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Abstract16

In recent years, Belgium has experienced a sequence of intense17

droughts with wide-ranging impacts across multiple sectors. Determin-18

ing whether these events are unprecedented or within natural vari-19

ability requires indicators that properly diagnose drought. Root-zone20

soil moisture is a suitable indicator because it integrates meteorologi-21

cal forcings with land-surface processes. In Belgium, however, opera-22

tional monitoring relies mainly on precipitation-based indices and lacks23

long-term in-situ soil-moisture observations, leaving uncertainty about24

whether these indices capture the persistence of root-zone drought.25

To address this gap, we reconstructed daily root-zone soil-moisture dynam-26

ics over Belgium for 1970–2020 using the mesoscale Hydrologic Model27

(mHM), placing recent droughts in historical context and evaluating the ade-28

quacy of precipitation-based indicators for representing drought conditions.29

Our analysis shows that droughts in 2011–2020 were unprecedented in both30

duration and severity over the past five decades.Between 2011 and 2020, the31

country experienced a cumulative three years of drought (non-consecutive),32
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representing 30% of the decade, more than double the cumulative duration33

in each decade from 1981–2010 and about 1.5 times that of 1971–1980.34

We further find that the Standardized Precipitation–Evapotranspiration Index35

(SPEI), currently used operationally as a proxy for agricultUral droughts in36

Belgium, underestimates the persistence of root zone droughts because it37

does not explicitly account for land-surface memory. Thus, by including soil38

moisture monitoring in drought assessment, residual stresses on agriculture39

and subsurface water which can persist long after meteorological condi-40

tions have normalized can still be detected. This gives decision-makers a41

more realistic understanding of droughts and how to respond proportionately.42

Keywords: Mesoscale, climate variability, drought persistence, agricultural drought43

monitoring44

1 Introduction45

Belgium has faced a succession of hugely consequential droughts in recent years. These46

droughts led to declined crop yields, increased water scarcity and restricted water abstractions,47

disrupted navigation on inland waters and caused economic losses running into millions of48

Euros (Tröltzsch et al., 2016; De Ridder et al., 2020). Between January and April 2011, Bel-49

gium had only received less than 50% of the climatologically expected rainfall by that time50

of the year (European Commission, Joint Research Centre, 2011). In 2018-2019, a multi-year51

drought characterized by rainfall deficits and record-breaking temperatures swept through the52

country, causing significant economic costs across different sectors (Bastos et al., 2020). In53

the Flemish region (the northern part of the country), the event reduced potato production by54

31% leading to a 23% surge in prices. Sugar beet production fell by 13% and cereal yields55

reduced by 10%. These led to farmers submitting claims of about e150 million to the Flemish56

Disaster Fund to compensate for losses from the drought (De Ridder et al., 2020). According57

to the agency in charge of inland water in Flanders (De Vlaamse Waterweg nv), inland navi-58

gation suffered economic losses of more than e300 million due to low water levels during the59

2018-19 drought. In July 2019, a temperature record of 39.7◦C was measured, which marked60

the most intense heatwave ever recorded in the country at the time (Chini, 2022). Soon after,61

in 2022, another drought hit Belgium, affecting 53.4% of the country, more than ten times the62

long-term average impacted area of 4.6% between 2000 and 2020. According to the Coper-63

nicus Climate Change Service (https://climate.copernicus.eu/esotc/2022/drought), surface soil64

moisture in Europe throughout 2022 was the second lowest in the last 50 years, sustained by65

higher-than-average temperatures and a sequence of heatwaves that started in spring and con-66

tinued throughout summer. Of all European countries, Belgium was the second most affected67

country in terms of the proportion of area impacted by the drought (European Environment68
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Agency, 2023). By March that year, water levels in half of the groundwater wells in Flan-69

ders were very low for that time of the year. By May, this number had increased to two-thirds70

(Walker, 2022). In July, rainfall in the country was the lowest in 137 years (since 1885), with71

an average rainfall of 5 mm across the country. The drought caused significant crop damage,72

and the Flemish government subsequently declared the drought a disaster, which paved the73

way for farmers to seek compensation for crop losses. Evidently, these recent drought events74

are well documented. In order to contextualize their magnitudes and severity, it is essential to75

reconstruct historical drought occurrences over a sufficiently long climatological period. Such76

a long-term perspective is necessary to determine whether recent droughts are unprecedented77

extremes or if they fall within the range of natural climate variability.78

Belgium has an extensive network of precipitation, river discharge and groundwater mon-79

itoring stations which provided the basis for monitoring hydrological and meteorological80

droughts. This data underlies the drought indices found in dedicated platforms for tracking81

and communicating the evolution of droughts across the country (e.g. https://www.meteo.82

be/en/weather/forecasts/drought, https://vmm.vlaanderen.be/water/droogte). However, due to83

the lack of long-term observations of soil moisture in the country, the extent of agricul-84

tural droughts is presently evaluated with the Standardized Precipitation Evaporation Index85

(SPEI)(Vicente-Serrano et al., 2010) which expresses anomalies in the climatic water balance,86

that is, precipitation minus potential evapotranspiration. The nationwide drought conditions87

are reported through https://www.meteo.be/en/weather/forecasts/drought. Although useful,88

precipitation- and temperature-based drought indices are constrained for their limited abil-89

ity to fully represent agricultural drought conditions. Firstly, these indices do not explicitly90

account for the vertical distribution of water within the root zone that supports plant growth,91

nor do they reflect the complex interactions between soil moisture and vegetation across dif-92

ferent stages of plant development and are thus inadequate to represent extreme water shortage93

that would lead to biomass and crop yield reduction (Sheffield et al., 2004; Mishra and Singh,94

2010; Samaniego et al., 2013). While soil moisture may exhibit direct link to precipitation at95

monthly timescales, soil moisture responses can be nonlinear at shorter timescales, particularly96

during dry conditions. Soil moisture also has a memory effect that can lag precipitation anoma-97

lies by days to months and in turn prolong the persistence and severity of drought (Bonan and98

Stillwell-Soller, 1998; Nicholson, 2000; Wu et al., 2002; Seneviratne et al., 2006). Accord-99

ingly, developing indices based on soil moisture offers a more reliable indicator of agricultural100

drought as soil moisture integrates the effects of antecedent precipitation, plant water uptake101

through transpiration, and the increasing persistence of soil wetness with soil depth (Wu et al.,102

2002; Sheffield et al., 2004).103
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The goal of this study is therefore to perform a retrospective high-resolution reconstruction104

of root zone soil moisture to perform a first-of-its-kind assessment of soil moisture droughts in105

