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Abstract. The sensitivity of streamflow to changes in driving variables such as precipitation and potential evaporation is a key 

signature of catchment behaviour. Due to increasing interest in climate change impacts, streamflow sensitivities derived from 

observations have become a widely used metric for catchment characterization, model evaluation, and observation-constrained 10 

projections. However, there remain open questions regarding the robustness and stationarity of empirically-derived 

sensitivities. In this paper, we revisit theoretical and empirical approaches to estimate streamflow sensitivities to precipitation 

and potential evaporation. First, we compare different estimation methods – primarily based on linear regression – using a 

synthetic dataset for which the sensitivities are known. Second, we extend this comparison and use two methods selected based 

on the previous analysis to estimate sensitivities for >1000 near-natural catchments. Third, we investigate how sensitivities 15 

change over time due to changes in the ratio between potential evaporation and precipitation (i.e., aridity index). Our results 

confirm that multiple regression is preferable to single regression, but that in presence of noise and correlation between 

precipitation and potential evaporation, even multiple regression methods can lead to high uncertainty, especially for potential 

evaporation. When analysing real catchments, sensitivity to precipitation is estimated consistently across methods, while 

sensitivity to potential evaporation is highly uncertain and often yields unrealistic values. Further, as the aridity index increases 20 

over time – a trend found in observational data – sensitivities decrease (by 22-70% over 50 years) and are thus non-stationary. 

These results should urge caution in the use of empirical streamflow sensitivities and call for further investigation. 
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1 Introduction 25 

In response to ongoing interest in climate change impacts, the sensitivity of streamflow to changes in climatic drivers has 

received considerable attention in recent years (e.g., Andréassian et al., 2016; Lehner et al., 2019; Zhang et al., 2023). In 

particular, sensitivities to precipitation, temperature, and potential evaporation are commonly used, though the concept can be 

extended to other driving variables that influence streamflow, such as storage (e.g., Berghuijs et al., 2016; de Lavenne et al., 

2022; Weiler et al., 2025; Zhang et al., 2023) or land cover changes (e.g., Anderson et al., 2022; Roderick & Farquhar, 2011; 30 

Steinschneider et al., 2013).  

Sensitivity is defined as the change in streamflow per unit change in a certain driving variable. This can be expressed in 

absolute terms (e.g., by how many mm streamflow changes per mm change in precipitation) or in relative terms (e.g., by how 

many %-points streamflow changes per 1% change in precipitation), the latter often being called elasticity (Andréassian et al., 

2016; Sankarasubramanian et al., 2001). We will define both terms more formally later on.  35 

One of the earliest studies explicitly mentioning the “sensitivity of water resource systems to climate variations” was by Němec 

& Schaake (1982), who used the Sacramento Soil Moisture Accounting model to estimate sensitivity of streamflow to changes 

in precipitation and potential evaporation for two contrasting basins (an arid and a humid one). This approach comprises one 

typical category of sensitivity studies, namely perturbation experiments using (process-based) simulation models of varying 

complexity (e.g., Němec & Schaake, 1982; Nijssen et al., 2001; Schaake, 1990). Another category are simple Budyko-type 40 

water balance models (Budyko, 1976), which provide analytical solutions describing the catchment water balance, typically at 

the climatological time scale. These models calculate streamflow and (complementary to this) actual evaporation as a function 

of precipitation, potential evaporation, and sometimes other factors (e.g., related to vegetation or land use), and can be used to 

obtain sensitivity estimates by taking partial derivates to the different driving variables (Andréassian et al., 2016; Dooge, 1992; 

Harman et al., 2011; Roderick & Farquhar, 2011; Sankarasubramanian et al., 2001). Lastly, empirical approaches have been 45 

used to derive sensitivities directly from observational data by means of data-based estimators or linear regression approaches 

(Andréassian et al., 2016; Chiew, 2006; Sankarasubramanian et al., 2001). Empirical approaches tend to invoke fewer 

assumptions and are observation-based, thus providing a benchmark for simple analytical models or complex process-based 

models. However, they are associated with uncertainty due to methodological choices and are influenced by the quality of the 

underlying observational data. 50 

When studying streamflow sensitivity, it is important to consider the time scale under investigation. Many studies focus on 

long-term average fluxes (i.e., the climatological time scale), as this is of direct interest when studying how catchments respond 

to changes in climatic conditions. To empirically derive long-term sensitivities, it is common to aggregate time series of 

streamflow and its driving variables into annual values and then make use of year-to-year variability to approximate how 

catchments respond to long-term changes (Andréassian et al., 2016; Sankarasubramanian et al., 2001). Alternatively, it has 55 
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been suggested to estimate sensitivities using multi-year averages (e.g., decadal averages; Zhang et al., 2022), though this 

requires long enough time series to be able to use non-overlapping blocks. In addition, it is worth noting that sensitivities can 

be assessed in many different ways – for example, by examining annual sensitivities in relation to sub-annual variations (e.g., 

warm and cold seasons; Ban et al., 2020), by considering different parts of the streamflow regime (e.g., multiple streamflow 

percentiles; Anderson et al., 2024), or by focusing on different time scales altogether (e.g., weekly sensitivities; Weiler et al., 60 

2025). 

Independent of how they are estimated, sensitivities (or elasticities) can be used in a variety of ways. They provide a model-

derived summary metric describing how a hydrological system responds to change (Němec & Schaake, 1982; Schaake, 1990). 

They can be used for direct projections of climate change effects using simple sensitivity models (Roderick & Farquhar, 2011) 

or observation-based regression approaches (Zhang et al., 2023). They can be used for model evaluation (Wagener et al., 2022) 65 

and for constraining model ensembles (Lehner et al., 2019). Lastly, they generally serve as means for catchment 

characterization (Addor et al., 2018) and thus are frequently used in catchment classification studies (e.g., Almagro et al., 

2024; Sawicz et al., 2011). 

Due to their widespread use in the context of climate change impact research (e.g., Lehner et al., 2019; Zhang et al., 2023), it 

is important to have a clear understanding of both the concept of sensitivity and the methods used to estimate it. Recent studies 70 

often reported unrealistic (i.e., positive) values for empirically estimated sensitivities to potential evaporation (Andréassian et 

al., 2025; Awasthi et al., 2024; Xiao et al., 2020), as well as non-stationarities in sensitivities and/or rainfall-streamflow 

relationships (Anderson et al., 2025; Fu et al., 2007; Matanó et al., 2025; Peterson et al., 2021; Saft et al., 2015; Tang et al., 

2019). This warrants a closer look at existing methods used to empirically estimate sensitivities. The central aim of this paper 

is therefore to test the robustness of different empirical estimation methods and then to investigate potential non-stationarity 75 

of sensitivities. To do so, we (1) test different approaches based on an analytical model for which sensitivities are known, (2) 

apply two selected methods to a large sample of near-natural catchments, and (3) explore how empirical sensitivities change 

over time using long streamflow time series. 
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2 Theory and methods 80 

In the following, we first present formal definitions of streamflow sensitivity and elasticity (Section 2.1) and introduce the 

different empirical estimation methods tested in this paper (Section 2.2). These methods are then both applied to a synthetic 

dataset based on an analytical model (described in Section 2.3) and to observational data (data sources described in Section 3). 

Finally, we investigate how sensitivities change over time, both theoretically and using observational data (Section 2.4). 

2.1 Definitions of sensitivity and elasticity  85 

Sensitivity s is defined as the absolute change in streamflow ΔQ per absolute change in a certain driving variable, here 

precipitation ΔP and potential evaporation ΔEp. ΔQ indicates the deviations at each time step t (here usually years) from the 

long-term average 𝑄̅; for example, for streamflow we get Δ𝑄 = 𝑄(𝑡) − 𝑄̅. The Δ notation is used here due to our focus on 

empirical sensitivities. When studying sensitivities using analytical equations, this becomes the (partial) derivative ∂. 

