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Abstract. MATCRO-Soy is an eco-physiological process-based crop model for soybean (Glycine max L. (Merr.)). It was
developed by modifying the parameters of MATCRO-Rice, integrates crop growth processes with a land surface model. These
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modifications were made using data from literature and field experiments across the world. The reliability of the model was
validated extensively by observed soybean yield data across the global, national, and grid cell levels. A moderate correlation
was observed between the MATCRO-Soy and FAOSTAT yield data with correlation coefficients of 0.81 (p < 0.001) for the
global average yield and 0,45 (p <0.01) for the global average detrended yield over a 34-year period (1981-2014). Furthermore,

. The original model, MATCRO-Rice

(psts

the grid-cell level validation revealed that 66 % of the grid cells in the global yield map exhibited a statistically significant

512

correlation between the MATCRO-Soy simulated yield and the reference data derived from observational records. These
results highlight the model’s ability to reproduce soybean yield under different environmental conditions, integrating soil water
availability and nitrogen fertilizer. MATCRO-soy could enhance our understanding of crop physiology, especially, crop
Jesponses to climate change, Its application may support efforts to reduce uncertainty in projections of climate change impacts
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on soybeans.

1  Introduction

Crop growth models have been widely used for yield estimation, agricultural management practice optimization, climate

change impact evaluation, and informing decision-making about food security strategies (Adeboye et al., 2021; Cuddington

et al., 2013; Hoogenboom, 2000). Given the significant impact of weather variability on global yield (Miiller et al., 2017; Ray

key climatic factors on physiological processes that are represented in the model (Boote et al., 2013; Cuddington et al., 2013; 1

Fodor et al., 2017; Jones et al., 2017; Marin et al., 2014; Stockle and Kemanian, 2020). Process-based models explicitly
incorporate the crucial eco-physiological processes of photosynthesis and stomatal conductance, improving predictions under
varying climate scenarios compared with mmodels that focus on the gmpirical relationship between absorbed radiation and
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assimilation through radiation use efficiency (Jin et al., 2018). Hence, crop models are useful for capturing the complexity of
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soil-crop-climate interactions for ensuring food security, optimizing yields, promoting sustainability, and planning adaptation
strategies (Garcia-Tejero et al., 2011). Global-scale simulations are essential to enhance these efforts by understanding
interactions between physiological processes and environmental factors, supporting adaptive management practices and
strengthening agricultural resilience.

The Agricultural Model Intercomparison and Improvement Project (AgMIP) has examined the performance of global
gridded crop models (GGCMs),in simulating the potential impact of climate change on crop yield (Miiller et al., 2017; Kothari

(psts

et al., 2022). AgMIP has demonstrated that the simulated impacts of environmental factors on crop yields using a GGCM

generally align with measurements and that a model ensemble reduces uncertainty (Elliott et al., 2015). However, yield change

under future climate change scenarios shows inconsistent results and greater variability in soybean than in other crops pecause

of model discrepancies (Jagermeyr et al. 2021). Despite being a major crop, soybean (Glycine max L. (Merr.)), has been studied

less extensively than other crops in terms of crop response to changing environments (Ruane et al., 2017, Kothari et al., 2022).
Therefore, the development of 2 new soybean model is iceded to reduce uncertainties in climate change impact assessments.

It is important to utilize a diverse type of crop models and ensure model diversity to accurately understand the uncertainties

of simulations, as relying on a single model can lead to biased results. To our knowledge, only five process-based models for
global-scale soybean yield estimation with leaf-level photosynthesis and stomatal conductance parameters exist, including LPJ-
GUESS (Ma et al., 2022), LPJmL (Wirth et al., 2024), ORCHIDEE-crop (Wu et al., 2016), PRYSBI2 (Sakurai et al., 2014),
and JULES (Leung et al., 2020), making this approach yelatively uncommon. Thus, further development and validation of
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process-based models that incorporate leaf-level photosynthesis and stomatal conductance parameters are essential.
MATCRO (Masutomi et al., 2016a), is an ecosystem process-based model for crops embedded into the land surface model

of minimal advanced treatments of surface interaction and runoff (MATSIRO; Takata et al., 2003) with a crop growth model

for rice, which is further explained in Section 2. MATCRO-Rice uses state variables to exchange information (e.g. temperature,
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soil moisture, transpiration, leaf area index, and photosynthesis rate) between the land surface model and crop growth model.
Jhe mechanisms that consider photosynthesis and stomatal conductance,to assess the impact of greenhouse gases on carbon
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Crop growth

and water fluxes have been incorporated into MATCRO-Rice. Masutomi et al. (2019) described the implementation of ozone

, which are widely used

effects within these mechanisms, indicating the model’s capability to account for environmental stressor. Furthermore,
MATCRO-Rice has been applied at the regional scale, and it has been utilized to measure climate impacts, which are important
for developing adaptation strategies (Kinose and Masutomi, 2020; Masutomi, et al., 2016b).

We developed a new process-based model for soybean (MATCRO-Soy v.1) that incorporates diverse biological processes
and environmental interactions that drive plant growth and adaptation to changing conditions. Adapted from MATCRO Rice,
this model is applied for soybeans by parameterizing key processes using experimental data and findings from the literature.
The current version of MATCRO-Soy (v.1) was evaluated in a global-scale simulation, following a calibration process that
considered essential photosynthesis mechanisms. This paper presents the model description in Section 2, the calibration process
in Section 3, and the model evaluation in Sections 4 and 5.

2 Model Description

MATCRO-Soy is based on MATCRO-Rice, a process-based model of rice growth and yield, which has been modified for use
in soybeans. MATCRO-Rice is,a combined land surface and crop growth model used to explore land-atmosphere interaction
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initially

in rice fields. Unlike the MATCRO-Rice v.1 version, MATCRO-Soy focuses on yield simulation and omits the calculation of
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sensible and latent heat fluxes in the energy balance to reduce computational complexity while maintaining accuracy in
simulating soybean growth and yield.
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2.1 Overview of MATCRO-Soy

MATCRO-Soy includes three main modules: phenology, photosynthesis, and carbon partitioning (Figure 1). The
phenology module simulates crop phenological development over time based on heat unit accumulation, The mmqrdﬂqlﬂemdiljgggs“ .
the progression,of carbon assimilation and partitioning by monitoring plant developmental stages from sowing to harvest. The ‘.

phenology module simulates developmental stages based on developmental rate from sowing to harvest and influences key b

processes such as glucose production and allocation across plant organs. The photosynthesis module jnitially estimates gross

primary production (GPP) and respiration at the leaf:level using the Farquhar model (Farquhar et al., 1980), and extends net
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Leaf senescence is simulated as a function of crop developmental stage, as defined by the phenology module. MATCRO
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Figure 1. Flowchart diagram of soybean yield simulation by MATCRO-Soy.
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The input data consisted of environmental variables obtained from meteorological forcings, soil type classifications,
nitrogen fertilizer applications, and agricultural management practices such as irrigation and seed sowing. These inputs are
crucial for setting the initial conditions and boundary parameters for the simulations. The output off MATCRO is the crop yield

(kg ha'') estimated for both irrigated and rainfed conditions on the basis of soil-crop interactions. First, we processed the
parameterized growing degree days for maturity using crop calendar data to estimate the harvest time in the phenology module
(see section 2.2). The photosynthesis module includes limiting factors such as nitrogen fertilization and water stress, as detailed
in Section 2.3. Then, the gcrop growth is calculated based on its developmental stage (Section 2.4). We conducted a

the

parameterization process encompassing phenological development, carbon partitioning, and photosynthesis limited by water
stress and nitrogen uptake. The crop yield was estimated using the parameterized seed-pod ratio (see section 2.5). The adjusted
parameters in MATCRO-Soy are described in Section 2.6 where the key dynamic variables are parameterized over time to
ensure reliable carbon assimilation in soybean. This comprehensive approach allows MATCRO to account for complex
interactions between environmental conditions, crop physiology, and management practices, providing a robust framework for
predicting crop yield and assessing agricultural productivity.