Belgium over the five decades between 1970 and 2020. We aim to characterize major droughts106

that have occurred over this period by clustering soil moisture anomalies using thresholds107

that capture the spatiotemporal characteristics of identified events and rank them based on108

their magnitude, spatial extent and duration, and evaluate how drought patterns in the country109

have evolved over the five decades. In our study we use the mesoscale hydrological model110

(mHM) driven by offline meteorological forcings to simulate soil moisture conditions and111

derive grid cell-level statistical distributions for characterizing the spatial and temporal patterns112

of agricultural drought over Belgium. To evaluate the correspondence between SPEI and soil113

moisture-based anomalies to represent agricultural droughts, we compare SPEI at different114

accumulation periods to a soil moisture index (SMI) (Samaniego et al., 2018), derived from115

monthly percentile ranking of soil moisture fields, during selected major drought events.116

2 Methodology117

2.1 Study domain118

Belgium is located in Western Europe covering an area of 30,528 km2, varying in topogra-119

phy from sea level along the North Sea coast to 700 m in the Ardennes-Eifel massif in the120

south eastern parts (Figure 1) (Meersmans et al., 2016; Sousa-Silva et al., 2016). The coun-121

try experiences a warm temperate maritime climate (Köppen-Geiger Cfb) strongly modulated122

by the warming effect of the North Atlantic Drift (Erpicum et al., 2018; Beck et al., 2023).123

Data from the Royal Meteorological Institute of Belgium (RMI) shows that mean annual tem-124

perature ranges between 13 and 17 0C, varying spatially with elevation and distance inland.125

Winters are generally mild, with December–January lows dipping under 50C but rarely below126

freezing conditions for prolonged periods. Winters are colder in the Ardennes region due to127

a weaker maritime influence and higher elevation. Summers are moderately warm with July128

highs peaking around 180C although extremes above 300C have occurred in recent years. The129

country receives an annual average precipitation of about 800 mm which varies between 700130

mm in the western low lying regions, up to 1400 mm in the Ardennes where precipitation is131

enhanced by orographic effects (Erpicum et al., 2018). Temporally, rainfall is fairly evenly132

distributed throughout the year (Figure 1), with seasonal patterns dominated by summer con-133

vective storms and winter frontal systems (Brisson et al., 2011; Goudenhoofdt and Delobbe,134

2013; Journée et al., 2015).135

Land cover in the country is predominantly agricultural (44%), dominated by croplands136

and animal husbandry. Cultivated areas dominate the central loamy belt and the northwest of137

the country while the coastal polders typified by heavy soils, are more suited for animal-based138
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Fig. 1: Topographic map of Belgium. The Ardennes region is distinguishable by its high

elevation in the south east. Monthly mean precipitation and temperature in the inset plot

are derived from data provided by The Royal Meteorological Institute of Belgium for the

climatological period 1994-2023.

farming (Beckers et al., 2018, 2020; Statbel, 2025a). Forests cover about 23% of the terri-139

tory (just over 700,000 hectares) with 79.8% in the Walloon region, 19.9% in Flanders and140

0.3% in the Brussels-Capital (Sousa-Silva et al., 2016; Royal Forestry Society of Belgium,141

2025). Most of the lowland forests are dominated by broad-leaved tree species with clus-142

ters of coniferous forest plantations in the north east. In the Ardennes, forests form a mixed143

broadleaved–coniferous complex in the foothills, gradually transitioning to conifer-dominated144

stands at higher elevations(Royal Forestry Society of Belgium, 2025; Statbel, 2025a). Built-145

up and urbanized areas account for about 20% of the land with most cities dating back to the146

Middle Ages. The average population density of the country is 385 inhabitants/km2 (Beckers147

et al., 2020; Statbel, 2025b).148

2.2 The mesoscale Hydrologic Model149

We used the mesoscale Hydrologic Model (mHM; Samaniego et al., 2010; Kumar et al., 2013)150

(version v-5.13.2-dev0) to simulate domain-wide root zone (0-2 m) soil moisture conditions151

and streamflow, which we used as an additional hydrologic constraint for validating basin-scale152
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hydrology at major outlets. mHM is a spatially distributed hydrological model based on numer-153

ical representations of dominant hydrological processes. The model is driven by hourly to154

daily meteorological forcings, which include precipitation, temperature, and potential evapo-155

transpiration, and accounts for major hydrological processes like snow melt and accumulation,156

canopy storage, evapotranspiration, surface runoff and flood routing, three-layer soil moisture157

content, and subsurface storage. To represent spatial variability of inputs and state variables,158

the model uses three different spatial resolutions, namely (in order of fine to coarse resolu-159

tion); Level-0 (L0: small scale morphology) to represent the main terrain features, geological160

features, land cover and soil properties; Level-1 (L1: mesoscale hydrology) to represent the161

dominant hydrological processes; and Level-2 (L2: large scale meteorology) to describe the162

variability of meteorological forcings. mHM links model parameters at L1 to their correspond-163

ing ones at L0 using multiscale parameter regionalization (MPR; Samaniego et al., 2010). This164

technique uses non-linear transfer functions that couple catchment characteristics with global165

(calibration) parameters to regionalize model hydrologic parameters at L0 and link them to166

their corresponding values at L1 using upscaling operators such as arithmetic mean, geometric167

mean, and harmonic mean (MPR; Livneh et al., 2015). With this technique, mHM overcomes168

the problem of overparameterization and model equifinality (Samaniego et al., 2010, 2011;169

Kumar et al., 2013; Samaniego et al., 2013). mHM has been successfully used in multiple stud-170

ies at scales ranging from river basins (Zink et al., 2017; Dembélé et al., 2020; Demirel et al.,171

2024; Banjara et al., 2025), country level (Samaniego et al., 2013; Rakovec et al., 2019; Boe-172

ing et al., 2022) up to continental-scale (Samaniego et al., 2018; Moravec et al., 2019; Kumar173

et al., 2025) and global studies (Řehoř et al., 2025; Shrestha et al., 2025).174

2.2.1 Input data175

Without long-term in situ soil moisture within Belgium to validate the soil moisture out-176

put of mHM, we expanded the model domain to cover parts of France, Germany and The177

Netherlands where soil moisture observations are available from the International Soil Mois-178

ture Network (ISMN) (Dorigo et al., 2021), shown in Figure 2. We subsequently forced179

the model with daily fields of precipitation and temperature from the ENSEMBLES grid-180

ded dataset (E-OBS) version 30.0e (Cornes et al., 2018), which covers the entire modelling181

domain. E-OBS is a daily land-only gridded observational dataset over Europe which blends182

station network time series from the European National Meteorological and Hydrologi-183

cal Services or other sources and is provided with spatial resolutions of 0.10 and 0.250.184

Our setup uses the 0.10 resolution product (access url: https://cds.climate.copernicus.eu/185

datasets/insitu-gridded-observations-europe?tab=download, last accessed March 2025). Since186

6

https://doi.org/10.5194/egusphere-2025-4526
Preprint. Discussion started: 25 September 2025
c© Author(s) 2025. CC BY 4.0 License.



