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Abstract. Estimating evapotranspiration (ET) beyond the local or point scale is critical for water resources and ecosystem 

studies. Remote sensing offers a unique advantage by enabling ET monitoring at larger spatial scales than in-situ instruments. 

By leveraging relationships between surface biophysical parameters and terrestrial thermal emission, continuous ET can be 

retrieved across diverse landscapes. Herein, we apply the EVapotranspiration Assessment from SPAce (EVASPA) contextual 15 

tool over southern France, using MODIS-derived land surface temperature / emissivity (LST/E), NDVI and albedo products. 

The dataset spans 2004 – 2024, yielding 972 instantaneous ET estimates. The EVASPA ensemble integrates multiple member 

outputs generated from: 1) alternative formulations of the evaporative fraction (EF) and ground heat flux (G), and 2) different 

LST and radiation inputs. Evaluation against flux tower data shows that even a simple ensemble average provides reasonable 

agreement, though individual member performance varies substantially. Uncertainty analyses were also performed where we 20 

looked at how each of the distinct variables (i.e., LST, radiation, evaporative fraction (EF), and ground heat flux (G) methods) 

influenced the modelled ET. The analyses reveal that LST inputs and EF formulations are the dominant sources of variability, 

with seasonal dependence—uncertainties peak during summer (tending to follow the annual cycle of radiation) and are partly 

influenced by satellite characteristics. Generally the satellite’s overpass time introduces more incertitude to the gap filled daily 

ET estimates compared to the LST/LSE separation methods; as such, the uncertainties in LST could, by extension, be partially 25 

attributed to uncertainties in the radiations during the acquisition time. Radiation inputs also contribute to the variations in the 

ensemble, while G flux methods exert comparatively minor influence, especially for estimates derived from TERRA morning 

overpasses. Overall, our results demonstrate that ensemble-based contextual modelling can provide both reliable flux estimates 

and a meaningful uncertainty spread. By allowing optimal member selection according to surface and climatic conditions, 
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ensemble modelling using EVASPA enhances ET retrieval robustness thus providing more resilient and informative estimates. 30 

Such ensemble frameworks are especially valuable for forthcoming missions like TRISHNA, where consistent and accurate, 

high-resolution ET monitoring will be crucial for operational water and ecosystem management. 

Keywords — evapotranspiration (ET), contextual modelling, surface energy balance, multi-method multi-data, ensemble 

uncertainties 

1 Introduction 35 

Remote sensing using space-borne instruments has significantly advanced our ability to continuously observe and monitor the 

dynamics of the water cycle and its associated processes across vast geographic areas. This capability far exceeds the spatial 

coverage offered by traditional in-situ measurement techniques, making remote sensing an essential tool in environmental 

monitoring. In agro-hydrology, remote sensing plays a vital role in promoting efficient water resource management - for 

example, by aiding the estimation of evapotranspiration (ET), a key component of the hydrological cycle and water budget. 40 

Terrestrial radiation signals detected by remote sensors have demonstrated substantial potential as indicators or proxies for 

various near-land surface characteristics and physical processes. For example, acquisitions in the thermal infrared (TIR) 

spectrum can indirectly infer surface water stress conditions, which in turn provide insights into water availability and 

vegetation health. As such, Land Surface Temperature (LST) - a derivative of the terrestrial TIR emission - has become a key 

input for estimating actual ET. Despite its importance, the effective utilization of LST data faces limitations, particularly due 45 

to constraints in spatial and temporal resolution capabilities. Currently, widely used space borne platforms such as 

ECOSTRESS, Landsat, MODIS, VIIRS, and Sentinel-3 SLSTR provide valuable LST data, but none simultaneously offers 

data at both fine spatial and temporal scales. Nonetheless, several upcoming Earth observation missions are expected to address 

these gaps. For instance, the TRISHNA mission (Gamet et al., 2023), Surface Biology and Geology (SBG) mission (Thompson 

et al., 2022), and the LSTM (Land Surface Temperature Monitoring) mission (Koetz et al., 2023) are currently under 50 

development and are designed to deliver high spatio-temporal data, which should significantly enhance our capability to 

monitor near-land surface energy and water exchanges. 

Several ET products that utilize remotely acquired LST, along with other surface variables such as normalized vegetation 

index (NDVI), albedo, and leaf area index (LAI), have been operationalized and are currently available for large-scale 

monitoring of the water balance and vegetation stress dynamics (e.g., SSEBop, Senay et al., 2013). Such ET products typically 55 

rely on methods that use the spatially and temporally variable nature of remote sensing data to partition the pixel-scale available 

energy into the primary turbulent energy fluxes - namely, sensible and latent heat fluxes, the latter being equivalent to ET in 
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mass fluxes. While surface energy balance (SEB) methods initially developed for point-scale applications (e.g., Boulet et al., 

2015; Mallick et al., 2014, 2018; Mwangi et al., 2023, 2022; Norman et al., 1995; Su, 2002) can in principle be scaled up for 

regional ET estimation using remote sensing data, contextual-based SEB methods may offer a more practical and resource-60 

efficient alternative due to their parsimonious nature. These contextual approaches (e.g., Gallego-Elvira et al., 2013; Menenti, 

Bastiaanssen, van Eick, & Abd el Karim, 1989; Moran, Clarke, Inoue, & Vidal, 1994; Roerink, Su, & Menenti, 2000; Tang et 

al., 2010) generally require fewer inputs that are acquired simultaneously at the same time-space scales, making them 

especially suitable for operational applications in data-scarce environments. Some contextual ET models exploit the physically 

meaningful and spatially observable relationships that exist between the evaporative fraction (EF) and various surface 65 

characteristics detectable via remote sensing - such as normalized difference vegetation index (NDVI), albedo, land surface 

temperature (LST), and surface soil moisture conditions (Carlson, 2007; Gallego-Elvira et al., 2013; Tang et al., 2010). 

However, despite their advantages, these models remain susceptible to uncertainties stemming from both input datasets and 

methodological assumptions (Mira et al., 2016; Olioso et al., 2023), which can propagate and influence final SEB and ET 

outputs. Nevertheless, by systematically combining multiple methods and datasets within an ensemble or comparative 70 

framework, it becomes possible to not only characterize this uncertainty but also to reduce its impact - thereby achieving 

estimates that are closer to reality (Lambert & Boer, 2001; Zhang et al., 2016) and more robust across spatial and temporal 

domains. 