2.2 Crop phenological development

Phenological development defines the timing of developmental events based on environmental inputs. MATCRO calculates
crop developmental stages (DVS) using an index indicating the sowing time (DVS=0) to maturation time (DVS=1) on the basis
of the integral of the temperature required to exceed the phenological changes. The module uses a formulation based on Bouman
et al. (2001) as outlined in Equations (1) to (4).
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al. 2016a). We assume that this phenological time in soybean is in the middle of the flowering and seed filling stage
parameterized in this study as leaf loss started within those periods.

2.3 Carbon assimilation process

In the photosynthesis module of MATCRO-Soy, carbon assimilation is based on Jeaf-level photosynthesis calculations in sunlit
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response to relative humidity (Collatz et al., 1991). The net carbon assimilation (4,) in MATCRO is calculated using the
Farquhar model as further described in Masutomi et al. (2016a), expressed in Eq. (5).
An = f(PARv Pav Tleafn COZleafn chaxl BBavBBb) (5)

A, (mol(CO2) m2s™!) represents net carbon assimilation that contributes to NPP for biomass growth. It is a function of the

(os

intensity of absorbed photosynthetic active radiation (PAR, in mol(photon) m?s™), air pressure (P,, in Pa), leaf temperature
(Tieqy» in K), CO2 concentration at the substomatal chamber (COy¢qf, in Pa(COz2) Pa(Air) '), maximum Rubisco activity (Vomaxo
in mol(CO2) m?s™"), the slope (BB,, in mol(H20)ms™") and intercept (BB,, in mol(H20) m?s™") of the Ball-Berry model of
the relationship between crop assimilation, stomatal conductance per unit leaf area, relative humidity at the leaf surface, and
ambient CO2 concentration (Ball, 1988). In this study, we assume the leaf temperature is the same as air temperature to reduce
the complexity of the calculation.

Rubisco activity (V. may) is a key variable used to assess the carbon rate entering the photosynthetic pathway, as it catalyzes
the crucial initial step of RuBP (Ribulose-1,5-bisphosphate) carboxylation in photosynthetic carbon assimilation for C3 plants
(Sage, 2002; Xu et al., 2022). In MATCRO,,V,,,, ... is calculated as follows:

d: net primary product

Vemax = Vctop exp(—KnLAI) (6)
Vetop = ma\x(aSLN2 + bSLN +¢, Vctopmax) (7)
Vemax is the maximum Rubisco activity within the canopy {mol(CO2) m? s') limited by the exponential value of vertical
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in mol(CO») m™? s'). We determined the Vetop for photosynthetic rate limited by the specific leaf nitrogen (SLN) in Eq. (7) for . (Deleted: and
soybean using the relationship between two parameters of rubisco activity and leaf nitrogen from experiments summarized
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empirically represented with a polynomial quadratic equation limited by maximum value of Rubisco activity at the top canopy
(Vetop,in mol(CO2) m?s?). a, b, ¢ are quadratic coefficient, linear coefficient, and constant respectively from the relationship (l‘ leted: ,
of both variables where the data has been digitized from WebPlotDigitizer (Rohatgi, 2023). (Deleted: n

MATCRO considers nitrogen fertilization input denoted as Ny, (unit: kg(N) ha") which influences the amount of specific
leaf nitrogen (SLN, g(N) m?), particularly under conditions of limited nitrogen availability (La,Menza et al., 2023; Thies et al., (l‘ leted: (
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SLN values vary across different phenological stages, with the developmental stage (DVS) value of soybean growth ranges
from 0 (sow) to 1 (harvest). We define DVSg, DVS,, DVS,,, and SLNy, as the start of flowering, seed filling, maturity time, and
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the point where the SLN pattern started to changes with the parameterized values of 0.4, 0.659, 1, and 0.15 respectively. While (Deleted: These
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1, if DVS = DVS,0az
Preafos Piear1s Preasr represent the glucose partitioning ratio of leaf toward shoot at the time of initial stage when leaf growth

starts to decline (leaf0), stop growing (leafl), and at maturity (leaf2), respectively. While DVS,,,4;and DVS,,,4, indicate the

developmental stage values at which glucose partitioning of pod to the shoot begins to increase and eventually saturates (Figure

2). Figure 2 in section 3.2 visually represented the glucose partitioning ratio during crop growth as calibrated in this study.
The glucose partitioned in each organ is adjusted during the developmental stage using experimental data in the calibration
process, further described in Section 3. However, the dry weight of leaf in this module is reduced due to leaf senescence by
calculating loss of leaf dry weight (L., in kg ha™! s!) derived from the calibration of partitioned glucose ratio to the ratio of
dead leaf (Pgjeqy in s, as outlined in Eq. (20) and (21).

L]EQ[: 0 ’ lf DVS < DVSdeadleafl
{Pdleaf(‘/vleaf - ngu)' lf DVS = DVSdeadleafl

(OVS~DVSeadteas) @b
(1-DVSgeaieaf1)

Then we calculate the leaf area index (LAI) that serves as a parameter to assess the leaf surface area relative to the ground area.
It directly influences the plant ability to intercept solar radiation for photosynthesis.
LAI is computed as follow:

(20)
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LAI is calculated from the estimated leaf dry weight (Wey, in kg ha) and glucose reserves in leaves (W, in kg ha?!) divided
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changed during the developmental stage following exponential relationship:
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SLW,.u, SLW,,;,, and SLW represent the maximum, minimum, and slope parameters, respectively, that define the values
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observed in the exponential relationship based on experimental dataset in JTable 3, In addition to LAI, photosynthesis is also
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indirectly affected by the root depth (z,,,,, in m) that determines the plant capacity for water and nutrient uptake. Root depth is \1: W

calculated as follow:

ZI'UO[ f(rl root Zl aatmax) (24)
Z,00¢ 18 the accumulative value from growth rate of root depth (7, in mm day™) limited by maximum possible root depth

(Zro0tmax» in Meter).
2.5 Soybean yield estimation

The soybean yield is calculated from the pod dry weight at harvest (Wy,oqnarvese- in kg ha!) via the seed-pod ratio (SR) in
MATCRO-Soy. The yield is further affected by water stress (fi,s¢ress) in Eq. (25).
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Yield = f(Wpodharvest'SerwstressrT) (25)
The yield was calculated using the parameter SR, which is the ratio of yield (seed, kg ha!) to the storage organ of the pod
(Wpodnarvest) at harvest time and was derived from experimental datasets in Table 3, T'is the temperature (Kelvin) that limits

(" leted: , kg ha™)

heat and cold damage to the yield of soybean. The water stress factor (f,,sress) Was determined on the basis of the fraction of |

available soil water at the soil layer -i (FAW;) over crop yield in timestep ¢ during the crop growth, based on a previous study
on the relationship between the soybean transpiration ratio and transpirable soil water conducted by Ray and Sinclair (1998),
given in Eq (26).

L FAW,, if FAW, <05

= |05 .
'fwstress,r { 1' lf FAVVl > 0.5 ( )

The value ofb‘@srms . depends on soil water availability at soil layer-i (FAW;), which is the estimated soil water content based
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on the water flux between the soil layers (Masutomi et al., 2016a)_during the crop growth calculated via Eq. (27):
FAVVL — WSLi—WSLyiie (27)

WSLpc=WSLyie

where WSL;, WSL,,;;,, and WSLg represent the water level in the soil layer -i, wilting point, and field capacity, respectively.
A value of fi,qress €qual to 1 indicates no water stress as the fraction of available soil water is adequate for crop growth. Hence,
yield is calculated as the potential yield constrained by water stress.

2.6 Soybean-specific parameters

MATCRO-Soy shares several parameters with MATCRO-Rice as both are C3 species. However, soybean differs from
cereal crops because of its nitrogen-fixing ability. This characteristic is represented through specific leaf nitrogen during the
crop growth, as described in Egs. (8) and (9). The crop-specific parameters reflect the unique physiological and chemical
processes involved in soybean growth. but still align with the general framework of MATCRO-Rice. Key parameter
adjustments are outlined in Table 1,as MATCRO employs a set of specific parameters to simulate crop growth and yield. These
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parameters include factors related to carbon allocation, root growth characteristics, and crop development based on cardinal
temperatures. By accurately representing the unique physiological and biochemical characteristics of soybeans, these
parameters contribute to the ability of the model to predict crop yield with greater precision.