E-OBS does not provide potential evapotranspiration data, we generated this from the E-OBS187

minimum and maximum temperature using the method of Hargreaves and Samani (1985).188

The morphological datasets for the model originate from different sources namely;189

LAI maps from Global Inventory Modeling and Mapping Studies (GIMMS) (Cao et al.,190

2023), DEM from the Shuttle Radar Topography Mission (Farr et al., 2007), land use data191

from Corine Landcover (https://land.copernicus.eu/en/products/corine-land-cover), soil tex-192

ture and bulk density data from the Harmonized World Soil Database (Nachtergaele et al.,193

2023), and geology datasets from the Global Lithological Map Database (Hartmann and194

Moosdorf, 2012), accessed from the url: https://www.geo.uni-hamburg.de/geologie/forschung/195

aquatische-geochemie/glim.html (last accessed February 2025). To ensure the spatial consis-196

tency required by mHM, we prepared all L0 datasets at 0.001953125◦ (1/512◦), bilinearly197

coarsened the L2 meteorological data to 0.125◦ (1/8◦), and set the resolution of L1 to 0.03125◦198

(1/32 ◦), these are summarized in Table 1.We then run the model from 1965 to 2023, including199

a warm-up period of 5 years at the beginning.200

Table 1: Summary of data sources

Dataset Resolution (degrees) Input format Source

Meteorological data 1/8 NetCDF RMI Belgium
Leaf Area Index 1/512 NetCDF GIMMS
DEM 1/512 ASCII Grid SRTM
Geology 1/512 ASCII Grid Global Lithological Map Database
Land Cover 1/512 ASCII Grid Corine Landcover
Soil texture 1/512 ASCII Grid Harmonized World Soil Database

2.2.2 mHM Soil Moisture simulation201

mHM calculates water infiltration between soil layers using an exponential function that202

accounts for the nonlinearity of soil water retention (Samaniego et al., 2010; Livneh et al.,203

2015). Briefly, for a given soil layer, k, on pervious areas, the infiltration Ik into the layer is204

determined by the equation:205

Ik = Ik−1 ∗
(

θk

θsat,k

)βk

(1)

Ik−1 represents the infiltration from the previous layer k−1, θk is the soil moisture of layer206

k, θsat,k is the saturation moisture content for the layer, and βk is an exponential parameter that207

adjusts for the non-linear nature of soil moisture retention. Once infiltration is calculated, the208
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Fig. 2: Locations of ISMN stations (blue diamonds) used to validate mHM soil moisture

model updates soil moisture θt by adding the difference between the layer infiltration It and209

actual evapotranspiration (ETt ) for the time step as;210

θt = θt−1 + It −ETt (2)

Actual evapotranspiration is calculated by reducing the potential evapotranspiration (PET)211

based on a soil moisture stress factor, fSM , which varies depending on the soil moisture content.212

ET = froots · fSM ·PET (3)

froots is the fraction of roots in the soil horizon and fSM is calculated using either the Feddes213

equation (Feddes, 1982):214

fSM =
θ −θpwp

θ f c−θpwp
(4)
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or the Jarvis equation (after Jarvis (1989)):215

fSM =
1

θstress-index-C1
· θ −θpwp

θsat −θpwp
(5)

The model uses the MPR routine to compute the saturation moisture content, field capacity216

(θ f c) and wilting point (θpwp).217

2.2.3 Model evaluation218

The accuracy and spatial representativeness of absolute soil moisture values are strongly219

source-dependent (in situ or modelled), so direct comparisons between different datasets can220

be misleading (Koster et al., 2009; Ford and Quiring, 2019). On one hand, simulated soil221

moisture is highly dependent on the quality of meteorological forcings and the physical param-222

eterisation of the model (Koster et al., 2009; Wang et al., 2011a; Nicolai-Shaw et al., 2015). On223

the other hand, in situ measurements are highly localized to the sensor location and are affected224

by the technology used by the sensor and the sufficiency of the calibration techniques (Peng225

et al., 2025). From a drought analysis perspective, the real information value of soil moisture226

is not in its absolute values but rather in its temporal variability metrics, such as anomalies227

and seasonal variability of soil wetness (Koster et al., 2009). This information value is gener-228

ally more consistent and transferable between different sources when soil moisture is suitably229

normalised to have the same range and variability (Dirmeyer et al., 2004; Wang et al., 2011b).230

Koster et al. (2009) show that if soil moisture from different sources differs only in their mean231

and standard deviation, then standardizing each time series (as in Equation 6) would generate232

nearly identical datasets of standard normal deviations (θ ’).233

θ ′ =
θ −θm

σm
(6)

Where θ is the soil moisture at a given point and time of year, θm and σm are the mean and234

standard deviation of soil moisture, respectively, for the same point and time of year.235

In our evaluation of the mHM soil moisture, we used this approach to analyze the level of236

temporal agreement between the standard normal deviations of mHM and in situ soil moisture237

from the corresponding depths at the selected ISMN stations (Figure 2).238

For each in situ–modelled pair, we quantified the agreement in drought anomaly dynamics239

by calculating the Pearson correlation coefficient (r). To obtain an overall agreement across all240

sites, we first transformed the r values to the Fisher z-scale (z = arctanh(r)) to stabilize variance241

and avoid bias from the nonlinear r-scale. The z-values were then averaged to obtain z, and242

finally back-transformed to yield r = tanh z.243

Prior to the comparison, we performed a quality check on the in situ data to flag and244

exclude potentially erroneous measurements. We considered only errors due to systematic drift245
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in measurements over time (jumps or drops) and spiky measurements that are not explained by246

random noise. Here we used the quality control algorithms on in situ soil moisture developed247

by Dorigo et al. (2013) considering only stations that have at least 10 years of observations.248

