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Abstract. The sensitivity of streamflow to changes in driving variables such as precipitation and potential evaporation is a key
signature of catchment behaviour. Due to increasing interest in climate change impacts, streamflow sensitivities derived from
observations have become a widely used metric for catchment characterization, model evaluation, and observation-constrained
projections. However, there remain open questions regarding the robustness and stationarity of empirically-derived
sensitivities. In this paper, we revisit theoretical and empirical approaches to estimate streamflow sensitivities to precipitation
and potential evaporation. First, we compare different estimation methods — primarily based on linear regression — using a
synthetic dataset for which the sensitivities are known. Second, we extend this comparison and use two methods selected based
on the previous analysis to estimate sensitivities for >1000 near-natural catchments. Third, we investigate how sensitivities
change over time due to changes in the ratio between potential evaporation and precipitation (i.e., aridity index). Our results
confirm that multiple regression is preferable to single regression, but that in presence of noise and correlation between
precipitation and potential evaporation, even multiple regression methods can lead to high uncertainty, especially for potential
evaporation. When analysing real catchments, sensitivity to precipitation is estimated consistently across methods, while
sensitivity to potential evaporation is highly uncertain and often yields unrealistic values. Further, as the aridity index increases
over time — a trend found in observational data — sensitivities decrease (by 22-70% over 50 years) and are thus non-stationary.

These results should urge caution in the use of empirical streamflow sensitivities and call for further investigation.
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1 Introduction

In response to ongoing interest in climate change impacts, the sensitivity of streamflow to changes in climatic drivers has
received considerable attention in recent years (e.g., Andréassian et al., 2016; Lehner et al., 2019; Zhang et al., 2023). In
particular, sensitivities to precipitation, temperature, and potential evaporation are commonly used, though the concept can be
extended to other driving variables that influence streamflow, such as storage (e.g., Berghuijs et al., 2016; de Lavenne et al.,
2022; Weiler et al., 2025; Zhang et al., 2023) or land cover changes (e.g., Anderson et al., 2022; Roderick & Farquhar, 2011;
Steinschneider et al., 2013).

Sensitivity is defined as the change in streamflow per unit change in a certain driving variable. This can be expressed in
absolute terms (e.g., by how many mm streamflow changes per mm change in precipitation) or in relative terms (e.g., by how
many %-points streamflow changes per 1% change in precipitation), the latter often being called elasticity (Andréassian et al.,

2016; Sankarasubramanian et al., 2001). We will define both terms more formally later on.

One of the earliest studies explicitly mentioning the “sensitivity of water resource systems to climate variations” was by Némec
& Schaake (1982), who used the Sacramento Soil Moisture Accounting model to estimate sensitivity of streamflow to changes
in precipitation and potential evaporation for two contrasting basins (an arid and a humid one). This approach comprises one
typical category of sensitivity studies, namely perturbation experiments using (process-based) simulation models of varying
complexity (e.g., Némec & Schaake, 1982; Nijssen et al., 2001; Schaake, 1990). Another category are simple Budyko-type
water balance models (Budyko, 1976), which provide analytical solutions describing the catchment water balance, typically at
the climatological time scale. These models calculate streamflow and (complementary to this) actual evaporation as a function
of precipitation, potential evaporation, and sometimes other factors (e.g., related to vegetation or land use), and can be used to
obtain sensitivity estimates by taking partial derivates to the different driving variables (Andréassian et al., 2016; Dooge, 1992;
Harman et al., 2011; Roderick & Farquhar, 2011; Sankarasubramanian et al., 2001). Lastly, empirical approaches have been
used to derive sensitivities directly from observational data by means of data-based estimators or linear regression approaches
(Andréassian et al., 2016; Chiew, 2006; Sankarasubramanian et al., 2001). Empirical approaches tend to invoke fewer
assumptions and are observation-based, thus providing a benchmark for simple analytical models or complex process-based
models. However, they are associated with uncertainty due to methodological choices and are influenced by the quality of the

underlying observational data.

When studying streamflow sensitivity, it is important to consider the time scale under investigation. Many studies focus on
long-term average fluxes (i.e., the climatological time scale), as this is of direct interest when studying how catchments respond
to changes in climatic conditions. To empirically derive long-term sensitivities, it is common to aggregate time series of
streamflow and its driving variables into annual values and then make use of year-to-year variability to approximate how

catchments respond to long-term changes (Andréassian et al., 2016; Sankarasubramanian et al., 2001). Alternatively, it has
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been suggested to estimate sensitivities using multi-year averages (e.g., decadal averages; Zhang et al., 2022), though this
requires long enough time series to be able to use non-overlapping blocks. In addition, it is worth noting that sensitivities can
be assessed in many different ways — for example, by examining annual sensitivities in relation to sub-annual variations (e.g.,
warm and cold seasons; Ban et al., 2020), by considering different parts of the streamflow regime (e.g., multiple streamflow
percentiles; Anderson et al., 2024), or by focusing on different time scales altogether (e.g., weekly sensitivities; Weiler et al.,
2025).

Independent of how they are estimated, sensitivities (or elasticities) can be used in a variety of ways. They provide a model-
derived summary metric describing how a hydrological system responds to change (Némec & Schaake, 1982; Schaake, 1990).
They can be used for direct projections of climate change effects using simple sensitivity models (Roderick & Farquhar, 2011)
or observation-based regression approaches (Zhang et al., 2023). They can be used for model evaluation (Wagener et al., 2022)
and for constraining model ensembles (Lehner et al., 2019). Lastly, they generally serve as means for catchment
characterization (Addor et al., 2018) and thus are frequently used in catchment classification studies (e.g., Almagro et al.,
2024; Sawicz et al., 2011).