MATCRO-Soy aims for simulations applicable to a global scale; hence, it uses a single global parameterization as a
standardized set of parameters applied worldwide. It uses a unified approach for modelling crop behaviour across different
regions. It was assumed that the parameter values from the different treatments and cultivars were independent. Table 2, contains
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a list of variables parameterized within the model, including the glucose partitioning, nitrogen parameters, and photosynthetic

capacity. Through the parameterization of these variables, the model can be adapted for various growing conditions and
employed to assess the sensitivity of crop performance to different factors. These parameters are commonly used to evaluate
the crop model sensitivity to environmental changes and require further attention, as highlighted by simulations from other
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crop model as wells (Battisti et al., 2018a). (l‘ leted: 2018)
Table 1. Crop-specific parameters used for MATCRO-Soy
Parameters Description Value Units Source Eq.
Fytu-tear conversion factor of dry weight from glucose to leaf 0.871 kg ha' (kg ha'!)!  de Vries et al. (1989) (12) Q\ leted: Penning
Fotu-stem conversion factor of dry weight from glucose to stem 0.810 kgha'! (kgha')!  ge Vries et al. (1989) (13) C.— leted: Penning
Fatu-root conversion factor of dry weight from glucose to root 0.857 kgha'! (kgha')! e Vries et al. (1989) (15) (I‘ leted: Penning
Fytu-poa conversion factor of dry weight from glucose to pod 0.759 kg ha'! (kg ha'!)!  de Vries et al. (1989) (14) (’\ leted: Penning
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Parameters Description Value Units Source Eq.
Fatu-starcn carbon fraction in the dry matter of starch 0.9 kg ha'! (kg ha'!')!  Physical and chemical constant (15)
Ky vertical distribution of leaf nitrogen 0.11 - Bonan et al. (2011) (©6)
Troot rate of root depth increase 0.03 mm day! gjé?g(z)zi() al. (2018) ; Nakano 24
Zyootmax maximum root depth 1.7 m e Vries et al. (1989) (24)
Ty base temperature for crop development 10 °C e Vries et al. (1989) (4)
Ty highest temperature for crop development 34 °C e Vries et al. (1989) “4) C,- 1 dq
T, optimum temperature for crop development 27 °C e Vries et al. (1989) 4)
A
Table 2. Parameterized variables for soybean in MATCRO
Variables Value Units Description
a -18.516 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (7)
b 114.33 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (7)
c -73.336 - constant at relationship of rubisco activity and leaf nitrogen in Eq. (7)
DVSaqeadiear 0.6 - 1*DVS point where the dead leaf ratio pattern changes
DVSgeadiear2 1 - 27 DVS point where the dead leaf ratio pattern changes
DVS; 0.4 - developmental stage on initial flowering stage
DVSieas1 0.25 - 15* DVS point where the leaf partitioning pattern changes
DVSiear2 0.659 - 274 DVS point where the leaf partitioning pattern changes
DVS,, 1 - developmental stage at maturity time
DVSpoar 048 - 15 DVS point where the pod partitioning pattern changes
DVSpoaz 0.72 - 27 DVS point where the pod partitioning pattern changes
DVs; 0.659 - developmental stage to start seed filling stage
DVSsin1 0.4 - 15 DVS point where the specific leaf nitrogen changes along with DVS
DVSsina 0.4 - 2" DVS point where the specific leaf nitrogen changes along with DVS
DVSsins 0.659 - 31 DVS point where the specific leaf nitrogen changes along with DVS
fstarcn 0.18 - fraction of glucose allocated to starch reserves
SR 0.68 - seed-pod ratio (SR) accounting harvest index from storage organ
Nrerthigh 300 kgNha™* nitrogen fertilizer value used in high nitrogen fertilizer in La Menza et al. (2023)
Pieaso 0.38 - glucose partitioning ratio of leaf toward shoot in the initial DVS point
Preasy 0.6 - glucose partitioning ratio of leaf toward shoot in the 1* DVS point
Pieasa 0 - glucose partitioning ratio of leaf toward shoot in the 2" DV point
Paeadiear 0 st dead leaf ratio value in the 1 DVS point
Pacadtearz 0.000001 st dead leaf ratio value the 2" DV point
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Variables Value Units Description

SLNy, 0.75 gNm™? initial specific leaf nitrogen
SLNy; 2.25 gNm™2 specific leaf nitrogen value in the 13 DV'S point
SLNy, 1.7 gNm™? specific leaf nitrogen value in the 2" DV'S point
SLNy3 0.75 gNm=2 specific leaf nitrogen value in the 3" DVS point when using high nitrogen fertilizer
SLNy3,; 1.8 gNm~2 specific leaf nitrogen value in the 3 DVS point when using low nitrogen fertilizer
SLWoax w30 kgha! maximum specific leaf weight (,- 1 d: 600
SLWoin 250 kghat ini specific leaf weight (r 1 d: m—2
SLW, 2.5 - exponential slope of specific leaf weight to the developmental stage (Deleted: m=2
v 103;<M ynol(CO,ym2s™t maximum Rubisco capacity at the canopy top in Eq. (7)

AN
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ctopmax

3 Model Calibration

The model parameters were tuned to represent the observed phenology and seasonality of biomass development. Once
calibration is complete, the model continues to simulate crop growth, which encompasses phenological development, carbon
assimilation, assimilate partitioning, and crop yield. We conducted calibrations from various environmental conditions and
soybean varieties documented in previous experimental studies as detailed in 3.1 and Table 3, The model calibration included
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parameterizing the dynamic biomass growth partitioning ratio for each organ, leaf senescence, and specific leaf weight denoted

as Pyrgan during the developmental stage denoted as DVS. Other calibrations using the experimental dataset included the
phenological stage, and the seed-pod ratio (SR). The crucial phenological stage (e.g. flowering and seed filling) was calculated
as the average value of the reported values in the experimental dataset. MATCRO applies this crop growth module following
the method py the school of de Wit, compares biomass growth with the observed values during developmental stages. Shifts
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in partitioning and growth patterns were identified and used as reference points in the parameterization.

3.1 Description of the site data for calibration

The calibration process used experimental datasets from previous studies collected from field experiments across six different
sites in four countries: Frederico Westphalen and Piracicaba (Brazil), Ya’an (China), Champaign (United States of America,
US), Morioka and Tsukubamirai (Japan), as seen in Jable 3, The soybean cultivars grown at these experimental sites
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represented different maturity groups. A variety of management practices related to water management and nutrients were
utilized in the experiments. Nitrogen fertilizers were applied in most experiments, but soil mineral nitrogen at the Brazil and

(Formatted: Font: Not Bold

the US have provided adequate supply to support crop growth. Furthermore, there are different farming practices based on the
across countries. Soybeans are planted between May and June in the United States, China, and Japan, while planting starts in
October or November in Brazil. The experimental data also shown broad planting density in China and Japan, while soybeans

are typically grown at higher planting densities in the United States and Brazil.

Weather data were derived from the records at the meteorological station nearest to the experimental site. The climates at
the respective sites were as follows. The ranges of daily mean air temperatures during the growing season was 18-30°C in
Frederico Westphalen (Brazil), 19-31 °C in Piracicaba (Brazil), 17-27 °C in Tsukubamirai (Japan), 14-25 °C in Morioka (Japan),
18-26 °C in Ya’an (China), and 15-28 °C in Champaign (US). The seasonal precipitation (mm) for the sites were 1669 mm in
Frederico Westphalen (Brazil), 679 mm in Piracicaba (Brazil), 453 mm in Morioka (Japan), 865 mm in Tsukubamirai (Japan),
1012 mm in Ya’an (China), and 787 mm in Champaign (US). The amount of solar radiation also differed among the
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Table 3. Information on field-experimental data of location, crop season, variety, maturity group, water management, and nitrogen fertilizer,
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experimental sites where China received lowest solar radiation and Brazil received highest solar radiation during the
experimental period (Supplementary file Figure S2). These data represent diverse climatic conditions in soybean-producing
countries. The field data used for calibration were collected across multiple crop seasons, specifically from 2002, 2003 to 2007

and from 2013 to 2016. These time periods were expected to capture the current climatic and environmental variability.