Because soil moisture is also coupled with runoff through the terrestrial water budget,249

we added an independent check for model simulations against daily river-discharge obser-250

vations from the major river basins in Belgium. For this we used the inbuilt calibration251

feature of mHM and calibrated the model using data from river gauging stations all over the252

country, obtained from the Waterinfo database for Flanders (https://waterinfo.vlaanderen.be/253

Meetreeksen, last accessed March 2025) and the hydrometric network of discharge in Wallonia254

(https://hydrometrie.wallonie.be/home/observations/debit.html?, last accessed May 2025). In255

total we used 91 gauging stations during the calibration period (2000–2023) and 155 stations256

to validate the model from 1970–1999.257

2.3 Characterizing soil moisture droughts258

To characterize soil moisture droughts, we use a monthly soil moisture index (SMI), following259

Samaniego et al. (2013), considering the total soil water content of the root zone up to a depth260

of 0.5 m (We limit our analysis to this depth since groundwater in some regions is shallower261

than 0.5m). For each month, grid cell soil moisture is expressed as a percentile relative to that262

month’s historical soil moisture and scaled to a range between 0 and 1.263

The computation of SMI in this study is based on the methodology of Samaniego et al.264

(2010), which proceeds as follows. Firstly, the monthly soil moisture averaged over the root265

zone depth (0.5 m for this study) is extracted and used to compute a probability distribution266

function (PDF) ft(x) for each grid cell as;267

ft(x) =
1
nh

n

∑
k=1

K(
x− xk

h
) (7)

Where, x is the soil moisture value at which the PDF is evaluated x1, . . ., xk represent the268

simulated monthly soil moisture values for month t over the simulation period. Note that this269

conversion is done for each calendar months separately to account for inherent seasonality270

in SM simulations. K is a Gaussian kernel function and h is the bandwidth that controls the271

smoothness of the kernel (equation 8). The optimal value of h is computed using a cross-272

validation criterion.273

K(x,xk) =
1√

2πh2
exp(

(x− xk)2

2h2 ) (8)

The monthly grid cell SMI is then derived by integrating ft(x) and the resulting SMI val-274

ues are classified into percentiles. Drought-affected grid cells are identified using a threshold275
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percentile τ , which is commonly set at 0.2 (e.g., Svoboda et al. (2002); Samaniego et al. (2013,276

2018)). This means that for a given month, a grid cell is experiencing drought if the soil mois-277

ture value falls below the 20th percentile of values for that month. According to Svoboda et al.278

(2002), this percentile represents the threshold at which the magnitude of drought begins to279

damage crops, cause water shortages and present high risks of fire. Next, adjacent cells where280

SMI≤ τ (henceforth denoted as SMIτ ) at each timestep are consolidated to form drought clus-281

ters, which are defined by a minimum threshold area. Spatial clusters which share a minimum282

overlapping area at consecutive time steps are then joined to form multi-temporal clusters,283

each with a unique identity. For each cluster, the mean duration (months), areal extent from the284

onset to termination, and the total drought magnitude, which is the spatiotemporal integral of285

SMIτ over the area affected, are computed. Following Samaniego et al. (2013), the magnitude286

of each event is computed as the space-time integral of the drought duration in months over287

the area under drought. This is represented mathematically as;288

TDM =
t1

∑
t=t0

∫

At

[τ−SMIi(t)]+ (9)

t0 and t1 represent the onset and termination month of a multi-temporal drought event, At289

is the area under drought at timestep t expressed as a percent of the total domain area, and +290

means the magnitude is computed only for the positive part of the function. To avoid detecting291

small, isolated and short-lived dry spells as droughts, we specified a minimum threshold area292

of 640 square kilometres (about 2% of total domain area) based on Samaniego et al. (2013) for293

an event to be considered as a drought, and an overlap area of the same size for two drought294

events at successive time steps to be considered as a single multi-temporal drought cluster.295

3 Results296

3.1 Model Performance Evaluation297

3.1.1 Soil Moisture Simulations298

The daily standardized anomalies of mHM-simulated soil moisture evaluated against in-situ299

observations from the ISMN are shown in Figure 3. Of the 48 stations where in situ data was300

retrieved, 21 sites passed quality-control checks and were retained for validating the model out-301

puts. The resulting comparison showed that the two datasets are highly temporally correlated,302

with a mean Pearson r=0.86 (back-transformed averages from the Fisher z-scale), although303

the strength of the correlation varied with sensor depth and type. The correlation is lowest for304

the top 50 mm of the soil profile (r=0.81 for all networks) and increases to 0.86 for the profile305

depths greater than 150 mm.306
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Even for the selected in situ sites, some still exhibited spurious spikes outside of random307

noise (shown by the red scatter points in Figure 3). We chose not to discard these points so as308

to preserve an adequate number of validation stations and to highlight the practical difficulty309

of obtaining perfectly reliable reference soil moisture data for validating model outputs.310

Despite such outliers, the model simulations and ISMN observation showed similar tem-311

poral variability in soil wetness and dryness. The difference mainly occurred in the top 50 mm312

layer during very dry episodes when mHM produced more extreme negative anomalies than313

most sensors (Figure 3 (a-d)). This explains why the correlation between the datasets is the314

lowest at this depth. We attribute this divergence partly to a flooring effect of capacitive sen-315

sors which tend to plateau at very low volumetric water contents whereas the model continues316

to resolve further drying. For deeper layers, the intensity and duration of dryness were more317

consistent between both datasets. Finally, we note that the strength of the agreement is also318

influenced by the scale mismatch between mHM soil moisture, which represents average319

conditions over a grid cell, and the highly localized nature of point in situ measurements.320

3.1.2 Streamflow Simulations321

The skill of the model to represent daily simulated flow over the study domain is presented322

in Figure 4. For a robust evaluation of model performance, we retained only those stations323

that had at least 10 years of data and excluded stations whose peak flow did not exceed 10324

m3 s−1. The statistics show the model performed very well in simulating daily flows, with325

a mean Nash-Sutcliffe Efficiency (NSE) of 0.62 and 80% of stations having NSE ≥ 0.5 in326

calibration. Validation statistics are comparable, with a mean NSE of 0.63 and 83% of stations327

exceeding an NSE of 0.50, which indicates good temporal transferability (Klemeš, 1986; D.328