𝑠𝑃 =
𝛥𝑄

𝛥𝑃
(1) 90 

𝑠𝐸𝑝 =
𝛥𝑄

𝛥𝐸𝑝

(2) 

Elasticity e is closely related but focuses on percentage changes, so that both streamflow and its driving variables are 

normalised by their respective means  𝑄̅,  𝑃̅, and  𝐸𝑝
̅̅ ̅. 

𝑒𝑃 =
𝛥𝑄

𝑄̅
/

𝛥𝑃

𝑃̅
= 𝑠𝑃

𝑃̅

𝑄̅
(3) 

𝑒𝐸𝑝 =
𝛥𝑄

𝑄̅
/

𝛥𝐸𝑝

𝐸𝑝̅̅ ̅
= 𝑠𝐸𝑝

𝐸𝑝
̅̅ ̅

𝑄̅
(4) 95 

While both sensitivity and elasticity are dimensionless, they are often expressed in mm/mm or %/%, respectively.  

An interesting feature of elasticities is the hypothesis that there exists a so-called complementary relationship between eP and 

eEp (which is embedded in Eq. 10 in Dooge, 1992, even though he did not explicitly mention that term). This complementary 

relationship states that the elasticities to P and Ep should sum up to 1, which was shown to be a characteristic of any Budyko-

type equation where Q is solely determined by P and Ep (Zhou et al., 2015), but may not necessarily be true for real catchments. 100 

𝑒𝑃 + 𝑒𝐸𝑝 = 1 (5) 
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2.2 Estimation methods of empirical sensitivities 

We test several methods to calculate sensitivities empirically, all listed in Table 1. In addition to the commonly used non-

parametric method (Eq. 6; Sankarasubramanian et al., 2001), we use different regression-based methods (Andréassian et al., 

2016). These include single linear regression (Eq. 7), multiple linear regression using absolute annual values (Eq. 8), multiple 105 

linear regression using annual variations around the mean (Eq. 9) (both with the y-intercept set to 0), and log-linear regression 

(Eq. 10), which was recently proposed by Awasthi et al. (2024). Besides the regression coefficients, which represent the 

sensitivities, we can also calculate R² to check how much variance is explained by the different regression models and to 

investigate whether the unexplained variance shows any patterns in relation to the sensitivity estimates. 

Besides deciding on the equation to fit (e.g., single or multiple regression), we need to decide on the fitting method when 110 

applying regression analysis (e.g., ordinary least squares or more advanced methods). Earlier studies found that the fitting 

method has little influence on sensitivity estimates (Andréassian et al., 2016). We also tested different methods such as lasso 

or ridge regression (e.g., Dormann et al., 2013) and performed multiple regression sequentially (so-called stepwise partial 

regression), but found this to lead to negligible changes. We thus do not further investigate the influence of the fitting method. 

All methods are applied to annually averaged values. Since averaging of variables over more than a year has also been 115 

suggested in the literature (Andréassian et al., 2016; Zhang et al., 2022), we briefly tested this approach but found that it did 

not lead to improvements or additional insights (for neither the theoretical nor the observation-based analysis).  

 

Table 1: Methods used to empirically estimate streamflow sensitivity to precipitation and potential evaporation. 

 Name Short name Equation Comments References 

Non-parametric Nonpara. 
median(𝛥𝑄)

median(𝛥𝑃)
 and 

median(𝛥𝑄)

median(𝛥𝑃𝐸𝑇)
(6) 

Cannot account for 

combined effects of P 

and Ep 

Sankarasubramanian et 

al. (2001) 

Single regression Single Reg. 𝛥𝑄 = 𝑠𝑃𝛥𝑃 and 𝛥𝑄 = 𝑠𝑃𝛥𝑃𝐸𝑇(7) 

Cannot account for 

combined effects of P 

and Ep; same as 𝑄 = 
𝑠𝑃𝑃 + 𝑐 

Andréassian et al. (2016) 

Multiple regression #1 Mult. Reg. #1 𝑄 = 𝑠𝑃𝑃 + 𝑠𝑃𝐸𝑇𝑃𝐸𝑇(8) Intercept is set to 0 Introduced here 

Multiple regression #2 Mult. Reg. #2 𝛥𝑄 = 𝑠𝑃𝛥𝑃 + 𝑠𝑃𝐸𝑇𝛥𝑃𝐸𝑇(9) 
Same as 𝑄 = 𝑠𝑃𝑃 + 
𝑠𝑃𝐸𝑇𝑃𝐸𝑇 + 𝑐 

Andréassian et al. (2016) 

Log-log regression Mult. Reg. Log ln(𝑄) = eP ln(𝑃) + 𝑒𝑃𝐸𝑇 ln(𝑃𝐸𝑇) + 𝑐   (10) 

eP and eEET need to be 

rescaled by 𝑄̅/𝑃̅ 

and  𝑄̅/𝑃𝐸𝑇̅̅ ̅̅ ̅̅  to get 

sensitivities 

Awasthi et al. (2024) 
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2.3 Analytical model of streamflow sensitivity and synthetic dataset 120 

The Turc-Mezentsev model is a Budyko-type model that takes long-term average precipitation P, potential evaporation Ep, 

and a shape parameter n as input, and returns streamflow Q (and, complementary to that, actual evaporation Ea). The parameter 

n is often set between 2 and 3 (see e.g., Lebecherel et al., 2013). Here we use a value of n = 2.5 , was has been used in previous 

studies (Andréassian et al., 2016) and fits well with the observational data used here (observational data are described in 

Section 3; for a Budyko-type plot see Figure S1 in the Supplementary Information). We would like to stress that our focus 125 

here is not on obtaining a perfect fit, so the choice of n is not of major importance. 

The Turc-Mezentsev model can also be used to analytically calculate the sensitivity of Q to P and Ep (which may be 

summarised to the aridity index Ep/P) by calculating partial derivates, so that we obtain a single sensitivity curve, which is a 

function of the aridity index. The resulting curves for Q/P (as a reference), sP, and sEp are shown in Figure 1. 

𝑄/𝑃 = 1 −
(𝑃−𝑛 + 𝐸𝑝

−𝑛)
−

1
𝑛

𝑃
(11)

 130 

𝜕𝑄

𝜕𝑃
= 𝑠𝑃 = 1 − (1 + (

𝑃

𝐸𝑝

)

𝑛

)

−
𝑛+1

𝑛

(12) 

𝜕𝑄

𝜕𝐸𝑝

= 𝑠𝐸𝑝 = − (1 + (
𝐸𝑝

𝑃
)

𝑛

)
−

𝑛+1
𝑛

(13) 
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Figure 1: (a) Streamflow fraction of precipitation (shown as 1 - Q/P), (b) streamflow sensitivity to precipitation sP, and (c) streamflow 

sensitivity to potential evaporation sEp as a function of the aridity index (Ep/P), all based on the Turc-Mezentsev model (Eqs. 11-13). The 135 
grey lines in panel (a) indicate the water and energy limit, respectively. 

Equation 11 is – similar to other Budyko-type equations – usually applied at long time scales, for which changes in storage are 

negligible (so that P = Q + Ea). Accordingly, also the sensitivities (Eqs. 12 and 13) should be seen as sensitivities to long-term 

changes P and Ep. Here, we relax this assumption and use these equations to study year-to-year variability. We note that the 

same assumption is (implicitly) made in many sensitivity studies, which use year-to-year variability to estimate how 140 

catchments respond to long-term change, even though there is evidence that year-to-year variability in Q also responds to 

changes in, for instance, storage (Tang et al., 2020). For the theoretical analysis carried out here, this does not matter, as we 

test how well different methods can estimate sensitivities from synthetically generated data with the assumption that storage 

changes are zero. It will, however, matter when interpreting sensitivity estimates based on observational data. 

