter 

adjustments are outlined in Table 1 as MATCRO employs a set of specific parameters to simulate crop growth and yield. These 

parameters include factors related to carbon allocation, root growth characteristics, and crop development based on cardinal 

temperatures. By accurately representing the unique physiological and biochemical characteristics of soybeans, these 265 

parameters contribute to the ability of the model to predict crop yield with greater precision. 

MATCRO-Soy aims for simulations applicable to a global scale; hence, it uses a single global parameterization as a 

standardized set of parameters applied worldwide. It uses a unified approach for modelling crop behaviour across different 

regions. It was assumed that the parameter values from the different treatments and cultivars were independent. Table 2 contains 

a list of variables parameterized within the model, including the glucose partitioning, nitrogen parameters, and photosynthetic 270 

capacity. Through the parameterization of these variables, the model can be adapted for various growing conditions and 

employed to assess the sensitivity of crop performance to different factors. These parameters are commonly used to evaluate 

the crop model sensitivity to environmental changes and require further attention, as highlighted by simulations from other 

crop model as wells (Battisti et al., 2018a).  

 275 

Table 1. Crop-specific parameters used for MATCRO-Soy

Parameters Description Value Units Source Eq. 

𝐹𝑔𝑙𝑢−𝑙𝑒𝑎𝑓  conversion factor of dry weight from glucose to leaf 0.871 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (12) 

𝐹𝑔𝑙𝑢−𝑠𝑡𝑒𝑚 conversion factor of dry weight from glucose to stem 0.810 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (13) 

𝐹𝑔𝑙𝑢−𝑟𝑜𝑜𝑡 conversion factor of dry weight from glucose to root 0.857 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (15) 

𝐹𝑔𝑙𝑢−𝑝𝑜𝑑 conversion factor of dry weight from glucose to pod 0.759 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (14) 
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Parameters Description Value Units Source Eq. 

𝐹𝑔𝑙𝑢−𝑠𝑡𝑎𝑟𝑐ℎ carbon fraction in the dry matter of starch 0.9 kg ha-1 (kg ha-1)-1 Physical and chemical constant (15) 

𝐾𝑁 vertical distribution of leaf nitrogen 0.11 - Bonan et al. (2011) (6) 

𝑟𝑟𝑜𝑜𝑡 rate of root depth increase 
0.03 mm day-1 Ordóñez et al. (2018) ; Nakano 

et al. (2021) 
(24) 

𝑍𝑟𝑜𝑜𝑡𝑚𝑎𝑥 maximum root depth 1.7 m de Vries et al. (1989) (24) 

𝑇𝑏  base temperature for crop development 10 ℃ de Vries et al. (1989) (4) 

𝑇h highest temperature for crop development 34 ℃ de Vries et al. (1989) (4) 

𝑇𝑜  optimum temperature for crop development 27 ℃ de Vries et al. (1989) (4) 

 

 

Table 2. Parameterized variables for soybean in MATCRO 

Variables Value Units Description 

𝑎 -18.516 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (7) 

𝑏 114.33 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (7) 

𝑐 -73.336 - constant at relationship of rubisco activity and leaf nitrogen in Eq. (7) 

𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1 0.6 - 1st DVS point where the dead leaf ratio pattern changes 

𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓2 1 - 2nd DVS point where the dead leaf ratio pattern changes 

𝐷𝑉𝑆𝑓 0.4 - developmental stage on initial flowering stage 

𝐷𝑉𝑆𝑙𝑒𝑎𝑓1 0.25 - 1st DVS point where the leaf partitioning pattern changes 

𝐷𝑉𝑆𝑙𝑒𝑎𝑓2 0.659 - 2nd  DVS point where the leaf partitioning pattern changes 

𝐷𝑉𝑆𝑚 1 - developmental stage at maturity time 

𝐷𝑉𝑆𝑝𝑜𝑑1 0.48 - 1st DVS point where the pod partitioning pattern changes 

𝐷𝑉𝑆𝑝𝑜𝑑2 0.72 - 2nd  DVS point where the pod partitioning pattern changes 

𝐷𝑉𝑆𝑠 0.659 - developmental stage to start seed filling stage 

𝐷𝑉𝑆𝑆𝐿𝑁1 0.4 - 1st DVS point where the specific leaf nitrogen changes along with DVS 

𝐷𝑉𝑆𝑆𝐿𝑁2 0.4 - 2nd  DVS point where the specific leaf nitrogen changes along with DVS 

𝐷𝑉𝑆𝑆𝐿𝑁3 0.659 - 3rd DVS point where the specific leaf nitrogen changes along with DVS 

𝑓𝑠𝑡𝑎𝑟𝑐ℎ  0.18 - fraction of glucose allocated to starch reserves 

𝑆𝑅 0.68 - seed-pod ratio (SR) accounting harvest index from storage organ 

𝑁𝑓𝑒𝑟𝑡,ℎ𝑖𝑔ℎ  300 𝑘𝑔𝑁ℎ𝑎−1 nitrogen fertilizer value used in high nitrogen fertilizer in La Menza et al. (2023)  

𝑃𝑙𝑒𝑎𝑓0 0.38 - glucose partitioning ratio of leaf toward shoot in the initial DVS point 

𝑃𝑙𝑒𝑎𝑓1 0.6 - glucose partitioning ratio of leaf toward shoot in the 1st DVS point 

𝑃𝑙𝑒𝑎𝑓2 0 - glucose partitioning ratio of leaf toward shoot in the 2nd DVS point 

𝑃𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1 0 𝑠−1 dead leaf ratio value in the 1st  DVS point 

𝑃𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓2 0.000001 𝑠−1 dead leaf ratio value the 2nd DVS point 
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Variables Value Units Description 

𝑆𝐿𝑁𝑌0 0.75 𝑔𝑁𝑚−2 initial specific leaf nitrogen 

𝑆𝐿𝑁𝑌1 2.25 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 1st DVS point  

𝑆𝐿𝑁𝑌2 1.7 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 2nd DVS point 

𝑆𝐿𝑁𝑌3,ℎ 0.75 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 3rd DVS point when using high nitrogen fertilizer 

𝑆𝐿𝑁𝑌3,𝑙 1.8 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 3rd DVS point when using low nitrogen fertilizer 

𝑆𝐿𝑊𝑚𝑎𝑥  550 𝑘𝑔ℎ𝑎−1 maximum specific leaf weight 

𝑆𝐿𝑊𝑚𝑖𝑛 250 𝑘𝑔ℎ𝑎−1 minimum specific leaf weight 

𝑆𝐿𝑊𝑥 2.5 - exponential slope of specific leaf weight to the developmental stage 

𝑉𝑐𝑡𝑜𝑝𝑚𝑎𝑥  103×10-6 𝑚𝑜𝑙(𝐶𝑂2)𝑚
−2𝑠−1 maximum Rubisco capacity at the canopy top in Eq. (7) 