Due to their widespread use in the context of climate change impact research (e.g., Lehner et al., 2019; Zhang et al., 2023), it
is important to have a clear understanding of both the concept of sensitivity and the methods used to estimate it. Recent studies
often reported unrealistic (i.e., positive) values for empirically estimated sensitivities to potential evaporation (Andréassian et
al., 2025; Awasthi et al., 2024; Xiao et al., 2020), as well as non-stationarities in sensitivities and/or rainfall-streamflow
relationships (Anderson et al., 2025; Fu et al., 2007; Matano et al., 2025; Peterson et al., 2021; Saft et al., 2015; Tang et al.,
2019). This warrants a closer look at existing methods used to empirically estimate sensitivities. The central aim of this paper
is therefore to test the robustness of different empirical estimation methods and then to investigate potential non-stationarity
of sensitivities. To do so, we (1) test different approaches based on an analytical model for which sensitivities are known, (2)
apply two selected methods to a large sample of near-natural catchments, and (3) explore how empirical sensitivities change

over time using long streamflow time series.
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2 Theory and methods

In the following, we first present formal definitions of streamflow sensitivity and elasticity (Section 2.1) and introduce the
different empirical estimation methods tested in this paper (Section 2.2). These methods are then both applied to a synthetic
dataset based on an analytical model (described in Section 2.3) and to observational data (data sources described in Section 3).
Finally, we investigate how sensitivities change over time, both theoretically and using observational data (Section 2.4).

2.1 Definitions of sensitivity and elasticity

Sensitivity s is defined as the absolute change in streamflow 4Q per absolute change in a certain driving variable, here
precipitation 4P and potential evaporation 4E,. 4Q indicates the deviations at each time step t (here usually years) from the
long-term average Q; for example, for streamflow we get AQ = Q(t) — Q. The 4 notation is used here due to our focus on

empirical sensitivities. When studying sensitivities using analytical equations, this becomes the (partial) derivative 0.

4Q

Sp = E (1)
4Q

Spp = A_Ep (2

Elasticity e is closely related but focuses on percentage changes, so that both streamflow and its driving variables are

normalised by their respective means Q, P, and E,.

AQ AP P

€P=7/3=Sp5 (3)
AQ AE E,

C Th s @

While both sensitivity and elasticity are dimensionless, they are often expressed in mm/mm or %/%, respectively.

An interesting feature of elasticities is the hypothesis that there exists a so-called complementary relationship between ep and
eep (which is embedded in Eq. 10 in Dooge, 1992, even though he did not explicitly mention that term). This complementary
relationship states that the elasticities to P and E, should sum up to 1, which was shown to be a characteristic of any Budyko-

type equation where Q is solely determined by P and E,, (Zhou et al., 2015), but may not necessarily be true for real catchments.

ép + eEp =1 (5)
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2.2 Estimation methods of empirical sensitivities

We test several methods to calculate sensitivities empirically, all listed in Table 1. In addition to the commonly used non-
parametric method (Eq. 6; Sankarasubramanian et al., 2001), we use different regression-based methods (Andréassian et al.,
2016). These include single linear regression (Eq. 7), multiple linear regression using absolute annual values (Eq. 8), multiple
linear regression using annual variations around the mean (Eq. 9) (both with the y-intercept set to 0), and log-linear regression
(Eg. 10), which was recently proposed by Awasthi et al. (2024). Besides the regression coefficients, which represent the
sensitivities, we can also calculate R2 to check how much variance is explained by the different regression models and to

investigate whether the unexplained variance shows any patterns in relation to the sensitivity estimates.

Besides deciding on the equation to fit (e.g., single or multiple regression), we need to decide on the fitting method when
applying regression analysis (e.g., ordinary least squares or more advanced methods). Earlier studies found that the fitting
method has little influence on sensitivity estimates (Andréassian et al., 2016). We also tested different methods such as lasso
or ridge regression (e.g., Dormann et al., 2013) and performed multiple regression sequentially (so-called stepwise partial

regression), but found this to lead to negligible changes. We thus do not further investigate the influence of the fitting method.

All methods are applied to annually averaged values. Since averaging of variables over more than a year has also been
suggested in the literature (Andréassian et al., 2016; Zhang et al., 2022), we briefly tested this approach but found that it did
not lead to improvements or additional insights (for neither the theoretical nor the observation-based analysis).

Table 1: Methods used to empirically estimate streamflow sensitivity to precipitation and potential evaporation.

Name Short name Equation Comments References
. .. Cannot account for .
. median(4 medi: -
Non-parametric Nonpara. - (40) an — combined effects of P Sankarasubramanian et
median(4P) mediar al. (2001)
and E,
Cannot account for

combined effects of P

Single regression Single Reg. AQ = spAP and AQ = sp: and E,; same as Q = Andréassian et al. (2016)
spP+c¢
Multiple regression #1 Mult. Reg. #1 Q = spP + spgrPET(8) Interceptissetto 0 Introduced here
. . = + .
Multiple regression #2 Mult. Reg. #2 AQ = spAP + spgrAPET( Same as Q = spP Andréassian et al. (2016)
SperPET + ¢

ep and eeet need to be
rescaled by Q/P

and Q/PET to get
sensitivities

Log-log regression Mult. Reg. Log In(Q) = epIn(P) + eppr1 Awasthi et al. (2024)




120

125

130

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

2.3 Analytical model of streamflow sensitivity and synthetic dataset

The Turc-Mezentsev model is a Budyko-type model that takes long-term average precipitation P, potential evaporation Ep,
and a shape parameter n as input, and returns streamflow Q (and, complementary to that, actual evaporation Ez). The parameter
n is often set between 2 and 3 (see e.g., Lebecherel et al., 2013). Here we use a value of n = 2.5, was has been used in previous
studies (Andréassian et al., 2016) and fits well with the observational data used here (observational data are described in
Section 3; for a Budyko-type plot see Figure S1 in the Supplementary Information). We would like to stress that our focus

here is not on obtaining a perfect fit, so the choice of n is not of major importance.