Based on the Turc-Mezentsev model, we create a synthetic dataset for which the actual sensitivities are known, which will 145 

serve as a baseline for the theoretical analysis that will follow. To do so, we first generate synthetic catchments with fixed 

long-term values of P and Ep that span a wide aridity gradient (both P and Ep range from 300 to 3000 mm/y). For each synthetic 

catchment, we then create 50 annual value pairs by sampling from a bivariate normal distribution with the standard deviations 

of P and Ep set to 15% and 5% of their means, respectively, and with a Pearson correlation ρP between P and Ep set to three 

different values: -0.5, 0, and 0.5. The standard deviations are chosen to be similar to the ones found in the observational dataset 150 

used (17% for P and 4% for Ep; data are described in Section 3). The correlation is added because P and Ep are regularly 
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correlated in empirical data (ρP averages -0.42 for the catchments used here) and this is known to affect sensitivity estimates 

(e.g., Chiew et al., 2014). Note that we use Pearson correlation ρP for the generation of correlated data, but in all other cases 

we use the more robust Spearman rank correlation ρS to quantify the strength of variable associations. Having created synthetic 

P and Ep data, we use the Turc-Mezentsev model to calculate Q for each annual pair of P and Ep (Eq. 11) as well as the 155 

sensitivities corresponding to the long-term values of P and Ep (Eqs. 12 and 13).  

In addition, we investigate the influence of data uncertainty, which affects every hydrological variable (McMillan et al., 2012, 

2018). To do so, we added normally distributed noise to P, Ep, and Q (after they have been generated). We use 2.5% of each 

variable’s mean as standard deviation, so that about 95% of the data will fall within ±5% of the mean (±2 times the standard 

deviation). While observational uncertainty is often estimated to be around 10% or higher, especially for precipitation 160 

(McMillan et al., 2012, 2018), these values are not directly comparable, as data uncertainty is often systematic (e.g., due to 

precipitation undercatch) and might be partly averaged out when using annual sums. Since the main aim here is to investigate 

the potential impact of data uncertainty, we decided to use a standard deviation of 2.5%, bearing in mind that the actual impact 

may vary depending on the actual uncertainty of the different variables. 

Overall, we obtain 6 synthetic scenarios: three different strengths of correlation, each without and with random noise. The 165 

different sensitivity estimation methods (Table 1) are then used to derive sensitivities sest, which are compared to the actual 

sensitivities sact (Eqs. 12 and 13). This is done both visually and by quantifying the relative error as erel = (sest – sact)/ sact [%], 

which is then averaged across all samples by taking the arithmetic mean.  

2.4 Temporal analysis  

As can be seen from Equations 12 and 13, the streamflow sensitivities themselves depend on the aridity index, so that a change 170 

in aridity will lead to a change in the sensitivities. We can therefore also use the analytical model to check how typical temporal 

trends found for P and Ep translate into trends in sensitivities (or elasticities). To do so, we calculate sensitivities over 20-year 

moving blocks in a longer time series (at least 50 years), resulting in time series of at least 30 years of sensitivity estimates. 

To calculate trends of sensitivities over time, we use the Theil-Sen trend slope estimator (Sen, 1968). In order to calculate 

relative trends (in %), we normalize the trends by the sensitivities calculated in the first 20-year block. 175 
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3 Data 

In addition to synthetic data, we also test different sensitivity estimation methods using observational data. Using different 

large sample datasets, we select catchments according to the following criteria: we only keep time series with less than 5% 

missing values, at least 30 years in length, a fraction of precipitation falling as snow < 0.2, and where Q does not exceed P. 180 

For the analysis, all the time series are aggregated to annual values based on the water year. Details are reported in Table 2. 

We always use national forcing products to ensure high quality forcing data, as global products were reported to be associated 

with substantial uncertainties (Clerc-Schwarzenbach et al., 2024) for CAMELS-US and CAMELS-GB. We also made a brief 

comparison for CAMELS-AUS and CAMELS-DE. When comparing SILO and AGCD forcing data for Australia (both 

national products), the sensitivities remain similar (Spearman rank correlation ρS = 0.99 and 0.97, mean absolute difference = 185 

0.03 and 0.02, respectively). When comparing DWD-HYRAS and Caravan-based ERA5 (Kratzert et al., 2023) forcing data 

for Germany, the sensitivities change slightly (ρS = 0.94 and 0.86, mean absolute difference = 0.08 and 0.09, respectively). We 

will come back to the issue of reliably estimating Ep in the discussion, but note that this is not the main focus here.  

For the trend analysis, we focus on CAMELS-DE and CAMELS-AUS due to availability of long time series and only kept 

catchments with at least 50 years of data.  190 

Table 2: Datasets used in the study and some of their characteristics. WY denotes the start of the water year (for Germany, October is used 

instead of November for consistency). 

 Dataset Country WY Forcing products Subset # total # temporal  References 

CAMELS

-US 
USA October 

P: Daymet 

Ep: Daymet (calibrated 

Priestley-Taylor equation) 

Entire dataset (reference 

gauges; see Newman et al. 

2015) 

482 - 

Addor et al. 

(2017b); 

Newman et 

al. (2015) 

CAMELS

-GB 

Great 

Britain 
October 

P: CEH-GEAR  

Ep: CHESS-PE (Penman-

Monteith)  

UK benchmark dataset 

(Harrigan et al., 2018) 
119 - 

Coxon et al. 

(2020a) 

CAMELS

-AUS 
Australia July 

P: AGCD 

Ep: SILO (Morton wet- 

environment) 

Entire dataset (hydrological 

reference stations), 

additionally filtered based 

on “river_di < 0.2” 

355 209 
Fowler et al. 

(2024) 

CAMELS

-DE 
Germany October 

P: DWD-HYRAS  

Ep: DWD-HYRAS 

(Hargreaves) 

Based on reference stations 

included in ROBIN (Turner 

et al., 2025) 

165 144 
Loritz et al. 

(2024) 

Total -  - - 1121 353 - 
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4 Results 

4.1 Comparison of sensitivity estimation methods using an analytical model 195 

The analytical Turc-Mezentsev model allows us to test the different sensitivity estimation methods (Table 1) and compare 

them to theoretical values, thereby illustrating how the methods perform under known conditions. Figures 2 and 3 show the 

resulting sensitivity estimates for all methods as a function of the aridity index. Table 3 lists the relative errors, which are also 

visualised as bar plot in Figure S2 in the Supplementary Information.  

Overall, the estimation of streamflow sensitivities to potential evaporation sEp results in much larger relative errors than for 200 

sensitivities to precipitation sP. The smallest relative errors are obtained in absence of noise and with no correlation between 

P and Ep (erel from -2 to 6%). In presence of noise, the performance degrades for most methods, especially for sEp. For sP, 

multiple regression methods #1 and #2 lead to the lowest relative errors overall (average absolute erel = 2%), followed by log-

regression (5%). For sEp, multiple regression method #1 leads to the lowest relative error overall (average absolute erel = 6%), 

followed by method #2 and log-regression (both 12%).  205 

When P and Ep are correlated, the nonparametric method and single regression (i.e., methods that do not account for both P 

and Ep) lead to large and systematic errors. For instance, with negative correlations of -0.5, streamflow sensitivities to 

precipitation (erel from 6 to 10%) and to potential evaporation (erel from 231 to 314%) are – on average – systematically 

overestimated (Table 3). By contrast, when correlations are set to +0.5, sP (erel from -12 to -10 %) and sEp (erel from -311 to -

266%) are systematically underestimated. For multivariate methods, the relative errors are much smaller, but we still find 210 

systematic errors, especially for sEp and in presence of noise. For instance, with negative correlations of -0.5 and with noise, 

method #1 underestimates sEp by -7%, while method #2 and log-regression both underestimate it by -14% (see also Figure 3). 

Yet even when P and Ep are not correlated, we find systematic underestimation of sEp (erel from -9 to -19%). 

Table 3: Relative errors erel [%], rounded to full percentages, and absolute average of the relative errors for the different estimation methods. 