 280 

3 Model Calibration 

The model parameters were tuned to represent the observed phenology and seasonality of biomass development. Once 

calibration is complete, the model continues to simulate crop growth, which encompasses phenological development, carbon 

assimilation, assimilate partitioning, and crop yield. We conducted calibrations from various environmental conditions and 

soybean varieties documented in previous experimental studies as detailed in 3.1 and  Table 3. The model calibration included 285 

parameterizing the dynamic biomass growth partitioning ratio for each organ, leaf senescence, and specific leaf weight denoted 

as 𝑃𝑜𝑟𝑔𝑎𝑛  during the developmental stage denoted as 𝐷𝑉𝑆. Other calibrations using the experimental dataset included the 

phenological stage, and the seed-pod ratio (SR). The crucial phenological stage (e.g. flowering and seed filling) was calculated 

as the average value of the reported values in the experimental dataset. MATCRO applies this crop growth module following 

the method by the school of de Wit, compares biomass growth with the observed values during developmental stages. Shifts 290 

in partitioning and growth patterns were identified and used as reference points in the parameterization. 

3.1 Description of the site data for calibration 

The calibration process used experimental datasets from previous studies collected from field experiments across six different 

sites in four countries: Frederico Westphalen and Piracicaba (Brazil), Ya’an (China), Champaign (United States of America, 295 

US), Morioka and Tsukubamirai (Japan), as seen in Table 3. The soybean cultivars grown at these experimental sites 

represented different maturity groups. A variety of management practices related to water management and nutrients were 

utilized in the experiments. Nitrogen fertilizers were applied in most experiments, but soil mineral nitrogen at the Brazil and 

the US have provided adequate supply to support crop growth. Furthermore, there are different farming practices based on the 

across countries. Soybeans are planted between May and June in the United States, China, and Japan, while planting starts in 300 

October or November in Brazil. The experimental data also shown broad planting density in China and Japan, while soybeans 

are typically grown at higher planting densities in the United States and Brazil. 

Weather data were derived from the records at the meteorological station nearest to the experimental site. The climates at 

the respective sites were as follows. The ranges of daily mean air temperatures during the growing season was 18-30ºC in 

Frederico Westphalen (Brazil), 19-31 ºC in Piracicaba (Brazil), 17-27 ºC in Tsukubamirai (Japan), 14-25 ºC in Morioka (Japan), 305 

18-26 ºC in Ya’an (China), and 15-28 ºC in Champaign (US). The seasonal precipitation (mm) for the sites were 1669 mm in 

Frederico Westphalen (Brazil), 679 mm in Piracicaba (Brazil), 453 mm in Morioka (Japan), 865 mm in Tsukubamirai (Japan), 

1012 mm in Ya’an (China), and 787 mm in Champaign (US). The amount of solar radiation also differed among the 
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experimental sites where China received lowest solar radiation and Brazil received highest solar radiation during the 

experimental period (Supplementary file Figure S2). These data represent diverse climatic conditions in soybean-producing 310 

countries. The field data used for calibration were collected across multiple crop seasons, specifically from 2002, 2003 to 2007 

and from 2013 to 2016. These time periods were expected to capture the current climatic and environmental variability. 

 

Table 3. Information on field-experimental data of location, crop season, variety, maturity group, water management, and nitrogen fertilizer, 

as well as the number of experiments for calibrating glucose partitioning ratio and evaluating the soybean yield simulations. 315 

Location 
Crop 

season 
Variety (RMG*) Date of planting 

Water management,  

Nitrogen fertilizer 

(g N m-2), Plant Density 

(plant m-2) 

Experiments 

(n) 
Reference 

Brazil (Frederico 
Westphalen) 

2013 BRS284 (6) Oct 1, 18; Nov 8, 25, Dec 12 Rainfed, 0, 26-28 5 (Battisti et al., 
2017) 

Brazil (Piracicaba) 2013-2014 BRS284 (6) Oct 18, Nov 14 (2013);  
Jan 8 (2014) 

Irrigated and Rainfed, 0, 
16-37 

6 (Battisti et al., 
2017) 

China (Ya’an)  2014 11 cultivars (5-8) June 11 Irrigated, NA, 10 15 (Wu et al., 2019)  

2014-2016 Texuan13 (7), 
Jiuyuehang (5), 

Nandou12 (6) 

June 15 (2014); June 18 
(2015); June 18 (2016) 

     9 

United States 

(Champaign) 

2002, 

2004-2007 

Pioneer93B15 (3) June 1 (2002); May 28 

(2004); May 25 (2005, 2006); 
May 22 (2007) 

Rainfed, 0, 25 - 53 8 (Morgan et al., 

2005; Ainsworth 
et al., 2007) 

Japan 

(Tsukubamirai) 

2013-2015 Enrei (2), 

Fukuyutaka (4), 
Ryuhou (2) 

June 12, July 31 (2013); June 

17, July 17 (2014); June 4, 30 
(2015) 

Rainfed, 25-27, 9.5 16 (Nakano et al., 

2021) 

Japan (Morioka) 2013-2016 Ryuhou (2) May 13, 28 (2013); May 16, 
30 (2014); May 5, 14, 25, 29 

(2015); May 30, June 6, 27 
(2016) 

Rainfed, 25-30, 9.5 10 (Kumagai, 2018; 
Kumagai, 2021) 

*Relative maturity group

3.2 Biomass partitioning and specific leaf weight 

This model represents carbon assimilation by incorporating the carbon fraction in dry matter and glucose allocation to various 

plant organs. The glucose ratio for each organ is parameterized based on measurements of leaf weight, leaf senescence, stem 320 

weight, pod weight, and specific leaf weight across different developmental stages. To simulate glucose partitioning, we used 

Eq. (17)–(24) to fit the segmented linear models to the experimental dataset (Figure 2 and Figure 4) and used the parameter 

values as shown in Table 2, as this value is used to obtain the average value of soybean partitioning behaviour. The segmented 

linear models for glucose partitioning were manually determined by visual inspections of the plot. This approach was chosen 

due to the challenges of applying nonlinear optimization under multiple constraints. Breakpoints in the developmental stage 325 

were determined based on assumed growth characteristics, such as leaf development declines after the seed-filling stage, while 

pod formation starts after flowering. We assumed increasing trend of glucose allocation to leaf and shoot development during 

the early stage when data were unavailable, with subsequent segments aligned with observed data trends. The calibrated glucose 

partitioning ratio varied across the varieties and environmental conditions and was derived by converting biomass growth into 

glucose allocation as outlined in Eqs. (11)–(16).  330 

The parameterization reflected the observation data, as well as the linear growth of leaves and pods during the 

developmental stages. It was utilized for seed-pod ratio and phenology parameterization. The dashed lines in Figure 2 and 3 
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indicate the estimated flowering and seed filling stages by calculating the average phenology time in all experimental datasets. 