Our current work has been initiated within the framework of the TRISHNA mission with the primary objective of preparing 

and benchmarking the future operational ET products that will be derived from TRISHNA acquisitions (Olioso et al., 2024). 75 

This preparatory phase is essential to ensure the forthcoming ET products achieve both scientific robustness, accuracy and 

application-oriented relevance once the mission is operational. At present, there are no available satellite datasets that combine 

both high spatial resolution and the revisit frequency required to fully simulate the expected capabilities of TRISHNA. To 

approximate and evaluate the performance of the forthcoming TRISHNA ET products (i.e. SWEAT: Spatial Water-stress and 

Evapotranspiration Assessment for TRISHNA), we have established a set of criteria. These are twofold: 1) at high spatial 80 

resolution using data from ECOSTRESS (e.g. Hu et al. (2023)) and/or Landsat, and 2) over long time sequence on the basis 

of MODIS data, which, despite their coarser spatial resolution, provide a highly frequent temporal sampling that is well-suited 

for time-series analysis. The temporal richness of MODIS data enables us to simulate and assess the expected revisit benefits, 

particularly in relation to seasonal and inter-annual variability of ET. 

In this study, we focus on the second component of our strategy, using data from the MODIS sensor (aboard the TERRA and 85 

AQUA satellites) acquired over southern France to drive the EVapotranspiration Assessment from SPAce (EVASPA) tool 

(Allies et al., 2020; Gallego-Elvira et al., 2013; Olioso et al., 2018, 2012, 2023). EVASPA integrates a suite of ET estimation 
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methods capable of producing an ensemble of flux estimates, with variability arising from both the algorithms and the input 

datasets (e.g. Olioso et al. (2023), Mwangi et al. (2024)). Specifically, our analyses incorporate four LST products 

(MOD/MYD11 and MOD/MYD21, i.e., TERRA/AQUA LST retrieved using two distinct temperature–emissivity separation 90 

approaches) and three radiation datasets, combined with nine evaporative fraction formulations and nine ground heat flux 

parameterizations. This configuration yields a total of 972 ensemble members. These uncertainties sources were identified as 

the potentially most critical in previous studies as reported by Olioso et al. (2023), Allies et al. (2020), Mira et al. (2016).  

Additional estimates - including those based on VIIRS LST - are briefly reported in the supplementary document for 

completeness. Performance assessments are carried out against in-situ data to ensure consistency and provide a reference for 95 

comparison. However, performance validation is not the primary focus of this study as the evaluation of EVASPA algorithms 

is part of the currently ongoing TRISHNA ET benchmarking activities (particularly with high spatial resolution data). Instead, 

our main objective here is to systematically identify and analyse the principal sources of uncertainty inherent in the model, 

arising from both input data variability and methodological assumptions. An analysis of the uncertainty in the EVASPA 

members relative to the four parameters/variables (i.e., LST, radiation, EF and G flux methods) is thus presented. 100 

2 Methods 

2.1 EVapotranspiration Assessment from SPAce: EVASPA 

The EVASPA modelling framework builds on the well-established contextual relationships between LST and surface 

biophysical characteristics to estimate evapotranspiration (ET) - the dominant pathway of water flux from the land surface to 

the atmosphere (Carlson et al., 1994; Menenti et al., 1989; Moran et al., 1994; Price, 1990). Contextual approaches used in 105 

EVASPA are rooted in the principles of surface energy balance (SEB) closure and evaporative fraction (EF) theory, enabling 

ET estimation through the partitioning of available energy. The framework assumes that spatial patterns of LST reflect 

underlying variations in soil moisture, vegetation cover, and energy fluxes, which can be used to infer ET under varying surface 

conditions. A detailed description of the EVASPA tool and its components is provided in Gallego-Elvira et al. (2013) and 

Allies et al. (2020). Here, we only briefly describe the specific SEB methods that enable this ensemble modelling of ET. The 110 

contextual approaches applied in this setup include the Temperature–Vegetation Index (T-VI) method (Tang et al., 2010) and 

the Simplified Surface Energy Balance Index (S-SEBI) method (Roerink et al., 2000), both of which are commonly used for 

estimating evaporative fraction under varying surface moisture and vegetation conditions: 
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2.1.1 Simplified Surface Energy Balance Index (S-SEBI) 

In the S-SEBI model proposed by Roerink et al. (2000), the relationship between surface temperature and surface albedo is 115 

used to characterize the water/mass-energy surface domain, where the available energy is partitioned between the turbulent 

fluxes according to the actual LST of the corresponding pixels. This relationship defines two theoretical boundaries within the 

LST–albedo feature space: an “evaporation controlled” limit, and a “radiation-controlled” limit (commonly known as the dry 

(or warm) edge). These limits represent the extremes of near-land surface dynamics in terms of water and energy availability, 

respectively. In the former, the decrease in ET is a result of less available soil moisture – here, LST increases with increasing 120 

reflectance (decreasing net radiation, Rn) since the increase in sensible heat exceeds the decrease in net radiation. In the latter 

(defined beyond a certain albedo threshold), the soil moisture has been depleted - under these conditions, nearly all of the 

available energy is thus only used for heating the surface, i.e. as sensible heat. Here, LST begins to decrease with further 

increases in albedo, due to the reduction in net radiation outweighing any additional sensible heat gain. The wet (cold edge) 

edge, which is part of the “evaporation-controlled” limit, is defined from the low albedos where temperatures are more or less 125 

constant with increasing albedo. Where the “evaporation” and “radiation” controlled temperature-albedo relationships can be 

derived, S-SEBI expresses the instantaneous EF (at the satellite’s overpass) for each pixel as, 

EF =
λE

Rn − G
=

TH − Tsurf

TH − TλE

          [−] (1) 

where λE, G, Rn are the latent heat, ground heat, and net radiation fluxes [𝑊. 𝑚−2], respectively. Tsurf [𝐾] is the observed land 

surface temperature; 𝑇𝐻  and 𝑇𝜆𝐸  are the extreme temperatures derived from the ‘radiation controlled’ and ‘evaporation 130 

controlled’ relationships, respectively. In S-SEBI, it is assumed that these extremes can be derived from a remotely observed 

image. This assumption only holds when dry and wet areas can be identified in the image, and the prevailing atmospheric 

conditions are constant or homogeneous. 