<

as well as the number of experiments for calibrating glucose partitioning ratio and evaluating the soybean yield simulations,
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indicate the estimated flowering and seed filling stages by calculating the average phenology time in all experimental datasets.
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The independent dataset was used for evaluating the calibrated model at the point-scale level. After removing the calibration
data, the simulated yield at the site scale showed a correlation coefficient of 0.68 and significancy (p value < 0.001) with
observed data (Supplementary file Figure S3). This agreement is also applied for the aboveground biomass weight, pod weight
and leaf area index with correlation coefficient of 0.60—0.90.

Carbon assimilation primarily occurs with subsequent allocation to other parts of the plant. Compared with varieties from
other sites, the soybean varieties observed in the experimental dataset from Tsukubamirai (Japan) tended to have lower
partitioning to the stem during the vegetative stage. The ratio of glucose to leaves in Sichuan (China) was unexpectedly high
near maturity in 2016, resulting in partitioning to pods at a low level due to low temperature and drought conditions. The storage
organ biomass increases in the reproductive stage to produce pods and seeds, whereas the shoot will senesce at the end of the
maturity period. Hence, yield is estimated using seed weight (as determined by the storage organ weight) and the parameterized
seed-pod ratio. Pod partitioning in Champaign (US) tended to occur early in pod initiation in early maturation varieties, and the
dry weight of pods before the seed filling stage is relatively high (Kawasaki et al., 2018). Early pod initiation has also been
observed in the Ryuhou variety in Tsukubamirai in 2013 (Nakano et al., 2021).
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site [ ] Piracicaba (Brazil) () Frederico Westphalen (Braz

Figure 2. Glucose partitioning ratio to leaves (a) and pod (b) compared with the shoot during the developmental stage (DVS =0 - 1) in the
experimental sites shown by shaped points (square: Piracicaba, circle: Frederico Westphalen, triangle: Morioka. plus: Tsukubamirai,
cross: Champaign, diamond: Ya’an. The red lines are the, segmented lines used for glucose partitioning in MATCRO-Soy. The

dashed line marks the averaged flowering, seed filling, and harvest time from the experimental datasets.
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Figure 3. Dead leaf ratio (s-1) during the developmental stage (DVS = 0 - 1). Similar with Figure 2.
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The dead leaf ratio parameter in Figure 3 shows the degree of leaf senescence after the seed filling stage due to the leaf

process. The dead leaf ratio is calculated from the amount of leaf loss observed during the growing season. The specific leaf

weight (SLW) is a significant parameter in crop growth parameterization and has been calibrated to follow the observation data
pattern shown in Figure 4 We used the measured leaf weight and leaf area index data from the experimental datasets described
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Figure 4

in 2.4 and Eq. (23) to calculate the ratio of leaf weight to leaf area (SLW) during different phenological stages. These ratios
change over time with distinct values as they vary across different growing seasons and cultivars (Thompson et al., 1996;
Slattery et al., 2017). In the figure, SLW from Champaign (US) was excluded because of discrepancies in the timing of the

measurements in leaf area and leaf weight biomass. While the specific leaf weight varied among the sites, we fit the model of

SLW assuming a saturating exponential function of the developmental stage (red line in Figure 4). This pattern aligns well
with the biological process as SLW initially increases due to rapid biomass accumulation but saturates as leaves mature.
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A

Figure 4. Specific leaf weight (kg ha;') during the developmental stage (DVS =0 - 1). Similar with Figure 2.
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MATCRO was developed in FORTRAN and coupled with the global climate models output, simulated at a spatial
resolution of 0.5° x 0.5° and hourly-daily temporal resolution. The output of the model is gridded crop yield (kg ha') as stored
in netCDF file format in a global map with one, harvest simulated per year. We perform the model evaluation for global,
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country, and grid cell levels for 34 years (1981,52014) at 0.5° spatial resolution and yearly harvested yield output. The accuracy
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of the simulated yield was assessed using reference global and country-level data from the Food and Agriculture Organization
(FAOSTAT, 2023), while the grid cell level yield was compared with the Global Dataset of Historical Yield (GDHY) data
which is derived from statistical records, FAO data, and remote sensing data (lizumi, 2019).

4.1 Simulation settings and data inputs

The parameters were set as shown in Table 4, covering the period of the sowing year from 1980 to 2014, with a various
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planting time across different regions. This model incorporated global daily climate data (86400 s) as input data. While the
simulation framework was inherited from the established MATCRO-Rice v.1 (Masutomi et al. 2016b), several modifications
were made to enhance its applicability at a global scale. Notably, the temporal resolution was adjusted from half-hourly (1800
s) to hourly (3600 s), allowing the model to maintain consistency in capturing critical processes such as diurnal variations in
photosynthesis and transpiration, while optimizing computational efficiency. These adjustments ensured that the model
remained suitable for large-scale simulations while preserving essential physiological processes.

The model simulates soybean yield using input data as described in Table 5, It uses global input data as follows: crop

Table 4
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calendar from the Global Gridded Crop Model Intercomparison (GGCMI), which separates the rainfed and irrigated systems,
atmospheric CO: and climate data from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) that provides bias-
adjusted climate input data for historical data (GSWP3-W5ES v2.0), soil classification from the Harmonized World Soil
Database (HWSD v1.2), and nitrogen fertilization for C3 fixing crops of the ISIMIP, which is derived from the land use dataset
(Hurtt et al., 2020). We use ISIMIP bias-adjusted data to maintain uniformity in the climate impact data across sectors and
scales in their framework. This dataset, which is provided by ISIMIP, has a spatial resolution of 0.5 °. To determine the growing
degree days for maturity, we considered the phenological maturity time from the GGCMI crop calendar for harvest time and
global ISIMIP climate data over 10 years (2000-2010) to capture the variability shifts in the current evaluation years.

JTable 4. Parameter settings for simulation

(os

Table 5
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Variable Value  Unit Description

Yearsow varied Year year of sowing day

DOY sow varied Day of Year (DOY) day of year of sowing day

RESiime 3600 s time resolution for simulation

RESciimate 86400 s time resolution for climate forcing data

RESwe/ms 0.5 degree spatial resolution north to south or west to east

Soil layer 50 - number of simulated soil layer to calculate soil water content
WSL 1.0 - soil water content at emergence

Wieatn 1.0 kgha'! dry weight of leaf at emergence

Witemo 1.0 kgha'! dry weight of stem at emergence

Wiooto 1.0 kgha' dry weight of root at emergence

Wetuo 0.5 kgha'! dry weight of glucose reserve at emergence

Za 30 m reference height at which wind speed is observed

Zimax 40 m depth of soil layer

7t 005 m depth of topsoil layer

Zy 20 m depth from the soil surface to the upper bound of the most bottom layer of soil

Table 5. Data input for MATCRO simulation.