The Turc-Mezentsev model can also be used to analytically calculate the sensitivity of Q to P and E, (which may be
summarised to the aridity index E,/P) by calculating partial derivates, so that we obtain a single sensitivity curve, which is a

function of the aridity index. The resulting curves for Q/P (as a reference), sp, and sgp are shown in Figure 1.

1
(s,

Q/P=1-—"t—— (11)
n+1

6Q_ =1 1 AR 12

ap - SP=1-(1+ E, (12)
Q E,,”‘nT+1

5,1+ (7)) a
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(a)

Energy limit

05 - Water limit

1-Q/P [-]

sp [-]

0.1 1.0 10.0
Energy-limited Ep/P [-] Water-limited

Figure 1: (a) Streamflow fraction of precipitation (shown as 1 - Q/P), (b) streamflow sensitivity to precipitation sp, and (c) streamflow
sensitivity to potential evaporation sepas a function of the aridity index (Ep/P), all based on the Turc-Mezentsev model (Egs. 11-13). The
grey lines in panel (a) indicate the water and energy limit, respectively.

Equation 11 is — similar to other Budyko-type equations — usually applied at long time scales, for which changes in storage are
negligible (so that P = Q + E3). Accordingly, also the sensitivities (Egs. 12 and 13) should be seen as sensitivities to long-term
changes P and Ep. Here, we relax this assumption and use these equations to study year-to-year variability. We note that the
same assumption is (implicitly) made in many sensitivity studies, which use year-to-year variability to estimate how
catchments respond to long-term change, even though there is evidence that year-to-year variability in Q also responds to
changes in, for instance, storage (Tang et al., 2020). For the theoretical analysis carried out here, this does not matter, as we
test how well different methods can estimate sensitivities from synthetically generated data with the assumption that storage

changes are zero. It will, however, matter when interpreting sensitivity estimates based on observational data.

Based on the Turc-Mezentsev model, we create a synthetic dataset for which the actual sensitivities are known, which will
serve as a baseline for the theoretical analysis that will follow. To do so, we first generate synthetic catchments with fixed
long-term values of P and Epthat span a wide aridity gradient (both P and E, range from 300 to 3000 mm/y). For each synthetic
catchment, we then create 50 annual value pairs by sampling from a bivariate normal distribution with the standard deviations
of P and E, set to 15% and 5% of their means, respectively, and with a Pearson correlation pp between P and E; set to three
different values: -0.5, 0, and 0.5. The standard deviations are chosen to be similar to the ones found in the observational dataset

used (17% for P and 4% for Ep; data are described in Section 3). The correlation is added because P and E, are regularly
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correlated in empirical data (pp averages -0.42 for the catchments used here) and this is known to affect sensitivity estimates
(e.g., Chiew et al., 2014). Note that we use Pearson correlation pp for the generation of correlated data, but in all other cases
we use the more robust Spearman rank correlation ps to quantify the strength of variable associations. Having created synthetic
P and E, data, we use the Turc-Mezentsev model to calculate Q for each annual pair of P and E, (Eq. 11) as well as the

sensitivities corresponding to the long-term values of P and E, (Egs. 12 and 13).

In addition, we investigate the influence of data uncertainty, which affects every hydrological variable (McMillan et al., 2012,
2018). To do so, we added normally distributed noise to P, Ep, and Q (after they have been generated). We use 2.5% of each
variable’s mean as standard deviation, so that about 95% of the data will fall within £5% of the mean (x2 times the standard
deviation). While observational uncertainty is often estimated to be around 10% or higher, especially for precipitation
(McMillan et al., 2012, 2018), these values are not directly comparable, as data uncertainty is often systematic (e.g., due to
precipitation undercatch) and might be partly averaged out when using annual sums. Since the main aim here is to investigate
the potential impact of data uncertainty, we decided to use a standard deviation of 2.5%, bearing in mind that the actual impact

may vary depending on the actual uncertainty of the different variables.

Overall, we obtain 6 synthetic scenarios: three different strengths of correlation, each without and with random noise. The
different sensitivity estimation methods (Table 1) are then used to derive sensitivities Sest, which are compared to the actual
sensitivities sact (EQs. 12 and 13). This is done both visually and by quantifying the relative error as erer = (Sest — Sact)/ Sact [%],

which is then averaged across all samples by taking the arithmetic mean.

2.4 Temporal analysis

As can be seen from Equations 12 and 13, the streamflow sensitivities themselves depend on the aridity index, so that a change
in aridity will lead to a change in the sensitivities. We can therefore also use the analytical model to check how typical temporal
trends found for P and E, translate into trends in sensitivities (or elasticities). To do so, we calculate sensitivities over 20-year
moving blocks in a longer time series (at least 50 years), resulting in time series of at least 30 years of sensitivity estimates.
To calculate trends of sensitivities over time, we use the Theil-Sen trend slope estimator (Sen, 1968). In order to calculate

relative trends (in %), we normalize the trends by the sensitivities calculated in the first 20-year block.
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3 Data

In addition to synthetic data, we also test different sensitivity estimation methods using observational data. Using different
large sample datasets, we select catchments according to the following criteria: we only keep time series with less than 5%
missing values, at least 30 years in length, a fraction of precipitation falling as snow < 0.2, and where Q does not exceed P.