N. Moriasi et al., 2007). Spatially, as Figure 4 shows, the model shows consistent performance329

across the domain. The model achieved the highest performance (NSE≥ 0.75) in large basins,330

as the model could delineate the drainage extents of such basins with higher accuracy. This331

delineation becomes more challenging in smaller basins and especially where the topography332

is less pronounced, as is the case in the northern part of the domain. Accordingly, the lowest333

model performance was observed in gauging stations draining the smallest basins. In some334

cases, anthropogenic modification of rivers such as canalization, diversions and diking, which335

is common in the northern lowlands and which are not implemented in the model, explained336

poor model performance at some gauging stations. Notwithstanding these few cases, the results337

demonstrate that the model provides a reliable, spatially consistent basis for assessing soil338

moisture dynamics over the country.339
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Fig. 3: Comparison of standardized anomalies between mHM and in situ soil moisture at

selected ISMN sites, ordered by increasing sensor depth. The red scatter points represent

observed soil moisture values flagged as potentially erroneous. Titles follow the format

station topdepth bottomdepth sensortype, e.g., BOISSY 0p05 0p05 TRASE 16 A

refers to the Boissy station with a sensor at 0.05 m depth and sensor type TRASE.
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Fig. 4: Model performance at gauging stations across Belgium during calibration and valida-

tion periods. The colour intensity and size of each circle are proportional to the NSE value.

The inset histograms show the distribution of NSE values across all stations for each period.

3.2 Multidecadal evolution of soil-moisture droughts340

Figure 5 shows simulated soil moisture droughts over Belgium between 1970 and 2023. The341

events are ranked by Total Drought Magnitude (TDM), the cumulative deficit in soil moisture342

below the chosen drought threshold (SMI ≤ 0.20), integrated over the area and duration of the343

drought event. The biggest ten events ranked by TDM are colored and annotated with their cor-344

responding periods. From an interdecadal perspective, the figure reveals three distinct drought345

regimes. Three drought events are apparent in the 1970s, which are dominated by the historic346

1975–1977 droughts. Although this event is commonly referred to as the 1976 drought, prob-347

ably because that is when it peaked, the analysis shows that its development in Belgium began348

back in the autumn of 1975 and lasted for a record 16 months until the winter of 1977. By the349

end of the event, 63% of the domain had experienced drought conditions although this fluctu-350

ated at different times1. This event established a benchmark against which subsequent drought351

events in Europe are commonly judged against. Our analysis reflects this, as this event matches352

the most intense drought in Belgium in the 53 years since 1970. Henceforth, this decade will353

be referred to as the 1971–1980 decade (we disregard 1970 because it is a calibration period354

for the drought analysis).355

1The 63% figure is the mean fraction of the domain affected across all time steps during the drought; at individual times
coverage ranged below and above this value, with a maximum of complete (100% ) coverage when the drought peaked
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Fig. 5: Duration and magnitude of drought events from 1970 to 2023. Each circle represents

a drought event, positioned according to its start date (x-axis). The circle size is propor-

tional to the Total Drought Magnitude (TDM) of each event. The ten most severe droughts,

ranked by TDM, are highlighted with coloured markers, with their corresponding periods

annotated.

A relatively wetter hydroclimatic regime characterizes the three subsequent decades356

(1981-1990, 1991–2000 and 2001–2010). This is observable in Figure 5 as indicated by lower-357

magnitude drought occurrences. In these three decades, only three drought events are big358

enough to feature in the top ten droughts, and even these ranked relatively low in the TDM359

scale. The 1995-96 drought, the biggest of the three, however did persist for at least a year.360

A significant shift in drought frequency and severity emerged after 2011. Of the ten highest361

ranking droughts from 1971, 40% of them were recorded in the 2011–2020 decade with three362

severe drought events clustered in rapid succession between 2016 and 2020. The 2016–2017363

drought is the biggest in this decade, matching the 1975–1977 drought by magnitude, affected364

area (64%) and lasting nearly as long (15 months) before it fully dissipated. The 2018-19365

droughts also rank highly although it lasted about 10 months but affected a bigger area on aver-366

age (73%). This pattern has continued robustly into the 2020s, as underscored by the 2020–21367

and 2022–2023 droughts. By cumulative magnitude, the 2022–2023 event, not shown here,368

(lasted for 12 months between March 2022 and February 2023 with a TDM of 7870) ranks369

just below the 1975–1977 and 2016–2017 droughts. We have excluded drought events after370
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2020 from the subsequent decadal analysis because the current decade is still incomplete. In371

the subsequent analysis, the 2020–2021 is also only considered until the end of 2020.372

3.3 Area characteristics and shifts in drought-class composition373

Figure 6 combines the temporal and areal characteristics of drought to illustrate the proportion374

of the domain experiencing varying degrees of soil-moisture drought severity through time.375

The categorization of drought into severity classes is based on Svoboda et al. (2002). The376

categories are clustered as follows; moderate drought (0.1 < SMI≤ 0.2), severe drought (0.05377

< SMI ≤ 0.1), extreme drought (0.02 < SMI ≤ 0.05) and exceptional drought (SMI ≤ 0.02).378

For conciseness we will examine the changes at both ends of the drought spectrum.379

During the 1971-80 decade, droughts were predominantly moderate (0.1 < SMI ≤ 0.2).380

When they did occur, exceptional droughts did not affect more than 30% of the domain at381

their peaks in 1971–1972 and 1976-1977. The figure also shows that these two droughts were382

disrupted by wetter spells which allowed re-establishment of normal to wet soil moisture con-383

ditions. When accumulated over the decade, moderate droughts accounted for about 75% of384

all grid-cell months affected by drought, while exceptional droughts, which are very rare by385

design, accounted for about 3% of drought-affected area, most of this occurring during the386

1975–1977 drought (donut plots, Figure 6).387

Normal to wet conditions interspersed with episodic, short-lived droughts dominate the388

spatiotemporal profile between 1981 and 2010. Decadal accumulations show that at least 80%389

of all drought occurrences during this time were moderate in intensity, while exceptional390

droughts constituted, on average, less than 1% of occurrences over the three decades.391

In contrast, the 2011–2020 decade experienced more frequent and severe droughts, particu-392

larly towards the end of the decade. In comparison to the previous decades, the spatial footprint393

of exceptional droughts noticeably increased. At the peak of the 2011 and 2016–2017 droughts,394

more than 40% of the drought-affected area was under exceptional drought, which did not395

previously occur even during the 1975–1977 event. This increase is reflected in the decadal396

drought area severity, where exceptional droughts accounted for 5.9% of drought-affected area,397

exceeding all the previous four decades combined.398

3.4 Decadal drought exposure399

Complementing the temporal and spatial analyses, Figure 8 illustrates decadal drought persis-400

tence, expressed as the total number of months in which each grid cell experienced SMI ≤401

0.2 in a decade. The results agree with those of the previous analysis. During 1971–1980, the402

domain accumulated between 12 and 36 drought months, with a domain-wide mean of about403

24 months per grid cell (2.4 months/year), (inset histogram).404
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Fig. 6: Decadal spatio-temporal evolution of soil moisture in Belgium, 1971–2020. For each

decade (stacked panels, left) the coloured bands show the percentage of land area falling

into soil-moisture classes, from “exceptional drought” to “extremely wet”. The accompa-

nying donut charts (right) aggregate only the months in which some part of the country was

in drought (SMI ≤ 0.20); they display the mean share of the drought-affected area that fell

into each drought class over the decade. Months without drought contribute no area to the

donut.