Variable Unit Data source Spatial Resolution

Ddaily time-step

Precipitation *gm?s! 0.5° x 0.5°
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Near-surface specific humidity kg kg! GSWP35;WS5ES5 (Kim, 2017; Cuchi et al. 0.5° x 0.5° (I‘ leted
Maximum, minimum, and mean temperature ~ Kelvin 2020; Lange, 2019; Lange et al., 2021) 0.5° % 0.5° (r leted
Surface downwelling shortwave radiation W m? 0.5° % 0.5°
Near-surface wind speed ms! 0.5° % 0.5°
Surface air pressure Pa 0.5°x0.5°

Yearly time-step
Atmospheric CO2 concentration ppm ISIMIP (Biichner and Reyer, 2022) -
Nitrogen fertilizer kg ha'! ISIMIP (Volkholz and Ostberg, 2022) 0.5° % 0.5°

Constants

Latitude and longitude ° - -
Agricultural management Irrigated or rainfed MIRCA2000 (Portmann et al., 2010) 0.5° % 0.5°
Sowing time, Harvest time LOY GGCMI (Jégermeyr et al., 2021) 0.5° x 0.5° CI‘ leted: Julian day
Growing degree days for harvest time °C days Parameterized in this study 0.5° % 0.5°
Soil type - HWSD (Volkholz and Miiller, 2020) 0.5° % 0.5°

4.2 Global yield evaluation methods

In this study, we assessed the statistical relationship between simulated yields and reference data using common metrics of
Pearson correlation coefficient (corr) in Eq (28) with the significance levels (p-values), agreement between the simulation and

observation using root mean square error (RMSE) in Eq. (29), and bias in Eq. (30) for the time-series yield data.
_ T X=Xy (Y-
corr = —2=1CECIED)

28

Jz?:l(xrxf(yry)z .

RMSE = [~y (X, = Yy? (29)
relative bias = %Z?=1|Xi -Y x% (30)

where X; and Y; indicated simulated and observed values in each measurement, while X and Y'denotes the mean of simulated
and observed values for the harvested year annually. The i and n shows the i-th data point and total number of data,
respectively. We use n = 34 years for global-scale data, while output after calibration is evaluated in point-scale using n ranged
from 14-122 of the available experimental datasets.

Detrended yield yepresents the fime-series yield data for both simulated and observed values after removing the linear trend |

d: significancy

by subtracting the slope and intercept of the fitted linear regression (long-term yield trend). This approach enables the :

d: Furthermore, we evaluated
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separation of short-term yield fluctuations from systemic long-term shifts. Yield fluctuations for the long-term and detrended (,\ leted: detrended
data were evaluated separately using mean squared deviation (MSD) and its component to provide a clear interpretation of the (r .
model evaluation error (Gauch et al., 2003; Kobayashi and Salam, 2000) in Eq. (31) . (D leted o
elete tandar
MSD, = SB, +SDSD, + LCS, @1 (oeered e
L. . . . Delete
Mean squared deviation (MSD,)) is the square of RMSE for each long-term yield trend or detrended yield, Its components oo
. . . . . . . B Deleted: Detrended yield is calculated based on the value after
included mean squared bias (SB,), difference in the magnitude of fluctuation namely squared difference between standard yield is reduced by its long-term trend.

deviations (SDSD,,), and the lack of positive correlation weighted by the standard deviations (LCS,,) as proposed by Kobayashi
and Salam (2000) calculated in Eq (32)+37) below:

SB, = (X— Y)z
SDSD, = (5D — SDY)2

(32)
(33)
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SDy = \[&z?zl(xi - X)? (34)

1
SDy = [Lyia(Yi—T)? 43
LCS,, = SDxSDy(1 — corr) (36)
Higher SBy,, SDSD,,, and LCS,, indicate that model failed to simulate mean of the measurement, magnitude of fluctuation

around the mean, and pattern of fluctuation across the n measurements, respectively, of the yield. SDy and SDy denotes the
standard deviation of simulated (X) and observed values (Y), while LCS,, depends on the correlation coefficient (corr).

5  Model Performance Evaluation

We calculated soybean yield in a global-scale map based on the gridded data of irrigated and rainfed area from MIRCA2000
dataset, which represents global agricultural land use around the year 2000 (Portmann et al., 2010), to get the actual yield
value. We evaluated yield during the period of 1981-2014 as the MIRCA dataset was available within that period. The
simulated yield at the country and global scales for regional comparison was determined by aggregating grid cell data to
compute the mean soybean harvested area within each country grid as described below in Eq (37):
el = AL 0 o
where Yield,.g;,y, is the aggregated yield at a given region (country or global-scale) in kgha™ from the grid cell number (i)
range from 1 to n (total number of grid cells in the region). The estimated yield under rainfed and irrigated conditions are
denoted by Yield,; and Yield;,., respectively. While the soybean rainfed and irrigated area (ha) used in the simulations are

Area,; and Area,,, respectively.

5.1 Model output yield as evaluated at the global and national scales

Figure 5a shows a time-series comparison from 1981 to 2014 between the global mean yields reported by FAOSTAT and
those simulated by MATCRO-Soy. The results indicated that the model captures the upwards trend in yields over the period
with smaller slope compared with the reported yield data. The correlation coefficient is 0.81, which is significant (p < 0.01).
The errors were 298 kg ha! and 0,12 for the RMSE and relative bias, respectively. Notably, the simulated linear increase

(ot

contributed to the higher correlation coefficient, for the yield trends.

362

(oata

Figure 5b shows the comparison between the detrended global mean yield observed by FAOSTAT and the simulated value
by MATCRO-Soy after removing the long-term linear trend across the study period, Detrended yield is the value after yield is

15
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correlation

reduced by its long-term trend from the original yield data. It isolates the variability primarily driven by climate fluctuations

used in the

to evaluate interannual variability independent of long-term trends. However, it also removes longer-term signals (e.g. effect
of technological improvements or increasing CO» concentrations). The correlation coefficient decreased to 0446 (p < 0.01).

was removed.

The model reproduced the interannual variations well with an RMSE of 137 kg ha"!, Specifically, according to observations,

512, which was significant

there were significant yield reductions in the years 1983, 1988, 2009, and 2012. Among these, the model successfully
reproduced the yield reductions in three years (1983, 1988, and 2012), excluding 2009. These years are reported to have
experienced severe droughts, and the model's ability to capture these events is noteworthy.
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Figure 5. Time-series comparison between simulated yield by MATCRO-Soy and FAOSTAT reported yield data in global long-term trend
(a), and detrended (b) yield during 1981-2014. The correlation for detrended yield is calculated after removing the linear trend. The symbols
690  *** % and * denote p < 0.001, 0.01, and 0.05, respectively.
We evaluated the model performance for 10 major soybean-producing countries, Argentina, Brazil, China, India, Paraguay,
United States, Italy, Russia, Bolivia, and Canada, consisting of 96% of all global soybean production (based on total average
production from 2012 to 2021 in FAOSTAT). Figure 6 compared,the simulated country averaged yields and reported country . (l‘ leted: Figure 6 )
averaged yields of FAOSTAT for 1981-2014 with the ellipsoid indicating the distribution of the simulated yield values within (Deleted: between )
695  the 90% confidence range. The results indicate that the model reproduces the national average yield levels well in the top 10 (Formatted: Font: Not Bold )
producing countries, as indicated by a correlation coefficient of 0,519 (p < 0.001) and an RMSE of 1085 kg ha’'. Significant O_ leted: 502 )
correlation coefficients were observed for six countries (Argentina, Brazil, India, Italy, Paraguay, and the United States; see . (Deleted- s )
Supplementary file Figure 54 for further evaluation for these six countries). Focusing on the United States, Brazil, and .
Atrgentina, which account for 69% of global production, the model's accuracy showed a correlation coefficient of 0,645 (p < CDeleted' §3 )
700 0.001) and an RMSE of 916 kg ha', where Brazil was underestimated. However, when all countries are considered, the " (Deleted: top three producing countries (the )
correlation coefficient decreases to 0291, although it remains statistically significant. These results demonstrate that the model * .. (Deleted: ): )
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(Deleted: 362 )
SO0 o0 e
e . s (Deleted: . )
_ . Paraguay Arortna
éwuu BolnmA 3 Tl A sova 'y (Deleted: 263 )
=4 Al o tina Ny @ Brazil .
2 3000 Russ 308 3 g:)l;: X canada : (Deleted: high accuracy in reproducing yields for )
§  |Russia U * onina
§ 3 X Canada @ naa (Deleted: with relatively high production levels. )
2 2,000 nina: ~™
g Brazil 7 Pasovey ,(Deleted: <objecr> G4
& 1,000 B rusn
India @ uniea saes
0
0 1,000 FAOQéO-&()T y‘s‘g‘?fgo’ha) 4,000 5,000 ;
. . . - . . . . (" leted: Error! Reference source not found.
705  Figure 6. Comparison between simulated yield by MATCRO-Soy and FAOSTAT of the country mean yield during 1981-2014 in 10 major
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A time series comparison of country averaged yields focusing on the major producing countries is shown in Figure 7. An /.~ (,- leted: 73
evaluation of the long-term trend (Figure 7a) revealed that MATCRO-Soy effectively captured the increasing trend. Brazil . ’ (,. leted: 62
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7b), the interannual variability in Paraguay presented the highest correlation coefficient at 061, followed that in the United leted: Figure 7 )
States at 0,57 and that in Brazil at 0.49. On the other hand, the lowest correlation was observed for China at 0,18 and Bolivia leted: Brazil )
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740  Figure 7. Time-series comparison between simulated yield by MATCRO-Soy (red circle) and FAOSTAT yield (open circle) in 10 top
soybean producer countries during 1981-2014 for long-term yield trend shown by solid line (a) and detrended yield after removing the linear
trend (b) in kg ha”'. The correlation and RMSE based on yield (a) and detrended yield (b) data. The symbols ***, ** and * denote p < 0.001, Cr leted: ).
0.01, and 0.05, respectively. The shading near solid line is the standard error with confidence interval of 95%.
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5.2 Temporal trends and variability