Figure S2 in the Supplementary Information also shows the values as bar plots. 215 
Variable/ 

Method 

ρP = -0.5 

No noise 

ρP = 0.0 

No noise 

ρP = +0.5 

No noise 

ρP = -0.5 

With noise 

ρP = 0.0 

With noise 

ρP = +0.5 

With noise 

Average 

(absolute) 

sP        

Nonpara. 9 0 -10 6 -3 -12 7 

Single Reg. 10 0 -10 7 -3 -12 7 

Mult. Reg. #1 1 0 0 -2 -3 -6 2 

Mult. Reg. #2 0 0 0 -1 -3 -6 2 

Mult. Reg. Log 8 6 4 6 3 -1 5 

SEp        

Nonpara. 313 4 -311 232 -18 -267 191 

Single Reg. 314 2 -309 231 -19 -266 190 

Mult. Reg. #1 -1 -2 -2 -7 -9 -13 6 

Mult. Reg. #2 3 2 1 -14 -19 -33 12 

Mult. Reg. Log 3 5 5 -14 -16 -29 12 
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Figure 2: Streamflow sensitivity to precipitation as a function of the aridity index. Theoretical values are based on the Turc-Mezentsev 

model, fed with precipitation and potential evaporation values that exhibit different degrees of correlation and noise to simulate real 

observations. The estimates resulting from the different methods are shown as point clouds with a LOESS regression (the fraction of data 220 
points which influence the smoothing at each value is set to 0.1) to aid visualization.  
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Figure 3: Streamflow sensitivity to potential evaporation as a function of the aridity index. Theoretical values are based on the Turc-

Mezentsev model, fed with precipitation and potential evaporation values that exhibit different degrees of correlation and noise to simulate 

real observations. The estimates resulting from the different methods are shown as point clouds with a LOESS regression (the fraction of 225 
data points which influence the smoothing at each value is set to 0.1) to aid visualization.  

4.2 Comparison of sensitivity estimation methods using observational data 

Since the Turc-Mezentsev model is a very simplified representation of reality, methods that perform well compared to the 

theoretical values may not perform well based on observational data that are influenced by more than just P and Ep (e.g., 

storage changes from year to year) and that are subject to other types of uncertainty (e.g., systematic bias). Hence, we now 230 

apply two selected methods to a large sample of near-natural catchments. We decided to focus only on methods #1 and #2, 

since log-regression leads to very similar results as method #2 and all univariate methods lead to poor performance if P and 

Ep are correlated (see Figures 2 and 3). This is indeed the case for most catchments, with Pearson correlation ρP between P and 

Ep in the observational data being mostly negative and averaging -0.42 (see Figure S3 in the Supplementary Information). 
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When applying methods #1 and #2 to observational data, we find good agreement between the two methods for sP (Spearman 235 

rank correlation ρS = 0.96) and little agreement for sEp (ρS = 0.07), shown in Figure 4. In particular, we find that 52% of values 

for sEp are positive when using method #2, while it is only 3% when using method #1. Theoretically, we would expect sEp to 

be negative, as an increase in evaporative demand should be related to a decrease in streamflow. In terms of explained variance 

by the multiple regression methods, the two methods perform similar. The overall median R2 is 0.65 for #1 and 0.68 for #2, 

indicating an acceptable fit but also substantial variation left unexplained. 240 

  

Figure 4: Comparison of streamflow sensitivity to (a) precipitation (ρS = 0.96) and (b) potential evaporation (ρS = 0.07) calculated using 

multiple regression methods #1 and #2 with observations from 1121 catchments. The grey dashed line shows the 1:1 line. 

Since there is little difference for sP and method #1 provides the most realistic values for sEp, we now compare the empirically 

estimated sensitivities from method #1 to the Turc-Mezentsev model, shown in Figure 5. Overall, both sP and sEp follow the 245 

theoretical pattern and decrease with increasing aridity. However, the theoretical values tend to be underestimated and there is 

a larger spread for sEp. We also note that R2 tends to be smaller for catchments further away from the theoretical curves (see 

Figure S4 in the Supplementary Information). The results are similar for elasticities (see Figure S5).  

Another way to visualise the resulting sensitivities is to plot sP and sEp against each other, which is shown in Figure 6 with 

each catchment coloured according to its aridity index. We can see that the Turc-Mezentsev model leads to a single curve, 250 

meaning that each sP is associated with a unique sEp, both being a function of the aridity index (cf. Eqs. 12 and 13). The same 

holds true for elasticities eP and eEp, which plot as a straight line that follows the so-called complementary relationship 

(𝑒𝑃 + 𝑒𝐸𝑝  = 1). The empirical patterns roughly follow the analytical ones in the case of sensitivities, and almost show a perfect 

match for elasticities. Note, though, that this refers to the overall pattern and not individual catchments, which may sit on the 

theoretical line but at the wrong location with respect to their aridity index. 255 
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Figure 5: Streamflow sensitivity to precipitation (a) and potential evaporation (b) calculated using multiple regression method #1 with 

observations from 1121 catchments. Both panels show empirically calculated values (dots) and theoretical values based on the Turc-

Mezentsev model (solid lines). Note that the y-axes are capped for better visibility and that two catchments plot above 0.5 for sEp. 

    260 

Figure 6: (a) Streamflow sensitivity to precipitation plotted against streamflow sensitivity to potential evaporation. (b) Streamflow elasticity 

to precipitation plotted against streamflow elasticity to potential evaporation. Both panels show empirically calculated values (dots in the 

back) and theoretical values based on the Turc-Mezentsev model (line in front), coloured according to the aridity index. The grey dashed 

line starts at the origin and has a slope of -1, so that values plotting above it imply that sP > sEp (a) and eP > eEp (b). 
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4.3 Change of sensitivities over time  265 

The strong relationship between streamflow sensitivity and aridity index found when comparing many catchments (Figure 5) 

suggests that a change in aridity index over time will also lead to changes in sensitivities for individual catchments. 

Theoretically, the Turc-Mezentsev model predicts a decrease (in absolute terms) in both sensitivities as aridity increases. Using 

sufficiently long observational records, we can calculate actual trends using sensitivity estimates over different time blocks 

(here based on method #1) and compare them to theoretical trends (via Eqs. 12 and 13) based on observed changes in 270 

precipitation and potential evaporation (and thus aridity index).  

The resulting trends are shown in Table 4 and Figures 7 and 8. We find an increase in the aridity index over time, especially 

in Germany. Accordingly, the sensitivities decrease (in absolute terms) over time in all cases. However, the trend magnitudes 

are stronger in observational data (between -26% and -70%) than in the analytical model (between -6% and -22%). In Germany, 

we generally find lower sensitivities than based on Turc-Mezentsev, but the trends in the observational data are larger (-26% 275 

vs. -6% for sP and -70% vs. -11% for sEp). In Australia, both the sensitivities and the trends are relatively close to the analytical 

model (-27% vs. -15% for sP and -35% vs. -22% for sEp), except for sP at the beginning of the time period (around 1980). 

In absolute terms, most of the observed trends are in the order of around 0.15, meaning that at the end of the 50-year period a 

catchment that originally experienced a decrease of 0.5 mm in Q per mm decrease in P would now experience a decrease of 

only 0.35 mm in Q per mm decrease in P. Conversely, an increase in Ep at the end of the time period would lead to a smaller 280 

absolute reduction in Q, even though Ep related trends are likely less reliable given the uncertainty discussed previously. 

Table 4: Absolute and relative trends of streamflow sensitivities. Relative trends are normalised with the value from the first year. 

  Empirical [-/50y] Analytical [-/50y] Empirical [%/50y] Analytical [%/50y] 

Germany     

sP -0.16 -0.05 -26 -6 

sEp +0.16 +0.07 -70 -11 

Australia     

sP -0.15 -0.07 -27 -15 

sEp +0.08 +0.05 -35 -22 
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 285 

Figure 7: Change of streamflow sensitivities and other variables over time for 144 catchments in Germany. Shaded areas indicate the 25th 

and 75th percentiles and thick lines indicate the median of all catchments. Dashed lines indicate the trends calculated with the Turc-Mezentsev 

model for the sensitivities based on observed P and Ep data. Sensitivities are calculated over 20-year blocks with the middle year shown 

(e.g., 1980 indicates a block from 1970 to 1990).  