A feature space of the surface temperature versus surface albedo (α [−]) is utilized to fit the 𝑇𝐻 𝑣𝑠 𝛼 and 𝑇𝜆𝐸  𝑣𝑠 𝛼 (linear) 

regressions where, 135 

TH = aH + bHα

TλE = aλE + bλEα
           [K] (2) 

These relationships, which are site and time specific, allow Equation (1) to be rewritten as EF =
aH+bHα−Tsurf

aH−aλE+(bH−bλE)α
. The 

instantaneous sensible and latent heat fluxes (for all pixels) can consequently be calculated as H = (1 − EF)(Rn − G) and 

λE = EF(Rn − G), respectively. Different methods may be used to derive the wet and dry albedo-LST relationships.  In some 

of the EVASPA S-SEBI-based implementations (as well as in some of T-VI introduced below), the outlier detection, removal 140 

and edge refinements according to Tang et al. (2010) are also applied. 
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2.1.2 Temperature – Vegetation Index (T-VI) 

Moran et al. (1994) introduced a contextual trapezoid method for estimating crop water deficit that is based on the vegetation 

index – temperature (T-VI) physical relation that had been observed in earlier works by Goward et al. (1985), Price (1990) 

and Carlson et al. (1994). The T-VI method entails constructing the temperature versus vegetation index feature space that 145 

integrates a wide-range of surface characteristics (i.e., from fully vegetated and well watered to bare soil and water depleted 

surfaces). The NDVI-based EF methods within EVASPA estimate the instantaneous latent heat flux (at satellite’s overpass) 

by partitioning the available energy following several variations of Tang et al. (2010). Accordingly, the evaporative fraction 

will generally be formulated similar to Eq. (1). While the LST-FVC (fraction of vegetation cover) functions are already 

available within EVASPA, we herein try to avoid skewing the EF uncertainty analyses by focusing the current work on the 150 

NDVI space (which is quite similar to the FVC based space), and S-SEBI. 

2.1.3 EVASPA setup 

As stated above, different methods may be used to derive the wet and dry relationships, either for the S-SEBI approach  or for 

the T-VI approach. Generally, there is no way to identify a method that would be providing the best ET estimates in every 

situation (area, landscape, season…). Olioso et al. (2012) and Gallego-Elvira et al. (2013) therefore introduced an ensemble 155 

methodology for accounting of the diverse methods. Previous works (Allies et al., 2020; Mira et al., 2016; Olioso et al., 2023) 

showed that incoming radiation, in particular solar radiation, ground heat flux calculations, EF calculations and surface 

temperature were the factors that affect the most the calculation of ET with EVASPA. A large variability of EF methods was 

introduced in Allies et al. (2020), from which nine methods were extracted for the present study. They are described in 

Appendix - Table A 1. 160 

In addition to the multiple variations of EF methods (each derived using different algorithms for identifying the dry (or warm) 

and wet (or cold) edges, which represent the foundational assumptions of the two contextual approaches applied), several 

alternative formulations were also implemented for calculating the soil heat flux term, G, within the SEB. All these 

formulations (Table A 1) are based on the parameterization of the ratio of G to Rn as a function of fraction of canopy cover 

(expressed as FVC, LAI or spectral vegetation indices). These methods vary based on how surface vegetation and soil 165 

properties are used to infer ground heat transfer / storage, and together, they contribute to the diversity of the modelling setup. 

An analysis of various equations for computing the ground heat flux from net radiation was provided by Kpemlie (2009) 

showing that despite the different formulations available in the literature, the main cause of variations was related to the 

parameters rather than the equation formulations. In particular the parameter representing the dynamics of the G/Rn ratio for 

bare soil was highly variable across experiments. Additionally, different sources of incoming solar and atmospheric radiation 170 
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data, from climate reanalysis and geostationary satellite product, and of MODIS LST products, using different estimation 

algorithms and from the different platforms, were used (see data description in section 3). 

The combination of these varied approaches across both EF and SEB components enables the simulation of an ensemble of 

prior ET estimates, each representing a plausible outcome based on different surface characteristics and incoming radiation. 

This ensemble modelling framework not only captures the range of uncertainty inherent in remote sensing-based ET estimation 175 

but also allows for greater flexibility in interpreting the results. Additional datasets or methods can easily be integrated to 

increase the ensemble size, offering a more comprehensive uncertainty representation, while simplifying the configuration can 

reduce it for lighter or more constrained applications (Olioso et al., 2023). The final ET estimate is then derived from this 

ensemble using a summary statistic - commonly the arithmetic mean - used herein, a weighted average (in cases where 

confidence or quality flags are available), or median. This aggregation step helps to smooth out individual model biases and 180 

better approximate the true ET. A schematic overview of the overall EVASPA framework is summarised in Figure 1. 

 
Figure 1: EVASPA system overview: inputs - e.g. from MODIS (aboard AQUA and TERRA), VIIRS sensors; EF, SEB methods; 

and model outputs. The evaporative fraction (EF) and ground heat flux (G) methods used herein are summarized in Table A 1. 
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2.1.4 Integration from instantaneous to daily ET and temporal interpolation for missing days 

Eventually, the daily ETd  (λE/λ) [mm/d] is computed using the daily solar radiation data assuming that the λE-to-solar 185 

radiation ratio is conserved throughout the day, i.e. 
λEI

SWI
≈

λEd

SWd
 (Delogu et al., 2012). This allows for a straightforward 

integration/aggregation from instantaneous to daily ET values. While ensuring dimensional consistency, the area under the 

diurnal λEI/λ curve can be approximated as, 

ETd =  
λE

λ
=

λEI ·
SWd

SWI
· 86400

λ
          [mm/d] (3)

 

λEI [𝑊. 𝑚−2] is the instantaneous (at overpass) latent energy. λ [𝐽/𝑘𝑔] is the latent heat of vaporization. SWI [𝑊. 𝑚−2]  and 190 

SWd [𝑊. 𝑚−2] are the instantaneous and daily average short-wave radiation, respectively. SWd · 86400 is thus the daily short-

wave radiation. 

