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Abstract. MATCRO-Soy is an eco-physiological process-based crop model for soybean (Glycine max L. (Merr.)). It was 
developed by modifying the parameters of MATCRO-Rice, integrates crop growth processes with a land surface model. These 
modifications were made using data from literature and field experiments across the world. The reliability of the model was 
validated extensively by observed soybean yield data across the global, national, and grid cell levels. A moderate correlation 20 
was observed between the MATCRO-Soy and FAOSTAT yield data with correlation coefficients of 0.81 (p < 0.001) for the 
global average yield and 0.45 (p < 0.01) for the global average detrended yield over a 34-year period (1981-2014). Furthermore, 
the grid-cell level validation revealed that 66 % of the grid cells in the global yield map exhibited a statistically significant 
correlation between the MATCRO-Soy simulated yield and the reference data derived from observational records. These 
results highlight the model’s ability to reproduce soybean yield under different environmental conditions, integrating soil water 25 
availability and nitrogen fertilizer. MATCRO-soy could enhance our understanding of crop physiology, especially crop 
responses to climate change. Its application may support efforts to reduce uncertainty in projections of climate change impacts 
on soybeans. 
  
 30 
1 Introduction 

Crop growth models have been widely used for yield estimation, agricultural management practice optimization, climate 
change impact evaluation, and informing decision-making about food security strategies (Adeboye et al., 2021;  Cuddington 
et al., 2013; Hoogenboom, 2000). Given the significant impact of weather variability on global yield (Müller et al., 2017; Ray 
et al., 2015), process-based models can represent the long-term climate change impacts on productivity via the influence of 35 
key climatic factors on physiological processes that are represented in the model (Boote et al., 2013; Cuddington et al., 2013; 
Fodor et al., 2017; Jones et al., 2017; Marin et al., 2014; Stöckle and Kemanian, 2020). Process-based models explicitly 
incorporate the crucial eco-physiological processes of photosynthesis and stomatal conductance, improving predictions under 
varying climate scenarios compared with models that focus on the empirical relationship between absorbed radiation and 
assimilation through radiation use efficiency (Jin et al., 2018). Hence, crop models are useful for capturing the complexity of 40 
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soil-crop-climate interactions for ensuring food security, optimizing yields, promoting sustainability, and planning adaptation 
strategies (García-Tejero et al., 2011). Global-scale simulations are essential to enhance these efforts by understanding 60 
interactions between physiological processes and environmental factors, supporting adaptive management practices and 
strengthening agricultural resilience. 

The Agricultural Model Intercomparison and Improvement Project (AgMIP) has examined the performance of global 
gridded crop models (GGCMs) in simulating the potential impact of climate change on crop yield  (Müller et al., 2017; Kothari 
et al., 2022). AgMIP has demonstrated that the simulated impacts of environmental factors on crop yields using a GGCM 65 
generally align with measurements and that a model ensemble reduces uncertainty (Elliott et al., 2015). However, yield change 
under future climate change scenarios shows inconsistent results and greater variability in soybean than in other crops because 
of model discrepancies (Jägermeyr et al. 2021). Despite being a major crop, soybean (Glycine max L. (Merr.)), has been studied 
less extensively than other crops in terms of crop response to changing environments (Ruane et al., 2017; Kothari et al., 2022). 
Therefore, the development of a new soybean model is needed to reduce uncertainties in climate change impact assessments. 70 

It is important to utilize a diverse type of crop models and ensure model diversity to accurately understand the uncertainties 
of simulations, as relying on a single model can lead to biased results. To our knowledge, only five process-based models for 
global-scale soybean yield estimation with leaf-level photosynthesis and stomatal conductance parameters exist, including LPJ-
GUESS (Ma et al., 2022), LPJmL (Wirth et al., 2024), ORCHIDEE-crop (Wu et al., 2016), PRYSBI2 (Sakurai et al., 2014), 
and JULES (Leung et al., 2020), making this approach relatively uncommon. Thus, further development and validation of 75 
process-based models that incorporate leaf-level photosynthesis and stomatal conductance parameters are essential. 

MATCRO (Masutomi et al., 2016a), is an ecosystem process-based model for crops embedded into the land surface model 
of minimal advanced treatments of surface interaction and runoff (MATSIRO; Takata et al., 2003) with a crop growth model 
for rice, which is further explained in Section 2. MATCRO-Rice uses state variables to exchange information (e.g. temperature, 
soil moisture, transpiration, leaf area index, and photosynthesis rate) between the land surface model and crop growth model. 80 
The mechanisms that consider photosynthesis and stomatal conductance to assess the impact of greenhouse gases on carbon 
and water fluxes have been incorporated into MATCRO-Rice. Masutomi et al. (2019) described the implementation of ozone 
effects within these mechanisms, indicating the model’s capability to account for environmental stressor. Furthermore, 
MATCRO-Rice has been applied at the regional scale, and it has been utilized to measure climate impacts, which are important 
for developing adaptation strategies (Kinose and Masutomi, 2020; Masutomi, et al., 2016b). 85 

We developed a new process-based model for soybean (MATCRO-Soy v.1) that incorporates diverse biological processes 
and environmental interactions that drive plant growth and adaptation to changing conditions. Adapted from MATCRO Rice, 
this model is applied for soybeans by parameterizing key processes using experimental data and findings from the literature. 
The current version of MATCRO-Soy (v.1) was evaluated in a global-scale simulation, following a calibration process that 
considered essential photosynthesis mechanisms. This paper presents the model description in Section 2, the calibration process 90 
in Section 3, and the model evaluation in Sections 4 and 5.  

 
2 Model Description 

MATCRO-Soy is based on MATCRO-Rice, a process-based model of rice growth and yield, which has been modified for use 
in soybeans. MATCRO-Rice is a combined land surface and crop growth model used to explore land-atmosphere interaction 95 
in rice fields. Unlike the MATCRO-Rice v.1 version, MATCRO-Soy focuses on yield simulation and omits the calculation of 
sensible and latent heat fluxes in the energy balance to reduce computational complexity while maintaining accuracy in 
simulating soybean growth and yield.  
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2.1 Overview of MATCRO-Soy 

MATCRO-Soy includes three main modules: phenology, photosynthesis, and carbon partitioning (Figure 1). The 115 
phenology module simulates crop phenological development over time based on heat unit accumulation. The module directs 
the progression of carbon assimilation and partitioning by monitoring plant developmental stages from sowing to harvest. The 
phenology module simulates developmental stages based on developmental rate from sowing to harvest and influences key 
processes such as glucose production and allocation across plant organs. The photosynthesis module initially estimates gross 
primary production (GPP) and respiration at the leaf-level using the Farquhar model (Farquhar et al., 1980), and extends net 120 
primary production (NPP) estimation to the canopy level following the concept of de Pury and Farquhar (1997). It considers 
the electron-transport-limited rate of photosynthesis, Rubisco-limited photosynthesis, and leaf respiration to estimate NPP at 
leaf-level.  

The photosynthesis and carbon partitioning modules are closely linked, as carbon assimilation from photosynthesis is 
subsequently allocated to different plant organs. The NPP is stored in glucose and starch reserves. The carbon partitioning 125 
module distributes the glucose into each organ (i.e. leaf, stem, root, and storage organ) following the method derived from the 
school of de Wit by simulating biosynthetic processes (de Vries et al., 1989). MATCRO accounts for leaf senescence as it 
influences nutrient cycling, crop productivity, and the leaf area index, which plays an important role in canopy photosynthesis. 
Leaf senescence is simulated as a function of crop developmental stage, as defined by the phenology module. MATCRO 
incorporates the amount of nitrogen per leaf area (specific leaf nitrogen) as a key determinant of photosynthetic capacity. Root 130 
depth can affect photosynthesis indirectly through the plant's ability to access water and nutrients from soil layers, further 
influencing plant growth within the model framework.  

 

 
Figure 1. Flowchart diagram of soybean yield simulation by MATCRO-Soy. 135 
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The input data consisted of environmental variables obtained from meteorological forcings, soil type classifications, 
nitrogen fertilizer applications, and agricultural management practices such as irrigation and seed sowing. These inputs are 155 
crucial for setting the initial conditions and boundary parameters for the simulations. The output of MATCRO is the crop yield 
(kg ha-1) estimated for both irrigated and rainfed conditions on the basis of soil-crop interactions. First, we processed the 
parameterized growing degree days for maturity using crop calendar data to estimate the harvest time in the phenology module 
(see section 2.2). The photosynthesis module includes limiting factors such as nitrogen fertilization and water stress, as detailed 
in Section 2.3. Then, the crop growth is calculated based on its developmental stage (Section 2.4). We conducted a 160 
parameterization process encompassing phenological development, carbon partitioning, and photosynthesis limited by water 
stress and nitrogen uptake. The crop yield was estimated using the parameterized seed-pod ratio (see section 2.5). The adjusted 
parameters in MATCRO-Soy are described in Section 2.6 where the key dynamic variables are parameterized over time to 
ensure reliable carbon assimilation in soybean. This comprehensive approach allows MATCRO to account for complex 
interactions between environmental conditions, crop physiology, and management practices, providing a robust framework for 165 
predicting crop yield and assessing agricultural productivity. 

2.2 Crop phenological development  

Phenological development defines the timing of developmental events based on environmental inputs. MATCRO calculates 
crop developmental stages (𝐷𝑉𝑆) using an index indicating the sowing time (𝐷𝑉𝑆=0) to maturation time (𝐷𝑉𝑆=1) on the basis 
of the integral of the temperature required to exceed the phenological changes. The module uses a formulation based on Bouman 170 
et al. (2001) as outlined in Equations (1) to (4).  
𝐷𝑉𝑆! =	𝐺𝐷𝐷!/𝐺𝐷𝐷"           (1) 
𝐺𝐷𝐷! = ∫ 𝐷𝑉𝑅𝑑𝑡#!

$            (2) 

𝐺𝐷𝐷" = ∫ 𝐷𝑉𝑅𝑑𝑡#"
$            (3) 

𝐷𝑉𝑅!		 =
,

0, 																						𝑇!	 < 𝑇&	|	𝑇! > 𝑇'
𝑇! − 𝑇& , 																		𝑇&	 < 𝑇! < 𝑇(
(*!+*")(*#+*$)

(*#+*!)
, 						𝑇(	 < 𝑇! < 𝑇'

             (4) 175 

where 𝐺𝐷𝐷! and 𝐺𝐷𝐷" indicate the growing degree days (°C days) used to estimate the development of plants during the 
growing season at time t and at maturity, respectively. 𝐷𝑉𝑅		represents the developmental rate at 𝑡, whereas 𝑇! represents the 
temperature at 𝑡 . The parameters 𝑇& , 	𝑇( , and 𝑇'  (°C) are crop-specific and represent the base, optimum, and highest 
temperatures for crop development, respectively.  