The independent dataset was used for evaluating the calibrated model at the point-scale level. After removing the calibration 

data, the simulated yield at the site scale showed a correlation coefficient of 0.68 and significancy (p value < 0.001) with 335 

observed data (Supplementary file Figure S3). This agreement is also applied for the aboveground biomass weight, pod weight, 

and leaf area index with correlation coefficient of 0.60−0.90. 

Carbon assimilation primarily occurs with subsequent allocation to other parts of the plant. Compared with varieties from 

other sites, the soybean varieties observed in the experimental dataset from Tsukubamirai (Japan) tended to have lower 

partitioning to the stem during the vegetative stage. The ratio of glucose to leaves in Sichuan (China) was unexpectedly high 340 

near maturity in 2016, resulting in partitioning to pods at a low level due to low temperature and drought conditions. The storage 

organ biomass increases in the reproductive stage to produce pods and seeds, whereas the shoot will senesce at the end of the 

maturity period. Hence, yield is estimated using seed weight (as determined by the storage organ weight) and the parameterized 

seed-pod ratio. Pod partitioning in Champaign (US) tended to occur early in pod initiation in early maturation varieties, and the 

dry weight of pods before the seed filling stage is relatively high (Kawasaki et al., 2018). Early pod initiation has also been 345 

observed in the Ryuhou variety in Tsukubamirai in 2013 (Nakano et al., 2021).  

  

Figure 2. Glucose partitioning ratio to leaves (a) and pod (b) compared with the shoot during the developmental stage (DVS = 0 - 1) in the 

experimental sites shown by shaped points (square: Piracicaba, circle: Frederico Westphalen, triangle: Morioka, plus: Tsukubamirai, 

cross: Champaign, diamond: Ya’an. The red lines are the segmented lines used for glucose partitioning in MATCRO-Soy. The 350 

dashed line marks the averaged flowering, seed filling, and harvest time from the experimental datasets.  
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Figure 3. Dead leaf ratio (s-1) during the developmental stage (DVS = 0 - 1). Similar with Figure 2. 

 

The dead leaf ratio parameter in Figure 3 shows the degree of leaf senescence after the seed filling stage due to the leaf 355 

process. The dead leaf ratio is calculated from the amount of leaf loss observed during the growing season. The specific leaf 

weight (SLW) is a significant parameter in crop growth parameterization and has been calibrated to follow the observation data 

pattern shown in Figure 4. We used the measured leaf weight and leaf area index data from the experimental datasets described 

in 2.4 and Eq. (23) to calculate the ratio of leaf weight to leaf area (SLW) during different phenological stages. These ratios 

change over time with distinct values as they vary across different growing seasons and cultivars (Thompson et al., 1996; 360 

Slattery et al., 2017). In the figure, SLW from Champaign (US) was excluded because of discrepancies in the timing of the 

measurements in leaf area and leaf weight biomass. While the specific leaf weight varied among the sites, we fit the model of 

SLW assuming a saturating exponential function of the developmental stage (red line in Figure 4). This pattern aligns well 

with the biological process as SLW initially increases due to rapid biomass accumulation but saturates as leaves mature.  

  365 
Figure 4. Specific leaf weight (kg ha-1) during the developmental stage (DVS = 0 - 1). Similar with Figure 2. 

4 Model Evaluation Setup 

MATCRO was developed in FORTRAN and coupled with the global climate models output, simulated at a spatial 

resolution of 0.5° × 0.5° and hourly-daily temporal resolution. The output of the model is gridded crop yield (kg ha-1) as stored 

in netCDF file format in a global map with one harvest simulated per year. We perform the model evaluation for global, 370 

country, and grid cell levels for 34 years (1981–2014) at 0.5° spatial resolution and yearly harvested yield output. The accuracy 
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of the simulated yield was assessed using reference global and country-level data from the Food and Agriculture Organization 

(FAOSTAT, 2023), while the grid cell level yield was compared with the Global Dataset of Historical Yield (GDHY) data 

which is derived from statistical records, FAO data, and remote sensing data (Iizumi, 2019). 

4.1 Simulation settings and data inputs 375 

The parameters were set as shown in Table 4, covering the period of the sowing year from 1980 to 2014, with a various 

planting time across different regions. This model incorporated global daily climate data (86400 s) as input data. While the 

simulation framework was inherited from the established MATCRO-Rice v.1 (Masutomi et al. 2016b), several modifications 

were made to enhance its applicability at a global scale. Notably, the temporal resolution was adjusted from half-hourly (1800 

s) to hourly (3600 s), allowing the model to maintain consistency in capturing critical processes such as diurnal variations in 380 

photosynthesis and transpiration, while optimizing computational efficiency. These adjustments ensured that the model 

remained suitable for large-scale simulations while preserving essential physiological processes. 

The model simulates soybean yield using input data as described in Table 5. It uses global input data as follows: crop 

calendar from the Global Gridded Crop Model Intercomparison (GGCMI), which separates the rainfed and irrigated systems, 

atmospheric CO2 and climate data from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) that provides bias-385 

adjusted climate input data for historical data (GSWP3-W5E5 v2.0), soil classification from the Harmonized World Soil 

Database (HWSD v1.2), and nitrogen fertilization for C3 fixing crops of the ISIMIP, which is derived from the land use dataset 

(Hurtt et al., 2020). We use ISIMIP bias-adjusted data to maintain uniformity in the climate impact data across sectors and 

scales in their framework. This dataset, which is provided by ISIMIP, has a spatial resolution of 0.5 . To determine the growing 

degree days for maturity, we considered the phenological maturity time from the GGCMI crop calendar for harvest time and 390 

global ISIMIP climate data over 10 years (2000-2010) to capture the variability shifts in the current evaluation years.  

Table 4. Parameter settings for simulation  
Variable Value Unit Description 

Yearsow varied Year year of sowing day 

DOYsow varied Day of Year (DOY) day of year of sowing day 

REStime 3600 s time resolution for simulation 

RESclimate 86400 s time resolution for climate forcing data 

RESwe/ns 0.5 degree spatial resolution north to south or west to east 

Soil layer 5.0 - number of simulated soil layer to calculate soil water content 

WSL 1.0 - soil water content at emergence 

Wleaf0 1.0 kg ha-1 dry weight of leaf at emergence 

Wstem0 1.0 kg ha-1 dry weight of stem at emergence 

Wroot0 1.0 kg ha-1 dry weight of root at emergence 

Wglu0 0.5 kg ha-1 dry weight of glucose reserve at emergence 

Za 3.0 m reference height at which wind speed is observed 

Zmax 4.0 m depth of soil layer 

Zt 0.05 m depth of topsoil layer 

Zb 2.0 m depth from the soil surface to the upper bound of the most bottom layer of soil 

 

Table 5. Data input for MATCRO simulation. 