Temporal inter-/extrapolation: to ensure temporally continuous daily ET, an interpolation method using daily solar radiation 

(Allies et al., 2022; Delogu et al., 2012) was applied, where we rely on the continuous daily solar radiation data as a scaling 

variable. To reconstruct the daily ET for missing days, the ratio ETd/SWd  is computed for the periods when ETd  from 195 

EVASPA is available. The missing Λinterp1 (equivalent to ETd_interp1/SWd)  estimates in the time series’ are then gap-

filled/interpolated by assuming a linear regression. The interpolated ratios (Λinterp1) are then used together with the available 

SWd (during periods with missing ETd) to compute the gap-filled daily ET estimates as ETd_interp1 = Λinterp1 · SWd.  While 

this technique enables the gap filling of ET datasets in a relatively simple manner, it possibly also introduces a potential source 

of error. In Section 4, we therefore also analyse/evaluate how this temporal interpolation step reduces or introduces further 200 

uncertainties in the final ET outputs. 

2.2 Quantifying Uncertainty 

The inherent differences in the theoretical assumptions (parameterizations, structure, physics, etc.) in ET models that have 

been proposed in the literature, together with the variability in input datasets used to drive such models results in a broad 

uncertainty in reported ETs (e.g., Jiménez et al., 2011; Etchanchu et al., 2025). As such, given the variability inherent in the 205 

input data and methods used to build the EVASPA ensemble (see Table A 1: the EF, ground heat flux methods, and input 

data), uncertainties in the outputs are expected and should thus be quantified. Hereunder, our uncertainty analyses will mainly 

focus on latent [heat] and the corresponding ET [mass] fluxes, i.e., inter-comparisons and uncertainty between the ensemble 

ET members. We define the global uncertainty in terms of the standard deviation of all 972 EVASPA estimates (see Equation 

(5. iii)). This is then discriminated between the four variables (LSTs, radiation, EFs, G) for the specific uncertainty. Note that 210 
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ground daily ET observations are only used in the assessments as presented in section 4.2.1 and are therefore not considered 

for uncertainty analyses, which are specifically meant to quantify the incertitude within the EVASPA ensemble. 

2.2.1 Variability in input data 

The MODIS sensor, carried on board both the TERRA and AQUA satellites (with the respective products commonly denoted 

as MOD and MYD), acquires land surface emission data across four land-use thermal infrared channels, covering wavelengths 215 

in the range of approximately 8.4 to 13.5 µm (Wan & Li, 1997). These satellites have distinct overpass times - TERRA in the 

morning and AQUA in the early afternoon - resulting in data acquisitions under differing radiative and surface energy exchange 

conditions. Consequently, the observed thermal signals from the land surface are expected to exhibit noticeable differences 

between the two platforms, driven by the diurnal variability in temperature and solar radiation. Additionally, MODIS-derived 

land surface temperature and emissivity (LST/E) products for both satellites are generated using two primary retrieval 220 

algorithms: the generalized split-window (SW) technique and the temperature-emissivity separation (TES) method. These 

products are denoted MxD11 and MxD21, respectively, where "MxD" here represents either MOD (for TERRA) or MYD (for 

AQUA). The fundamental differences in these algorithms - particularly in how they treat atmospheric correction and surface 

emissivity - can lead to notable discrepancies in the retrieved LST and emissivity values. Since LST is a key input in SEB 

modelling and directly influences the calculation of EF, such differences can propagate through the modelling framework and 225 

affect the resulting ET estimates. 

For the radiation, ERA5 (clear-sky) and ERA5-Land (all-sky) surface/single-level datasets are derived using the McRad 

scheme incorporating atmospheric conditions of the ECMWF Integrated Forecasting System (Morcrette et al., 2008). The 

hourly ERA5 and ERA5-Land analyses are produced globally at a spatial resolution of ~25 km and ~9 km, respectively. On 

the other hand, the 0.05° MSG radiation products are derived every 15 minutes from data acquired by the SEVIRI radiometer 230 

on board the geostationary Meteosat Second Generation (MSG) satellite, used together with the prevailing atmospheric 

information. Lastly, MERRA2 radiation data are derived using short- and long-wave parameterizations within the Goddard 

Earth Observation System-5 (GEOS-5) atmospheric general circulation model, yielding hourly data with a coarse spatial 

resolution of 0.5°x0.625°. Although all three datasets rely on algorithms to estimate the atmosphere’s effective transmittance 

and emissivity, they exhibit large variations in their construction (e.g. discretization of the atmosphere) and thus characteristics. 235 

To assess the significance of the variations in the LST and radiation inputs, we conducted a comparative analysis of the MxD11 

and MxD21 LST/E datasets, and the estimated net radiations. In subsection 4.1, we briefly present an overview of the observed 

variability in the LST and radiation products across the selected observation sites.  
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2.2.2 Uncertainty in the EVASPA estimates 

Since the interpolation for days with missing satellite data relies on the method described in section 2.1.4 - where the all-sky 240 

radiation data is the primary variable used to represent temporal trends of fluxes at the near-land surface - we analyse the non-

interpolated and interpolated EVASPA ensemble members separately, while primarily focusing on AQUA and TERRA-based 

estimates. Due to the different timescale and issues with the VIIRS LST/Es (i.e. with the multiple view angle and overpass 

time zones within the images), the VIIRS-based analyses are summarised in the supplementary document. Below, we present 

the uncertainties in the instantaneous and daily ensemble estimates prior to interpolation. The corresponding analyses after gap 245 

filling are discussed in subsection 4.3.3. Since interpolation is not applied to the instantaneous flux estimates - particularly the 

other surface energy balance components - that section specifically focuses on analysing the influence of the four variables on 

the daily ET estimates, where the temporal interpolation is relevant and its effects can be assumed to be more pronounced. 