 290 

 

 

Figure 8: Change of streamflow sensitivities and other variables over time for 209 catchments in Australia. Shaded areas indicate the 25th 

and 75th percentiles and thick lines indicate the median of all catchments. Dashed lines indicate the trends calculated with the Turc-Mezentsev 

model for the sensitivities based on observed P and Ep data. Sensitivities are calculated over 20-year blocks with the middle year shown 295 
(e.g., 1980 indicates a block from 1970 to 1990). 
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5 Discussion 

5.1 Comparison of sensitivity estimation methods using an analytical model 

Overall, univariate methods are unreliable in presence of correlation between P and Ep, which is the case for most catchments 300 

studied here (average ρP = -0.42). While the limitation of univariate methods has been reported before (e.g., Andréassian et 

al., 2016), our results explicitly link errors in univariate methods to the correlation between P and Ep. In addition, even 

multivariate methods show systematic deviations from the analytical curves. While the multivariate methods always lead to 

an underestimation of sEp (i.e., less negative values) in presence of noise, the curves shown in Figure 3 still tend to be more 

negative on average for ρP = -0.5 and more positive on average for ρP = -0.5, which is the same general pattern as for the 305 

univariate methods. It is sometimes argued that multiple regression accounts for the correlation between predictors, yet this 

statement may be a bit misleading. Multiple regression estimates the effect of one predictor while holding the others constant, 

but strong correlations between predictors (multicollinearity) can inflate standard errors and produce poorly conditioned 

coefficients that are highly sensitive to small changes in the data (Dormann et al., 2013). In presence of strong correlations 

(e.g., when wet years are typically associated with reduced potential evaporation), there is little variation in one predictor that 310 

does not overlap with the other, making it difficult to estimate unique effects. 

Multivariate methods perform relatively reliable for sP (2-5% relative error on average), but they are less reliable for sEp (6-

12% relative error on average). The absolute values of sEp are always smaller than for sP for a given aridity index (see e.g., 

Figure 7a, where all theoretical values plot above the dashed line) and so is their year-to-year variability (standard deviation 

was set to 15% for P and 5% for Ep), which could explain why sEp is generally more difficult to estimate. This is substantiated 315 

by two additional checks (not shown here): if we increase the noise (smaller signal-to-noise ratio), the relative errors for both 

sP and sEp increase; and if we increase the year-to-year variability of Ep in comparison to P, the relative errors for sP and sEp 

become higher and lower, respectively.  

Overall, the general underestimation (in absolute terms) of sEp in presence of noise might thus largely be due to relatively little 

variation in Ep compared to P and to noise (cf. regression dilution), with additional bias due to correlation between P and Ep. 320 

While there are other regression methods that could be tested, our results suggest that the problem lies not primarily in the 

fitting method, but rather in general limitations of using (multiple) regression to estimate sensitivities from noisy and correlated 

data. In summary, despite the simplicity of our synthetic experiment, it illustrates that none of the methods can reliably estimate 

the sensitivities in all cases, suggesting similar or larger uncertainties for observational data. 
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5.2 Comparison of sensitivity estimation methods using observational data 325 

5.2.1 Uncertainty in empirical sensitivity estimates 

Overall, multiple regression methods #1 and #2 lead to similar values for sP, but show large disagreement for sEp. This generally 

agrees with the results using the analytical model, which also showed larger disagreement for sEp. As discussed in Section 5.1, 

absolute values of sEp are always smaller than for sP, and previous studies also reported that changes in precipitation dominate 

the streamflow response of catchments (Berghuijs et al., 2017; Zhang et al., 2023). In addition, year-to-year variability in Ep 330 

(standard deviation of 4% on average) tends to be smaller than for P (17%), so that the already smaller sEp might be more 

difficult to constrain empirically, since the signal-to-noise ratio is relatively low (cf. Chiew et al., 2014). Alternative options 

which may help to constrain sensitivity values through regionalisation are pooled regression methods (e.g., panel regression; 

Anderson et al., 2025; Awasthi et al., 2024). This may allow robust estimation at the regional scale, although at the expense 

of unreliable sensitivity estimates at individual locations.  335 

More than half of the values based on method #2 are larger than zero, which would suggest an increase in streamflow with 

increasing Ep. This cannot be generally attributed to concurrent increases in P, because P and Ep are anti-correlated. A 

considerable fraction of positive or zero values for sensitivities (or elasticities) to potential evaporation or temperature was 

also reported in other papers (Anderson et al., 2022; Andréassian et al., 2016, 2025; Awasthi et al., 2024; Xiao et al., 2020; 

Zhang et al., 2023). While this may be perceivable in certain circumstances (e.g., when warmer years are associated with 340 

increased precipitation intensity, or due to melt water contributions) it is unrealistic for this to occur in more than half of all 

catchments, casting doubt on the reliability of these sensitivity estimates. Alternatively, if these sensitivities were to capture 

actual catchment behaviour, it would imply that both simple Budyko-type and more complex simulation models, which usually 

show negative sensitivities to Ep (e.g., Roderick & Farquhar, 2011; Xiao et al., 2020), omit or misrepresent crucial processes 

related to evaporation. While method #1 leads to values of sEp that mostly fall between -1 and 0, these values are often relatively 345 

small compared to the Turc-Mezentsev model. This might partly be a consequence of the method, which showed systematic 

underestimation in the synthetic experiment (Figure 3). Hence, these sEp estimates should also be interpreted with caution. 

5.2.2 Patterns in empirical streamflow sensitivities and influence of catchment storage processes 

Comparing observation-based sensitivities to the Turc-Mezentsev model, we find that both sP and sEp tend to be lower in 

observational data. Since Turc-Mezentsev is a climate-only model, actual sensitivities to climate (P and Ep) are lower in real 350 

catchments where other factors matter, too. These include storage processes, seasonal offset between P and Ep, snow, and 

various other factors that were shown to influence streamflow sensitivities (e.g., Andréassian et al., 2025; Weiler et al., 2025; 

Zhang et al., 2023). Still, especially sP follows the theoretical pattern relatively well, substantiating the strong influence of the 

aridity index on streamflow sensitivities. Note that in less strictly filtered catchment datasets (see Section 2.5), the scatter is 

likely larger due to other influences, such as human interventions in the water cycle. 355 
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The catchments that fall further away from the Turc-Mezentsev curves tend to have lower R² (ρS between sensitivity and 

relative deviation from the curve is 0.53 for sP and 0.21 for sEp), substantiating the idea that other predictors not included in 

the regression model matter, too. Though not the main focus of the paper, we briefly considered several other variables 

commonly hypothesised to influence annual Q variability apart from P and Ep (storage, seasonality, and snow fraction). In 

particular, we tested if the differences between the Turc-Mezentsev-based sensitivities and the empirically estimated 360 

sensitivities are correlated with any of these variables. We found a relatively strong correlation  (ρS = -0.46 for both sP and sEp) 

between the deviation from the Turc-Mezentsev curve and the baseflow index (baseflow divided by total streamflow, with 

baseflow estimated using a digital filter; UKIH, 1980), indicating the importance of storage processes. We thus also fitted a 

regression model that includes a storage term, here approximated by the average streamflow from the previous year (see Figure 

S6 in the Supplementary Information). This led to two main insights. First, the median R² increased from 0.65 to 0.69, 365 

suggesting that the storage term adds some, but not much, explained variance. Second, sP and sEp stayed almost the same, 

indicating that the storage term only explains additional variance not captured by the other sensitivities, but does not change 

their values. While additional variables can therefore be included in the sensitivity calculation, it is worth nothing that (unlike 

here) this could lead to changes in the sensitivity estimates. If the sensitivities depend on the regression model fitted, 

interpretation of the resulting regression coefficients becomes more challenging. Also, regression models with many predictors 370 

increase the risk of overfitting (e.g., to certain combinations of catchments with specific correlation structures), especially 

when predictors are correlated or the signal-to-noise ratio is low. Thus, while including additional variables may increase our 

understanding of the drivers of (annual) streamflow variations (e.g., Andréassian et al., 2025), it also necessitates a close look 

at the meaning and robustness of the resulting sensitivity estimates. 