The impact of temperature on phenological stages varies for each crop stage as Boote et al. (1998) observed that cardinal 180 
temperatures (𝑇& , 𝑇', 𝑇()	may	differ for vegetative and reproductive stages. We follow de Vries et al. (1989) during the growing 
season	to simplify the calculation input and also because more detailed data in each phenological stage is lacking. This study 
parameterized the developmental stages at flowering (𝐷𝑉𝑆-), seed filling (𝐷𝑉𝑆.), and maturation (𝐷𝑉𝑆") stages on the basis 
of the experimental datasets by calculating the mean, values listed in Table 2. MATCRO uses these 𝐷𝑉𝑆 parameters to define 
the period of leaf dry weight loss due to leaf senescence and the remobilization of starch reserves from the stem (Masutomi et 185 
al. 2016a). We assume that this phenological time in soybean is in the middle of the flowering and seed filling stage 
parameterized in this study as leaf loss started within those periods.    

2.3 Carbon assimilation process 

In the photosynthesis module of MATCRO-Soy, carbon assimilation is based on leaf-level photosynthesis calculations in sunlit 
and shaded conditions (Dai et al., 2004) to predict canopy photosynthesis. The calculation includes the stomatal conductance 190 
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response to relative humidity (Collatz et al., 1991). The net carbon assimilation (𝐴/) in MATCRO is calculated using the 
Farquhar model as further described in Masutomi et al. (2016a), expressed in Eq. (5). 
𝐴/ = 	𝑓(𝑃𝐴𝑅, P0, 𝑇123- , 𝐶𝑂4123- , 𝑉5607, 𝐵𝐵3, 𝐵𝐵&)		 	 	 	 	 	 	 	 (5) 

𝐴/ (mol(CO2) m-2 s-1) represents net carbon assimilation that contributes to NPP for biomass growth. It is a function of the 210 
intensity of absorbed photosynthetic active radiation (𝑃𝐴𝑅, in mol(photon) m-2 s-1), air pressure (P0, in Pa), leaf temperature 
(𝑇123-, in K), CO2 concentration at the substomatal chamber (𝐶𝑂4123-, in Pa(CO2) Pa(Air)-1), maximum Rubisco activity (𝑉5607, 
in mol(CO2) m-2 s-1), the slope (𝐵𝐵3, in mol(H2O)m-2s-1) and intercept (𝐵𝐵&, in mol(H2O) m-2 s-1) of the Ball-Berry model of 
the relationship between crop assimilation, stomatal conductance per unit leaf area, relative humidity at the leaf surface, and 
ambient CO2 concentration (Ball, 1988). In this study, we assume the leaf temperature is the same as air temperature to reduce 215 
the complexity of the calculation. 

Rubisco activity (𝑉5607) is a key variable used to assess the carbon rate entering the photosynthetic pathway, as it catalyzes 
the crucial initial step of RuBP (Ribulose-1,5-bisphosphate) carboxylation in photosynthetic carbon assimilation for C3 plants 
(Sage, 2002; Xu et al., 2022). In MATCRO, 𝑉8"39 is calculated as follows: 
𝑉5607 = 𝑉5:;< exp(−𝐾n𝐿𝐴𝐼)	 	 	 	 	 	 	 	 	 	 (6) 220 
𝑉5:;< = maxH𝑎𝑆𝐿𝑁

4 + 𝑏𝑆𝐿𝑁 + 𝑐, 𝑉8!(>"39N	 	 	 	 	 	 	 	 (7) 
𝑉8"39 is the maximum Rubisco activity within the canopy (mol(CO2) m-2  s-1) limited by the exponential value of vertical 
distribution of leaf nitrogen (𝐾n), leaf area index (𝐿𝐴𝐼, in m2 m-2), and maximum Rubisco activity at the top of canopy (𝑉5:;<, 
in mol(CO2) m-2  s-1). We determined the 𝑉5:;< for photosynthetic rate limited by the specific leaf nitrogen (𝑆𝐿𝑁) in Eq. (7) for 
soybean using the relationship between two parameters of rubisco activity and leaf nitrogen from experiments summarized 225 
from Ainsworth et al. (2014) in the reproductive stage and Qiang et al. (2022) in the vegetative stage. This relationship is 
empirically represented with a polynomial quadratic equation limited by maximum value of Rubisco activity at the top canopy 
(𝑉5:;< in mol(CO2) m-2 s-1). 𝑎, 𝑏, 𝑐 are quadratic coefficient, linear coefficient, and constant respectively from the relationship 
of both variables where the data has been digitized from WebPlotDigitizer (Rohatgi, 2023).  

MATCRO considers nitrogen fertilization input denoted as 𝑁-2?! (unit: kg(N) ha-1) which influences the amount of specific 230 
leaf nitrogen (𝑆𝐿𝑁, g(N) m-2), particularly under conditions of limited nitrogen availability (La Menza et al., 2023; Thies et al., 
1995). SLN was determined by nitrogen supply (including biological nitrogen fixation, soil mineral nitrogen, and nitrogen 
fertilizer) and by plant demand. The changes in SLN over the growing period in MATCRO-Soy simulated a function derived 
from La Menza et al. (2023) which observed SLN under wide range of low and high nitrogen fertilization conditions (see 
Supplementary file Figure S1). It shows the specific leaf nitrogen value toward the crop growth period where higher nitrogen 235 
fertilizer results in a higher leaf nitrogen content. In the absence of empirical data for initial growth stages, the model assumes 
a gradual increase in nitrogen content. The simulated SLN under different nitrogen fertilization treatments is described in Eq. 
(8) and (9). 

𝑆𝐿𝑁 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑆𝐿𝑁@$ + (ABC%&+ABC%')(DEA+ABC(&)
ABC(&

, 	𝑖𝑓	𝐷𝑉𝑆 < 𝑆𝐿𝑁FG	

𝑆𝐿𝑁@4 +
(ABC%)+ABC%&)HDEA+DEA*I

HDEA*+ABC(&I
, 	𝑖𝑓	𝑆𝐿𝑁FG ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆-

𝑌 + (@+ABC%))(DEA+DEA+)

H��EA++DEA*I
, 𝑖𝑓	𝐷𝑉𝑆- ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆.

𝑆𝐿𝑁@$ + (ABC%'+@)(DEA+DEA,)
(DEA,+DEA+)

, 	𝑖𝑓	𝐷𝑉𝑆. ≤ 𝐷𝑉𝑆 ≤ 𝐷𝑉𝑆"

			 	 	 	 	 (8)	

Y = 𝑆𝐿𝑁@J,1 +
ABC%-,#+ABC%-,/

C*01$,#23#
∗ 𝑁-2?!	 	 	 	 	 	 	 	 	 (9) 240 

𝑆𝐿𝑁 values vary across different phenological stages, with the developmental stage (𝐷𝑉𝑆) value of soybean growth ranges 
from 0 (sow) to 1 (harvest). We define 𝐷𝑉𝑆- , 𝐷𝑉𝑆., 𝐷𝑉𝑆", and 𝑆𝐿𝑁FG as the start of flowering, seed filling, maturity time, and 
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the point where the 𝑆𝐿𝑁 pattern started to changes with the parameterized values of 0.4, 0.659, 1, and 0.15 respectively. While 260 
𝑆𝐿𝑁@$, 𝑆𝐿𝑁@G, 𝑆𝐿𝑁@4, 𝑆𝐿𝑁@J,', 𝑆𝐿𝑁@J,1 represent the 𝑆𝐿𝑁 at the time of initial stage, early decline, pre-flowering increase, 
subsequent decline during the reproductive stage under no and high (ℎ) nitrogen inputs with the value of 0.75, 2.25, 1.7, 0.75, 
and 1.8, respectively. 𝑁-2?!,'LM' refers to the high nitrogen fertilizer input used in the model for parameterization, as described 
in Table 2. Y denotes the observed gap function in specific leaf nitrogen under high and low nitrogen fertilizer treatments (g(N) 
m-2) in Supplementary file Figure S1.  265 

The growth stages are parameterized based on experimental datasets and align with study from Irmak et al. (2013) using 
the growth stage classification by Fehr and Caviness (1977). 	𝑆𝐿𝑁 primarily depends on nitrogen derived from biological 
fixation and soil nitrogen, either from natural sources or applied fertilizers. Nitrogen uptake, including biological nitrogen 
fixation and uptake from soil nitrogen, is implicitly captured through 𝑆𝐿𝑁 that influence 𝑉5607 in Eq. (7) and (8), while the 
effect of applied fertilizers in Eq. (8) and (9). 270 

2.4 Crop growth dynamics 

The products of photosynthesis contribute to glucose reserves, which provide energy for growth during various developmental 
stages. The crop growth dynamics include a carbon biomass partitioning module to calculate the dry weight of each soybean 
organ (Worgan in kgha-1). This variable is the accumulated value of growth rate of dry weight (Gorgan in kg ha-1 s-1) during the 
time from emergence to harvest. Further details on this module can be found in Masutomi et al. (2016a). 275 
Worgan = f(Gorgan)		 	 	 	 	 	 	 	 	 	 	 (10) 
We calculate the Worgan in each soybean organ (i.e. leaf, stem, pod including the seed, glucose reserves and starch). Growth 
rate of the dry weight (Gorgan in kg ha-1 s-1) is calculated based on the parameters of conversion factor of dry weight from glucose 
to organ (Fglu+organ	in kgha-1(kg ha-1)-1) for leaf, stem, pod, root, and starch (listed in Table 1), and ratio of glucose partitioned 
to organ (P(?M3/) for shoot, leaf, and pod (listed in Table 2). Shoot refers to aboveground biomass parts including the stem, 280 
leaf, and pod. Gorgan for each organ and storage, leaf, pod, root, stem, and starch, are expressed below: 
𝐺glu = 	𝑓(𝑊123- , Aglu, 𝑅M1T)		 	 		 	 	 	 	 	 	 	 (11)  
𝐺leaf = 𝐺glu𝑃shoot𝑃leaf𝐹glu-leaf	 	 	 	 	 	 	 	 	 	 (12) 
𝐺stem = 𝐺glu𝑃shootH𝑃leaf − 𝑃podN × (1 − 𝑓starch)𝐹glu+stem	 	 	 	 	 	 	 (13) 
𝐺pod = 𝐺glu𝑃shoot𝑃>(_𝐹glu+pod	 	 	 	 	 	 	 	 	 	 (14) 285 
𝐺root = 𝐺glu(1 − 𝑃.'((!)𝐹M1T+?((!	 	 	 	 	 	 	 	 	 	 (15) 
𝐺.!3?8' = 𝐺glu𝑃shootH𝑃leaf − 𝑃podN𝑓starch𝐹glu+starch	 	 	 	 	 	 	 	 (16) 