Domain-wide improvements in moisture conditions are apparent in the next three decades.405

The mean cumulative totals fell to 13 months in 1981–1990 (1.3 months/yr), 17 months in406

1991–2000 (1.7 months/yr.), and 14 months in 2001–2010 (1.4 months/yr).407
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As with the other metrics, drought persistence peaked in 2011–2020. The domain accu-408

mulated between 24 and 48 months of drought over the decade, and the domain-wide mean409

rose to 37 months, or 3.7 months per year (Figure 8). To put this into perspective, this410

amounts to roughly three continuous years of soil-moisture drought within the decade. This411

cumulative exposure is more than twice that of each of the three preceding decades (1981–412

1990, 1991–2000, 2001–2010) and about 1.5 times higher than the previous driest decade413

1971–1980.414

Fig. 7: Distribution of the number of months within each decade that a grid cell experienced

drought conditions (SMI ≤ 0.2). The inset histograms show the frequency distribution of

cumulative time under drought for all grid cells. The red dashed line indicates the mean

duration. EOBS data is missing for the region shaded grey.

To test whether 2011–2020 was statistically drier than the preceding four decades, we415

applied a non-parametric bootstrap to the per-pixel cumulative drought durations (SMI≤ 0.20)416

and to the subset of exceptional drought months (SMI ≤ 0.02). For each decade, we gener-417

ated 100,000 bootstrap samples by resampling grid-cell drought durations with replacement,418
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calculated the mean for each sample, and used the 2.5th and 97.5th percentiles of the resulting419

distribution to derive the 95% confidence interval (CI) of the sample mean.420

The statistical analysis concludes that 2011–2020 was indeed the driest decade of the five421

decades, both in terms of total drought duration and exposure to exceptional droughts. Over422

the decade, Belgium accumulated a mean drought period of 37 months (CI:36.9–37.2 months),423

significantly higher than in 1971–1980 (mean=25.65 months [CI: 25.6–25.8]), which is the424

next driest decade (Figure ?? (a)). The lower bound of the 2011–2020 decade CI lies 11 months425

above the upper bound of the 1971–1980 period and far higher than those experienced in the426

three decades in between (1981–1990: mean 13 months [CI: 12.92–13.15], 1991–2000: mean427

16.9 months [CI: 16.80–16.95] and, 2001–2010: mean 13.52 months [CI: 13.46–13.59]).428

A similar contrast emerges for the most severe drought (Figure ??(b)). The 2011–2020429

decade accumulated 4.3 months of exceptional drought on average (CI: 4.28–4.38), more than430

the combined total of the four earlier decades. None of the previous decades reached a mean431

of 2 months of exceptional droughts. 1971–1980 accumulated 1.94 months (CI: 1.89–1.98),432

1981–1990 only 0.35 months (CI: 0.34–0.36), 1991–2000 0.80 months (CI: 0.79–0.84), and433

2001–2010 experienced virtually no exceptional drought. In cumulative terms, more than half434

of all exceptional drought months in the five-decade record occurred between 2011 and 2020.435

Fig. 8: Decadal pixel-wise drought persistence. The bars show the mean number of months

each grid cell spent in drought per decade, with 95% bootstrap confidence intervals (black

whiskers) for (a) All drought classes (SMI ≤ 0.20) and, (b) Exceptional drought only (SMI

≤ 0.02).
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3.5 Divergence Between Soil Moisture and Precipitation-Based436

Drought Indicators437

To investigate how precipitation-based drought indicators reflect land surface moisture stress,438

we compared the SMI and SPEI during the most severe soil moisture drought events ranked439

by TDM (1975–1977, 2016–2017, and 2018–2019). Since the SMI is computed on a monthly440

timescale, we calculated the accumulated difference between EOBS precipitation and potential441

evapotranspiration at one- and three-month timescales and used the SPEI package developed442

by Vonk (2024) to compute pixel-wise 1-month SPEI (SPEI-1) and three-month SPEI (SPEI-443

3). We also limit the accumulation period to 3 months as this is what is currently used in444

drought monitoring in the country. As SPEI is an anomaly-based rather than a percentile-based445

index, we associated an SPEI value of -1.0 to an SMI value of 0.2 to represent the threshold446

for moderate drought severity, according to the guidelines by Svoboda et al. (2002).447

Across the three drought events, SMI generally exhibits more persistent negative anoma-448

lies than SPEI-1 and, to a lesser extent, SPEI-3 (Figure 9). SPEI-1 is highly responsive to449

short-lived rainfall deficits and surpluses that may not immediately alter root-zone storage; this450

sensitivity captures meteorological conditions which differ from soil moisture conditions that451

integrate past deficits through slow infiltration and plant uptake. As expected, SPEI-3 smooths452

some of the short-term variability inherent to SPEI-1 and more closely mirrors the temporal453

pattern of soil-moisture anomalies. Even so, for our domain, SPEI-3 still tends to underesti-454

mate the persistence and the magnitude of deficits relative to SMI. For example, of the three455

drought events, SMI shows that soil moisture anomalies were strongest during the 2016–2017456

drought (SMI near zero). SPEI-3 on the other hand appears to underestimate the extent of this457

difference between the three droughts. SMI also shows a stronger persistence in time, which458

implies that soil moisture has a higher inertia and responds not only to the magnitude but also459

to the sequence of meteorological anomalies.460

When analyzing drought recovery, the same pattern also emerges. SPEI-1 reacts fastest461

and shows an earlier termination of droughts. Although the exact pattern of recovery is event-462

specific, drought recovery follows the same general order; short-term water balance anomalies463