Variable Unit Data source Spatial Resolution 

Daily time-step 

Precipitation  kg m-2s-1 GSWP3–W5E5 (Kim, 2017; Cuchi et al., 

2020; Lange, 2019; Lange et al., 2021) 

0.5 × 0.5 

Near-surface specific humidity kg kg-1 0.5 × 0.5 
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Maximum, minimum, and mean temperature  Kelvin 0.5 × 0.5 

Surface downwelling shortwave radiation W m-2 0.5 × 0.5 

Near-surface wind speed m s-1 0.5 × 0.5 

Surface air pressure Pa 0.5 × 0.5 

Yearly time-step 

Atmospheric CO2 concentration ppm ISIMIP (Büchner and Reyer, 2022) - 

Nitrogen fertilizer  kg ha-1 ISIMIP (Volkholz and Ostberg, 2022) 0.5 × 0.5 

Constants 

Latitude and longitude ° - - 

Agricultural management Irrigated or rainfed MIRCA2000 (Portmann et al., 2010) 0.5 × 0.5 

Sowing time, Harvest time DOY GGCMI (Jägermeyr et al., 2021) 0.5 × 0.5 

Growing degree days for harvest time °C days Parameterized in this study 0.5 × 0.5 

Soil type - HWSD (Volkholz and Müller, 2020) 0.5 × 0.5 

395 

4.2 Global yield evaluation methods 

In this study, we assessed the statistical relationship between simulated yields and reference data using common metrics of 

Pearson correlation coefficient (corr) in Eq (28) with the significance levels (p-values), agreement between the simulation and 

observation using root mean square error (RMSE) in Eq. (29), and bias in Eq. (30) for the time-series yield data. 

𝑐𝑜𝑟𝑟 =  
∑ (𝑋𝑖−𝑋̅)
𝑛
𝑖=1 (𝑌𝑖−𝑌̅)

√∑ (𝑋𝑖−𝑋̅)
2𝑛

𝑖=1 (𝑌𝑖−𝑌̅)
2
           (28) 400 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑋𝑖 − 𝑌𝑖)2
𝑛
𝑖=1           (29) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =  
1

𝑛
∑ |𝑋𝑖 − 𝑌𝑖| 
𝑛
𝑖=1 ×

1

𝑌̅
         (30) 

where 𝑋𝑖 and 𝑌𝑖  indicated simulated and observed values in each measurement, while 𝑋̅ and 𝑌̅denotes the mean of simulated 

and observed values for the harvested year annually. The 𝑖  and 𝑛  shows the 𝑖 -th data point and total number of data, 

respectively. We use 𝑛 = 34 years for global-scale data, while output after calibration is evaluated in point-scale using 𝑛 ranged 405 

from 14-122 of the available experimental datasets.  

Detrended yield represents the time-series yield data for both simulated and observed values after removing the linear trend 

by subtracting the slope and intercept of the fitted linear regression (long-term yield trend). This approach enables the 

separation of short-term yield fluctuations from systemic long-term shifts. Yield fluctuations for the long-term and detrended 

data were evaluated separately using mean squared deviation (MSD) and its component to provide a clear interpretation of the 410 

model evaluation error (Gauch et al., 2003; Kobayashi and Salam, 2000) in Eq. (31)  

𝑀𝑆𝐷𝑦 = 𝑆𝐵𝑦 + 𝑆𝐷𝑆𝐷𝑦 + 𝐿𝐶𝑆𝑦           (31) 

Mean squared deviation (𝑀𝑆𝐷𝑦) is the square of RMSE for each long-term yield trend or detrended yield. Its components 

included mean squared bias (𝑆𝐵𝑦), difference in the magnitude of fluctuation namely squared difference between standard 

deviations (𝑆𝐷𝑆𝐷𝑦), and the lack of positive correlation weighted by the standard deviations (𝐿𝐶𝑆𝑦) as proposed by Kobayashi 415 

and Salam (2000) calculated in Eq (32)–(37) below:  

𝑆𝐵𝑦 =  (𝑋̅ − 𝑌̅)
2             (32) 

𝑆𝐷𝑆𝐷𝑦 = (𝑆𝐷𝑋 − 𝑆𝐷𝑌)
2            (33) 

𝑆𝐷𝑋 =  √
1

𝑛
∑ (𝑋𝑖 − 𝑋̅)2
𝑛
𝑖=1             (34) 
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𝑆𝐷𝑌 =  √
1

𝑛
∑ (𝑌𝑖 − 𝑌̅)2
𝑛
𝑖=1             (35) 420 

𝐿𝐶𝑆𝑦 = 𝑆𝐷𝑋𝑆𝐷𝑌(1 − 𝑐𝑜𝑟𝑟)          (36) 

Higher 𝑆𝐵𝑦 , 𝑆𝐷𝑆𝐷𝑦, and 𝐿𝐶𝑆𝑦   indicate that model failed to simulate mean of the measurement, magnitude of fluctuation 

around the mean, and pattern of fluctuation across the n measurements, respectively, of the yield. 𝑆𝐷𝑋  and 𝑆𝐷𝑌 denotes the 

standard deviation of simulated (𝑋) and observed values (𝑌), while 𝐿𝐶𝑆𝑦  depends on the correlation coefficient (corr).  

 425 

5 Model Performance Evaluation 

We calculated soybean yield in a global-scale map based on the gridded data of irrigated and rainfed area from MIRCA2000 

dataset, which represents global agricultural land use around the year 2000 (Portmann et al., 2010), to get the actual yield 

value. We evaluated yield during the period of 1981-2014 as the MIRCA dataset was available within that period. The 

simulated yield at the country and global scales for regional comparison was determined by aggregating grid cell data to 430 

compute the mean soybean harvested area within each country grid as described below in Eq (37): 

𝑌𝑖𝑒𝑙𝑑𝑟𝑒𝑔𝑖𝑜𝑛 =
∑ [(𝑌𝑖𝑒𝑙𝑑𝑟𝑓)𝑖(𝐴𝑟𝑒𝑎𝑟𝑓)𝑖+(𝑌𝑖𝑒𝑙𝑑𝑖𝑟)𝑖(𝐴𝑟𝑒𝑎𝑖𝑟)𝑖]
𝑛
𝑖=1

∑ [(𝐴𝑟𝑒𝑎𝑟𝑓)𝑖+(𝐴𝑟𝑒𝑎𝑖𝑟)𝑖]
𝑛
𝑖=1

        (37) 

where 𝑌𝑖𝑒𝑙𝑑𝑟𝑒𝑔𝑖𝑜𝑛 is the aggregated yield at a given region (country or global-scale) in kgha-1 from the grid cell number (𝑖) 

range from 1 to 𝑛 (total number of grid cells in the region). The estimated yield under rainfed and irrigated conditions are 

denoted by 𝑌𝑖𝑒𝑙𝑑𝑟𝑓 and 𝑌𝑖𝑒𝑙𝑑𝑖𝑟, respectively. While the soybean rainfed and irrigated area (ha) used in the simulations are 435 

𝐴𝑟𝑒𝑎𝑟𝑓  and 𝐴𝑟𝑒𝑎𝑖𝑟 , respectively.   