𝐺glu (kg ha-1 s-1) is the amount of glucose partitioned to soybean organ and reserve derived from function of dry weight of leaf 
(𝑊123- in kg ha-1), net carbon assimilation in glucose form (𝐴glu in kg(CH2O) ha-1 s-1), and the remobilization from starch reserve 
in the stem after conversion to glucose (𝑅M1T in kg ha-1 s-1). Aglu is An that has been already converted using the conversion 290 
factor from CO2 to glucose using the value of 1.08 × 10` [kg ha-1 h-1(mol m-2 s-2)-1] that is the physical and chemical constant 
for the conversion. 𝑅M1T  is the remobilization from starch reserve in the stem after converted to glucose using ratio of 
remobilization value. This 𝑅M1T is subtracted from the dry weight of starch reserves (𝑊starch). 𝑓starch [kg ha-1(kg ha-1)-1] is the 
fraction of glucose allocated to starch reserves calculated in stem dry weight loss. Each growth rate of dry weight (𝐺organ) is 
calculated based on the parameters conversion factor of dry weight (Fglu+organ) and ratio of glucose partitioned to organ (𝑃(?M3/) 295 
value as follow in Eq(17) –(19): 
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𝑃shoot =
,

1 − 𝑃?((! , 		𝑖𝑓	𝐷𝑉𝑆 = 0
G+a1!!$(DEA,+DEA)

DEA,
, 	𝑖𝑓	0 < 𝐷𝑉𝑆 < 𝐷𝑉𝑆"

1, 		𝑖𝑓	𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆"

	 	 	 	 	 	 	 	 (17) 

𝑃leaf =

⎩
⎪
⎨

⎪
⎧

𝑃123-$ +
DEA

DEA/04*&
(𝑃123-G − 𝑃123-$), 		𝑖𝑓	𝐷𝑉𝑆 < 𝐷𝑉𝑆123-G

𝑃123-4 −
(a/04*)+a/04*&)

DEA/04*)+DEA/04*&
(𝐷𝑉𝑆123-4 −𝐷𝑉𝑆), 	𝑖𝑓	𝐷𝑉𝑆123-G ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆��23-4
0, 		𝑖𝑓	𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆123-4

	 	 	 (18) 

𝑃pod =
,

0, 		𝑖𝑓	𝐷𝑉𝑆 < 𝐷𝑉𝑆>(_G
DEA+DEA5!6&

DEA5!6)+DEA5!6&
, 	𝑖𝑓	𝐷𝑉𝑆>(_G ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆>(_4

1, 		𝑖𝑓	𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆>(_4

	 	 	 	 	 	 	 (19) 

𝑃123-$, 𝑃123-G, 𝑃123-4 represent the glucose partitioning ratio of leaf toward shoot at the time of initial stage when leaf growth 310 
starts to decline (leaf0), stop growing (leaf1), and at maturity (leaf2), respectively. While 𝐷𝑉𝑆>(_Gand 𝐷𝑉𝑆>(_4 indicate the 
developmental stage values at which glucose partitioning of pod to the shoot begins to increase and eventually saturates (Figure 
2). Figure 2 in section 3.2 visually represented the glucose partitioning ratio during crop growth as calibrated in this study.  

The glucose partitioned in each organ is adjusted during the developmental stage using experimental data in the calibration 
process, further described in Section 3. However, the dry weight of leaf in this module is reduced due to leaf senescence by 315 
calculating loss of leaf dry weight (𝐿leaf in kg ha-1 s-1) derived from the calibration of partitioned glucose ratio to the ratio of 
dead leaf (𝑃_123- in s-1), as outlined in Eq. (20) and (21). 

𝐿leaf = e
0																				, 		𝑖𝑓	𝐷𝑉𝑆 < 𝐷𝑉𝑆_23_123-G

𝑃_123-(𝑊123- −	𝑊M1T), 	𝑖𝑓	𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆_23_123-G
	 	 	 	 	 	 	 (20) 

𝑃_123- = 𝑃_23_123-4
(	DEA+DEA6046/04*&)

(G+DEA604/04*&)
	 	 	 	 	 	 	 	 	 (21) 

Then we calculate the leaf area index (LAI) that serves as a parameter to assess the leaf surface area relative to the ground area. 320 
It directly influences the plant ability to intercept solar radiation for photosynthesis.  

LAI is computed as follow: 
𝐿𝐴𝐼 = bleafcbglu

ABb
	 	 	 	 	 	 	 	 	 	 	 	 (22) 

𝐿𝐴𝐼 is calculated from the estimated leaf dry weight (Wleaf, in kg ha-1) and glucose reserves in leaves (WM1T, in kg ha-1) divided 
with specific leaf weight (SLW, in kg ha-1). SLW indicates leaf dry weight per unit leaf area. The value of SLW dynamically 325 
changed during the developmental stage following exponential relationship: 
𝑆𝐿𝑊 = 𝑆𝐿𝑊max + (𝑆𝐿𝑊min − 𝑆𝐿𝑊max) 𝑒𝑥𝑝(−𝑆𝐿𝑊x𝐷𝑉𝑆)	 	 	 	 	 	 	 (23) 
𝑆𝐿𝑊max , 𝑆𝐿𝑊min , and 𝑆𝐿𝑊x  represent the maximum, minimum, and slope parameters, respectively, that define the values 
observed in the exponential relationship based on experimental dataset in Table 3. In addition to LAI, photosynthesis is also 
indirectly affected by the root depth (𝑧root, in m) that determines the plant capacity for water and nutrient uptake. Root depth is 330 
calculated as follow: 
𝑧root = 𝑓(𝑟root, 𝑧rootmax)	 	 	 	 	 	 	 	 	 	 	 (24) 
𝑧root is the accumulative value from growth rate of root depth (𝑟root, in mm day-1) limited by maximum possible root depth 
(𝑧rootmax, in meter).   

2.5 Soybean yield estimation  335 

The soybean yield is calculated from the pod dry weight at harvest (𝑊>(_'3?f2.!, in kg ha-1) via the seed-pod ratio (SR) in 
MATCRO-Soy. The yield is further affected by water stress (𝑓g.!?2..) in Eq. (25).  
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𝑌𝑖𝑒𝑙𝑑 = 	𝑓(𝑊>(_'3?f2.!, 𝑆𝑅, 𝑓g.!?2.., 𝑇)         (25) 
The yield was calculated using the parameter SR, which is the ratio of yield (seed, kg ha-1) to the storage organ of the pod 350 
(𝑊>(_'3?f2.!) at harvest time and was derived from experimental datasets in  Table 3. T is the temperature (Kelvin) that limits 
heat and cold damage to the yield of soybean. The water stress factor (𝑓g.!?2..) was determined on the basis of the fraction of 
available soil water at the soil layer -i (𝐹𝐴𝑊L) over crop yield in timestep t during the crop growth, based on a previous study 
on the relationship between the soybean transpiration ratio and transpirable soil water conducted by Ray and Sinclair (1998), 
given in Eq (26). 355 

𝑓g.!?2..,! = l

G
$.i
	𝐹𝐴𝑊L , 		𝑖𝑓	𝐹𝐴𝑊L ≤ 0.5
1, 	𝑖𝑓	𝐹𝐴𝑊L > 0.5

	         (26) 

The value of 𝑓g.!?2..,! depends on soil water availability at soil layer-i (𝐹𝐴𝑊L), which is the estimated soil water content based 
on the water flux between the soil layers (Masutomi et al., 2016a)  during the crop growth calculated via Eq. (27):  
𝐹𝐴𝑊L =	

bAB2+bAB=2/$
bAB>?+bAB=2/$

           (27) 

where 𝑊𝑆𝐿L, 𝑊𝑆𝐿gL1!, and 𝑊𝑆𝐿jk represent the water level in the soil layer -i, wilting point, and field capacity, respectively. 360 
A value of 𝑓g.!?2.. equal to 1 indicates no water stress as the fraction of available soil water is adequate for crop growth. Hence, 
yield is calculated as the potential yield constrained by water stress.  

2.6 Soybean-specific parameters 

MATCRO-Soy shares several parameters with MATCRO-Rice as both are C3 species. However, soybean differs from 
cereal crops because of its nitrogen-fixing ability. This characteristic is represented through specific leaf nitrogen during the 365 
crop growth, as described in Eqs. (8) and (9). The crop-specific parameters reflect the unique physiological and chemical 
processes involved in soybean growth. but still align with the general framework of MATCRO-Rice. Key parameter 
adjustments are outlined in Table 1 as MATCRO employs a set of specific parameters to simulate crop growth and yield. These 
parameters include factors related to carbon allocation, root growth characteristics, and crop development based on cardinal 
temperatures. By accurately representing the unique physiological and biochemical characteristics of soybeans, these 370 
parameters contribute to the ability of the model to predict crop yield with greater precision. 

MATCRO-Soy aims for simulations applicable to a global scale; hence, it uses a single global parameterization as a 
standardized set of parameters applied worldwide. It uses a unified approach for modelling crop behaviour across different 
regions. It was assumed that the parameter values from the different treatments and cultivars were independent. Table 2 contains 
a list of variables parameterized within the model, including the glucose partitioning, nitrogen parameters, and photosynthetic 375 
capacity. Through the parameterization of these variables, the model can be adapted for various growing conditions and 
employed to assess the sensitivity of crop performance to different factors. These parameters are commonly used to evaluate 
the crop model sensitivity to environmental changes and require further attention, as highlighted by simulations from other 
crop model as wells (Battisti et al., 2018a).  
 380 
Table 1. Crop-specific parameters used for MATCRO-Soy

Parameters Description Value Units Source Eq. 

𝐹01231456 conversion factor of dry weight from glucose to leaf 0.871 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (12) 

𝐹01237849 conversion factor of dry weight from glucose to stem 0.810 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (13) 

𝐹0123:;;8 conversion factor of dry weight from glucose to root 0.857 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (15) 

𝐹0123<;= conversion factor of dry weight from glucose to pod 0.759 kg ha-1 (kg ha-1)-1 de Vries et al. (1989) (14) 
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Parameters Description Value Units Source Eq. 