2.3 Cluster Analysis and Performance Metrics 

Similarity assessment: Cluster Analysis 250 

To evaluate the similarity between the ET estimates at the sites of interest in southern France, as discussed in section 4.2.2, 

pairwise Euclidean distances (ED) between the members in the ensemble were calculated (see Equation (4)). These were then 

visualized through dendrograms generated using the hierarchical clustering approach originally proposed by Ward (1963). The 

analyses were independently conducted for each of the four distinct variables, i.e. LST, Radiation, EF and G flux methods - in 

order to isolate and interpret their influence on the ensemble variability. For instance, in the case of the LST variable, 255 

hierarchical clustering was applied to ET estimates derived from each of the four LST products. This involved computing the 

Euclidean distance between all possible product pairs, resulting in six unique 4C2 combinations; i.e. between estimates derived 

using MYD11 and MYD21, MYD11 and MOD11, MYD11 and MOD21, MYD21 and MOD11, MYD21 and MOD21, 

MOD11 and MOD21. The Euclidean distance between member sets j and k in the EVASPA ensemble, EDj,k, is defined as, 

EDj,k =  (∑(Yi,j − Yi,k)
2

N

i=1

)

0.5

(4) 260 

Yi,j, Yi,k are the modelled estimates for ensemble member sets j and k at time step i. N is the size of the time series. The rescaled 

ED - rescaled relative to the maximum ED - is presented in the dendrograms (Figure 7, Figure S 2).  

Performance assessment 

For performance evaluation of the flux estimates at the sites, we employed several metrics that quantify different aspects of 

model accuracy. Specifically, we used the bias, mean absolute error (MAE), and root mean square difference/error (RMSD/E). 265 
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In addition to these, we also computed Willmott’s index of agreement (D), a dimensionless metric that consolidates the 

correspondence between predicted and observed values into a single value (Willmott, 1981). Willmott’s D is particularly useful 

as it captures both systematic and unsystematic deviations by measuring both accuracy and precision, and thus provides a more 

integrated measure of model performance. As discussed in section 2.2, we use the standard deviation (SD) to quantify the 

ensemble uncertainties (section 4.3). These evaluation metrics are defined thusly, 270 

bias =
∑ (Yi − Xi)

N
i=1

N
⁄  ; MAE =

∑ |Yi − Xi|
N
i=1

N
⁄ ; RMSD/E =  (

∑ (Yi − Xi)
2N

i=1
N

⁄ )
0.5

(5. i) 

D [Willmott′s index] =  1 −
∑ (Yi − Xi)

2N
i=1

∑ (|Yi − X| + |Xi − X|)
2

N
i=1

(5. ii) 

SDi =  (
∑ (Yi,j − µi)

2n
j=1

n
⁄ )

0.5

(5. iii) 

where Y and X represent the modelled estimates and the corresponding reference values, respectively. N denotes the size of 

the time series. µ and n in the SD are the ensemble mean and ensemble size, respectively. 275 

For the accuracy assessments presented in section 4.2.1, ground measurements/observations are used as the reference with the 

ensemble mean taken as the estimate. Separately, in the heat-maps shown in uncertainty analyses sub-sections (see 4.3), each 

individual ensemble member within the EVASPA output array is, in turn, designated as the ‘reference’. Meaning one ensemble 

member is selected at a time to serve as the baseline against which all other members are compared. The resulting differences 

are then visualized to assess the consistency and variability across the entire ensemble, providing insights into the relative 280 

performance and agreement among the ensemble estimates. 

3 Study area and input data 

Table 1 summarizes the inputs used in this study. These include surface temperature (MODIS and VIIRS), albedo, Normalized 

Difference Vegetation Index (NDVI), Leaf Area Index (LAI) from MODIS. The MODIS/VIIRS products and MERRA 

radiation data over southern France were sourced from search.earthdata.nasa.gov; with ERA5 and Meteosat Second Generation 285 

(MSG) radiations obtained from cds.climate.copernicus.eu and datalsasafwd.lsasvcs.ipma.pt, respectively. Except for VIIRS, 

which starts in 2012, all other datasets were from 2004-2024. For ensemble members utilizing ERA5 radiation, the clear-sky 

data were used to derive the instantaneous estimates at the satellite’s overtime, while the corresponding all-sky data from 

ERA5-Land were employed for aggregating to daily values and for performing the temporal interpolation. The contextual 

extents chosen for our calculations were: a) South East France (green dotted box in Figure 2):  bottom-left [42.3°N, 2.4°E]; 290 
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top-right [44.5°N, 6.4°E], and b) South West France (blue dotted box in Figure 2):  bottom-left [42.5°N, -1.75°W]; top-right 

[45.25°N, 2.5°E]. The two extents form the combined estimates over Southern France.  

Here, we report on AQUA- and TERRA-based analyses conducted across the sites, with their spatial distribution over the 

southern region of France shown in Figure 2. A closer look at the VIIRS LST/E products (which have a different timescale 

versus MODIS, i.e. only start in 2012) revealed systematic issues related to viewing information: view zenith angles (VZA) - 295 

see example in Figure A 1 where edge VZAs (~65°) are recorded when the VIIRS sensor is observing the pixel from the west, 

i.e. positive VZAs; and overpass times. These are likely due to the use of acquisitions from multiple orbit cycles to compile 

the VIIRS tiles, which are likely to propagate into the EF spaces and SEB calculations. Accordingly, the VIIRS-based 

EVASPA results are only briefly presented in supplements. 

To standardize the input data for analysis, we resampled the products with varying spatial resolutions to a uniform ~1 km 300 

resolution using the nearest-neighbour approach, therefore ensuring compatibility with the native MODIS LST/E resolution. 

Pixels with missing values were not interpolated in space thus leaving them unchanged; this ensured the integrity of the 

available data (e.g. preservation of the EF feature spaces). For products not provided at a daily scale, such as the NDVI, we 

assumed that these variables remained constant over short periods. As such, the values were repeated across the acquisition 

interval - for instance, the 4-day LAI product was applied to days 5-8 by repeating the value from day 5. Additionally, the 305 

calculations for evaporative fraction and subsequent evapotranspiration were masked to a 300 meter relief range, as determined 

by the MODIS digital elevation model (DEM) dataset. This masking was crucial to minimize potential errors introduced by 

lapse rate and slope effects on LST, thereby potentially improving the accuracy of the resulting EF estimates. Pixels 

corresponding to water bodies were masked out and excluded from the EF (and SEB) calculations (note that only the cold 

pixels over land in the image are used to derive the wet edge). The temporal variations in surface water bodies, as well as 310 

changes in surface elevation (from the DEM), were considered negligible and were, therefore, not accounted for in the analysis. 