(SPEI-1) normalize first followed by seasonal water balance anomalies (SPEI-3) before soil464

moisture conditions emerge out of drought. This pattern is most evident during the drought465

events of 1975-1977 and 2018–2019 (Figure 10). During the 1975–1977 drought event, all the466

indices show that the drought-affected area peaked by August 1976. According to the evolution467

of SPEI-1, the drought had virtually terminated by around November 1976. Yet, by this time468

almost half of the domain area was still under SPEI-3 drought while SMI shows closer to 90%469

of the domain was still under drought. By the time SPEI-3 drought terminates in January 1977,470

more than one-third of the domain was still under SMI drought, which took until February471
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1977 to terminate. A similar sequence of recovery is observed during the 2018-2019 drought.472

The 2016–2017 drought was interrupted by intermediate wet conditions during March and473

April 2017 which led to partial drought recovery and consequently a smaller margin between474

SPEI-3 and SMI recoveries.475

We stress that these differences do not imply that one indicator is necessarily better; rather,476

they are all useful for demonstrating how a drought shock progressively propagates through477

different components of the hydrological system. Precipitation-based indices like SPEI reflect478

short-term meteorological inputs that may still be agriculturally meaningful. As Figure 9479

shows, rainfall events during dry summers may not replenish deeper soil moisture due to480

immediate losses through evapotranspiration, yet these events can still temporarily alleviate481

plant water stress, especially for fast-responding, shallow-rooted crops or annual crops. The482

recovery of SPEI out of drought conditions may thus signal ’relief’ that is real, albeit short-483

lived and limited in scope. SMI-based drought analysis better captures the persistence of land484

surface water deficits and the residual moisture stresses that continue to affect the dependent485

ecosystems (e.g. perennial deep-rooted vegetation) long after meteorological conditions have486

normalized.487

Fig. 9: Comparison of domain-average SMI, SPEI-1, and SPEI-3 time series during the three

biggest drought events up to 2020. The orange shaded areas indicate drought conditions,

defined as SMI ≤ 0.2 and SPEI ≤ -1.0. The horizontal magenta lines mark the drought

threshold for each index.
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Fig. 10: Evolution of area affected by drought during the three biggest drought events, repre-

sented using the three indices. The thresholds for SPEI and SMI are as described in Figure 9

.

4 Discussion488

This extended temporal analysis of soil moisture droughts over Belgium offers new insights489

on the severity of recent droughts in the country. Without such a long-term, multi-decadal490

viewpoint, the recent intensification of drought severity and frequency might be mistakenly491

viewed as isolated, transient events rather than as indicators of a potential shift in the climate492

regime. These changes, despite the absence of significant linear trends, also raise important493

questions regarding potential non-linear transitions in regional hydro-climatic equilibria, to494

which we find answers by studying longer reconstructions of the European drought patterns495

from other studies.496
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Our findings are consistent with the wider pan-European narrative of intensifying droughts497

over the continent in the 21st century. Garcı́a-Herrera et al. (2019) showed that drought con-498

ditions covered 90% of central-western Europe from July 2016 to June 2017, with 25% of499

the area in record-breaking severity. This drought led to widespread impacts of agriculture,500

water supplies and hydropower production and was the most severe drought Europe had faced501

between 1979 and 2017. Longer historical reconstructions of European droughts by Hari502

et al. (2020) and Rakovec et al. (2022) show that the occurrence of the consecutive European503

summer droughts of 2018–2019, where 50% of Central Europe was under extreme drought504

conditions, is unprecedented in the last 250 years (since at least 1766). In their synthesis of505

the effect of this drought on crop yields, the same study found that the drought reduced maize506

yields in western Europe by 20-40% and caused about a 10% loss in barley yields for a majority507

of European countries. By dating stable tree-ring isotopes to reconstruct the summer hydrocli-508

mate of central Europe from 75 BCE to 2018 CE, Büntgen et al. (2021) found that the recent509

succession of extreme European summer droughts between 2015 and 2018 are unprecedented510

in the previous 2,110 years.511

Studies attribute atmospheric circulation patterns and the potential role of anthropogenic512

warming as the dominant drivers of these drought dynamics. Ionita et al. (2020) link the513

sustained period of spring droughts in Europe between 2007 and 2020 to a prevalence of anti-514

cyclonic and a persistent blocking high over the North Sea. These conditions deflect westerly515

storms and increase temperature due to a lengthened sunshine duration. This consequently516

increases evapotranspiration, which has been found to amplify European summer droughts517

(Teuling et al., 2013). Garcı́a-Herrera et al. (2019) observed that high-latitude atmospheric518

blocking contributed to the drought conditions over northwestern Europe in 2016–2017 by519

decreasing moisture transport from the Atlantic Ocean. Hari et al. (2020) similarly attributed520

the intensification of the 2018-2019 drought to anticyclonic circulation which caused a block-521

ing that increased temperature anomalies to +2.8 K in central to northern Europe (Rakovec522

et al., 2022). These patterns are projected to persist in future as anthropogenic warming weak-523

ens the temperature gradient between the polar and mid-latitudinal regions and fluctuate the524

strength of the jet stream and the persistence of extreme weather events (Cohen et al., 2014;525

Dai et al., 2019; Ionita et al., 2020). Europe-wide studies show that anthropogenic warming526

will worsen droughts and events with the nature of severity as the 2018–2019 drought will527

become routine, persist longer and affect a larger proportion of area (Samaniego et al., 2018;528

Hari et al., 2020; Rakovec et al., 2022). These emphasize the need to continue strengthening529

drought monitoring and investing in drought preparedness and mitigation measures.530

On the comparison between precipitation and soil-based drought indicators, we stress that531

these indicators are useful for different components of the hydrological system. SPEI-1 and532
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SPEI-3 may suit analyzing drought patterns in shallow soil layers and shorter temporal scales533

but are limited for indicating drought persistence deeper in the soil or in complex ecosystems534

due to their ignorance of land-ecosystem interactions (Xu et al., 2021; Peng et al., 2024). When535

assessing drought impacts on ecosystems, groundwater recharge, or perennial vegetation like536

forests, the divergence between meteorological and soil moisture signals can become com-537

plex. In such systems, soil properties such as hydrophobicity during prolonged dry periods can538

lead to highly uneven infiltration (Gimbel et al., 2016; Filipović et al., 2018). Heavy summer539

rainfall may not be absorbed uniformly across the soil profile, but instead run off or infiltrate540

preferentially along cracks, roots, or macropores, sometimes bypassing the upper root zone.541

While this limits the ability of standard soil moisture indices to reflect actual water availability542

near the surface, it may still benefit deep-rooted vegetation like trees by replenishing deeper543

soil layers (Zhu et al., 2015; Duniway et al., 2018). Assessing drought stress and recovery in544

these systems thus requires models and indicators that account for vertical and spatial hetero-545

geneity in infiltration and root water uptake (e.g., Shen et al. (2025)), rather than relying solely546

on averaged or surface-weighted soil moisture metrics. Further, while it may be argued that547