5.2.3 The complementary relationship 375 

Interestingly, method #1 appears to enforce the so-called complementary relationship (Awasthi et al., 2024; Dooge, 1992; 

Zhou et al., 2015). This might be due to the nature of the equation used. If we reformulate Eq. 8 and substitute the sensitivities 

with elasticities, we get: 

𝑄 = 𝑠𝑃𝑃 + 𝑠𝐸𝑝𝐸𝑝 = 𝑒𝑃

𝑄

𝑃
 𝑃 + 𝑒𝐸𝑝
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𝑄

𝑃
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𝑄
= 𝑒𝑃

𝑄

𝑃
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𝑄

𝐸𝑝
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(𝑄 + 𝛥𝑄)
 380 

If we assume that the fluctuations are much smaller than the means, the means cancel out and we get: 1 ≈ 𝑒𝑃  + 𝑒𝐸𝑝.  
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While the complementary relationship should hold if catchments follow Budyko-type behaviour (i.e., Q is solely controlled 

by variability in P and Ep), real catchments do not necessarily behave that way. As soon as other factors (e.g., storage, changes 

in vegetation, human impacts) strongly affect a catchment’s water balance and/or its sensitivity, we should not expect the 

relationship to hold. It is worth noting that the complementary relationship may be extended to account for elasticities to any 385 

number of driving variables (cf. Zhou et al., 2015). Yet, this should only be valid if all (major) drivers of streamflow variability 

are accounted for and in absence of large uncertainties. Overall, the so-called complementary relationship can thus be used to 

constrain sensitivity estimates, but also invokes assumptions that should be stated and assessed. 

5.2.4 Other uncertainties and limitations 

There are various sources of uncertainty when working with observational data, which will affect empirically estimated 390 

sensitivities. Besides measurement uncertainty, catchment averages of P and Ep rely on spatial interpolation procedures that 

introduce uncertainty (McMillan et al., 2012, 2018). These uncertainties are typically not purely random and may affect 

empirically estimated sensitivities in systematic ways. For instance, systematic underestimation of P (especially its variability) 

will lead to lower sensitivities. But even random uncertainties can affect sensitivity estimated based on linear regression, since 

large uncertainties compared to natural variability (i.e., a low signal-to-noise ratio) will impact the accuracy of regression 395 

coefficients, as shown in the synthetic experiment. 

To minimise uncertainties arising from observational data, we selected catchments that are relatively unimpacted and come 

with long, mostly complete time series. We also only used national forcing products, since they are usually less uncertain than 

global products (Clerc-Schwarzenbach et al., 2024). In the case of the German catchments, for instance, the Hargreaves Ep 

estimates contained in CAMELS-DE differ substantially from Penman-Monteith Ep estimates (ρS = 0.38) contained in Caravan. 400 

Independent of whether we deem the national Ep estimates to be more realistic, the large differences suggest considerable 

uncertainty. More generally, since Ep is not a measurable but a modelled quantity, it is also associated with substantial 

conceptual uncertainty. One alternative option would be the use of net radiation (normalised by latent heat of vaporisation) 

directly to avoid the use of a model for estimating potential evaporation, which may become even more uncertain when looking 

at climate projections (cf. Milly & Dunne, 2016).  405 

5.3 Change of sensitivities over time 

When investigating long time spans (50 years), we find that – in accordance with the analytical model – the sensitivities 

decrease as aridity increases. This finding is mirrored in results previously reported for elasticities in the US (Anderson et al., 

2025), though the trends there were less clearly expressed, differed between regions, and were not explicitly related to trends 

in aridity. While not directly comparable, the relative trends estimated here (decrease between -26% and -70%) are in a similar 410 

range as the relative variations in interannual elasticity compared to long-term elasticity estimates (between 4 and 48%) found 
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by Anderson et al. (2025), which also showed lower elasticity in hot and dry years. This suggests that temporal changes in 

sensitivities of that order of magnitude are a more widespread phenomenon. 

Overall, both sP and sEp decrease by more than 20% over 50 years, suggesting that sensitivities may not be robust metrics for 

mid- to long-term projections. This holds true even without considering other factors that might influence the water balance in 415 

a future with elevated CO2 concentrations (e.g., interactions between P and Ep, or changes in stomatal conductance). At the 

same time, the change in sensitivity may be roughly estimated and projections adjusted accordingly, especially if trends are 

clearly expressed in empirical observations, as is the case for the Australian catchments. For the German catchments, the 

decrease is larger than predicted by the analytical model and the sensitivities themselves are much lower than the Turc-

Mezentsev estimates. This might be due to due to data issues (especially Ep), or because these catchments are less climate-420 

driven on average, for instance due to human impacts, changes in land cover, or larger influence of catchment storage.  

 

6 Conclusion 

A systematic comparison of empirical, primarily regression-based, methods for estimating streamflow sensitivities to 

precipitation and potential evaporation indicates that streamflow sensitivity estimates are often highly uncertain, especially for 425 

potential evaporation. This applies both to a synthetic experiment using an analytical model (Turc-Mezentsev) and to 

observations from >1000 near-natural catchments, and can also be transferred to streamflow elasticities. While multivariate 

regression methods are preferable over univariate methods, the commonly employed multiple regression approach resulted in 

unrealistic streamflow sensitivities to potential evaporation for the majority of catchments studied here. Using a variant of 

multiple regression (with an intercept of zero) resulted in the lowest relative errors in the synthetic experiment and leads to 430 

fewer unrealistic values when applied to observational data, likely because it enforces the complementary relationship (which 

states that elasticities to P and Ep should sum up to 1). While this method therefore appears preferable, it invokes strong 

assumptions and may still underestimate (or poorly estimate) sensitivities to potential evaporation. One possible reason for the 

difficulty in estimating sensitivity to potential evaporation is the low year-to-year variability in potential evaporation compared 

to precipitation and compared to observational uncertainty. Using unrealistic estimates of sensitivities to potential evaporation 435 

may be particularly problematic in regions where climate change impacts are largely driven by changes (typically increases) 

in evaporative demand and not precipitation totals, as is the case for Germany. In such instances, sensitivity-based projections 

may be deemed unreliable even if sensitivity to precipitation is accurately estimated. In addition, both theoretical and empirical 

results show that sensitivities decrease over time as aridity increases, indicating that static sensitivities may be unreliable for 

projections of climate change impacts. These results should therefore urge caution in the use of empirical sensitivities for both 440 

short-term and long-term projections, highlighting the need for further investigation. 
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CAMELS-US is available at https://dx.doi.org/10.5065/D6MW2F4D and https://doi.org/10.5065/D6G73C3Q  (Addor et al., 

2017; Newman et al., 2014). CAMELS-GB is available at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9 445 

(Coxon et al., 2020b). CAMELS-AUS v2 is available at https://zenodo.org/records/14289037 (Fowler et al., 2024). CAMELS-

DE is available at https://zenodo.org/records/13837553 (Dolich et al., 2024). Caravan is available at 
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https://github.com/SebastianGnann/Streamflow_sensitivities and will be permanently archived upon acceptance of the 

manuscript. Code development was aided by Perplexity and GitHub Copilot.  450 

Author contribution 

SG conceived the study, refined it based on discussions with all co-authors, and performed all analyses. SG prepared the 

manuscript with contributions from all co-authors. 

Competing Interests 

MW is a member of the editorial board of the journal Hydrology and Earth System Sciences. 455 

Acknowledgements 

We thank Felix Radtke for providing insights on streamflow elasticities in Germany and Carsten Dormann for advice on 

multiple regression methods. 

  

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



23 

 

References 460 

Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., & Clark, M. P. (2018). A Ranking of Hydrological Signatures 

Based on Their Predictability in Space. Water Resources Research, 54(11), 8792–8812. 

https://doi.org/10.1029/2018WR022606 

Addor, N., Newman, A. J., Mizukami, N., & Clark, M. P. (2017a). Catchment attributes for large-sample studies. 