Table 1: Input data required to run the EVASPA SEB scheme (simulation period: 2004 - 2024) 

variable / parameter [unit] Source Spatial / temporal resolution 

Incoming shortwave radiation [W.m-2] 

ERA5/ERA5L 

MERRA2 
MSG 

~25/~9 km ; hourly 

[0.5°x0.625°]; hourly 
0.05°; 15 minutes 

Incoming longwave radiation [W.m-2] 

ERA5/ERA5L 

MERRA2 
MSG 

~ ditto 

Land Surface Temperature [K] 

Land Surface Emissivity [-] 

MODIS: 

AQUA : MYD11A1, MYD21A1D 
TERRA : MOD11A1, MOD21A1D 

VIIRS: 

VNP21A1D (2012-2024) 

1 km; daily 

NDVI [-] MOD13A2 1 km; 16-d 
Surface albedo [-] MCD43A3 500 m; daily 
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LAI [m2m-2] MCD15A3 500 m; 4-d 

Fraction of vegetation cover / FVC [-] calculated from NDVI  

   

Water mask [-] MOD44W 250 m; n/a 

DEM [m] MODDEM 1 km; n/a 

 

The daily ET flux observations (Figure 2) were drawn from Fluxnet2015  (Pastorello et al., 2020), ICOS (ICOS-cp.eu, 2024), 

and other independent flux sites. The observation sites span different types of ecosystems including: a) cropland [2], b) 315 

grassland [2], and c) forest [4] (see Figure 2). The FLUXNET and ICOS datasets are gap filled using the research-standard 

Marginal Distribution Sampling (MDS) method, with the energy balance closure correction factor (EBC_CF, Pastorello et al., 

2020) method, an adaptation of the Bowen ratio method, applied for SEB closure corrections. 

 

 

Flux (EC) Site Lat, Lon Period 

Auradé 43.55, 1.11 2006 - now 

Bilos 44.49, -0.96 2000 - now 

Coussoul 43.56, 4.86 2009 - now 

Fontblanche 43.24, 5.68 2007 - now 

Lamasquère 43.50, 1.24 2005 - now 

Le Bray 44.72, -0.77 1997 - 2009 

Puechabon 43.74, 3.60 1998 - now 

Toulouse 43.57, 1.37 2012 - now 

Figure 2: Sites in Southern France evaluated in this study – i.e. flux data observations over ∆ Forests [4] ☆ Croplands [2] and ∘ 

Grasslands [2] (map backdrop source: © Google Earth). Right: the flux sites, coordinates and period. 320 

4 Results and discussion 

4.1 Evaluation of input data: Uncertainty in the radiation and LST inputs 

4.1.1 Radiation (incoming shortwave and longwave) 

Figure 3 illustrates the uncertainties associated with the radiation inputs for the sites mapped in Figure 2, highlighting the 

variations and spreads that occur at the satellite overpass time. Notably, differences between the datasets become evident 325 
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depending on whether the observations/analyses were made during the TERRA, AQUA or Suomi NPP (which carries the 

VIIRS sensor) satellite overpasses. The uncertainties in the incoming solar radiation, expressed as the standard deviation 

between the radiation values, appear to be more pronounced during the earlier morning hours - corresponding to the TERRA 

overpass - when solar angles are lower and incoming solar radiation is relatively lower. This increased variability may be due 

to the enhanced atmospheric influence and the challenges in capturing accurate shortwave radiation under low sun angle 330 

conditions. In contrast, at the time of the AQUA overpass (and VIIRS to a similar extent), when incoming solar radiation tends 

to be higher due to the overhead sun position, the uncertainty in the solar radiation input is generally lower and more consistent 

across the radiation products. With respect to the incoming longwave radiation, values obtained from the three different 

radiation sources are largely in agreement with one another. The standard deviation (used as the measure of uncertainty) 

remains relatively low across all three datasets, indicating limited divergence and suggesting higher confidence in the longwave 335 

radiation inputs compared to the shortwave components. 

 
Figure 3: Global uncertainty in the radiation input data over the study sites. a) shortwave radiation at: AQUA (MYD) overpass, 

TERRA (MOD) overpass, and Suomi NPP (VIIRS) overpass, respectively; b) same as a) but for longwave radiation; c) daily 

radiation - applies for all satellites / sensors. 

4.1.2 Differences in LST/E by retrieval method and overpass time 340 

To evaluate the significance of these variations, we conducted a comparative analysis of the MxD11 and MxD21 LST/E 

datasets. In the following, we present a brief overview of the variability observed in these products across the selected 

observation sites. 
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As shown in Figure 4, land surface temperature observations derived from the TES method (identified by the MODIS product 

suffix "21") tend to be systematically higher than those obtained using the SW method, denoted by suffix "11". This pattern is 345 

consistently observed across all land cover types evaluated in the study, though the magnitude of the bias varies. The most 

pronounced differences are seen over croplands and forested areas, where TES-derived LSTs exhibit the highest positive biases 

relative to the SW-based estimates. Conversely, for emissivity retrievals, the trend is reversed: TES-derived emissivity values 

are generally lower than those from the SW method – this is attributable to the constant emissivity range limit from the 

classification products applied within the SW method. Despite this reversal, the bias in emissivity remains elevated over 350 

croplands, while the smallest discrepancies are observed over grasslands, suggesting that land cover type exerts some slight 

influence on the magnitude of the differences. 

 

  
Figure 4: Scattergrams depicting the uncertainties in the LST/Es and in the net longwave radiation and net radiation computed 

therefrom. Left: TES (21) versus SW (11) LST and LSE (top and bottom are MYD for AQUA and MOD for TERRA based values); 355 
right: net longwave radiation based on the MSG sky radiation (scatters are for net radiation calculated using MSG sky radiation ; 

bias of the other sky radiations - ERA5, MERRA are included inset). VIIRS comparisons not shown as only the TES-based - VIIRS21 

- is available. 