For the analysis, all the time series are aggregated to annual values based on the water year. Details are reported in Table 2.

We always use national forcing products to ensure high quality forcing data, as global products were reported to be associated
with substantial uncertainties (Clerc-Schwarzenbach et al., 2024) for CAMELS-US and CAMELS-GB. We also made a brief
comparison for CAMELS-AUS and CAMELS-DE. When comparing SILO and AGCD forcing data for Australia (both
national products), the sensitivities remain similar (Spearman rank correlation ps = 0.99 and 0.97, mean absolute difference =
0.03 and 0.02, respectively). When comparing DWD-HYRAS and Caravan-based ERA5 (Kratzert et al., 2023) forcing data
for Germany, the sensitivities change slightly (ps = 0.94 and 0.86, mean absolute difference = 0.08 and 0.09, respectively). We

will come back to the issue of reliably estimating E, in the discussion, but note that this is not the main focus here.

For the trend analysis, we focus on CAMELS-DE and CAMELS-AUS due to availability of long time series and only kept

catchments with at least 50 years of data.

Table 2: Datasets used in the study and some of their characteristics. WY denotes the start of the water year (for Germany, October is used
instead of November for consistency).

Dataset Country WY Forcing products Subset #total #temporal References
CAMELS P: Daymet Entire dataset (reference éc(j)cic;rbt)et al.
USA October  Ep: Daymet (calibrated gauges; see Newman etal. 482 - '
"Us Priestley-Taylor equation)  2015) Newman et
estiey-Taylor equati al. (2015)
P: CEH-GEAR
CAMELS  Great . UK benchmark dataset Coxon et al.
-GB Britain ~ OCtOPer  Ep: CHESS-PE (Penman- o oo et al., 2018) e - (2020a)
Monteith)
CAMELS P: AGCD i?gl::nciztztsaetti(():gjrologlcal Fowler et al
-AUS Australia  July Ep: §ILO (Morton wet- additionally filtered based 355 209 (2024)
environment) s : 2
on “river_di <0.2
P: DWD-HYRAS Based on reference stations :
CAMELS  Germany  October  E,: DWD-HYRAS included in ROBIN (Turner 165 144 Loritz etal.
-DE (2024)
(Hargreaves) et al., 2025)
Total - - - 1121 353 -
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4 Results

4.1 Comparison of sensitivity estimation methods using an analytical model

The analytical Turc-Mezentsev model allows us to test the different sensitivity estimation methods (Table 1) and compare
them to theoretical values, thereby illustrating how the methods perform under known conditions. Figures 2 and 3 show the
resulting sensitivity estimates for all methods as a function of the aridity index. Table 3 lists the relative errors, which are also

visualised as bar plot in Figure S2 in the Supplementary Information.

Overall, the estimation of streamflow sensitivities to potential evaporation sgp results in much larger relative errors than for
sensitivities to precipitation sp. The smallest relative errors are obtained in absence of noise and with no correlation between
P and E, (erer from -2 to 6%). In presence of noise, the performance degrades for most methods, especially for sg,. For sp,
multiple regression methods #1 and #2 lead to the lowest relative errors overall (average absolute erel = 2%), followed by log-
regression (5%). For sgp, multiple regression method #1 leads to the lowest relative error overall (average absolute erel = 6%),
followed by method #2 and log-regression (both 12%).

When P and E; are correlated, the nonparametric method and single regression (i.e., methods that do not account for both P
and Ep) lead to large and systematic errors. For instance, with negative correlations of -0.5, streamflow sensitivities to
precipitation (erer from 6 to 10%) and to potential evaporation (ere from 231 to 314%) are — on average — systematically
overestimated (Table 3). By contrast, when correlations are set to +0.5, Sp (erel from -12 to -10 %) and sgp (erel from -311 to -
266%) are systematically underestimated. For multivariate methods, the relative errors are much smaller, but we still find
systematic errors, especially for sgp and in presence of noise. For instance, with negative correlations of -0.5 and with noise,
method #1 underestimates sgp by -7%, while method #2 and log-regression both underestimate it by -14% (see also Figure 3).

Yet even when P and E, are not correlated, we find systematic underestimation of sgp (erel from -9 to -19%).

Table 3: Relative errors erel [%], rounded to full percentages, and absolute average of the relative errors for the different estimation methods.
Figure S2 in the Supplementary Information also shows the values as bar plots.

Variable/ pp=-05 prp=0.0 pp=+05 pp=-05 pr=00 pp=+0.5 Average
Method No noise No noise No noise With noise With noise With noise (absolute)
Sp

Nonpara. 9 0 -10 6 -3 -12 7
Single Reg. 10 0 -10 7 -3 -12 7
Mult. Reg. #1 1 0 0 -2 -3 -6 2
Mult. Reg. #2 0 0 0 -1 -3 -6 2
Mult. Reg. Log 8 6 4 6 3 -1 5
SEp

Nonpara. 313 4 -311 232 -18 -267 191
Single Reg. 314 2 -309 231 -19 -266 190
Mult. Reg. #1 -1 -2 -2 -7 -9 -13 6
Mult. Reg. #2 3 2 1 -14 -19 -33 12
Mult. Reg. Log 3 5 5 -14 -16 -29 12

10
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Figure 2: Streamflow sensitivity to precipitation as a function of the aridity index. Theoretical values are based on the Turc-Mezentsev
model, fed with precipitation and potential evaporation values that exhibit different degrees of correlation and noise to simulate real

220 observations. The estimates resulting from the different methods are shown as point clouds with a LOESS regression (the fraction of data
points which influence the smoothing at each value is set to 0.1) to aid visualization.