UCAR/NCAR. https://doi.org/10.5065/D6G73C3Q 465 

Addor, N., Newman, A. J., Mizukami, N., & Clark, M. P. (2017b). The CAMELS data set: Catchment attributes and 

meteorology for large-sample studies. Hydrology and Earth System Sciences, 21(10), 5293–5313. 

https://doi.org/10.5194/hess-21-5293-2017 

Almagro, A., Meira Neto, A. A., Vergopolan, N., Roy, T., Troch, P. A., & Oliveira, P. T. S. (2024). The Drivers of Hydrologic 

Behavior in Brazil: Insights From a Catchment Classification. Water Resources Research, 60(8), e2024WR037212. 470 

https://doi.org/10.1029/2024WR037212 

Anderson, B. J., Brunner, M. I., Slater, L. J., & Dadson, S. J. (2024). Elasticity curves describe streamflow sensitivity to 

precipitation across the entire flow distribution. Hydrology and Earth System Sciences, 28(7), 1567–1583. 

https://doi.org/10.5194/hess-28-1567-2024 

Anderson, B. J., Slater, L. J., Dadson, S. J., Blum, A. G., & Prosdocimi, I. (2022). Statistical Attribution of the Influence of 475 

Urban and Tree Cover Change on Streamflow: A Comparison of Large Sample Statistical Approaches. Water 

Resources Research, 58(5), e2021WR030742. https://doi.org/10.1029/2021WR030742 

Anderson, B. J., Slater, L. J., Rapson, J., Brunner, M. I., Dadson, S. J., Yin, J., & Buechel, M. (2025). Stationarity Assumptions 

in Streamflow Sensitivity to Precipitation May Bias Future Projections. Earth’s Future, 13(7), e2025EF006188. 

https://doi.org/10.1029/2025EF006188 480 

Andréassian, V., Coron, L., Lerat, J., & Le Moine, N. (2016). Climate elasticity of streamflow revisited – an elasticity index 

based on long-term hydrometeorological records. Hydrology and Earth System Sciences, 20(11), 4503–4524. 

https://doi.org/10.5194/hess-20-4503-2016 

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



24 

 

Andréassian, V., Mendoza Guimarães, G., de Lavenne, A., & Lerat, J. (2025). How does the time shift between precipitation 

and evaporation affect annual streamflow variability? A large sample elasticity study. EGUsphere, 1–26. 485 

https://doi.org/10.5194/egusphere-2025-414 

Awasthi, C., Vogel, R. M., & Sankarasubramanian, A. (2024). Regionalization of Climate Elasticity Preserves Dooge’s 

Complementary Relationship. Water Resources Research, 60(10), e2023WR036606. 

https://doi.org/10.1029/2023WR036606 

Ban, Z., Das, T., Cayan, D., Xiao, M., & Lettenmaier, D. P. (2020). Understanding the Asymmetry of Annual Streamflow 490 

Responses to Seasonal Warming in the Western United States. Water Resources Research, 56(12), e2020WR027158. 

https://doi.org/10.1029/2020WR027158 

Berghuijs, W. R., Hartmann, A., & Woods, R. A. (2016). Streamflow sensitivity to water storage changes across Europe. 

Geophysical Research Letters, 43(5), 1980–1987. https://doi.org/10.1002/2016GL067927 

Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. M., & Woods, R. A. (2017). A Global Assessment of Runoff Sensitivity 495 

to Changes in Precipitation, Potential Evaporation, and Other Factors. Water Resources Research, 53(10), 8475–

8486. https://doi.org/10.1002/2017WR021593 

Britain), I. of H. (Great. (1980). Low Flow Studies Reports. Institute of Hydrology. 

Budyko, M. (1976). Climate and life. 

CHIEW, F. H. S. (2006). Estimation of rainfall elasticity of streamflow in Australia. Hydrological Sciences Journal, 51(4), 500 

613–625. https://doi.org/10.1623/hysj.51.4.613 

Chiew, F. H. S., Potter, N. J., Vaze, J., Petheram, C., Zhang, L., Teng, J., & Post, D. A. (2014). Observed hydrologic non-

stationarity in far south-eastern Australia: Implications for modelling and prediction. Stochastic Environmental 

Research and Risk Assessment, 28(1), 3–15. https://doi.org/10.1007/s00477-013-0755-5 

Clerc-Schwarzenbach, F. M., Selleri, G., Neri, M., Toth, E., van Meerveld, I., & Seibert, J. (2024). HESS Opinions: A few 505 

camels or a whole caravan? EGUsphere, 1–29. https://doi.org/10.5194/egusphere-2024-864 

Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J. K., Lane, R., Lewis, M., Robinson, 

E. L., Wagener, T., & Woods, R. (2020a). CAMELS-GB: Hydrometeorological time series and landscape attributes 

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



25 

 

for 671 catchments in Great Britain. Earth System Science Data, 12(4), 2459–2483. https://doi.org/10.5194/essd-12-

2459-2020 510 

Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J. K., Lane, R., Lewis, M., Robinson, 

E. L., Wagener, T., & Woods, R. (2020b). Catchment attributes and hydro-meteorological timeseries for 671 

catchments across Great Britain (CAMELS-GB). NERC Environmental Information Data Centre. 

https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9 

de Lavenne, A., Andréassian, V., Crochemore, L., Lindström, G., & Arheimer, B. (2022). Quantifying multi-year hydrological 515 

memory with Catchment Forgetting Curves. Hydrology and Earth System Sciences, 26(10), 2715–2732. 

https://doi.org/10.5194/hess-26-2715-2022 

Dolich, A., Espinoza, E. A., Ebeling, P., Guse, B., Götte, J., Hassler, S., Hauffe, C., Kiesel, J., Heidbüchel, I., Mälicke, M., 

Müller-Thomy, H., Stölzle, M., Tarasova, L., & Loritz, R. (2024). CAMELS-DE: Hydrometeorological time series 

and attributes for 1582 catchments in Germany (Version 1.0.0) [Dataset]. Zenodo. 520 

https://doi.org/10.5281/zenodo.13837553 

Dooge, J. C. I. (1992). Sensitivity of Runoff to Climate Change—A Hortonian Approach. 

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, 

P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & 

Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their 525 

performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x 

Fowler, K. J. A., Zhang, Z., & Hou, X. (2024). CAMELS-AUS v2: Updated hydrometeorological timeseries and landscape 

attributes for an enlarged set of catchments in Australia. Earth System Science Data Discussions, 1–21. 

https://doi.org/10.5194/essd-2024-263 

Fowler, K., Zhang, Z., & Hou, X. (2024). CAMELS-AUS v2: Updated hydrometeorological timeseries and landscape attributes 530 

for an enlarged set of catchments in Australia (Version 2.03) [Dataset]. Zenodo. 

https://doi.org/10.5281/zenodo.14289037 

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



26 

 

Fu, G., Charles, S. P., & Chiew, F. H. S. (2007). A two-parameter climate elasticity of streamflow index to assess climate 

change effects on annual streamflow. Water Resources Research, 43(11). https://doi.org/10.1029/2007WR005890 

Harman, C. J., Troch, P. A., & Sivapalan, M. (2011). Functional model of water balance variability at the catchment scale: 2. 535 

Elasticity of fast and slow runoff components to precipitation change in the continental United States. Water 

Resources Research, 47(2), 1–12. https://doi.org/10.1029/2010WR009656 

Harrigan, S., Hannaford, J., Muchan, K., & Marsh, T. J. (2018). Designation and trend analysis of the updated UK Benchmark 

Network of river flow stations: The UKBN2 dataset. Hydrology Research, 49(2), 552–567. 

https://doi.org/10.2166/nh.2017.058 540 

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., 

Shalev, G., & Matias, Y. (2023). Caravan—A global community dataset for large-sample hydrology. Scientific Data, 