𝐹0123785:>? carbon fraction in the dry matter of starch 0.9 kg ha-1 (kg ha-1)-1 Physical and chemical constant (15) 

𝐾@ vertical distribution of leaf nitrogen 0.11 - Bonan et al. (2011) (6) 

𝑟:;;8 rate of root depth increase 0.03 mm day-1 Ordóñez et al. (2018) ; Nakano 
et al. (2021) 

(24) 

𝑍:;;895A maximum root depth 1.7 m de Vries et al. (1989) (24) 

𝑇B base temperature for crop development 10 ℃ de Vries et al. (1989) (4) 

𝑇C highest temperature for crop development 34 ℃ de Vries et al. (1989) (4) 

𝑇; optimum temperature for crop development 27 ℃ de Vries et al. (1989) (4) 

 
 
Table 2. Parameterized variables for soybean in MATCRO 

Variables Value Units Description 

𝑎 -18.516 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (7) 

𝑏 114.33 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (7) 

𝑐 -73.336 - constant at relationship of rubisco activity and leaf nitrogen in Eq. (7) 

𝐷𝑉𝑆!"#!$"#%& 0.6 - 1st DVS point where the dead leaf ratio pattern changes 

𝐷𝑉𝑆!"#!$"#%' 1 - 2nd DVS point where the dead leaf ratio pattern changes 

𝐷𝑉𝑆% 0.4 - developmental stage on initial flowering stage 

𝐷𝑉𝑆$"#%& 0.25 - 1st DVS point where the leaf partitioning pattern changes 

𝐷𝑉𝑆$"#%' 0.659 - 2nd  DVS point where the leaf partitioning pattern changes 

𝐷𝑉𝑆( 1 - developmental stage at maturity time 

𝐷𝑉𝑆)*!& 0.48 - 1st DVS point where the pod partitioning pattern changes 

𝐷𝑉𝑆)*!' 0.72 - 2nd  DVS point where the pod partitioning pattern changes 

𝐷𝑉𝑆+ 0.659 - developmental stage to start seed filling stage 

𝐷𝑉𝑆,-.& 0.4 - 1st DVS point where the specific leaf nitrogen changes along with DVS 

𝐷𝑉𝑆,-.' 0.4 - 2nd  DVS point where the specific leaf nitrogen changes along with DVS 

𝐷𝑉𝑆,-./ 0.659 - 3rd DVS point where the specific leaf nitrogen changes along with DVS 

𝑓+0#123 0.18 - fraction of glucose allocated to starch reserves 

𝑆𝑅 0.68 - seed-pod ratio (SR) accounting harvest index from storage organ 

𝑁%"10,3563 300 𝑘𝑔𝑁ℎ𝑎7& nitrogen fertilizer value used in high nitrogen fertilizer in La Menza et al. (2023)  

𝑃$"#%8 0.38 - glucose partitioning ratio of leaf toward shoot in the initial DVS point 

𝑃$"#%& 0.6 - glucose partitioning ratio of leaf toward shoot in the 1st DVS point 

𝑃$"#%' 0 - glucose partitioning ratio of leaf toward shoot in the 2nd DVS point 

𝑃!"#!$"#%& 0 𝑠7& dead leaf ratio value in the 1st  DVS point 

𝑃!"#!$"#%' 0.000001 𝑠7& dead leaf ratio value the 2nd DVS point 
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Variables Value Units Description 

𝑆𝐿𝑁98 0.75 𝑔𝑁𝑚7' initial specific leaf nitrogen 

𝑆𝐿𝑁9& 2.25 𝑔𝑁𝑚7' specific leaf nitrogen value in the 1st DVS point  

𝑆𝐿𝑁9' 1.7 𝑔𝑁𝑚7' specific leaf nitrogen value in the 2nd DVS point 

𝑆𝐿𝑁9/,3 0.75 𝑔𝑁𝑚7' specific leaf nitrogen value in the 3rd DVS point when using high nitrogen fertilizer 

𝑆𝐿𝑁9/,$ 1.8 𝑔𝑁𝑚7' specific leaf nitrogen value in the 3rd DVS point when using low nitrogen fertilizer 

𝑆𝐿𝑊(#: 550 𝑘𝑔ℎ𝑎7& maximum specific leaf weight 

𝑆𝐿𝑊(5; 250 𝑘𝑔ℎ𝑎7& minimum specific leaf weight 

𝑆𝐿𝑊: 2.5 - exponential slope of specific leaf weight to the developmental stage 

𝑉20*)(#: 103×10-

6 
𝑚𝑜𝑙(𝐶𝑂')𝑚7'𝑠7& maximum Rubisco capacity at the canopy top in Eq. (7) 

 
3 Model Calibration 405 

The model parameters were tuned to represent the observed phenology and seasonality of biomass development. Once 
calibration is complete, the model continues to simulate crop growth, which encompasses phenological development, carbon 
assimilation, assimilate partitioning, and crop yield. We conducted calibrations from various environmental conditions and 
soybean varieties documented in previous experimental studies as detailed in 3.1 and  Table 3. The model calibration included 
parameterizing the dynamic biomass growth partitioning ratio for each organ, leaf senescence, and specific leaf weight denoted 410 
as 𝑃(?M3/  during the developmental stage denoted as 𝐷𝑉𝑆. Other calibrations using the experimental dataset included the 
phenological stage, and the seed-pod ratio (SR). The crucial phenological stage (e.g. flowering and seed filling) was calculated 
as the average value of the reported values in the experimental dataset. MATCRO applies this crop growth module following 
the method by the school of de Wit, compares biomass growth with the observed values during developmental stages. Shifts 
in partitioning and growth patterns were identified and used as reference points in the parameterization. 415 

3.1 Description of the site data for calibration 

The calibration process used experimental datasets from previous studies collected from field experiments across six different 
sites in four countries: Frederico Westphalen and Piracicaba (Brazil), Ya’an (China), Champaign (United States of America, 
US), Morioka and Tsukubamirai (Japan), as seen in Table 3. The soybean cultivars grown at these experimental sites 420 
represented different maturity groups. A variety of management practices related to water management and nutrients were 
utilized in the experiments. Nitrogen fertilizers were applied in most experiments, but soil mineral nitrogen at the Brazil and 
the US have provided adequate supply to support crop growth. Furthermore, there are different farming practices based on the 
across countries. Soybeans are planted between May and June in the United States, China, and Japan, while planting starts in 
October or November in Brazil. The experimental data also shown broad planting density in China and Japan, while soybeans 425 
are typically grown at higher planting densities in the United States and Brazil. 

Weather data were derived from the records at the meteorological station nearest to the experimental site. The climates at 
the respective sites were as follows. The ranges of daily mean air temperatures during the growing season was 18-30ºC in 
Frederico Westphalen (Brazil), 19-31 ºC in Piracicaba (Brazil), 17-27 ºC in Tsukubamirai (Japan), 14-25 ºC in Morioka (Japan), 
18-26 ºC in Ya’an (China), and 15-28 ºC in Champaign (US). The seasonal precipitation (mm) for the sites were 1669 mm in 430 
Frederico Westphalen (Brazil), 679 mm in Piracicaba (Brazil), 453 mm in Morioka (Japan), 865 mm in Tsukubamirai (Japan), 
1012 mm in Ya’an (China), and 787 mm in Champaign (US). The amount of solar radiation also differed among the 
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experimental sites where China received lowest solar radiation and Brazil received highest solar radiation during the 
experimental period (Supplementary file Figure S2). These data represent diverse climatic conditions in soybean-producing 
countries. The field data used for calibration were collected across multiple crop seasons, specifically from 2002, 2003 to 2007 
and from 2013 to 2016. These time periods were expected to capture the current climatic and environmental variability. 
 450 
Table 3. Information on field-experimental data of location, crop season, variety, maturity group, water management, and nitrogen fertilizer, 

as well as the number of experiments for calibrating glucose partitioning ratio and evaluating the soybean yield simulations. 

Location Crop 
season Variety (RMG*) Date of planting 

Water management,  
Nitrogen fertilizer 

(g N m-2), Plant Density 
(plant m-2) 

Experiments 
(n) Reference 

Brazil (Frederico 
Westphalen) 

2013 BRS284 (6) Oct 1, 18; Nov 8, 25, Dec 12 Rainfed, 0, 26-28 5 (Battisti et al., 
2017) 

Brazil (Piracicaba) 2013-2014 BRS284 (6) Oct 18, Nov 14 (2013);  
Jan 8 (2014) 

Irrigated and Rainfed, 0, 
16-37 

6 (Battisti et al., 
2017) 

China (Ya’an)  2014 11 cultivars (5-8) June 11 Irrigated, NA, 10 15 (Wu et al., 2019)  

2014-2016 Texuan13 (7), 
Jiuyuehang (5), 
Nandou12 (6) 

June 15 (2014); June 18 
(2015); June 18 (2016) 

     9 

United States 
(Champaign) 

2002, 
2004-2007 

Pioneer93B15 (3) June 1 (2002); May 28 
(2004); May 25 (2005, 2006); 
May 22 (2007) 

Rainfed, 0, 25 - 53 8 (Morgan et al., 
2005; Ainsworth 
et al., 2007) 

Japan 
(Tsukubamirai) 

2013-2015 Enrei (2), 
Fukuyutaka (4), 
Ryuhou (2) 

June 12, July 31 (2013); June 
17, July 17 (2014); June 4, 30 
(2015) 

Rainfed, 25-27, 9.5 16 (Nakano et al., 
2021) 

Japan (Morioka) 2013-2016 Ryuhou (2) May 13, 28 (2013); May 16, 
30 (2014); May 5, 14, 25, 29 
(2015); May 30, June 6, 27 
(2016) 

Rainfed, 25-30, 9.5 10 (Kumagai, 2018; 
Kumagai, 2021) 

*Relative maturity group
455 

3.2 Biomass partitioning and specific leaf weight 

This model represents carbon assimilation by incorporating the carbon fraction in dry matter and glucose allocation to various 
plant organs. The glucose ratio for each organ is parameterized based on measurements of leaf weight, leaf senescence, stem 
weight, pod weight, and specific leaf weight across different developmental stages. To simulate glucose partitioning, we used 
Eq. (17)–(24) to fit the segmented linear models to the experimental dataset (Figure 2 and Figure 4) and used the parameter 460 
values as shown in Table 2, as this value is used to obtain the average value of soybean partitioning behaviour. The segmented 
linear models for glucose partitioning were manually determined by visual inspections of the plot. This approach was chosen 
due to the challenges of applying nonlinear optimization under multiple constraints. Breakpoints in the developmental stage 
were determined based on assumed growth characteristics, such as leaf development declines after the seed-filling stage, while 
pod formation starts after flowering. We assumed increasing trend of glucose allocation to leaf and shoot development during 465 
the early stage when data were unavailable, with subsequent segments aligned with observed data trends. The calibrated glucose 
partitioning ratio varied across the varieties and environmental conditions and was derived by converting biomass growth into 
glucose allocation as outlined in Eqs. (11)–(16).  