11



225

230

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Corr=-0.5, Noise=0.0 Corr=-0.5, Noise=0.025

Sep [']

Sep [-]

Corr=0.5, Noise=0.0 Corr=0.5, Noise=0.025

Sep [-]

0.1 1.0 10.0 0.1 1.0 10.0

Ep/P [-] Ep/P[-]
Nonpara. - Mult. Reg. #1 — Mult. Reg. Log

= Single Reg. == Mult. Reg. #2 = Analytical

Figure 3: Streamflow sensitivity to potential evaporation as a function of the aridity index. Theoretical values are based on the Turc-
Mezentsev model, fed with precipitation and potential evaporation values that exhibit different degrees of correlation and noise to simulate
real observations. The estimates resulting from the different methods are shown as point clouds with a LOESS regression (the fraction of
data points which influence the smoothing at each value is set to 0.1) to aid visualization.

4.2 Comparison of sensitivity estimation methods using observational data

Since the Turc-Mezentsev model is a very simplified representation of reality, methods that perform well compared to the
theoretical values may not perform well based on observational data that are influenced by more than just P and E; (e.g.,
storage changes from year to year) and that are subject to other types of uncertainty (e.g., systematic bias). Hence, we now
apply two selected methods to a large sample of near-natural catchments. We decided to focus only on methods #1 and #2,
since log-regression leads to very similar results as method #2 and all univariate methods lead to poor performance if P and
E, are correlated (see Figures 2 and 3). This is indeed the case for most catchments, with Pearson correlation pp between P and

Ep in the observational data being mostly negative and averaging -0.42 (see Figure S3 in the Supplementary Information).

12
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When applying methods #1 and #2 to observational data, we find good agreement between the two methods for sp (Spearman
rank correlation ps = 0.96) and little agreement for sg, (ps = 0.07), shown in Figure 4. In particular, we find that 52% of values
for sgp are positive when using method #2, while it is only 3% when using method #1. Theoretically, we would expect sg, to
be negative, as an increase in evaporative demand should be related to a decrease in streamflow. In terms of explained variance
by the multiple regression methods, the two methods perform similar. The overall median R? is 0.65 for #1 and 0.68 for #2,

indicating an acceptable fit but also substantial variation left unexplained.

1.4 > 3 =
(a) R4 (b)
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= 0.6 - - g
E= = 0- E
= .
§ 04 T = /,/
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sp Mult. Reg. #1 [-]

Sep Mult. Reg. #1 [-]

Figure 4: Comparison of streamflow sensitivity to (a) precipitation (ps = 0.96) and (b) potential evaporation (ps = 0.07) calculated using
multiple regression methods #1 and #2 with observations from 1121 catchments. The grey dashed line shows the 1:1 line.

Since there is little difference for sp and method #1 provides the most realistic values for sgp, we now compare the empirically
estimated sensitivities from method #1 to the Turc-Mezentsev model, shown in Figure 5. Overall, both sp and sg, follow the
theoretical pattern and decrease with increasing aridity. However, the theoretical values tend to be underestimated and there is
a larger spread for sgp. We also note that R? tends to be smaller for catchments further away from the theoretical curves (see
Figure S4 in the Supplementary Information). The results are similar for elasticities (see Figure S5).

Another way to visualise the resulting sensitivities is to plot sp and sgp against each other, which is shown in Figure 6 with
each catchment coloured according to its aridity index. We can see that the Turc-Mezentsev model leads to a single curve,
meaning that each sp is associated with a unique Sgp, both being a function of the aridity index (cf. Egs. 12 and 13). The same
holds true for elasticities ep and egp, which plot as a straight line that follows the so-called complementary relationship
(ep + egp, = 1). The empirical patterns roughly follow the analytical ones in the case of sensitivities, and almost show a perfect
match for elasticities. Note, though, that this refers to the overall pattern and not individual catchments, which may sit on the

theoretical line but at the wrong location with respect to their aridity index.
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Figure 5: Streamflow sensitivity to precipitation (a) and potential evaporation (b) calculated using multiple regression method #1 with
observations from 1121 catchments. Both panels show empirically calculated values (dots) and theoretical values based on the Turc-
Mezentsev model (solid lines). Note that the y-axes are capped for better visibility and that two catchments plot above 0.5 for Sgp.
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Figure 6: (a) Streamflow sensitivity to precipitation plotted against streamflow sensitivity to potential evaporation. (b) Streamflow elasticity
to precipitation plotted against streamflow elasticity to potential evaporation. Both panels show empirically calculated values (dots in the
back) and theoretical values based on the Turc-Mezentsev model (line in front), coloured according to the aridity index. The grey dashed
line starts at the origin and has a slope of -1, so that values plotting above it imply that sp > sep (a) and ep > egp (b).
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4.3 Change of sensitivities over time

The strong relationship between streamflow sensitivity and aridity index found when comparing many catchments (Figure 5)
suggests that a change in aridity index over time will also lead to changes in sensitivities for individual catchments.
Theoretically, the Turc-Mezentsev model predicts a decrease (in absolute terms) in both sensitivities as aridity increases. Using
sufficiently long observational records, we can calculate actual trends using sensitivity estimates over different time blocks
(here based on method #1) and compare them to theoretical trends (via Eqgs. 12 and 13) based on observed changes in

precipitation and potential evaporation (and thus aridity index).