To investigate how these variations in LST and emissivity propagate into SEB components, we analysed their effect on both 

net longwave radiation and total net radiation, as shown in Figure 4. The net longwave radiation is computed as εsurf(RLW −360 

σTsurf
4 )), while the net radiation is given by Rn = (1 − α)RSW + εsurf(RLW − σTsurf

4 )), where εsurf is the surface emissivity, 
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RSW is the incoming short wave radiation, RLW is the incoming longwave radiation from the atmosphere, Tsurf is the surface 

temperature, σ is the Stefan–Boltzmann constant, and α the surface albedo. Complementary to the LST, MxD21-based 

estimates of net longwave radiation are consistently lower than those from the generalized split window method. This is mostly 

attributable to the somewhat higher surface temperatures in the TES retrievals. Generally, the Rn shows a weak dependence 365 

on LST (thus net longwave radiation), which is theoretically expected; the largest share of Rn variability is mostly explained 

by the net shortwave radiation, underscoring its dominant role in driving the net radiative balance. However, despite these 

differences in inputs, the overall bias in both net longwave and net radiation remains relatively low. As such, their potential 

impact on SEB and subsequent ET estimations within the EVASPA framework is expected to be minimal. Perhaps, the timing 

of satellite overpass plays a more significant role in influencing SEB estimates than the specific LST/E retrieval algorithm 370 

applied, i.e., due to the inherently different surface, radiative and atmospheric conditions prevailing at each overpass time, 

which will tend to affect the radiative budget more directly than algorithm-specific differences. Additionally, the use of the 

varying LSTs is likely to introduce even larger variabilities to the evapotranspiration estimates particularly due to the primary 

role LST plays in the construction of the EF spaces for derivation of pixel EFs. 

4.2 Performance and similarity assessment 375 

4.2.1 Global and site-specific performance of daily ET estimates 

Table 2 summarises the performance of individual EVASPA ET estimates - derived from the four AQUA/TERRA 11/21 LST 

products, three radiation inputs, nine EF formulations, and nine ground heat flux methods against ground-based measurements 

across the evaluation sites.  Inter-comparisons of the estimates against those from AQUA 11 are also presented in Figure 6. 

Given the differing timespans of MODIS (early 2000s) and VIIRS (post-2012), as well as known limitations in VIIRS LST 380 

data (e.g., view angle and overpass time effects), the VIIRS-based estimates are only briefly presented in supplements (Table 

S1).  

Across ensemble members, RMSDs ranged from approximately 0.7 to 1.6 mm/day, indicating variable but generally 

acceptable agreement with in-situ observations. Notably, the best performances were observed over forested sites, where the 

model appears to represent energy flux partitioning more accurately. In contrast, the least agreement (of all constituent 385 

EVASPA members versus the observations) was found in Toulouse, a grassland site situated within a built-up urban 

environment - suggesting that heterogeneous land surface conditions and urban interference may degrade retrieval accuracy, 

especially when applying relatively spatially coarse data such as MODIS. In terms of bias (Figure 6a), EVASPA tends to 

underestimate evapotranspiration fluxes over the relatively wet Toulouse site - again likely due to the heterogeneity within the 

MODIS pixel, specifically the presence of nearby built-up areas that typically exhibit higher LST and thus low evaporation 390 
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rates. Conversely, the model also seems to overestimate the ET fluxes at the other grassland site (Coussoul). Although this site 

is relatively homogeneous in land cover (and land use), it is located in close vicinity to some water ponds, which may interfere 

with the thermal signals captured at the pixel scale, thus introducing noise that could propagate through the modelling process 

influencing the final estimates. As expected, seasonal performance of daily ET across all EVASPA member sets is consistently 

driven by the availability of radiation used for the surface turbulent fluxes, with the best performance observed in winter. The 395 

performance then cyclically degrades over spring through summer and improves into autumn (Table 2, Figure 5).   

The gap filled daily ET estimates, which include values interpolated for missing days using the daily average solar radiation 

information, demonstrate better performance compared to the uninterpolated ones - across all sites and for most performance 

metrics (i.e., all except a few cases where the bias is slightly increased). This shows the utility of radiation as a physically 

meaningful driver for estimating the temporal surface energy and water dynamics. Given its direct link to available energy at 400 

the near land surface, solar radiation can be considered a good proxy for terrestrial energy (and thus water) exchanges, 

reinforcing its value in temporal reconstruction and modelling of ET in periods when input data/observations are incomplete. 

Table 2: Global performance of estimated daily evapotranspiration (average of all EVASPA ensemble members). 
 

 Interpolated daily ET estimates non-interpolated daily ET estimates 

 RMSD 

[mm/d] 

Willmott’s D 

[-] 

Bias 

[mm/d] 

MAE 

[mm/d] 

RMSD 

[mm/d] 

Willmott’s D 

[-] 

Bias 

[mm/d] 

MAE 

[mm/d] 

Aurade 0.93 0.83 0.09 0.68 1.19 0.80 0.22 0.90 

Bilos 0.84 0.86 -0.17 0.62 1.10 0.79 -0.08 0.84 
Coussoul 0.97 0.63 0.58 0.72 1.15 0.58 0.71 0.90 

Fontblanche 0.93 0.58 -0.19 0.74 1.07 0.52 -0.01 0.85 

Lamasquere 1.04 0.70 -0.41 0.70 1.27 0.62 -0.37 0.89 
LeBray 0.74 0.85 -0.11 0.56 0.88 0.83 0.06 0.68 

Puechabon 0.87 0.84 0.44 0.67 1.09 0.81 0.57 0.85 

Toulouse 1.14 0.53 -0.75 0.82 1.35 0.38 -0.83 0.99 
         

Croplands 0.99 0.78 -0.15 0.69 1.23 0.73 -0.07 0.89 

Forests 0.87 0.80 -0.01 0.67 1.06 0.76 0.17 0.83 
Grasslands 1.09 0.49 -0.32 0.79 1.27 0.40 -0.21 0.95 

         

Winter 0.52 0.54 -0.14 0.39 0.60 0.49 -0.07 0.47 
Spring 1.02 0.71 -0.23 0.79 1.25 0.63 -0.13 0.97 

Summer 1.32 0.60 0.04 1.04 1.52 0.57 0.20 1.22 

Autumn 0.70 0.66 -0.05 0.54 0.83 0.60 0.07 0.65 
         

All sites and seasons 

combined 
0.94 0.77 -0.09 0.69 1.16 0.73 0.03 0.87 

While the four LST datasets applied within EVASPA produced similar ET estimates across most sites (Figure 5 and Figure 

6), subtle differences emerged between AQUA- and TERRA-based results. These are likely attributable to diurnal variables 405 

in radiative and atmospheric conditions at the two overpass times, but such differences tend to be averaged out at the daily 
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scale, resulting in comparable overall performance between the two sets of daily ET (i.e., based on AQUA and TERRA LST). 