The parameterization reflected the observation data, as well as the linear growth of leaves and pods during the 
developmental stages. It was utilized for seed-pod ratio and phenology parameterization. The dashed lines in Figure 2 and 3 470 
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indicate the estimated flowering and seed filling stages by calculating the average phenology time in all experimental datasets. 
The independent dataset was used for evaluating the calibrated model at the point-scale level. After removing the calibration 
data, the simulated yield at the site scale showed a correlation coefficient of 0.68 and significancy (p value < 0.001) with 
observed data (Supplementary file Figure S3). This agreement is also applied for the aboveground biomass weight, pod weight, 
and leaf area index with correlation coefficient of 0.60−0.90. 530 

Carbon assimilation primarily occurs with subsequent allocation to other parts of the plant. Compared with varieties from 
other sites, the soybean varieties observed in the experimental dataset from Tsukubamirai (Japan) tended to have lower 
partitioning to the stem during the vegetative stage. The ratio of glucose to leaves in Sichuan (China) was unexpectedly high 
near maturity in 2016, resulting in partitioning to pods at a low level due to low temperature and drought conditions. The storage 
organ biomass increases in the reproductive stage to produce pods and seeds, whereas the shoot will senesce at the end of the 535 
maturity period. Hence, yield is estimated using seed weight (as determined by the storage organ weight) and the parameterized 
seed-pod ratio. Pod partitioning in Champaign (US) tended to occur early in pod initiation in early maturation varieties, and the 
dry weight of pods before the seed filling stage is relatively high (Kawasaki et al., 2018). Early pod initiation has also been 
observed in the Ryuhou variety in Tsukubamirai in 2013 (Nakano et al., 2021).  

  540 
Figure 2. Glucose partitioning ratio to leaves (a) and pod (b) compared with the shoot during the developmental stage (DVS = 0 - 1) in the 

experimental sites shown by shaped points (square: Piracicaba, circle: Frederico Westphalen, triangle: Morioka, plus: Tsukubamirai, 
cross: Champaign, diamond: Ya’an. The red lines are the segmented lines used for glucose partitioning in MATCRO-Soy. The 
dashed line marks the averaged flowering, seed filling, and harvest time from the experimental datasets.  
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     550 
Figure 3. Dead leaf ratio (s-1) during the developmental stage (DVS = 0 - 1). Similar with Figure 2. 

 
The dead leaf ratio parameter in Figure 3 shows the degree of leaf senescence after the seed filling stage due to the leaf 

process. The dead leaf ratio is calculated from the amount of leaf loss observed during the growing season. The specific leaf 
weight (SLW) is a significant parameter in crop growth parameterization and has been calibrated to follow the observation data 555 
pattern shown in Figure 4. We used the measured leaf weight and leaf area index data from the experimental datasets described 
in 2.4 and Eq. (23) to calculate the ratio of leaf weight to leaf area (SLW) during different phenological stages. These ratios 
change over time with distinct values as they vary across different growing seasons and cultivars (Thompson et al., 1996; 
Slattery et al., 2017). In the figure, SLW from Champaign (US) was excluded because of discrepancies in the timing of the 
measurements in leaf area and leaf weight biomass. While the specific leaf weight varied among the sites, we fit the model of 560 
SLW assuming a saturating exponential function of the developmental stage (red line in Figure 4). This pattern aligns well 
with the biological process as SLW initially increases due to rapid biomass accumulation but saturates as leaves mature.  

  
Figure 4. Specific leaf weight (kg ha-1) during the developmental stage (DVS = 0 - 1). Similar with Figure 2. 

4 Model Evaluation Setup 565 

MATCRO was developed in FORTRAN and coupled with the global climate models output, simulated at a spatial 
resolution of 0.5° × 0.5° and hourly-daily temporal resolution. The output of the model is gridded crop yield (kg ha-1) as stored 
in netCDF file format in a global map with one harvest simulated per year. We perform the model evaluation for global, 
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country, and grid cell levels for 34 years (1981–2014) at 0.5° spatial resolution and yearly harvested yield output. The accuracy 
of the simulated yield was assessed using reference global and country-level data from the Food and Agriculture Organization 
(FAOSTAT, 2023), while the grid cell level yield was compared with the Global Dataset of Historical Yield (GDHY) data 
which is derived from statistical records, FAO data, and remote sensing data (Iizumi, 2019). 580 

4.1 Simulation settings and data inputs 

The parameters were set as shown in Table 4, covering the period of the sowing year from 1980 to 2014, with a various 
planting time across different regions. This model incorporated global daily climate data (86400 s) as input data. While the 
simulation framework was inherited from the established MATCRO-Rice v.1 (Masutomi et al. 2016b), several modifications 
were made to enhance its applicability at a global scale. Notably, the temporal resolution was adjusted from half-hourly (1800 585 
s) to hourly (3600 s), allowing the model to maintain consistency in capturing critical processes such as diurnal variations in 
photosynthesis and transpiration, while optimizing computational efficiency. These adjustments ensured that the model 
remained suitable for large-scale simulations while preserving essential physiological processes. 

The model simulates soybean yield using input data as described in Table 5. It uses global input data as follows: crop 
calendar from the Global Gridded Crop Model Intercomparison (GGCMI), which separates the rainfed and irrigated systems, 590 
atmospheric CO2 and climate data from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) that provides bias-
adjusted climate input data for historical data (GSWP3-W5E5 v2.0), soil classification from the Harmonized World Soil 
Database (HWSD v1.2), and nitrogen fertilization for C3 fixing crops of the ISIMIP, which is derived from the land use dataset 
(Hurtt et al., 2020). We use ISIMIP bias-adjusted data to maintain uniformity in the climate impact data across sectors and 
scales in their framework. This dataset, which is provided by ISIMIP, has a spatial resolution of 0.5 °. To determine the growing 595 
degree days for maturity, we considered the phenological maturity time from the GGCMI crop calendar for harvest time and 
global ISIMIP climate data over 10 years (2000-2010) to capture the variability shifts in the current evaluation years.  
Table 4. Parameter settings for simulation  

Variable Value Unit Description 
Yearsow varied Year year of sowing day 
DOYsow varied Day of Year (DOY) day of year of sowing day 
REStime 3600 s time resolution for simulation 
RESclimate 86400 s time resolution for climate forcing data 
RESwe/ns 0.5 degree spatial resolution north to south or west to east 
Soil layer 5.0 - number of simulated soil layer to calculate soil water content 
WSL 1.0 - soil water content at emergence 
Wleaf0 1.0 kg ha-1 dry weight of leaf at emergence 
Wstem0 1.0 kg ha-1 dry weight of stem at emergence 
Wroot0 1.0 kg ha-1 dry weight of root at emergence 
Wglu0 0.5 kg ha-1 dry weight of glucose reserve at emergence 
Za 3.0 m reference height at which wind speed is observed 
Zmax 4.0 m depth of soil layer 
Zt 0.05 m depth of topsoil layer 
Zb 2.0 m depth from the soil surface to the upper bound of the most bottom layer of soil 

 
Table 5. Data input for MATCRO simulation. 600 

Variable Unit Data source Spatial Resolution 
Daily time-step 

Precipitation  kg m-2s-1 0.5° × 0.5° 
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Near-surface specific humidity kg kg-1 GSWP3–W5E5 (Kim, 2017; Cuchi et al., 
2020; Lange, 2019; Lange et al., 2021) 

0.5° × 0.5° 
Maximum, minimum, and mean temperature  Kelvin 0.5° × 0.5° 
Surface downwelling shortwave radiation W m-2 0.5° × 0.5° 
Near-surface wind speed m s-1 0.5° × 0.5° 
Surface air pressure Pa 0.5° × 0.5° 

Yearly time-step 
Atmospheric CO2 concentration ppm ISIMIP (Büchner and Reyer, 2022) - 
Nitrogen fertilizer  kg ha-1 ISIMIP (Volkholz and Ostberg, 2022) 0.5° × 0.5° 

Constants 
Latitude and longitude ° - - 
Agricultural management Irrigated or rainfed MIRCA2000 (Portmann et al., 2010) 0.5° × 0.5° 
Sowing time, Harvest time DOY GGCMI (Jägermeyr et al., 2021) 0.5° × 0.5° 
Growing degree days for harvest time °C days Parameterized in this study 0.5° × 0.5° 
Soil type - HWSD (Volkholz and Müller, 2020) 0.5° × 0.5° 

4.2 Global yield evaluation methods 

In this study, we assessed the statistical relationship between simulated yields and reference data using common metrics of 
Pearson correlation coefficient (corr) in Eq (28) with the significance levels (p-values), agreement between the simulation and 610 
observation using root mean square error (RMSE) in Eq. (29), and bias in Eq. (30) for the time-series yield data. 

𝑐𝑜𝑟𝑟 = 	 ∑ (F2+Fm)
@
2A& (@2+@m)

n∑ (F2+Fm))@
2A& (@2+@m))

           (28) 

𝑅𝑀𝑆𝐸 =	q
G
/∑ (𝑋L − 𝑌L)4/

LoG           (29) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑏𝑖𝑎𝑠 = 	 G
/∑ |𝑋L − 𝑌L|	/

LoG × G
@m
         (30) 

where 𝑋L and 𝑌L 	indicated simulated and observed values in each measurement, while 𝑋v and 𝑌vdenotes the mean of simulated 615 
and observed values for the harvested year annually. The 𝑖  and 𝑛  shows the 𝑖 -th data point and total number of data, 
respectively. We use 𝑛 = 34 years for global-scale data, while output after calibration is evaluated in point-scale using 𝑛 ranged 
from 14-122 of the available experimental datasets.  