The resulting trends are shown in Table 4 and Figures 7 and 8. We find an increase in the aridity index over time, especially
in Germany. Accordingly, the sensitivities decrease (in absolute terms) over time in all cases. However, the trend magnitudes
are stronger in observational data (between -26% and -70%) than in the analytical model (between -6% and -22%). In Germany,
we generally find lower sensitivities than based on Turc-Mezentsev, but the trends in the observational data are larger (-26%
vs. -6% for sp and -70% vs. -11% for Sgp). In Australia, both the sensitivities and the trends are relatively close to the analytical

model (-27% vs. -15% for sp and -35% vs. -22% for Sgp), except for sp at the beginning of the time period (around 1980).

In absolute terms, most of the observed trends are in the order of around 0.15, meaning that at the end of the 50-year period a
catchment that originally experienced a decrease of 0.5 mm in Q per mm decrease in P would now experience a decrease of
only 0.35 mm in Q per mm decrease in P. Conversely, an increase in E; at the end of the time period would lead to a smaller

absolute reduction in Q, even though E,, related trends are likely less reliable given the uncertainty discussed previously.

Table 4: Absolute and relative trends of streamflow sensitivities. Relative trends are normalised with the value from the first year.
Empirical [-/50y]  Analytical [-/50y]  Empirical [%/50y]  Analytical [%/50y]

Germany
Sp -0.16 -0.05 -26 -6
Sep +0.16 +0.07 -70 -11
Australia
Sp -0.15 -0.07 -27 -15
Sep +0.08 +0.05 -35 -22
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and 75 percentiles and thick lines indicate the median of all catchments. Dashed lines indicate the trends calculated with the Turc-Mezentsev
model for the sensitivities based on observed P and Ep data. Sensitivities are calculated over 20-year blocks with the middle year shown
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5 Discussion

5.1 Comparison of sensitivity estimation methods using an analytical model

Overall, univariate methods are unreliable in presence of correlation between P and E,, which is the case for most catchments
studied here (average pp = -0.42). While the limitation of univariate methods has been reported before (e.g., Andréassian et
al., 2016), our results explicitly link errors in univariate methods to the correlation between P and E,. In addition, even
multivariate methods show systematic deviations from the analytical curves. While the multivariate methods always lead to
an underestimation of sg, (i.e., less negative values) in presence of noise, the curves shown in Figure 3 still tend to be more
negative on average for pp = -0.5 and more positive on average for pp = -0.5, which is the same general pattern as for the
univariate methods. It is sometimes argued that multiple regression accounts for the correlation between predictors, yet this
statement may be a bit misleading. Multiple regression estimates the effect of one predictor while holding the others constant,
but strong correlations between predictors (multicollinearity) can inflate standard errors and produce poorly conditioned
coefficients that are highly sensitive to small changes in the data (Dormann et al., 2013). In presence of strong correlations
(e.g., when wet years are typically associated with reduced potential evaporation), there is little variation in one predictor that

does not overlap with the other, making it difficult to estimate unique effects.

Multivariate methods perform relatively reliable for sp (2-5% relative error on average), but they are less reliable for sgp (6-
12% relative error on average). The absolute values of sgp are always smaller than for sp for a given aridity index (see e.g.,
Figure 7a, where all theoretical values plot above the dashed line) and so is their year-to-year variability (standard deviation
was set to 15% for P and 5% for Ep), which could explain why sgp is generally more difficult to estimate. This is substantiated
by two additional checks (not shown here): if we increase the noise (smaller signal-to-noise ratio), the relative errors for both
Sp and Sgp increase; and if we increase the year-to-year variability of E, in comparison to P, the relative errors for sp and Sgp

become higher and lower, respectively.

Overall, the general underestimation (in absolute terms) of sg, in presence of noise might thus largely be due to relatively little
variation in E, compared to P and to noise (cf. regression dilution), with additional bias due to correlation between P and E,.
While there are other regression methods that could be tested, our results suggest that the problem lies not primarily in the
fitting method, but rather in general limitations of using (multiple) regression to estimate sensitivities from noisy and correlated
data. In summary, despite the simplicity of our synthetic experiment, it illustrates that none of the methods can reliably estimate

the sensitivities in all cases, suggesting similar or larger uncertainties for observational data.
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5.2 Comparison of sensitivity estimation methods using observational data

5.2.1 Uncertainty in empirical sensitivity estimates

Overall, multiple regression methods #1 and #2 lead to similar values for sp, but show large disagreement for sgp. This generally
agrees with the results using the analytical model, which also showed larger disagreement for sgp. As discussed in Section 5.1,
absolute values of sgp are always smaller than for sp, and previous studies also reported that changes in precipitation dominate
the streamflow response of catchments (Berghuijs et al., 2017; Zhang et al., 2023). In addition, year-to-year variability in E,
(standard deviation of 4% on average) tends to be smaller than for P (17%), so that the already smaller sg, might be more
difficult to constrain empirically, since the signal-to-noise ratio is relatively low (cf. Chiew et al., 2014). Alternative options
which may help to constrain sensitivity values through regionalisation are pooled regression methods (e.g., panel regression;
Anderson et al., 2025; Awasthi et al., 2024). This may allow robust estimation at the regional scale, although at the expense

of unreliable sensitivity estimates at individual locations.