5.1 Model output yield as evaluated at the global and national scales 

Figure 5a shows a time-series comparison from 1981 to 2014 between the global mean yields reported by FAOSTAT and 

those simulated by MATCRO-Soy. The results indicated that the model captures the upwards trend in yields over the period 

with smaller slope compared with the reported yield data. The correlation coefficient is 0.81, which is significant (p < 0.01). 440 

The errors were 298 kg ha-1 and 0.12 for the RMSE and relative bias, respectively. Notably, the simulated linear increase 

contributed to the higher correlation coefficient for the yield trends. 

Figure 5b shows the comparison between the detrended global mean yield observed by FAOSTAT and the simulated value 

by MATCRO-Soy after removing the long-term linear trend across the study period. Detrended yield is the value after yield is 

reduced by its long-term trend from the original yield data. It isolates the variability primarily driven by climate fluctuations 445 

to evaluate interannual variability independent of long-term trends. However, it also removes longer-term signals (e.g. effect 

of technological improvements or increasing CO2 concentrations). The correlation coefficient decreased to 0.446 (p < 0.01). 

The model reproduced the interannual variations well with an RMSE of 137 kg ha-1. Specifically, according to observations, 

there were significant yield reductions in the years 1983, 1988, 2009, and 2012. Among these, the model successfully 

reproduced the yield reductions in three years (1983, 1988, and 2012), excluding 2009. These years are reported to have 450 

experienced severe droughts, and the model's ability to capture these events is noteworthy. 
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Figure 5. Time-series comparison between simulated yield by MATCRO-Soy and FAOSTAT reported yield data in global long-term trend 

(a),  and detrended (b) yield during 1981-2014. The correlation for detrended yield is calculated after removing the linear trend. The symbols 455 

***, **, and * denote p < 0.001, 0.01, and 0.05, respectively. 

We evaluated the model performance for 10 major soybean-producing countries, Argentina, Brazil, China, India, Paraguay, 

United States, Italy, Russia, Bolivia, and Canada, consisting of 96% of all global soybean production (based on total average 

production from 2012 to 2021 in FAOSTAT). Figure 6 compared the simulated country averaged yields and reported country 

averaged yields of FAOSTAT for 1981-2014 with the ellipsoid indicating the distribution of the simulated yield values within 460 

the 90% confidence range. The results indicate that the model reproduces the national average yield levels well in the top 10 

producing countries, as indicated by a correlation coefficient of 0.519 (p < 0.001) and an RMSE of 1085 kg ha-1. Significant 

correlation coefficients were observed for six countries (Argentina, Brazil, India, Italy, Paraguay, and the United States; see 

Supplementary file Figure S4 for further evaluation for these six countries). Focusing on the United States, Brazil, and 

Argentina, which account for 69% of global production, the model's accuracy showed a correlation coefficient of 0.645 (p < 465 

0.001) and an RMSE of 916 kg ha-1, where Brazil was underestimated. However, when all countries are considered, the 

correlation coefficient decreases to 0.291, although it remains statistically significant. These results demonstrate that the model 

performs reasonably well in capturing yield variations in major producing countries and achieves particularly lower bias in 

some countries (e.g. the United States, Italy, and Canada). 

     470 
Figure 6. Comparison between simulated yield by MATCRO-Soy and FAOSTAT of the country mean yield during 1981-2014 in 10 major 

soybean producing countries. Ellipsoid shows 90% confidence range of annual yield.  

A time series comparison of country averaged yields focusing on the major producing countries is shown in Figure 7. An 

evaluation of the long-term trend (Figure 7a) revealed that MATCRO-Soy effectively captured the increasing trend. Brazil 

demonstrated the strongest agreement, followed by Argentina at 0.62 and the United States at 0.64. For detrended yield (Figure 475 

(a) (b)  
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7b), the interannual variability in Paraguay presented the highest correlation coefficient at 0.61, followed that in the United 

States at 0.57 and that in Brazil at 0.49. On the other hand, the lowest correlation was observed for China at 0.18 and Bolivia 

at -0.32. These findings suggest that the model tends to perform with greater accuracy for countries with higher production 

levels, even in time series comparisons at the national level. 

   480 

 

 
Figure 7. Time-series comparison between simulated yield by MATCRO-Soy (red circle) and FAOSTAT yield (open circle) in 10 top 

soybean producer countries during 1981-2014 for long-term yield trend shown by solid line (a) and detrended yield after removing the linear 

trend (b) in kg ha-1. The correlation and RMSE based on yield (a) and detrended yield (b) data. The symbols ***, **, and * denote p < 0.001, 485 

0.01, and 0.05, respectively. The shading near solid line is the standard error with confidence interval of 95%. 

5.2 Temporal trends and variability 

Model performance was further assessed with the mean squared deviation (MSD) components for the yield and separated 

by yield, long-term yield trend, and detrended yield for both the global (Supplementary file Table S1) and country scales 

(Supplementary files Table S2, S3, and S4). We separated the MSD into squared bias (SB), the sum of the difference in 490 

standard deviation (SDSD), and the lack of positive correlation (LCS), which reflect errors in mean yield, magnitude of yield 

variability, and pattern of year-to-year fluctuations, respectively. The greatest contributor to the error at the global scale was 

the difference of mean yield (SB) for about 71 and 77 % of total MSD for the yield and detrended yield, respectively 

(Supplementary file Table S1).  

 Figure 8 presents MSD components in the top six soybean-producing countries. SB was the primary source of error in 495 

most countries at the country-level. The highest MSD in Paraguay was largely driven by SB, with a notable contribution from 

LCS. It indicates that the model simulated the variability well but poorly captured the mean yield. The low MSD in the United 

States was also driven by SB, but LCS also contributed meaningfully to the year-to-year variability. Meanwhile, LCS was the 

(a) Long-term yield trend (b) Detrended yield 
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greatest contributor of yield error in Canada and Italy (Supplementary file Table S2) due to a pronounced discrepancy in the 

simulated interannual variability. SDSD contributed only to Brazil, and the model underestimated the mean yield and the 500 

deviation in this country. These results highlighted that the mean yield bias dominates the source of error at global and country 

levels, while LCS and SDSD contributed notably in specific regions where the model failed to capture the variability or the 

temporal pattern.  

 

Figure 8. Mean squared deviation components of squared bias (SB), sum of difference in standard deviation (SDSD), lack of positive 505 
correlation (LCS) for yield error in top six soybean producing countries.  