10(1), Article 1. https://doi.org/10.1038/s41597-023-01975-w 

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., 

Shalev, G., & Matias, Y. (2025). Caravan—A global community dataset for large-sample hydrology (Version 1.6) 545 

[Dataset]. Zenodo. https://doi.org/10.5281/zenodo.15529786 

Lebecherel, L., Andréassian, V., & Perrin, C. (2013). On regionalizing the Turc-Mezentsev water balance formula. Water 

Resources Research, 49(11), 7508–7517. https://doi.org/10.1002/2013WR013575 

Lehner, F., Wood, A. W., Vano, J. A., Lawrence, D. M., Clark, M. P., & Mankin, J. S. (2019). The potential to reduce 

uncertainty in regional runoff projections from climate models. Nature Climate Change, 9(12), Article 12. 550 

https://doi.org/10.1038/s41558-019-0639-x 

Loritz, R., Dolich, A., Acuña Espinoza, E., Ebeling, P., Guse, B., Götte, J., Hassler, S. K., Hauffe, C., Heidbüchel, I., Kiesel, 

J., Mälicke, M., Müller-Thomy, H., Stölzle, M., & Tarasova, L. (2024). CAMELS-DE: Hydro-meteorological time 

series and attributes for 1582 catchments in Germany. Earth System Science Data, 16(12), 5625–5642. 

https://doi.org/10.5194/essd-16-5625-2024 555 

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



27 

 

Matanó, A., Hamed, R., Brunner, M. I., Barendrecht, M. H., & Van Loon, A. F. (2025). Drought decreases annual streamflow 

response to precipitation, especially in arid regions. Hydrology and Earth System Sciences, 29(13), 2749–2764. 

https://doi.org/10.5194/hess-29-2749-2025 

McMillan, H. K., Krueger, T., & Freer, J. E. (2012). Benchmarking observational uncertainties for hydrology: Rainfall, river 

discharge and water quality. Hydrological Processes, 26(26), 4078–4111. https://doi.org/10.1002/hyp.9384 560 

McMillan, H. K., Westerberg, I. K., & Krueger, T. (2018). Hydrological data uncertainty and its implications. WIREs Water, 

5(6), e1319. https://doi.org/10.1002/wat2.1319 

Milly, P. C. D., & Dunne, K. A. (2016). Potential evapotranspiration and continental drying. Nature Climate Change, 6(10), 

Article 10. https://doi.org/10.1038/nclimate3046 

Němec, J., & Schaake, J. (1982). Sensitivity of water resource systems to climate variation. Hydrological Sciences Journal, 565 

27(3), 327–343. https://doi.org/10.1080/02626668209491113 

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. 

R., Hopson, T., & Duan, Q. (2015). Development of a large-sample watershed-scale hydrometeorological data set for 

the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance. 

Hydrology and Earth System Sciences, 19(1), 209–223. https://doi.org/10.5194/hess-19-209-2015 570 

Newman, A., Sampson, K., Clark, M. P., Bock, A., Viger, R. J., & Blodgett, D. (2014). A large-sample watershed-scale 

hydrometeorological dataset for the contiguous USA. UCAR/NCAR. https://doi.org/10.5065/D6MW2F4D 

Nijssen, B., O’Donnell, G. M., Hamlet, A. F., & Lettenmaier, D. P. (2001). Hydrologic Sensitivity of Global Rivers to Climate 

Change. Climatic Change, 50(1), 143–175. https://doi.org/10.1023/A:1010616428763 

Peterson, T. J., Saft, M., Peel, M. C., & John, A. (2021). Watersheds may not recover from drought. Science, 372(6543), 745–575 

749. https://doi.org/10.1126/science.abd5085 

Roderick, M. L., & Farquhar, G. D. (2011). A simple framework for relating variations in runoff to variations in climatic 

conditions and catchment properties. Water Resources Research, 47(6), 1–11. 

https://doi.org/10.1029/2010WR009826 

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



28 

 

Saft, M., Western, A. W., Zhang, L., Peel, M. C., & Potter, N. J. (2015). The influence of multiyear drought on the annual 580 

rainfall-runoff relationship: An Australian perspective. Water Resources Research, 51(4), 2444–2463. 

https://doi.org/10.1002/2014WR015348 

Sankarasubramanian, A., Vogel, R. M., & Limbrunner, J. F. (2001). Climate elasticity of streamflow in the United States. 

Water Resources Research, 37(6), 1771–1781. https://doi.org/10.1029/2000WR900330 

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., & Carrillo, G. (2011). Catchment classification: Empirical analysis of 585 

hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences, 15(9), 

2895–2911. https://doi.org/10.5194/hess-15-2895-2011 

Schaake, J. C. (1990). From climate to flow. (pp. 177–206). John Wiley and Sons Inc. 

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical 

Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934 590 

Steinschneider, S., Yang, Y.-C. E., & Brown, C. (2013). Panel regression techniques for identifying impacts of anthropogenic 

landscape change on hydrologic response. Water Resources Research, 49(12), 7874–7886. 

https://doi.org/10.1002/2013WR013818 

Tang, Y., Tang, Q., Wang, Z., Chiew, F. H. S., Zhang, X., & Xiao, H. (2019). Different Precipitation Elasticity of Runoff for 

Precipitation Increase and Decrease at Watershed Scale. Journal of Geophysical Research: Atmospheres, 124(22), 595 

11932–11943. https://doi.org/10.1029/2018JD030129 

Tang, Y., Tang, Q., & Zhang, L. (2020). Derivation of Interannual Climate Elasticity of Streamflow. Water Resources 

Research, 56(11), e2020WR027703. https://doi.org/10.1029/2020WR027703 

Turner, S., Hannaford, J., Barker, L. J., Suman, G., Killeen, A., Armitage, R., Chan, W., Davies, H., Griffin, A., Kumar, A., 

Dixon, H., Albuquerque, M. T. D., Almeida Ribeiro, N., Alvarez-Garreton, C., Amoussou, E., Arheimer, B., Asano, 600 

Y., Berezowski, T., Bodian, A., … Whitfield, P. H. (2025). ROBIN: Reference observatory of basins for international 

hydrological climate change detection. Scientific Data, 12(1), 654. https://doi.org/10.1038/s41597-025-04907-y 

Wagener, T., Reinecke, R., & Pianosi, F. (2022). On the evaluation of climate change impact models. WIREs Climate Change, 

13(3), e772. https://doi.org/10.1002/wcc.772 

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



29 

 

Weiler, M., Gnann, S., & Stahl, K. (2025). Streamflow sensitivity regimes of alpine catchments: Seasonal relationships with 605 

elevation, temperature, and glacier cover. Environmental Research Letters, 20(7), 074068. 

https://doi.org/10.1088/1748-9326/ade26c 

Xiao, M., Gao, M., Vogel, R. M., & Lettenmaier, D. P. (2020). Runoff and Evapotranspiration Elasticities in the Western 

United States: Are They Consistent With Dooge’s Complementary Relationship? Water Resources Research, 56(8), 

e2019WR026719. https://doi.org/10.1029/2019WR026719 610 

Zhang, Y., Viglione, A., & Blöschl, G. (2022). Temporal Scaling of Streamflow Elasticity to Precipitation: A Global Analysis. 

Water Resources Research, 58(1), e2021WR030601. https://doi.org/10.1029/2021WR030601 

Zhang, Y., Zheng, H., Zhang, X., Leung, L. R., Liu, C., Zheng, C., Guo, Y., Chiew, F. H. S., Post, D., Kong, D., Beck, H. E., 

Li, C., & Blöschl, G. (2023). Future global streamflow declines are probably more severe than previously estimated. 

Nature Water, 1–11. https://doi.org/10.1038/s44221-023-00030-7 615 

Zhou, S., Yu, B., Huang, Y., & Wang, G. (2015). The complementary relationship and generation of the Budyko functions. 

Geophysical Research Letters, 42(6), 1781–1790. https://doi.org/10.1002/2015GL063511 

 

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.