More than half of the values based on method #2 are larger than zero, which would suggest an increase in streamflow with
increasing Ep. This cannot be generally attributed to concurrent increases in P, because P and E, are anti-correlated. A
considerable fraction of positive or zero values for sensitivities (or elasticities) to potential evaporation or temperature was
also reported in other papers (Anderson et al., 2022; Andréassian et al., 2016, 2025; Awasthi et al., 2024; Xiao et al., 2020;
Zhang et al., 2023). While this may be perceivable in certain circumstances (e.g., when warmer years are associated with
increased precipitation intensity, or due to melt water contributions) it is unrealistic for this to occur in more than half of all
catchments, casting doubt on the reliability of these sensitivity estimates. Alternatively, if these sensitivities were to capture
actual catchment behaviour, it would imply that both simple Budyko-type and more complex simulation models, which usually
show negative sensitivities to E, (e.g., Roderick & Farquhar, 2011; Xiao et al., 2020), omit or misrepresent crucial processes
related to evaporation. While method #1 leads to values of sgp that mostly fall between -1 and 0, these values are often relatively
small compared to the Turc-Mezentsev model. This might partly be a consequence of the method, which showed systematic

underestimation in the synthetic experiment (Figure 3). Hence, these sg, estimates should also be interpreted with caution.

5.2.2 Patterns in empirical streamflow sensitivities and influence of catchment storage processes

Comparing observation-based sensitivities to the Turc-Mezentsev model, we find that both sp and sgp tend to be lower in
observational data. Since Turc-Mezentsev is a climate-only model, actual sensitivities to climate (P and E;) are lower in real
catchments where other factors matter, too. These include storage processes, seasonal offset between P and Ep, snow, and
various other factors that were shown to influence streamflow sensitivities (e.g., Andréassian et al., 2025; Weiler et al., 2025;
Zhang et al., 2023). Still, especially sp follows the theoretical pattern relatively well, substantiating the strong influence of the
aridity index on streamflow sensitivities. Note that in less strictly filtered catchment datasets (see Section 2.5), the scatter is

likely larger due to other influences, such as human interventions in the water cycle.
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The catchments that fall further away from the Turc-Mezentsev curves tend to have lower R? (ps between sensitivity and
relative deviation from the curve is 0.53 for sp and 0.21 for sgp), Substantiating the idea that other predictors not included in
the regression model matter, too. Though not the main focus of the paper, we briefly considered several other variables
commonly hypothesised to influence annual Q variability apart from P and E, (storage, seasonality, and snow fraction). In
particular, we tested if the differences between the Turc-Mezentsev-based sensitivities and the empirically estimated
sensitivities are correlated with any of these variables. We found a relatively strong correlation (ps = -0.46 for both sp and sgp)
between the deviation from the Turc-Mezentsev curve and the baseflow index (baseflow divided by total streamflow, with
baseflow estimated using a digital filter; UKIH, 1980), indicating the importance of storage processes. We thus also fitted a
regression model that includes a storage term, here approximated by the average streamflow from the previous year (see Figure
S6 in the Supplementary Information). This led to two main insights. First, the median R? increased from 0.65 to 0.69,
suggesting that the storage term adds some, but not much, explained variance. Second, sp and sg, stayed almost the same,
indicating that the storage term only explains additional variance not captured by the other sensitivities, but does not change
their values. While additional variables can therefore be included in the sensitivity calculation, it is worth nothing that (unlike
here) this could lead to changes in the sensitivity estimates. If the sensitivities depend on the regression model fitted,
interpretation of the resulting regression coefficients becomes more challenging. Also, regression models with many predictors
increase the risk of overfitting (e.g., to certain combinations of catchments with specific correlation structures), especially
when predictors are correlated or the signal-to-noise ratio is low. Thus, while including additional variables may increase our
understanding of the drivers of (annual) streamflow variations (e.g., Andréassian et al., 2025), it also necessitates a close look

at the meaning and robustness of the resulting sensitivity estimates.

5.2.3 The complementary relationship

Interestingly, method #1 appears to enforce the so-called complementary relationship (Awasthi et al., 2024; Dooge, 1992;
Zhou et al., 2015). This might be due to the nature of the equation used. If we reformulate Eq. 8 and substitute the sensitivities

with elasticities, we get:

Q=SPP+sEpEp=eP%P+eEpE%Ep
L= 9P g_,,zeg(ﬁﬂw) o, Q (E, +4E)
"PQ PE, Q. TP@+4Q) TE, (Q+40Q)

If we assume that the fluctuations are much smaller than the means, the means cancel out and we get: 1 ~ ep + eg,.
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While the complementary relationship should hold if catchments follow Budyko-type behaviour (i.e., Q is solely controlled
by variability in P and Ep), real catchments do not necessarily behave that way. As soon as other factors (e.g., storage, changes
in vegetation, human impacts) strongly affect a catchment’s water balance and/or its sensitivity, we should not expect the
relationship to hold. It is worth noting that the complementary relationship may be extended to account for elasticities to any
number of driving variables (cf. Zhou et al., 2015). Yet, this should only be valid if all (major) drivers of streamflow variability
are accounted for and in absence of large uncertainties. Overall, the so-called complementary relationship can thus be used to

constrain sensitivity estimates, but also invokes assumptions that should be stated and assessed.