Detrended yield represents the time-series yield data for both simulated and observed values after removing the linear trend 
by subtracting the slope and intercept of the fitted linear regression (long-term yield trend). This approach enables the 620 
separation of short-term yield fluctuations from systemic long-term shifts. Yield fluctuations for the long-term and detrended 
data were evaluated separately using mean squared deviation (MSD) and its component to provide a clear interpretation of the 
model evaluation error (Gauch et al., 2003; Kobayashi and Salam, 2000) in Eq. (31)  
𝑀𝑆𝐷p =	𝑆𝐵p + 𝑆𝐷𝑆𝐷p + 𝐿𝐶𝑆p          (31) 
Mean squared deviation (𝑀𝑆𝐷p) is the square of RMSE for each long-term yield trend or detrended yield. Its components 625 
included mean squared bias (𝑆𝐵p), difference in the magnitude of fluctuation namely squared difference between standard 
deviations (𝑆𝐷𝑆𝐷p), and the lack of positive correlation weighted by the standard deviations (𝐿𝐶𝑆p) as proposed by Kobayashi 
and Salam (2000) calculated in Eq (32)–(37) below:  
𝑆𝐵p =	(𝑋v −	𝑌v)4             (32) 
𝑆𝐷𝑆𝐷p =	 (𝑆𝐷F −	𝑆𝐷@)4            (33) 630 
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𝑆𝐷F =	q
G
/∑ (𝑋L − 𝑋v)4/

LoG             (34) 645 

𝑆𝐷@ =	q
G
/∑ (𝑌L − 𝑌v)4/

LoG             (35) 

𝐿𝐶𝑆p =	𝑆𝐷F𝑆𝐷@(1 − 𝑐𝑜𝑟𝑟)          (36) 
Higher 𝑆𝐵p, 𝑆𝐷𝑆𝐷p, and 𝐿𝐶𝑆p	 indicate that model failed to simulate mean of the measurement, magnitude of fluctuation 
around the mean, and pattern of fluctuation across the n measurements, respectively, of the yield. 𝑆𝐷F	and 𝑆𝐷@	denotes the 
standard deviation of simulated (𝑋) and observed values (𝑌), while 𝐿𝐶𝑆p	depends on the correlation coefficient (corr).  650 
 
5 Model Performance Evaluation 

We calculated soybean yield in a global-scale map based on the gridded data of irrigated and rainfed area from MIRCA2000 
dataset, which represents global agricultural land use around the year 2000 (Portmann et al., 2010), to get the actual yield 
value. We evaluated yield during the period of 1981-2014 as the MIRCA dataset was available within that period. The 655 
simulated yield at the country and global scales for regional comparison was determined by aggregating grid cell data to 
compute the mean soybean harvested area within each country grid as described below in Eq (37): 

𝑌𝑖𝑒𝑙𝑑?2ML(/ =
∑ q(@L21_1*)2(r?231*)2c(@L21_21)2(r?2321)2s
@
2A&

∑ q(r?231*)2c(r?2321)2s
@
2A&

        (37) 

where 𝑌𝑖𝑒𝑙𝑑?2ML(/ is the aggregated yield at a given region (country or global-scale) in kgha-1 from the grid cell number (𝑖) 
range from 1 to 𝑛 (total number of grid cells in the region). The estimated yield under rainfed and irrigated conditions are 660 
denoted by 𝑌𝑖𝑒𝑙𝑑?- and 𝑌𝑖𝑒𝑙𝑑L?, respectively. While the soybean rainfed and irrigated area (ha) used in the simulations are 
𝐴𝑟𝑒𝑎?- and 𝐴𝑟𝑒𝑎L?, respectively.   

5.1 Model output yield as evaluated at the global and national scales 

Figure 5a shows a time-series comparison from 1981 to 2014 between the global mean yields reported by FAOSTAT and 
those simulated by MATCRO-Soy. The results indicated that the model captures the upwards trend in yields over the period 665 
with smaller slope compared with the reported yield data. The correlation coefficient is 0.81, which is significant (p < 0.01). 
The errors were 298 kg ha-1 and 0.12 for the RMSE and relative bias, respectively. Notably, the simulated linear increase 
contributed to the higher correlation coefficient for the yield trends. 

Figure 5b shows the comparison between the detrended global mean yield observed by FAOSTAT and the simulated value 
by MATCRO-Soy after removing the long-term linear trend across the study period. Detrended yield is the value after yield is 670 
reduced by its long-term trend from the original yield data. It isolates the variability primarily driven by climate fluctuations 
to evaluate interannual variability independent of long-term trends. However, it also removes longer-term signals (e.g. effect 
of technological improvements or increasing CO2 concentrations). The correlation coefficient decreased to 0.446 (p < 0.01). 
The model reproduced the interannual variations well with an RMSE of 137 kg ha-1. Specifically, according to observations, 
there were significant yield reductions in the years 1983, 1988, 2009, and 2012. Among these, the model successfully 675 
reproduced the yield reductions in three years (1983, 1988, and 2012), excluding 2009. These years are reported to have 
experienced severe droughts, and the model's ability to capture these events is noteworthy. 
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Figure 5. Time-series comparison between simulated yield by MATCRO-Soy and FAOSTAT reported yield data in global long-term trend 
(a),  and detrended (b) yield during 1981-2014. The correlation for detrended yield is calculated after removing the linear trend. The symbols 
***, **, and * denote p < 0.001, 0.01, and 0.05, respectively. 690 

We evaluated the model performance for 10 major soybean-producing countries, Argentina, Brazil, China, India, Paraguay, 
United States, Italy, Russia, Bolivia, and Canada, consisting of 96% of all global soybean production (based on total average 
production from 2012 to 2021 in FAOSTAT). Figure 6 compared the simulated country averaged yields and reported country 
averaged yields of FAOSTAT for 1981-2014 with the ellipsoid indicating the distribution of the simulated yield values within 
the 90% confidence range. The results indicate that the model reproduces the national average yield levels well in the top 10 695 
producing countries, as indicated by a correlation coefficient of 0.519 (p < 0.001) and an RMSE of 1085 kg ha-1. Significant 
correlation coefficients were observed for six countries (Argentina, Brazil, India, Italy, Paraguay, and the United States; see 
Supplementary file Figure S4 for further evaluation for these six countries). Focusing on the United States, Brazil, and 
Argentina, which account for 69% of global production, the model's accuracy showed a correlation coefficient of 0.645 (p < 
0.001) and an RMSE of 916 kg ha-1, where Brazil was underestimated. However, when all countries are considered, the 700 
correlation coefficient decreases to 0.291, although it remains statistically significant. These results demonstrate that the model 
performs reasonably well in capturing yield variations in major producing countries and achieves particularly lower bias in 
some countries (e.g. the United States, Italy, and Canada). 

     
Figure 6. Comparison between simulated yield by MATCRO-Soy and FAOSTAT of the country mean yield during 1981-2014 in 10 major 705 
soybean producing countries. Ellipsoid shows 90% confidence range of annual yield.  

A time series comparison of country averaged yields focusing on the major producing countries is shown in Figure 7. An 
evaluation of the long-term trend (Figure 7a) revealed that MATCRO-Soy effectively captured the increasing trend. Brazil 
demonstrated the strongest agreement, followed by Argentina at 0.62 and the United States at 0.64. For detrended yield (Figure 
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7b), the interannual variability in Paraguay presented the highest correlation coefficient at 0.61, followed that in the United 
States at 0.57 and that in Brazil at 0.49. On the other hand, the lowest correlation was observed for China at 0.18 and Bolivia 
at -0.32. These findings suggest that the model tends to perform with greater accuracy for countries with higher production 735 
levels, even in time series comparisons at the national level. 
   

 

 
Figure 7. Time-series comparison between simulated yield by MATCRO-Soy (red circle) and FAOSTAT yield (open circle) in 10 top 740 
soybean producer countries during 1981-2014 for long-term yield trend shown by solid line (a) and detrended yield after removing the linear 
trend (b) in kg ha-1. The correlation and RMSE based on yield (a) and detrended yield (b) data. The symbols ***, **, and * denote p < 0.001, 
0.01, and 0.05, respectively. The shading near solid line is the standard error with confidence interval of 95%. 

5.2 Temporal trends and variability 

Model performance was further assessed with the mean squared deviation (MSD) components for the yield and separated 745 
by yield, long-term yield trend, and detrended yield for both the global (Supplementary file Table S1) and country scales 
(Supplementary files Table S2, S3, and S4). We separated the MSD into squared bias (SB), the sum of the difference in 
standard deviation (SDSD), and the lack of positive correlation (LCS), which reflect errors in mean yield, magnitude of yield 
variability, and pattern of year-to-year fluctuations, respectively. The greatest contributor to the error at the global scale was 
the difference of mean yield (SB) for about 71 and 77 % of total MSD for the yield and detrended yield, respectively 750 
(Supplementary file Table S1).  

 Figure 8 presents MSD components in the top six soybean-producing countries. SB was the primary source of error in 
most countries at the country-level. The highest MSD in Paraguay was largely driven by SB, with a notable contribution from 
LCS. It indicates that the model simulated the variability well but poorly captured the mean yield. The low MSD in the United 
States was also driven by SB, but LCS also contributed meaningfully to the year-to-year variability. Meanwhile, LCS was the 755 
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Deleted: Figure 7

Deleted: Brazil

Deleted: 79

Deleted: 6

Deleted: Paraguay760 
Deleted: 562

Deleted: 136

Deleted: 107

Deleted: <object><object>

Deleted:   ¶ ... [48]

Deleted: ).

Deleted: Figure 8 shows the source of error based on the MSD 
components of…

Deleted: ) in the top 6 soybean-producing countries. SBs are the 
primary source of error in countries with high MSDs: Argentina, 785 ... [49]

Formatted: Font: Not Bold

Deleted: Figure 8

Deleted: minor

Deleted: In contrast, the lowest MSD in Brazil was largely driven 
by SDSD and LCS. The SDSD is the primary contributor to the MSD ... [50]
Deleted: effectively 

Deleted: mean yield780 
Deleted: trends.



 

19 
 

greatest contributor of yield error in Canada and Italy (Supplementary file Table S2) due to a pronounced discrepancy in the 
simulated interannual variability. SDSD contributed only to Brazil, and the model underestimated the mean yield and the 
deviation in this country. These results highlighted that the mean yield bias dominates the source of error at global and country 
levels, while LCS and SDSD contributed notably in specific regions where the model failed to capture the variability or the 790 
temporal pattern.  

 
Figure 8. Mean squared deviation components of squared bias (SB), sum of difference in standard deviation (SDSD), lack of positive 
correlation (LCS) for yield error in top six soybean producing countries.  