745 Model performance was further assessed with the mean squared deviation (MSD) components for the yield and separated [&2:;::;1:?;3 8 shows the source of error based on the MSD ]
by yield, long-term yield trend, and detrended yield for both the globfﬂ (Supplemen?ary file Table S1) and c0L'1ntry scal.es Deleted: ) in the top 6 soybeanproducing countrics, SBs are the
(Supplementary files Table S2, S3, and S4). We separated the MSD into squared bias (SB), the sum of the difference in - [primary source of error in countries with high MSDs: Argenﬁ
standard deviation (SDSD), and the lack of positive correlation (LCS). which reflect errors in mean yield, magnitude of yield (,. leted: Figurc 8 )
variability, and pattern of year-to-year fluctuations, respectively. The greatest contributor to the error at the global scale was / CFormatted: Font: Not Bold )

750 the difference of mean yield (SB) for about 71 and 77 % of total MSD for the yield and detrended yield. respectively / -

(Supplementary file Table S1). (Deleted: minor - - - )

Figure § presents MSD components in the top six soybean-producing countries. SB was the primary source of error in [&eéﬁsegZi%?gga?ﬁ;hseégvf)e?; ?l:les zixgazgnz?zdfggfiy(%
most countries at the country-level. The highest MSD in Paraguay was largely driven by SB, with a notable contribution from (r ——
LCS. [t indicates that the model simulated the yariability well but poorly captured the mean yield. The low MSD in the United

755  States was also driven by SB, but LCS also contributed meaningfully to the year-to-year variability. Meanwhile, LCS was the
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greatest contributor of yield error in Canada and Italy (Supplementary file Table S2) due to a pronounced discrepancy in the
simulated interannual variability. SDSD contributed only to Brazil, and the model underestimated the mean yield and the
deviation in this country. These results highlighted that the mean yield bias dominates the source of error at global and country

levels, while LCS and SDSD contributed notably in specific regions where the model failed to capture the variability or the
temporal pattern.
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Figure 8. Mean squared deviation components of squared bias (SB), sum of difference in standard deviation (SDSD), lack of positive

correlation (LCS) for yield error in top six,soybean producing countries.

2 major soybean producing countries (Brazil and the United States)

with the largest soybean-growing areas.
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5.3 Model performance at the grid-cell level variation

We evaluated MATCRO-Soy at the grid-cell level, by comparing simulated yields with observed ones from Global Dataset
of Historical Yield (GDHY) dataset by lizumi (2019). Figure 9a and b show the simulated and observed yields averaged over

34 years, and Figure 9¢ shows relative bias between them. Figure 10, shows interannual correlation between simulated and
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observed yields for 34 years. The simulated yield was calculated for soybean-growing areas from the MIRCA2000 dataset, :

which offers broad spatial coverage where yield data for certain regions, including Canada, Russia, Australia, and many
European and Asian countries, are missing in the GDHY dataset (lizumi and Sakai, 2020). The density plot of the simulated

yield showed more variability than did the GDHY data in [Figure 9, However, both datasets exhibited a density peak of
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approximately 2,000 to 3,000 kg ha"'and the simulated yield mostly overestimated the higher yield value. Figure 9,a, b, andc

also show the distribution of simulated and observed yields.

The relative bias map (Figure 9¢) highlights that overestimation was prominent in parts of South America (particularly

Argentina), Russia, and China, In contrast, underestimation was observed in South Africa, India, and Brazil. Most of grid cells

‘ ) (Deleted:Figure9
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in Brazil show low yields, likely due to shorter growing periods in the input data compared to field experiment data, These * N

results aligned with the trends observed at the national scale, which are influenced by the aggregation process. During

aggregation, the national-scale results represented the average performance across all grid cells, weighted by the number of .
grids within each region. Most grids were within a relative bias of -0.2 to 0.2, accounting for 37 % of the total grid area. The

grey area was found to be statistically insignificant. The density plot in simulated yield showed more variability compared to
the GDHY data. However, both data exhibited the density peak around 3,000 kg ha' and simulated yield mostly overestimated
the yield value. The correlation between the simulated yield and the GDHY dataset for interannual variation after removing
the moving-average (Figure 10) reveals that 66 % of the grid cells are significantly correlated (p < 0.05).
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Figure 10. Time-series correlation between simulated and observed yield in 1981-2014 after removing trends from 5-year moving average
(c). Grey colour depicts the correlation with no significance (p > 0.05) in the map while the red dashed line shows the border of
p = 0.05 for the number of n year (34) in the density distribution plot.

5.4 Model performance at the leaf-level

We simulated the leaf-level variation in Vemax for the United States (largest soybean producing country) at the site scale of the
Champaign for the 2002 growing season using the global parameterization of MATCRO-Soy (Figure 11). These leaf-level
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simulated Vemax values align closely with the observation data from Bernacchi et al. (2005) during the vegetative stage with
some deviations during the flowering to seed-filling stages, as shown by the dashed line in the developmental stage of Figure -
11, This alignment highlighted the ability of the model to represent essential photosynthetic processes influenced by leaf
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Figure 11. The maximum carboxylation capacity of Rubisco (umolyC0,ym *s~1) during the growing period of simulation using
MATCRO-Soy (black line) and observation data (grey dots) from Bernacchi et al. (2005) in Champaign (US) year 2002.

6  Discussions
6.1 Validation of MATCRO-Soy

In prior studies, soybean yield predictions often faced challenges in capturing crop responses to climatic variables. The
MATCRO-Soy model effectively captures the linear trend in soybean yields, with higher accuracy for long-term trends (corr

=02812) than for detrended yields (corr = 0.446), as shown in Figure 5 This result of the global detrended yield is improved 7
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compared with that of benchmark studies conducted by Miiller et al. (2017), indicating less variation among the process-based
models based on its statistical correlation, where another crop model, PRYSBI2, reaches significant correlations of 0.57 (p <
0.050) if trends are not removed. However, the accuracy is enhanced when using site-specific parameters are used, as
demonstrated in regional scale evaluations from previous studies, which were used for parameterization in this global
simulation (Battisti et al., 2017; Kumagai, 2018, 2021; Morgan et al., 2005; Nakano et al., 2021; Wu et al., 2019). These studies

(Deleted: 2017

have shown that integrating factors of cultivar differences, ensembles of multiple crop models, nitrogen content, and more
accurate measurement method allows for a more reliable representation of local growing conditions and climate variability.
When examining the 10 largest soybean-producing countries, the model performance (Figure 6) has an RMSE of 1,085 kg
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ha'! (average yield of 34 years), which is jn reasonable agreement compared with the RMSE of another study using LPJ-

GUESS coupled with biological nitrogen fixation (Ma et al., 2022) of approximately 800 kg ha™! (average yield of 10 years).