SPEI at longer accumulation periods (e.g., 6, 9 or 12 months) can lead to a closer resemblance548

of root zone moisture conditions, finding the appropriate accumulation lengths is dependent on549

landscape and soil characteristics (topography, rooting depth, soil hydrology and management550

conditions) and climatic conditions, which can lead to a strong variation of drought characteris-551

tics if the landscape is heterogeneous. Kumar et al. (2016) indeed found that applying spatially552

variable accumulation periods achieves a higher correlation between precipitation-based and553

groundwater drought indices, over a uniform domain-wide accumulation period, even at long554

accumulation times.555

5 Limitations and future work.556

Our results rely on the evaluation of model-derived soil moisture conditions, which are557

inevitably constrained by structural, parametric, and forcing uncertainties that we did not558

explicitly evaluate. Choices of the mapping between drought categories (e.g., SPEI = −1.0 vs.559

SMI≤ 0.2) and a uniform accumulation period over the whole domain (for SPEI analysis) also560

introduce additional subjectivity. mHM model does not also account for anthropogenic factors561

such as irrigation, groundwater abstraction, tile drainage and artificial canals, and land man-562

agement conditions, which affect the hydrology of the domain. Future work can partially offset563

these limitations by quantifying uncertainty using ensembles of forcings, investigating model564

parameters to derive confidence intervals for drought magnitude, area, and timing, incorpo-565

rating human water use and irrigation processes, or assimilating independent observations566
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(such as in situ or remotely sensed soil moisture and terrestrial water storage) to better con-567

strain states and evaluate the joint behaviour of multiple drought indicators alongside observed568

impacts.569

6 Conclusion570

Our multi-decadal, high-resolution analysis of rootzone soil moisture dynamics over Belgium571

reveals that soil moisture droughts experienced in the country during the 2011-2020 decade572

were the worst the country had experienced since at least 1971. Our analysis shows that573

droughts in 2011-2020 occurred nearly twice as frequent compared to the preceding three574

decades and exceeded even the historically severe droughts of the 1970s in both duration and575

intensity. By studying recent patterns in droughts over Europe, we found that this pattern is576

part of a broader, continent-scale shift toward more persistent droughts. Studies show that577

the recent rapid succession and increased severity of droughts in the latter part of the 2010s578

is unprecedented even in millennial timescales, an indicator that these anomalies might not579

be occurring within a stationary climatic regime. These could rather be signals of a transi-580

tion towards conditions where droughts become longer and recur more frequently, driven by581

large-scale atmospheric blocking events that favour the persistence of higher temperatures that582

enhance evapotranspiration.583

This study also shows that characterizing agricultural droughts using indices based on584

soil moisture offers a more holistic representation of land surface water stress compared to585

precipitation-based drought indices. While current drought assessments in Belgium rely upon586

meteorological indices (SPI and SPEI), this study shows that these indices can underestimate587

the persistence and severity of soil moisture drought conditions in the root zone, which often588

lag meteorological recovery, due to the memory effect of the land surface. Including soil mois-589

ture monitoring in drought observatories thus offers the added value of capturing lingering590

stresses on agriculture and cosystems, which can persist long after meteorological conditions591

have normalized. This gives decision-makers a better view of drought severity and duration and592

guides them on how to devise the appropriate response and mitigation efforts. Lastly, as anthro-593

pogenic warming worsens the occurrence of droughts, recognizing and proactively planning594

for this evolving drought paradigm will be crucial for ensuring the resilience of water-resource595

management, agriculture, and ecosystems in a warming climate.596

25

https://doi.org/10.5194/egusphere-2025-4526
Preprint. Discussion started: 25 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Author Contributions:597

KL, RK and OR formulated the study and set up the model simulations. KL analyzed the598

data and prepared the figures with contributions from OR, RK and SD. All authors contributed599

to writing and reviewing the contents of the manuscript. All authors read and approved the600

contents of the final manuscript.601

Acknowledgements:602

We acknowledge the High Performance Computing of Vrije Universiteit Brussel for pro-603

viding the computational resources required to run the model and the analysis of model604

outputs. We also acknowledge all the sources of data used in this study for providing the data605

openly.606

Funding:607

The authors acknowledge the financial support of the Research Foundation – Flanders608

(FWO) for funding the International Coordination Action (ICA) “Open Water Network:609

Impacts of Global Change on Water Quality” (project code G0ADS24N). OR acknowl-610

edges the Research Excellence in Environmental Sciences (REES) project of the Faculty of611

Environmental Sciences, Czech University of Life Sciences Prague.612

Data Availability:613

All datasets used in this paper are openly available as described in the methodology text.614

Code Availability:615

The scripts used to arrive at the findings of this study is available at:616

https://github.com/klekarkar/mHM IO dataprocessing.617

The SMI analysis was carried out using the SMI package, available at:618

https://github.com/mhm-ufz/SMI.619

Competing interests:620

At least one of the (co-)authors is a member of the editorial board of Hydrology and Earth621

System Sciences.622

26

https://doi.org/10.5194/egusphere-2025-4526
Preprint. Discussion started: 25 September 2025
c© Author(s) 2025. CC BY 4.0 License.



References623

Banjara, P., P.K. Shrestha, V.P. Pandey, M. Sah, and P. Panday. 2025, February. Quantifying624

agricultural drought in the Koshi River basin through soil moisture simulation. Journal of625

Hydrology: Regional Studies 57: 102132. https://doi.org/10.1016/j.ejrh.2024.102132 .626

Bastos, A., P. Ciais, P. Friedlingstein, S. Sitch, J. Pongratz, L. Fan, J.P. Wigneron, U. Weber,627

M. Reichstein, Z. Fu, P. Anthoni, A. Arneth, V. Haverd, A.K. Jain, E. Joetzjer, J. Knauer,628

S. Lienert, T. Loughran, P.C. McGuire, H. Tian, N. Viovy, and S. Zaehle. 2020, June. Direct629

and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem630

productivity. Science Advances 6(24): eaba2724. https://doi.org/10.1126/sciadv.aba2724 .631

Beck, H.E., T.R. McVicar, N. Vergopolan, A. Berg, N.J. Lutsko, A. Dufour, Z. Zeng, X. Jiang,632

A.I.J.M. Van Dijk, and D.G. Miralles. 2023, October. High-resolution (1 km) Köppen-633
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