5.3 Model performance at the grid-cell level variation  

We evaluated MATCRO-Soy at the grid-cell level, by comparing simulated yields with observed ones from Global Dataset 

of Historical Yield (GDHY) dataset by Iizumi (2019). Figure 9a and b show the simulated and observed yields averaged over 

34 years, and Figure 9c shows relative bias between them. Figure 10 shows interannual correlation between simulated and 510 

observed yields for 34 years. The simulated yield was calculated for soybean-growing areas from the MIRCA2000 dataset, 

which offers broad spatial coverage where yield data for certain regions, including Canada, Russia, Australia, and many 

European and Asian countries, are missing in the GDHY dataset (Iizumi and Sakai, 2020). The density plot of the simulated 

yield showed more variability than did the GDHY data in Figure 9. However, both datasets exhibited a density peak of 

approximately 2,000 to 3,000 kg ha-1and the simulated yield mostly overestimated the higher yield value. Figure 9 a, b, and c 515 

also show the distribution of simulated and observed yields. 

The relative bias map (Figure 9c) highlights that overestimation was prominent in parts of South America (particularly 

Argentina), Russia, and China. In contrast, underestimation was observed in South Africa, India, and Brazil. Most of grid cells 

in Brazil show low yields, likely due to shorter growing periods in the input data compared to field experiment data. These 

results aligned with the trends observed at the national scale, which are influenced by the aggregation process. During 520 

aggregation, the national-scale results represented the average performance across all grid cells, weighted by the number of 

grids within each region. Most grids were within a relative bias of -0.2 to 0.2, accounting for 37 % of the total grid area. The 

grey area was found to be statistically insignificant. The density plot in simulated yield showed more variability compared to 

the GDHY data. However, both data exhibited the density peak around 3,000 kg ha-1 and simulated yield mostly overestimated 

the yield value. The correlation between the simulated yield and the GDHY dataset for interannual variation after removing 525 

the moving-average (Figure 10) reveals that 66 % of the grid cells are significantly correlated (p < 0.05).  
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Figure 9. Global map of 34-year averaged (1981-2014) yield of GDHY dataset (a), simulated by MATCRO-Soy (b), and relative bias (c) 530 

with each density plot distribution. In figure c, grey colour depicts the correlation with no significance (p > 0.05) in the map.  

(c) GDHY 

(a) MATCRO-Soy 

 

(b) Relative Bias 
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Figure 10. Time-series correlation between simulated and observed yield in 1981-2014 after removing trends from 5-year moving average 

(c). Grey colour depicts the correlation with no significance (p > 0.05) in the map while the red dashed line shows the border of 

p = 0.05 for the number of n year (34) in the density distribution plot. 535 

5.4 Model performance at the leaf-level   

We simulated the leaf-level variation in Vcmax for the United States (largest soybean producing country) at the site scale of the 

Champaign for the 2002 growing season using the global parameterization of MATCRO-Soy (Figure 11). These leaf-level 

simulated Vcmax values align closely with the observation data from Bernacchi et al. (2005) during the vegetative stage with 

some deviations during the flowering to seed-filling stages, as shown by the dashed line in the developmental stage of Figure 540 

11. This alignment highlighted the ability of the model to represent essential photosynthetic processes influenced by leaf 

nitrogen content. 

 
Figure 11. The maximum carboxylation capacity of Rubisco (𝜇𝑚𝑜𝑙(𝐶𝑂2)𝑚

−2𝑠−1) during the growing period of simulation using 

MATCRO-Soy (black line) and observation data (grey dots) from Bernacchi et al. (2005) in Champaign (US) year 2002. 545 

 

6 Discussions 

6.1 Validation of MATCRO-Soy 

In prior studies, soybean yield predictions often faced challenges in capturing crop responses to climatic variables. The 

MATCRO-Soy model effectively captures the linear trend in soybean yields, with higher accuracy for long-term trends (corr 550 

= 0.812) than for detrended yields (corr = 0.446), as shown in Figure 5. This result of the global detrended yield is improved 

             Correlation  

p-value = 0.05 
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compared with that of benchmark studies conducted by Müller et al. (2017), indicating less variation among the process-based 

models based on its statistical correlation, where another crop model, PRYSBI2, reaches significant correlations of 0.57 (p < 

0.050) if trends are not removed. However, the accuracy is enhanced when using site-specific parameters are used, as 

demonstrated in regional scale evaluations from previous studies, which were used for parameterization in this global 555 

simulation (Battisti et al., 2017; Kumagai, 2018, 2021; Morgan et al., 2005; Nakano et al., 2021; Wu et al., 2019). These studies 

have shown that integrating factors of cultivar differences, ensembles of multiple crop models, nitrogen content, and more 

accurate measurement method allows for a more reliable representation of local growing conditions and climate variability.  

When examining the 10 largest soybean-producing countries, the model performance (Figure 6) has an RMSE of 1,085 kg 

ha-1 (average yield of 34 years), which is in reasonable agreement compared with the RMSE of another study using LPJ-560 

GUESS coupled with biological nitrogen fixation (Ma et al., 2022) of approximately 800 kg ha-1 (average yield of 10 years). 

The grid-cell level evaluation simulated by MATCRO-Soy, as shown in Figure 9, revealed that 66% of the grid cells were 

significantly correlated (p < 0.05) with most grids falling within 0.2–0.6. These findings align with other studies that show that 

time-series correlations in GGCM simulated soybean yields range from 0.25 to 0.65 due to discrepancies in the benchmark 

studies (Müller et al., 2017). This correlation reflects the detrended values, which are useful for evaluating interannual 565 

variability and the model sensitivity to climate fluctuations. However, detrending removes important long-term signals related 

to genetic improvements, cultivar and management changes, or increased CO₂ effects.  

The correlation values between yield and detrended yield in Figure 5 and Figure 6 indicate that the increased correlation 

in model performance was due to the long-term yield trend. MATCRO-Soy could capture the trend of increased atmospheric 

CO2 and nitrogen fertilizer inputs, despite of the interannual variability in climate conditions. The MSD calculation revealed 570 

that the lack of positive correlation was the major contributor error in Canada and Italy within the 10 top soybean producing 

countries (Supplementary file Table S2). Both countries have small squared biases (SBs), suggesting that MATCRO-Soy 

accurately represents the average productivity despite of the inability to capture the variability or amplitude of the yield trend 

over time within the region. Factors such as changes in sowing date, land use, pest management, cultivar maturity group, and 

planting density may contribute to discrepancies in soybean yield under climate change (Battisti et al., 2018a; Marin et al., 575 

2022). Hence, there is a need for improved parameterization to better represent the dynamics of yield variability in countries 

such as Canada and Italy.  

The high yields in Argentina and Paraguay reflect the consistency of favourable growing conditions (Figure 7a), 

particularly the alignment of daily temperatures and seasonal precipitation with critical growth stages, suggesting that these 

regions are less susceptible to interannual variability along with the geographic locations to receive more radiation for 580 

photosynthesis sources. The comparison of simulations and observations at the grid-cell level (Figure 10) reveals weak 

correlations with no statistical significance in high-latitude countries with low number of grid cells (e.g., Canada and Russia). 