The grid-cell level evaluation simulated by MATCRO-Soy, as shown in Figure 9, revealed that $6% of the grid cells were
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significantly correlated (p < 0.05) with most grids falling within 0.2-0.6. These findings align with other studies that show that

time-series correlations in GGCM simulated soybean yields range from 0.25 to 0.65 due to discrepancies in ghe benchmark W .
RS (Deleted: Figure 9
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studies (Miiller et al., 2017). This correlation reflects the detrended values, which are useful for evaluating interannual
variability and the model sensitivity to climate fluctuations. However, detrending removes important long-term signals related
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to genetic improvements, cultivar and management changes, or increased CO: effects.

The correlation values between yield and detrended yield in Figure 5 and Figure 6 indicate that the increased correlation
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in model performance was due to the long-term yield trend. MATCRO-Soy could capture the trend of increased atmospheric -

CO: and nitrogen fertilizer inputs, despite of the interannual variability in climate conditions. The MSD calculation revealed
that the Jack of positive correlation was the major contributor error in Canada and Italy within the 10 top soybean producing

countries (Supplementary file Table S2). Both countries have small squared biases (SBs), suggesting that MATCRO-Soy '

accurately represents the average productivity despite of the inability to capture the variability or amplitude of the yield trend

over time within the region. Factors such as changes in sowing date, land use, pest management, cultivar maturity group, and
planting density may contribute to discrepancies in soybean yield under climate change (Battisti et al., 2018a; Marin et al.,
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2022). Hence, there is a need for improved parameterization to better represent the dynamics of yield variability in countries

such as Canada and Italy.

The high yields in Argentina and Paraguay reflect the consistency of favourable growing conditions (Figure 7a), -
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particularly the alignment of daily temperatures and seasonal precipitation with critical growth stages, suggesting that these

regions are less susceptible to interannual variability along with the geographic locations to receive more radiation for
photosynthesis sources. The comparison of simulations and observations at the grid-cell level (Figure 10) reveals weak
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correlations with no statistical significance in high-latitude countries with low number of grid cells (e.g., Canada and Russia).

The models that lack sensitivity to daylength are observed to contribute to more uncertainty (Battisti et al., 2018b). Moreover, S (
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the low simulated yield in India, which has a hot climate characterized by high mean daily temperatures of 27,-28 °C

(Supplementary file Figure S5) and low soil moisture during the growing season, highlights the capacity of the model to capture
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regional climatic challenges that impact productivity. These climatic challenges likely exacerbate heat stress during critical

phenological stages, such as flowering and pod development, leading to reduced yields (Sinclair, 1986; Egli and Bruening,
2004). The contrasting regions of high and low soybean yields underscore the ability of the model to capture the complex
interplay between climate and crop yields across diverse agroecological zones.

6.2 Model strength and application

We developed MATCRO-Soy v.1, a process-based eco-physiological model that uses the Farquhar equation to simulate the
leaf-level photosynthesis. The Farquhar equation is a widely recognized framework in plant physiology that simulates the
biochemical mechanisms of photosynthesis by describing the relationships among light intensity, CO2 assimilation, and
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Rubisco enzyme activity (Farquhar et al., 1980; Scafaro et al., 2023). Through the integration of this equation into a gridded
global crop model, MATCRO-Soy enhances the simulation of soybean growth and productivity under environmental changes
to atmospheric COa, temperature, and water scarcity. These factors are important for predicting and understanding the
mechanism of the impact of climate change on productivity. The calibration of MATCRO-Soy successfully represented the
response of soybean growth to a wide range of climatic conditions, resulting in reliable global yield simulations using a single
parameterization. While simplification may introduce errors, global tuning effectively minimizes these discrepancies in
specific regions as this similar result also shown by Smith et al. (2014).

Improving photosynthetic efficiency is one of the key improvements, particularly through enhancing stomatal conductance
and modifying Rubisco, the enzyme responsible for carbon fixation (Xu et al., 2022). We used Vemax as a photosynthetic
parameter as it quantifies the Rubisco activity that is responsible for catalysing the conversion of carbon dioxide into organic
compounds. The peak Rubisco activity observed during the reproductive stage corresponds with trends in specific leaf nitrogen
and implicitly affected by the additional nitrogen fertilizer (La Menza et al., 2023). The consideration of nitrogen fixation is

d: (

important as it is sensitive to adverse environmental conditions, flooding, water deficit, and inadequate temperatures, all of
which reduce N: fixation (Santachiara et al., 2019).

The simulated yield, LAI, aboveground biomass, and pod biomass from MATCRO-Soy were further compared at the point-<-.

scale level with experimental datasets with distinct datasets used for each step of calibration and evaluation (T'able 3) prior to
global-scale evaluation (Supplementary file Figure S3). While point-scale simulations employed the unified global parameters,
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the results demonstrated reasonable agreement with a p value < 001, and a bias of 30-63, % for harvested yield, the seasonal b5

=

Table 3

leaf area index, aboveground biomass, and pod biomass. The highest bias was observed for the seasonal LAI, which aligns ‘ .
with the underestimation of Vemay, during critical growth stages. MATCRO-Soy can reproduce photosynthesis parameters

comparable to those of the observation data in site-scale analysis with overestimation in the reproductive stage (Figure 11,).

MATCRO-Soy effectively uses high-quality climate data, soil information, and nitrogen fertilizer data to capture
biophysical processes involved in soybean growth and yield formation based on previous studies. Its flexibility in spatial
resolution enables its application across various scales, from local studies to global assessments. Moreover, the structure of
MATCRO is easily coupled with climate models and atmospheric CO: to increase the accuracy of yield predictions through
high-quality data input. This adaptability also enables integration with other land models, making it a valuable tool in both
ecological and agricultural research. MATCRO-Soy can be continuously refined with new data and plant physiological
knowledge, ensuring that it remains robust and adaptable. This adaptability makes it a valuable for researchers and policy-
makers working towards sustainable agriculture and global food security.

Jhe strength of MATCRO-Soy lies in its ability to simulate key physiological processes of soybean growth (e.g.

‘ (Formatted: Font:
; (Formatted: Font:

1 (Formatted: Font:
A\ (Deleted: 001

Table 3

(psete

10 pt

10 pt

(Deleted: S2

10 pt

(Deleted: 20-60

(Formatted: Font: 10 pt

(Formatted: Font: 10 pt

(Formatted: Font: 10 pt, Subscript

(Formatted: Font: 10 pt
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for sensitivity analysis for further environmental impacts evaluation, such as effects of elevated CO> and temperature stress.
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The model has been shown to reasonably capture the temporal dynamics of yield formation, In addition to climatic factors,
variations in yield may be attributed to technological advancements, shifts in agricultural practices, and changes in crop
management strategies outside the scope of model can further improve the accuracy at the local scale. For example, including
pest and crop interaction may enhance the model’s capability to reflect local yield response to climate-driven pest dynamics
(Chen and Mccarl, 2001). The integration of crop models with remote sensing data will enhance its capability for monitoring
and predicting crop productivity at finer spatial scales (Basso et al., 2001), However, it is important to acknowledge the

sensing data will open new possibilities for monitoring and predicting
crop productivity at finer spatial scales (Basso et al., 2001). Climate
change may shift favourable conditions for high yields in the United
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soybean yields, making it essential for the model to project these
trends accurately for future agricultural planning.
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limitations of the model, particularly its ability to predict yield variations under extreme or rapidly changing climatic
conditions. Continuous updates of the experimental dataset are necessary to maintain its relevance and accuracy in predicting
future soybean yields.
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6.3 Model challenges and future directions

In the evaluation process, it is important to recognize the interannual variability and spatial variability. There are many grid
cells that have a low correlation (nonsignificant) of soybean yield between the simulated and observed values in Brazil when
considered in each single cell (Figure 9), but the correlation at the national-scale level is high (Figure 7). This means that local