5.2.4 Other uncertainties and limitations

There are various sources of uncertainty when working with observational data, which will affect empirically estimated
sensitivities. Besides measurement uncertainty, catchment averages of P and E; rely on spatial interpolation procedures that
introduce uncertainty (McMillan et al., 2012, 2018). These uncertainties are typically not purely random and may affect
empirically estimated sensitivities in systematic ways. For instance, systematic underestimation of P (especially its variability)
will lead to lower sensitivities. But even random uncertainties can affect sensitivity estimated based on linear regression, since
large uncertainties compared to natural variability (i.e., a low signal-to-noise ratio) will impact the accuracy of regression

coefficients, as shown in the synthetic experiment.

To minimise uncertainties arising from observational data, we selected catchments that are relatively unimpacted and come
with long, mostly complete time series. We also only used national forcing products, since they are usually less uncertain than
global products (Clerc-Schwarzenbach et al., 2024). In the case of the German catchments, for instance, the Hargreaves E,
estimates contained in CAMELS-DE differ substantially from Penman-Monteith E, estimates (ps = 0.38) contained in Caravan.
Independent of whether we deem the national E, estimates to be more realistic, the large differences suggest considerable
uncertainty. More generally, since E, is not a measurable but a modelled quantity, it is also associated with substantial
conceptual uncertainty. One alternative option would be the use of net radiation (normalised by latent heat of vaporisation)
directly to avoid the use of a model for estimating potential evaporation, which may become even more uncertain when looking

at climate projections (cf. Milly & Dunne, 2016).

5.3 Change of sensitivities over time

When investigating long time spans (50 years), we find that — in accordance with the analytical model — the sensitivities
decrease as aridity increases. This finding is mirrored in results previously reported for elasticities in the US (Anderson et al.,
2025), though the trends there were less clearly expressed, differed between regions, and were not explicitly related to trends
in aridity. While not directly comparable, the relative trends estimated here (decrease between -26% and -70%) are in a similar

range as the relative variations in interannual elasticity compared to long-term elasticity estimates (between 4 and 48%) found

20



415

420

425

430

435

440

https://doi.org/10.5194/egusphere-2025-4527
Preprint. Discussion started: 17 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

by Anderson et al. (2025), which also showed lower elasticity in hot and dry years. This suggests that temporal changes in

sensitivities of that order of magnitude are a more widespread phenomenon.

Overall, both sp and sgp decrease by more than 20% over 50 years, suggesting that sensitivities may not be robust metrics for
mid- to long-term projections. This holds true even without considering other factors that might influence the water balance in
a future with elevated CO- concentrations (e.g., interactions between P and Ep, or changes in stomatal conductance). At the
same time, the change in sensitivity may be roughly estimated and projections adjusted accordingly, especially if trends are
clearly expressed in empirical observations, as is the case for the Australian catchments. For the German catchments, the
decrease is larger than predicted by the analytical model and the sensitivities themselves are much lower than the Turc-
Mezentsev estimates. This might be due to due to data issues (especially Ey), or because these catchments are less climate-

driven on average, for instance due to human impacts, changes in land cover, or larger influence of catchment storage.

6 Conclusion

A systematic comparison of empirical, primarily regression-based, methods for estimating streamflow sensitivities to
precipitation and potential evaporation indicates that streamflow sensitivity estimates are often highly uncertain, especially for
potential evaporation. This applies both to a synthetic experiment using an analytical model (Turc-Mezentsev) and to
observations from >1000 near-natural catchments, and can also be transferred to streamflow elasticities. While multivariate
regression methods are preferable over univariate methods, the commonly employed multiple regression approach resulted in
unrealistic streamflow sensitivities to potential evaporation for the majority of catchments studied here. Using a variant of
multiple regression (with an intercept of zero) resulted in the lowest relative errors in the synthetic experiment and leads to
fewer unrealistic values when applied to observational data, likely because it enforces the complementary relationship (which
states that elasticities to P and E, should sum up to 1). While this method therefore appears preferable, it invokes strong
assumptions and may still underestimate (or poorly estimate) sensitivities to potential evaporation. One possible reason for the
difficulty in estimating sensitivity to potential evaporation is the low year-to-year variability in potential evaporation compared
to precipitation and compared to observational uncertainty. Using unrealistic estimates of sensitivities to potential evaporation
may be particularly problematic in regions where climate change impacts are largely driven by changes (typically increases)
in evaporative demand and not precipitation totals, as is the case for Germany. In such instances, sensitivity-based projections
may be deemed unreliable even if sensitivity to precipitation is accurately estimated. In addition, both theoretical and empirical
results show that sensitivities decrease over time as aridity increases, indicating that static sensitivities may be unreliable for
projections of climate change impacts. These results should therefore urge caution in the use of empirical sensitivities for both

short-term and long-term projections, highlighting the need for further investigation.
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Data and code availability

CAMELS-US is available at https://dx.doi.org/10.5065/D6MW2F4D and https://doi.org/10.5065/D6G73C3Q (Addor et al.,
2017; Newman et al., 2014). CAMELS-GB is available at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9
(Coxon et al., 2020b). CAMELS-AUS v2 is available at https://zenodo.org/records/14289037 (Fowler et al., 2024). CAMELS-
DE is available at https://zenodo.org/records/13837553 (Dolich et al., 2024). Caravan is available at

https://zenodo.org/records/7944025 (Kratzert et al., 2025). Python code to reproduce the results and figures can be accessed at

https://github.com/SebastianGnann/Streamflow_sensitivities and will be permanently archived upon acceptance of the
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