The models that lack sensitivity to daylength are observed to contribute to more uncertainty (Battisti et al., 2018b). Moreover, 

the low simulated yield in India, which has a hot climate characterized by high mean daily temperatures of 27–28 C 

(Supplementary file Figure S5) and low soil moisture during the growing season, highlights the capacity of the model to capture 585 

regional climatic challenges that impact productivity. These climatic challenges likely exacerbate heat stress during critical 

phenological stages, such as flowering and pod development, leading to reduced yields (Sinclair, 1986; Egli and Bruening, 

2004). The contrasting regions of high and low soybean yields underscore the ability of the model to capture the complex 

interplay between climate and crop yields across diverse agroecological zones.  

6.2 Model strength and application 590 

We developed MATCRO-Soy v.1, a process-based eco-physiological model that uses the Farquhar equation to simulate the 

leaf-level photosynthesis. The Farquhar equation is a widely recognized framework in plant physiology that simulates the 

biochemical mechanisms of photosynthesis by describing the relationships among light intensity, CO2 assimilation, and 
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Rubisco enzyme activity (Farquhar et al., 1980; Scafaro et al., 2023). Through the integration of this equation into a gridded 

global crop model, MATCRO-Soy enhances the simulation of soybean growth and productivity under environmental changes 595 

to atmospheric CO2, temperature, and water scarcity. These factors are important for predicting and understanding the 

mechanism of the impact of climate change on productivity. The calibration of MATCRO-Soy successfully represented the 

response of soybean growth to a wide range of climatic conditions, resulting in reliable global yield simulations using a single 

parameterization. While simplification may introduce errors, global tuning effectively minimizes these discrepancies in 

specific regions as this similar result also shown by Smith et al. (2014). 600 

Improving photosynthetic efficiency is one of the key improvements, particularly through enhancing stomatal conductance 

and modifying Rubisco, the enzyme responsible for carbon fixation (Xu et al., 2022). We used Vcmax as a photosynthetic 

parameter as it quantifies the Rubisco activity that is responsible for catalysing the conversion of carbon dioxide into organic 

compounds. The peak Rubisco activity observed during the reproductive stage corresponds with trends in specific leaf nitrogen 

and implicitly affected by the additional nitrogen fertilizer (La Menza et al., 2023). The consideration of nitrogen fixation is 605 

important as it is sensitive to adverse environmental conditions, flooding, water deficit, and inadequate temperatures, all of 

which reduce N2 fixation (Santachiara et al., 2019).  

The simulated yield, LAI, aboveground biomass, and pod biomass from MATCRO-Soy were further compared at the point-

scale level with experimental datasets with distinct datasets used for each step of calibration and evaluation (Table 3) prior to 

global-scale evaluation (Supplementary file Figure S3). While point-scale simulations employed the unified global parameters, 610 

the results demonstrated reasonable agreement with a p value < 0.01 and a bias of 30–63 % for harvested yield, the seasonal 

leaf area index, aboveground biomass, and pod biomass. The highest bias was observed for the seasonal LAI, which aligns 

with the underestimation of Vcmax during critical growth stages. MATCRO-Soy can reproduce photosynthesis parameters 

comparable to those of the observation data in site-scale analysis with overestimation in the reproductive stage (Figure 11). 

MATCRO-Soy effectively uses high-quality climate data, soil information, and nitrogen fertilizer data to capture 615 

biophysical processes involved in soybean growth and yield formation based on previous studies. Its flexibility in spatial 

resolution enables its application across various scales, from local studies to global assessments. Moreover, the structure of 

MATCRO is easily coupled with climate models and atmospheric CO₂ to increase the accuracy of yield predictions through 

high-quality data input. This adaptability also enables integration with other land models, making it a valuable tool in both 

ecological and agricultural research. MATCRO-Soy can be continuously refined with new data and plant physiological 620 

knowledge, ensuring that it remains robust and adaptable. This adaptability makes it a valuable for researchers and policy-

makers working towards sustainable agriculture and global food security.   

The strength of MATCRO-Soy lies in its ability to simulate key physiological processes of soybean growth (e.g. 

photosynthesis, phenology, and biomass partitioning), under varying climatic conditions. Its process-based structure allows 

for sensitivity analysis for further environmental impacts evaluation, such as effects of elevated CO2 and temperature stress. 625 

The model has been shown to reasonably capture the temporal dynamics of yield formation. In addition to climatic factors, 

variations in yield may be attributed to technological advancements, shifts in agricultural practices, and changes in crop 

management strategies outside the scope of model can further improve the accuracy at the local scale. For example, including 

pest and crop interaction may enhance the model’s capability to reflect local yield response to climate-driven pest dynamics 

(Chen and Mccarl, 2001). The integration of crop models with remote sensing data will enhance its capability for monitoring 630 

and predicting crop productivity at finer spatial scales (Basso et al., 2001). However, it is important to acknowledge the 

limitations of the model, particularly its ability to predict yield variations under extreme or rapidly changing climatic 

conditions. Continuous updates of the experimental dataset are necessary to maintain its relevance and accuracy in predicting 

future soybean yields. 



 

24 

 

6.3 Model challenges and future directions 635 

In the evaluation process, it is important to recognize the interannual variability and spatial variability. There are many grid 

cells that have a low correlation (nonsignificant) of soybean yield between the simulated and observed values in Brazil when 

considered in each single cell (Figure 9), but the correlation at the national-scale level is high (Figure 7). This means that local 

climatic factors affect soybean yield in Brazil. However, MATCRO-Soy is able to recognize broader regional trends leading 

to its aim at representing yield behaviour. Figure 12 presents the relative RMSE (RMSE value compared with the observation 640 

value) between the simulation and GDHY datasets for the detrended yield at the grid-scale. High relative RMSE values are 

observed in some parts of Africa (particularly in Nigeria), the United States, India, and China. Lower relative RMSE values 

are evident in regions such as Brazil and Argentina. India and the United States show low RMSEs at the national-level, but 

some grid cells within both countries have higher relative RMSEs at the grid-cell level. Detailed information on the spatial 

variation in the error components contributors is provided in Supplementary File Figure S6 for the long-term yield trend and 645 

Supplementary File Figure S7 for the detrended yield. These findings highlighted that number of grid cells significantly 

influence model performance, with regions containing fewer grids being more sensitive to localized factors and spatial 

heterogeneity during aggregation. These emphasize the importance of considering spatial resolution and representation when 

evaluating model performance. 

 650 

Figure 12. Relative RMSE calculation between simulated and observed yield for detrended yield in grid-cell level. 