5.3 Model performance at the grid-cell level variation  795 

We evaluated MATCRO-Soy at the grid-cell level, by comparing simulated yields with observed ones from Global Dataset 
of Historical Yield (GDHY) dataset by Iizumi (2019). Figure 9a and b show the simulated and observed yields averaged over 
34 years, and Figure 9c shows relative bias between them. Figure 10 shows interannual correlation between simulated and 
observed yields for 34 years. The simulated yield was calculated for soybean-growing areas from the MIRCA2000 dataset, 
which offers broad spatial coverage where yield data for certain regions, including Canada, Russia, Australia, and many 800 
European and Asian countries, are missing in the GDHY dataset (Iizumi and Sakai, 2020). The density plot of the simulated 
yield showed more variability than did the GDHY data in Figure 9. However, both datasets exhibited a density peak of 
approximately 2,000 to 3,000 kg ha-1and the simulated yield mostly overestimated the higher yield value. Figure 9 a, b, and c 
also show the distribution of simulated and observed yields. 

The relative bias map (Figure 9c) highlights that overestimation was prominent in parts of South America (particularly 805 
Argentina), Russia, and China. In contrast, underestimation was observed in South Africa, India, and Brazil. Most of grid cells 
in Brazil show low yields, likely due to shorter growing periods in the input data compared to field experiment data. These 
results aligned with the trends observed at the national scale, which are influenced by the aggregation process. During 
aggregation, the national-scale results represented the average performance across all grid cells, weighted by the number of 
grids within each region. Most grids were within a relative bias of -0.2 to 0.2, accounting for 37 % of the total grid area. The 810 
grey area was found to be statistically insignificant. The density plot in simulated yield showed more variability compared to 
the GDHY data. However, both data exhibited the density peak around 3,000 kg ha-1 and simulated yield mostly overestimated 
the yield value. The correlation between the simulated yield and the GDHY dataset for interannual variation after removing 
the moving-average (Figure 10) reveals that 66 % of the grid cells are significantly correlated (p < 0.05).  
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 835 
Figure 9. Global map of 34-year averaged (1981-2014) yield of GDHY dataset (a), simulated by MATCRO-Soy (b), and relative bias (c) 
with each density plot distribution. In figure c, grey colour depicts the correlation with no significance (p > 0.05) in the map.  
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Figure 10. Time-series correlation between simulated and observed yield in 1981-2014 after removing trends from 5-year moving average 

(c). Grey colour depicts the correlation with no significance (p > 0.05) in the map while the red dashed line shows the border of 850 
p = 0.05 for the number of n year (34) in the density distribution plot. 

5.4 Model performance at the leaf-level   

We simulated the leaf-level variation in Vcmax for the United States (largest soybean producing country) at the site scale of the 
Champaign for the 2002 growing season using the global parameterization of MATCRO-Soy (Figure 11). These leaf-level 
simulated Vcmax values align closely with the observation data from Bernacchi et al. (2005) during the vegetative stage with 855 
some deviations during the flowering to seed-filling stages, as shown by the dashed line in the developmental stage of Figure 
11. This alignment highlighted the ability of the model to represent essential photosynthetic processes influenced by leaf 
nitrogen content. 

 
Figure 11. The maximum carboxylation capacity of Rubisco (𝜇𝑚𝑜𝑙(𝐶𝑂&)𝑚'&𝑠'() during the growing period of simulation using 860 

MATCRO-Soy (black line) and observation data (grey dots) from Bernacchi et al. (2005) in Champaign (US) year 2002. 

 
6 Discussions 

6.1 Validation of MATCRO-Soy 

In prior studies, soybean yield predictions often faced challenges in capturing crop responses to climatic variables. The 865 
MATCRO-Soy model effectively captures the linear trend in soybean yields, with higher accuracy for long-term trends (corr 
= 0.812) than for detrended yields (corr = 0.446), as shown in Figure 5. This result of the global detrended yield is improved 
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compared with that of benchmark studies conducted by Müller et al. (2017), indicating less variation among the process-based 875 
models based on its statistical correlation, where another crop model, PRYSBI2, reaches significant correlations of 0.57 (p < 
0.050) if trends are not removed. However, the accuracy is enhanced when using site-specific parameters are used, as 
demonstrated in regional scale evaluations from previous studies, which were used for parameterization in this global 
simulation (Battisti et al., 2017; Kumagai, 2018, 2021; Morgan et al., 2005; Nakano et al., 2021; Wu et al., 2019). These studies 
have shown that integrating factors of cultivar differences, ensembles of multiple crop models, nitrogen content, and more 880 
accurate measurement method allows for a more reliable representation of local growing conditions and climate variability.  

When examining the 10 largest soybean-producing countries, the model performance (Figure 6) has an RMSE of 1,085 kg 
ha-1 (average yield of 34 years), which is in reasonable agreement compared with the RMSE of another study using LPJ-
GUESS coupled with biological nitrogen fixation (Ma et al., 2022) of approximately 800 kg ha-1 (average yield of 10 years). 
The grid-cell level evaluation simulated by MATCRO-Soy, as shown in Figure 9, revealed that 66% of the grid cells were 885 
significantly correlated (p < 0.05) with most grids falling within 0.2–0.6. These findings align with other studies that show that 
time-series correlations in GGCM simulated soybean yields range from 0.25 to 0.65 due to discrepancies in the benchmark 
studies (Müller et al., 2017). This correlation reflects the detrended values, which are useful for evaluating interannual 
variability and the model sensitivity to climate fluctuations. However, detrending removes important long-term signals related 
to genetic improvements, cultivar and management changes, or increased CO₂ effects.  890 

The correlation values between yield and detrended yield in Figure 5 and Figure 6 indicate that the increased correlation 
in model performance was due to the long-term yield trend. MATCRO-Soy could capture the trend of increased atmospheric 
CO2 and nitrogen fertilizer inputs, despite of the interannual variability in climate conditions. The MSD calculation revealed 
that the lack of positive correlation was the major contributor error in Canada and Italy within the 10 top soybean producing 
countries (Supplementary file Table S2). Both countries have small squared biases (SBs), suggesting that MATCRO-Soy 895 
accurately represents the average productivity despite of the inability to capture the variability or amplitude of the yield trend 
over time within the region. Factors such as changes in sowing date, land use, pest management, cultivar maturity group, and 
planting density may contribute to discrepancies in soybean yield under climate change (Battisti et al., 2018a; Marin et al., 
2022). Hence, there is a need for improved parameterization to better represent the dynamics of yield variability in countries 
such as Canada and Italy.  900 

The high yields in Argentina and Paraguay reflect the consistency of favourable growing conditions (Figure 7a), 
particularly the alignment of daily temperatures and seasonal precipitation with critical growth stages, suggesting that these 
regions are less susceptible to interannual variability along with the geographic locations to receive more radiation for 
photosynthesis sources. The comparison of simulations and observations at the grid-cell level (Figure 10) reveals weak 
correlations with no statistical significance in high-latitude countries with low number of grid cells (e.g., Canada and Russia). 905 
The models that lack sensitivity to daylength are observed to contribute to more uncertainty (Battisti et al., 2018b). Moreover, 
the low simulated yield in India, which has a hot climate characterized by high mean daily temperatures of 27–28 °C 
(Supplementary file Figure S5) and low soil moisture during the growing season, highlights the capacity of the model to capture 
regional climatic challenges that impact productivity. These climatic challenges likely exacerbate heat stress during critical 
phenological stages, such as flowering and pod development, leading to reduced yields (Sinclair, 1986; Egli and Bruening, 910 
2004). The contrasting regions of high and low soybean yields underscore the ability of the model to capture the complex 
interplay between climate and crop yields across diverse agroecological zones.  

6.2 Model strength and application 

We developed MATCRO-Soy v.1, a process-based eco-physiological model that uses the Farquhar equation to simulate the 
leaf-level photosynthesis. The Farquhar equation is a widely recognized framework in plant physiology that simulates the 915 
biochemical mechanisms of photosynthesis by describing the relationships among light intensity, CO2 assimilation, and 
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Rubisco enzyme activity (Farquhar et al., 1980; Scafaro et al., 2023). Through the integration of this equation into a gridded 
global crop model, MATCRO-Soy enhances the simulation of soybean growth and productivity under environmental changes 
to atmospheric CO2, temperature, and water scarcity. These factors are important for predicting and understanding the 
mechanism of the impact of climate change on productivity. The calibration of MATCRO-Soy successfully represented the 
response of soybean growth to a wide range of climatic conditions, resulting in reliable global yield simulations using a single 945 
parameterization. While simplification may introduce errors, global tuning effectively minimizes these discrepancies in 
specific regions as this similar result also shown by Smith et al. (2014). 

Improving photosynthetic efficiency is one of the key improvements, particularly through enhancing stomatal conductance 
and modifying Rubisco, the enzyme responsible for carbon fixation (Xu et al., 2022). We used Vcmax as a photosynthetic 
parameter as it quantifies the Rubisco activity that is responsible for catalysing the conversion of carbon dioxide into organic 950 
compounds. The peak Rubisco activity observed during the reproductive stage corresponds with trends in specific leaf nitrogen 
and implicitly affected by the additional nitrogen fertilizer (La Menza et al., 2023). The consideration of nitrogen fixation is 
important as it is sensitive to adverse environmental conditions, flooding, water deficit, and inadequate temperatures, all of 
which reduce N2 fixation (Santachiara et al., 2019).  

The simulated yield, LAI, aboveground biomass, and pod biomass from MATCRO-Soy were further compared at the point-955 
scale level with experimental datasets with distinct datasets used for each step of calibration and evaluation (Table 3) prior to 
global-scale evaluation (Supplementary file Figure S3). While point-scale simulations employed the unified global parameters, 
the results demonstrated reasonable agreement with a p value < 0.01 and a bias of 30–63 % for harvested yield, the seasonal 
leaf area index, aboveground biomass, and pod biomass. The highest bias was observed for the seasonal LAI, which aligns 
with the underestimation of Vcmax during critical growth stages. MATCRO-Soy can reproduce photosynthesis parameters 960 
comparable to those of the observation data in site-scale analysis with overestimation in the reproductive stage (Figure 11). 

MATCRO-Soy effectively uses high-quality climate data, soil information, and nitrogen fertilizer data to capture 
biophysical processes involved in soybean growth and yield formation based on previous studies. Its flexibility in spatial 
resolution enables its application across various scales, from local studies to global assessments. Moreover, the structure of 
MATCRO is easily coupled with climate models and atmospheric CO₂ to increase the accuracy of yield predictions through 965 
high-quality data input. This adaptability also enables integration with other land models, making it a valuable tool in both 
ecological and agricultural research. MATCRO-Soy can be continuously refined with new data and plant physiological 
knowledge, ensuring that it remains robust and adaptable. This adaptability makes it a valuable for researchers and policy-
makers working towards sustainable agriculture and global food security.   