(osta

climatic factors affect soybean yield in Brazil. However, MATCRO-Soy is able to recognize broader regional trends leading
to its aim at representing yield behaviour. Figure 12, presents the relative RMSE (RMSE value compared with the observation
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value) between the simulation and GDHY datasets for the detrended yield at the grid-scale. High relative RMSE values are

observed in some parts of Africa (particularly in Nigeria), the United States, India, and China. Lower relative RMSE values
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Uncertainty in MATCRO-Soy is reflected through the challenges in global-scale model evaluation related to the model TRMSE Ese—
assumptions of crop cultivars being homogenous globally and the upscaling parameters due to the lack of parameterization, Deleted: 00 010203 04 -

making it is unrealistic to reproduce the variability at the regional-scale with very high accuracy (Miiller et al., 2017; Zachle
and Friend, 2010). This uncertainty is notably pronounced in the global aggregation of yield simulations at the grid-cell scale.
Global aggregation can escalate substantially for specific combinations of aggregation units, crop model limitations, and years
(Porwollik et al., 2017). Future assessments of models and projections of crop yields will require careful consideration of the
significant contrast between different aggregation approaches used for individual countries or regions. To address this, we
used harmonized ISIMIP data to minimize methodological bias and emphasize the importance of flexible model development
for reducing uncertainty (Yin, 2013).

We found a large underestimation in 2002, and overestimation in 2009 when comparing the soybean yield simulated using
bias-corrected climate data was compared with FAO data (Figure 5). One possibility for these discrepancies in the interannual
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variability may be attributed to the influence of unaccounted extreme climatic events. Climatic events indicated by Oceanic
Nifio index, a three-month running mean of SST anomalies in the Niflo 3.4 region, show that La Nina was present at the end
0f 2002 and that El Niflo occurred at the end of 2009 (NOAA, 2024). Some regions within major soybean-producing countries
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1045 are significantly affected by El Nifio events, further influencing yield variability (Anderson et al., 2017; Tizumi et al., 2014).
Another possibility for the interannual variation in MATCRO-Soy tends to overestimate the long-term yield trend because of
the sensitive effect of the CO2 concentration on the carbon assimilation module.

While nitrogen fixation and uptake are implicitly constrained by the SLN parameter, an approach of carbon costs economics
explicitly represents the respiratory cost due to different nitrogen uptake pathways (Fisher et al., 2010). MATCRO-Soy

050 simplified the nitrogen fixation mechanism, which may have contributed to yield overestimation in low nitrogen input
countries (e.g. Bolivia and Russia). However, this model still presented relatively small bias in countries with high nitrogen
fertilizer application (e.g. China), as well as in countries with low nitrogen fertilizer input (e.g. the United States). This
highlights an opportunity for future model development to incorporate variable of respiratory costs in biological nitrogen
fixation. While limited empirical data across cultivars, environments, and management systems poses a challenge at the global

055  scale, addressing this would improve understanding of the physiological mechanisms under nitrogen-limited conditions.

The simulated yield increases throughout the year, driven by the positive effects of increased atmospheric COz, a (l‘ leted: ,
phenomenon known as the CO: fertilization effect, has been observed in studies by Long et al. (2005) and Sakurai et al. (2014). (r leted: as

NN

The CO: fertilization response may become a more prominent source of overestimation in future projections if the model
overestimates the crop response to elevated CO.. Compared with simulations using statistical radiation use efficiency (Ai and

060 Hanasaki, 2023), process-based models have this tendency because of the greater effect of CO: on the photosynthesis process, Deleted: (Ai and Hanasaki, 2023). This result is expected, as most
Therefore, further investigation is needed into the CO: sensitivity of MATCRO-Soy and other process-based models, as the of the simulated yield values were overestimated compared with the

B B N . N N reference data, except for the yield in Canada, which was due to the
downregulation of photosynthesis under elevated CO> conditions has been observed in the measurements (Ainsworth et al. low-temperature conditions.

2002; Zheng et al., 2019). This is especially important for adaptation studies, as reliable yield projections are critical for
designing effective adaptation strategies under future climate scenarios.

065 MATCRO-Soy simulations showed that MSD component of SB was the dominant contributor in the global and country-
level vield error. It indicates the bias was in the over or underestimation of average yield, rather than in variability of

discrepancy in the year-to-year yield pattern (Figure &). These results highlighted the model uncertainty in simulating mean (Deleted: Figure 8

vield for improvement in major soybean-producing countries with large cultivation areas. The model overestimated the long- CFormatted: Font: Not Bold
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term trend in some countries. Inaccurate representation of CO- fertilization effect may have contributed to the mean yield bias.

070 Other possible contributing factors for the bias are the simplified assumption of no respiratory costs for symbiotic nitrogen

fixation and insufficient representation of water stress responses. The accuracy of data input may partly reflect the inherent

gap between field experiment data and national average yields, which are influenced by local farming practices. While these

discrepancies between the country and global levels are insightful, it provides a valuable opportunity for model improvement.

Comparative studies with other soybean models and refining the MATCRO-Soy on the basis of these findings will

1075  contribute to a more comprehensive understanding of its capabilities and limitations. Incorporating additional datasets will

further enhance the model representation of real-world conditions. McCormick et al. (2021) suggested that integrating machine

learning models could improve accuracy through the calibration process with numerous datasets. However, the use of

mechanistic models embedded in MATCRO to simplify the process has proven valuable for understanding and predicting the

impacts of environmental factors on agricultural systems. This model can be used to identify potential adaptation strategies,

1080 such as changes in planting dates or the development of new crop varieties, to mitigate the adverse effects of climate change

on soybean production. However, the application of this model at the field-scale requires high-quality data input and local
parameter data.

7  Conclusions

We utilized MATCRO which incorporates carbon assimilation modules based on the C3 photosynthesis of the Farquhar (l‘ leted: utilize

1085 model, to simulate global soybean yield in terms of eco-physiological integrated gridded data inputs of climate, soil type, and
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nitrogen fertilizer. This study used experimental datasets and literature from previous studies to MATCRO-Soy to represent
soybean growth under various environmental conditions. An evaluation of the global mean yield revealed a statistical
correlation of 0.81 (p-value < 0.001) between the simulated and reported FAOSTAT data before the long-term yield trend was
removed. The correlation value decreased after the long-term yield trend was removed, with a Pearson correlations of 0.45 (p
<0.050), .52 (p < 0.001), and 56 % grid cells statistically greater than the significant value (p > 0.05) over 34 years (1981-

(Deleted: 51.2%

2014) for the global, top 10 countries, and grid cell levels, respectively. The model successfully captured long-term trends and
interannual variability, demonstrating its capacity to reflect the impacts of climate factors. Moreover, MATCRO-Soy also
modelled reasonable photosynthetic processes in site-scale study, which shows a strong ability to represent the temporal
variation. This result highlights the model’s reliability and adaptability as a tool for understanding soybean growth and yield
dynamics.

While MATCRO-Soy presents a valuable framework for understanding the impacts of climate change on global soybean
production, many localized factors that influence soybean yield due to the shifts in climate (e.g., pests and diseases) can lead
to discrepancies in yield prediction. This highlights the need for high-quality data input. The integration of CO> dynamics in
MATCRO enhances crop response modelling while providing the carbon fertilization effect in process-based models,
warranting further investigation along with the effects of other greenhouse gases. The model may benefit for further refinement,
particularly in its treatment of temperature extremes, transpirable soil water, and nitrogen uptake during the photosynthesis
process. Integrating MATCRO with other environmental models would enhance its applicability in agricultural management,
while emphasizing the necessity for field-scale calibration to improve the model's reliability. MATCRO-Soy provides an
opportunity to estimate changes in global soybean production under future land-use or climate change scenarios to address the
complexities of climate interactions with agricultural systems. Overall, the MATCRO-Soy has proven to be useful in
understanding eco-physiological processes at both the global scale and the country and grid cell levels, providing valuable
insights for agricultural management and climate change adaptation.

Code and data availability

This study used the model simulated by source code of MATCRO (Yusara et al, 2025) archived at
https://doi.org/10.5281/zenodo.14881385.
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