Uncertainty in MATCRO-Soy is reflected through the challenges in global-scale model evaluation related to the model 

assumptions of crop cultivars being homogenous globally and the upscaling parameters due to the lack of parameterization, 

making it is unrealistic to reproduce the variability at the regional-scale with very high accuracy (Müller et al., 2017; Zaehle 

and Friend, 2010). This uncertainty is notably pronounced in the global aggregation of yield simulations at the grid-cell scale. 655 

Global aggregation can escalate substantially for specific combinations of aggregation units, crop model limitations, and years 

(Porwollik et al., 2017). Future assessments of models and projections of crop yields will require careful consideration of the 

significant contrast between different aggregation approaches used for individual countries or regions. To address this, we 

used harmonized ISIMIP data to minimize methodological bias and emphasize the importance of flexible model development 

for reducing uncertainty (Yin, 2013). 660 

We found a large underestimation in 2002, and overestimation in 2009 when comparing the soybean yield simulated using 

bias-corrected climate data was compared with FAO data (Figure 5). One possibility for these discrepancies in the interannual 

variability may be attributed to the influence of unaccounted extreme climatic events. Climatic events indicated by Oceanic 

Niño index, a three-month running mean of SST anomalies in the Niño 3.4 region, show that La Niña was present at the end 

of 2002 and that El Niño occurred at the end of 2009 (NOAA, 2024). Some regions within major soybean-producing countries 665 
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are significantly affected by El Niño events, further influencing yield variability (Anderson et al., 2017; Iizumi et al., 2014). 

Another possibility for the interannual variation in MATCRO-Soy tends to overestimate the long-term yield trend because of 

the sensitive effect of the CO2 concentration on the carbon assimilation module.  

While nitrogen fixation and uptake are implicitly constrained by the SLN parameter, an approach of carbon costs economics 

explicitly represents the respiratory cost due to different nitrogen uptake pathways (Fisher et al., 2010). MATCRO-Soy 670 

simplified the nitrogen fixation mechanism, which may have contributed to yield overestimation in low nitrogen input 

countries (e.g. Bolivia and Russia). However, this model still presented relatively small bias in countries with high nitrogen 

fertilizer application (e.g. China), as well as in countries with low nitrogen fertilizer input (e.g. the United States). This 

highlights an opportunity for future model development to incorporate variable of respiratory costs in biological nitrogen 

fixation. While limited empirical data across cultivars, environments, and management systems poses a challenge at the global 675 

scale, addressing this would improve understanding of the physiological mechanisms under nitrogen-limited conditions. 

The simulated yield increases throughout the year driven by the positive effects of increased atmospheric CO2, a 

phenomenon known as the CO2 fertilization effect, has been observed in studies by Long et al. (2005) and Sakurai et al. (2014). 

The CO₂ fertilization response may become a more prominent source of overestimation in future projections if the model 

overestimates the crop response to elevated CO₂. Compared with simulations using statistical radiation use efficiency (Ai and 680 

Hanasaki, 2023), process-based models have this tendency because of the greater effect of CO2 on the photosynthesis process. 

Therefore, further investigation is needed into the CO₂ sensitivity of MATCRO-Soy and other process-based models, as the 

downregulation of photosynthesis under elevated CO2 conditions has been observed in the measurements (Ainsworth et al., 

2002; Zheng et al., 2019). This is especially important for adaptation studies, as reliable yield projections are critical for 

designing effective adaptation strategies under future climate scenarios.  685 

MATCRO-Soy simulations showed that MSD component of SB was the dominant contributor in the global and country-

level yield error. It indicates the bias was in the over or underestimation of average yield, rather than in variability of 

discrepancy in the year-to-year yield pattern (Figure 8). These results highlighted the model uncertainty in simulating mean 

yield for improvement in major soybean-producing countries with large cultivation areas. The model overestimated the long-

term trend in some countries. Inaccurate representation of CO₂ fertilization effect may have contributed to the mean yield bias. 690 

Other possible contributing factors for the bias are the simplified assumption of no respiratory costs for symbiotic nitrogen 

fixation and insufficient representation of water stress responses. The accuracy of data input may partly reflect the inherent 

gap between field experiment data and national average yields, which are influenced by local farming practices. While these 

discrepancies between the country and global levels are insightful, it provides a valuable opportunity for model improvement.  

Comparative studies with other soybean models and refining the MATCRO-Soy on the basis of these findings will 695 

contribute to a more comprehensive understanding of its capabilities and limitations. Incorporating additional datasets will 

further enhance the model representation of real-world conditions. McCormick et al. (2021) suggested that integrating machine 

learning models could improve accuracy through the calibration process with numerous datasets. However, the use of 

mechanistic models embedded in MATCRO to simplify the process has proven valuable for understanding and predicting the 

impacts of environmental factors on agricultural systems. This model can be used to identify potential adaptation strategies, 700 

such as changes in planting dates or the development of new crop varieties, to mitigate the adverse effects of climate change 

on soybean production. However, the application of this model at the field-scale requires high-quality data input and local 

parameter data.  

7 Conclusions 

We utilized MATCRO which incorporates carbon assimilation modules based on the C3 photosynthesis of the Farquhar 705 

model, to simulate global soybean yield in terms of eco-physiological integrated gridded data inputs of climate, soil type, and 
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nitrogen fertilizer. This study used experimental datasets and literature from previous studies to MATCRO-Soy to represent 

soybean growth under various environmental conditions. An evaluation of the global mean yield revealed a statistical 

correlation of 0.81 (p-value < 0.001) between the simulated and reported FAOSTAT data before the long-term yield trend was 

removed. The correlation value decreased after the long-term yield trend was removed, with a Pearson correlations of 0.45 (p 710 

< 0.050), 0.52 (p < 0.001), and 66 % grid cells statistically greater than the significant value (p > 0.05) over 34 years (1981-

2014) for the global, top 10 countries, and grid cell levels, respectively. The model successfully captured long-term trends and 

interannual variability, demonstrating its capacity to reflect the impacts of climate factors. Moreover, MATCRO-Soy also 

modelled reasonable photosynthetic processes in site-scale study, which shows a strong ability to represent the temporal 

variation. This result highlights the model’s reliability and adaptability as a tool for understanding soybean growth and yield 715 

dynamics. 

While MATCRO-Soy presents a valuable framework for understanding the impacts of climate change on global soybean 

production, many localized factors that influence soybean yield due to the shifts in climate (e.g., pests and diseases) can lead 

to discrepancies in yield prediction. This highlights the need for high-quality data input. The integration of CO2 dynamics in 

MATCRO enhances crop response modelling while providing the carbon fertilization effect in process-based models, 720 

warranting further investigation along with the effects of other greenhouse gases. The model may benefit for further refinement, 

particularly in its treatment of temperature extremes, transpirable soil water, and nitrogen uptake during the photosynthesis 

process. Integrating MATCRO with other environmental models would enhance its applicability in agricultural management, 

while emphasizing the necessity for field-scale calibration to improve the model's reliability. MATCRO-Soy provides an 

opportunity to estimate changes in global soybean production under future land-use or climate change scenarios to address the 725 

complexities of climate interactions with agricultural systems. Overall, the MATCRO-Soy has proven to be useful in 

understanding eco-physiological processes at both the global scale and the country and grid cell levels, providing valuable 

insights for agricultural management and climate change adaptation.  

Code and data availability  

This study used the model simulated by source code of MATCRO (Yusara et al, 2025) archived at 730 

https://doi.org/10.5281/zenodo.14881385. 
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