The strength of MATCRO-Soy lies in its ability to simulate key physiological processes of soybean growth (e.g. 970 
photosynthesis, phenology, and biomass partitioning), under varying climatic conditions. Its process-based structure allows 
for sensitivity analysis for further environmental impacts evaluation, such as effects of elevated CO2 and temperature stress. 
The model has been shown to reasonably capture the temporal dynamics of yield formation. In addition to climatic factors, 
variations in yield may be attributed to technological advancements, shifts in agricultural practices, and changes in crop 
management strategies outside the scope of model can further improve the accuracy at the local scale. For example, including 975 
pest and crop interaction may enhance the model’s capability to reflect local yield response to climate-driven pest dynamics 
(Chen and Mccarl, 2001). The integration of crop models with remote sensing data will enhance its capability for monitoring 
and predicting crop productivity at finer spatial scales (Basso et al., 2001). However, it is important to acknowledge the 
limitations of the model, particularly its ability to predict yield variations under extreme or rapidly changing climatic 
conditions. Continuous updates of the experimental dataset are necessary to maintain its relevance and accuracy in predicting 980 
future soybean yields. 
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6.3 Model challenges and future directions 1000 

In the evaluation process, it is important to recognize the interannual variability and spatial variability. There are many grid 
cells that have a low correlation (nonsignificant) of soybean yield between the simulated and observed values in Brazil when 
considered in each single cell (Figure 9), but the correlation at the national-scale level is high (Figure 7). This means that local 
climatic factors affect soybean yield in Brazil. However, MATCRO-Soy is able to recognize broader regional trends leading 
to its aim at representing yield behaviour. Figure 12 presents the relative RMSE (RMSE value compared with the observation 1005 
value) between the simulation and GDHY datasets for the detrended yield at the grid-scale. High relative RMSE values are 
observed in some parts of Africa (particularly in Nigeria), the United States, India, and China. Lower relative RMSE values 
are evident in regions such as Brazil and Argentina. India and the United States show low RMSEs at the national-level, but 
some grid cells within both countries have higher relative RMSEs at the grid-cell level. Detailed information on the spatial 
variation in the error components contributors is provided in Supplementary File Figure S6 for the long-term yield trend and 1010 
Supplementary File Figure S7 for the detrended yield. These findings highlighted that number of grid cells significantly 
influence model performance, with regions containing fewer grids being more sensitive to localized factors and spatial 
heterogeneity during aggregation. These emphasize the importance of considering spatial resolution and representation when 
evaluating model performance. 

 1015 
Figure 12. Relative RMSE calculation between simulated and observed yield for detrended yield in grid-cell level. 

Uncertainty in MATCRO-Soy is reflected through the challenges in global-scale model evaluation related to the model 
assumptions of crop cultivars being homogenous globally and the upscaling parameters due to the lack of parameterization, 
making it is unrealistic to reproduce the variability at the regional-scale with very high accuracy (Müller et al., 2017; Zaehle 
and Friend, 2010). This uncertainty is notably pronounced in the global aggregation of yield simulations at the grid-cell scale. 1020 
Global aggregation can escalate substantially for specific combinations of aggregation units, crop model limitations, and years 
(Porwollik et al., 2017). Future assessments of models and projections of crop yields will require careful consideration of the 
significant contrast between different aggregation approaches used for individual countries or regions. To address this, we 
used harmonized ISIMIP data to minimize methodological bias and emphasize the importance of flexible model development 
for reducing uncertainty (Yin, 2013). 1025 

We found a large underestimation in 2002, and overestimation in 2009 when comparing the soybean yield simulated using 
bias-corrected climate data was compared with FAO data (Figure 5). One possibility for these discrepancies in the interannual 
variability may be attributed to the influence of unaccounted extreme climatic events. Climatic events indicated by Oceanic 
Niño index, a three-month running mean of SST anomalies in the Niño 3.4 region, show that La Niña was present at the end 
of 2002 and that El Niño occurred at the end of 2009 (NOAA, 2024). Some regions within major soybean-producing countries 1030 
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are significantly affected by El Niño events, further influencing yield variability (Anderson et al., 2017; Iizumi et al., 2014). 1045 
Another possibility for the interannual variation in MATCRO-Soy tends to overestimate the long-term yield trend because of 
the sensitive effect of the CO2 concentration on the carbon assimilation module.  

While nitrogen fixation and uptake are implicitly constrained by the SLN parameter, an approach of carbon costs economics 
explicitly represents the respiratory cost due to different nitrogen uptake pathways (Fisher et al., 2010). MATCRO-Soy 
simplified the nitrogen fixation mechanism, which may have contributed to yield overestimation in low nitrogen input 1050 
countries (e.g. Bolivia and Russia). However, this model still presented relatively small bias in countries with high nitrogen 
fertilizer application (e.g. China), as well as in countries with low nitrogen fertilizer input (e.g. the United States). This 
highlights an opportunity for future model development to incorporate variable of respiratory costs in biological nitrogen 
fixation. While limited empirical data across cultivars, environments, and management systems poses a challenge at the global 
scale, addressing this would improve understanding of the physiological mechanisms under nitrogen-limited conditions. 1055 

The simulated yield increases throughout the year driven by the positive effects of increased atmospheric CO2, a 
phenomenon known as the CO2 fertilization effect, has been observed in studies by Long et al. (2005) and Sakurai et al. (2014). 
The CO₂ fertilization response may become a more prominent source of overestimation in future projections if the model 
overestimates the crop response to elevated CO₂. Compared with simulations using statistical radiation use efficiency (Ai and 
Hanasaki, 2023), process-based models have this tendency because of the greater effect of CO2 on the photosynthesis process. 1060 
Therefore, further investigation is needed into the CO₂ sensitivity of MATCRO-Soy and other process-based models, as the 
downregulation of photosynthesis under elevated CO2 conditions has been observed in the measurements (Ainsworth et al., 
2002; Zheng et al., 2019). This is especially important for adaptation studies, as reliable yield projections are critical for 
designing effective adaptation strategies under future climate scenarios.  

MATCRO-Soy simulations showed that MSD component of SB was the dominant contributor in the global and country-1065 
level yield error. It indicates the bias was in the over or underestimation of average yield, rather than in variability of 
discrepancy in the year-to-year yield pattern (Figure 8). These results highlighted the model uncertainty in simulating mean 
yield for improvement in major soybean-producing countries with large cultivation areas. The model overestimated the long-
term trend in some countries. Inaccurate representation of CO₂ fertilization effect may have contributed to the mean yield bias. 
Other possible contributing factors for the bias are the simplified assumption of no respiratory costs for symbiotic nitrogen 1070 
fixation and insufficient representation of water stress responses. The accuracy of data input may partly reflect the inherent 
gap between field experiment data and national average yields, which are influenced by local farming practices. While these 
discrepancies between the country and global levels are insightful, it provides a valuable opportunity for model improvement.  

Comparative studies with other soybean models and refining the MATCRO-Soy on the basis of these findings will 
contribute to a more comprehensive understanding of its capabilities and limitations. Incorporating additional datasets will 1075 
further enhance the model representation of real-world conditions. McCormick et al. (2021) suggested that integrating machine 
learning models could improve accuracy through the calibration process with numerous datasets. However, the use of 
mechanistic models embedded in MATCRO to simplify the process has proven valuable for understanding and predicting the 
impacts of environmental factors on agricultural systems. This model can be used to identify potential adaptation strategies, 
such as changes in planting dates or the development of new crop varieties, to mitigate the adverse effects of climate change 1080 
on soybean production. However, the application of this model at the field-scale requires high-quality data input and local 
parameter data.  

7 Conclusions 

We utilized MATCRO which incorporates carbon assimilation modules based on the C3 photosynthesis of the Farquhar 
model, to simulate global soybean yield in terms of eco-physiological integrated gridded data inputs of climate, soil type, and 1085 

Deleted: ,

Deleted: as

Deleted:  (Ai and Hanasaki, 2023). This result is expected, as most 
of the simulated yield values were overestimated compared with the 
reference data, except for the yield in Canada, which was due to the 1090 
low-temperature conditions.

Formatted: Font: Not Bold

Deleted: Figure 8

Deleted: utilize



 

26 
 

nitrogen fertilizer. This study used experimental datasets and literature from previous studies to MATCRO-Soy to represent 
soybean growth under various environmental conditions. An evaluation of the global mean yield revealed a statistical 1095 
correlation of 0.81 (p-value < 0.001) between the simulated and reported FAOSTAT data before the long-term yield trend was 
removed. The correlation value decreased after the long-term yield trend was removed, with a Pearson correlations of 0.45 (p 
< 0.050), 0.52 (p < 0.001), and 66 % grid cells statistically greater than the significant value (p > 0.05) over 34 years (1981-
2014) for the global, top 10 countries, and grid cell levels, respectively. The model successfully captured long-term trends and 
interannual variability, demonstrating its capacity to reflect the impacts of climate factors. Moreover, MATCRO-Soy also 1100 
modelled reasonable photosynthetic processes in site-scale study, which shows a strong ability to represent the temporal 
variation. This result highlights the model’s reliability and adaptability as a tool for understanding soybean growth and yield 
dynamics. 

While MATCRO-Soy presents a valuable framework for understanding the impacts of climate change on global soybean 
production, many localized factors that influence soybean yield due to the shifts in climate (e.g., pests and diseases) can lead 1105 
to discrepancies in yield prediction. This highlights the need for high-quality data input. The integration of CO2 dynamics in 
MATCRO enhances crop response modelling while providing the carbon fertilization effect in process-based models, 
warranting further investigation along with the effects of other greenhouse gases. The model may benefit for further refinement, 
particularly in its treatment of temperature extremes, transpirable soil water, and nitrogen uptake during the photosynthesis 
process. Integrating MATCRO with other environmental models would enhance its applicability in agricultural management, 1110 
while emphasizing the necessity for field-scale calibration to improve the model's reliability. MATCRO-Soy provides an 
opportunity to estimate changes in global soybean production under future land-use or climate change scenarios to address the 
complexities of climate interactions with agricultural systems. Overall, the MATCRO-Soy has proven to be useful in 
understanding eco-physiological processes at both the global scale and the country and grid cell levels, providing valuable 
insights for agricultural management and climate change adaptation.  1115 

Code and data availability  

This study used the model simulated by source code of MATCRO (Yusara et al, 2025) archived at 

https://doi.org/10.5281/zenodo.14881385. 
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