At certain sites (most notably Toulouse), performance differences were more strongly tied to the temperature-emissivity 

separation method applied. There, the MxD21-based products (from both AQUA and TERRA) tended to yield better ET 

estimates than the corresponding SW-based/11 products (see Figure 5). This highlights the influence of LST/E retrieval 410 

methodology on subsequent surface energy balance calculations and, ultimately, on the accuracy of ET estimates. In terms of 

radiation, the MSG-based daily ET estimates appear to consistently outperform the MERRA- and ERA5-based estimates (see 

Figure 5). This is perhaps due to the relatively higher spatial resolution of the MSG radiation data, which may better capture 

local-scale variability and thus improve representation at the MODIS pixel scale.
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In majority of the sites, the ensemble performance metrics (RMSD, MAE) exhibit either a Gaussian or positively skewed 

distribution, with the majority of members clustering close to the best performing model. In contrast, the performance in 

Toulouse appears bimodal (with a tendency towards negative skewness – see RMSD/MAE histogram in Figure 6), suggesting 420 

the influence of at least two distinct sets of variables that contributing to the performance variability at the site. A closer 

inspection of the ensemble performance data at the site reveal that member estimates based on MxD21, particularly when 

combined with certain EF methods – most notably the T-VI approaches that incorporate edge refinement following Tang et al. 

(2010), dominate the best performing subset of the distribution. 

 

 
Figure 6: a) Scatter diagrams showing performance of EVASPA’s daily ET estimates (the ensemble-average of temporally  425 
interpolated EVASPA members) against in-situ observations – i) RMSD - vs AQUA11 based and ii) bias - vs AQUA11 based ; b) 

Violin plots of RMSD, MAE, D index and bias of the EVASPA members per site and in all sites combined. Left side: the distributions, 

with the shaded area depicting the box plots (i.e. the interquartile range), the dot and horizontal line are the mean and median, 

respectively; right side: the histogram. The periods of observation vary per site but within the 2004-2024 simulation period. 

a) 

b) 

i. 

ii. 
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Overall, the ensemble mean is shown to achieve better performance – especially in terms of RMSD – compared to majority of 430 

the member sets within the ensemble (see ‘Combined’ versus other EVASPA sets in Figure 5). This highlights the robustness 

and utility of ensemble frameworks, particularly in the modelling of earth processes where diverse methods/theories are often 

applied. 

As the basis for the subsequent uncertainty decomposition analyses, we selected the MOD11/ERA5/EF7/G5 combination 

(Table A 1), which exhibited performance close to the ensemble median in terms of RMSD across all sites. This allowed a 435 

stable reference for isolating the contributions of distinct variables to the overall model variability. For example, to investigate 

the specific impact of the EF methods on ET uncertainty, all estimates from the nine EF methods were applied in the SD 

calculations while selecting MOD11, ERA5 radiation and the G5 soil heat flux method (see Table A 1). This design ensured 

that the captured variability was primarily attributable to the different/independent variables. Nonetheless, the overall trends 

remained largely consistent, even when different reference combinations of the distinct variables were used (see Figure 11). 440 

4.2.2 Similarity assessment of the EVASPA ensemble daily ET estimates 

Overall, the similarity order between the EVASPA members for both the un-interpolated and gap filled EVASPA estimates 

appears identical (Figure 7). The LST-based estimates are clustered/grouped according to the temperature separation methods, 

with the dissimilarity or variability between the ETs mostly arising due to the two (AQUA, TERRA) overpasses.  For the EF 

and G-based evapotranspiration estimates, the similarity clustering is mostly according to the biophysical variable applied (i.e. 445 

albedo, NDVI for EFs, and NDVI, LAI, FVC for the G flux methods, respectively). The flat edge EF methods – EF3 (LST-

albedo) and EF8 (LST-NDVI) – show the highest similarity while also appearing to have better agreement with the S-

SEBI/albedo based EFs. After interpolation, the similarity between the radiation-based ETs increases (reduced ED) while that 

based on the other variables - LST, EF and G – reduces (increased ED), albeit marginally. This degraded similarity can be 

ascribed to the variability inherent in the additional (gap-filled) data points used for deriving the ED. Overall, compared to 450 

those from the G-based estimates, the absolute Euclidean distances between the LST-, EF- and the Radiation-based ET 

estimates are generally higher for all pair combinations, confirming the ensemble variability (thus uncertainty) observed in the 

following sections. 
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Figure 7: Dendrograms of the similarity between the ensemble ET estimates (based on the Euclidean distance between pairs of 

members in the ensemble). Similarity is assessed and discriminated according to the four distinct variables: LST, Radiation, EF 455 
methods and G flux methods. Evaporative fraction methods are - S-SEBI: EF1-EF5 and T-VI: EF6-EF9. G flux methods are – NDVI 

based: G1-G4; FVC based: G5; LAI based: G6-G7; and based on the LAI calculated from NDVI: G8-G9. Top – non-interpolated 

estimates; and bottom – interpolated/gap filled estimates. The ordinate is the rescaled Euclidean distance (ED) between the distinct 

member sets in the ensemble (for easier interpretation, varying y-limits are used for the distinct variable sets but similar for the non-

interpolated and gap-filled estimates). 460 

The similarity diagrams in the ensemble including the VIIRS based estimates (see supplements–Figure S 2) generally resemble 

those without VIIRS illustrated above in Figure 7. However, for the LST analyses, the VIIRS based estimates exhibit the 

largest dissimilarity with the TERRA and AQUA based estimates. 

4.3 Uncertainty in flux estimates due to LST, Radiation, EF and G 

4.3.1 Instantaneous energy flux estimates: prior to temporal interpolation for missing days 465 

Comparisons of the variability within EVASPA ensemble members are shown in the heat maps in Figure 8 – presented 

separately for the different instantaneous SEB components (net radiation, ground heat flux, latent heat flux and evaporative 

fraction). Differences are apparent in the estimated net radiation (Rn) components, especially in absolute terms as given by the 

MAE, despite the relatively good 1:1 agreement as described by the Willmott’s D index. These descripancies can somewhat 

be attributed to the product’s overpass characteristics used in the calculations – particularly for the Rn derived from the ERA5 470 
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radiation inputs when the TERRA based LST/E products are used for estimating the surface emission. Conversely, while the 

agreement for ground fluxes estimates derived from LAI appears weaker, the absolute values remain largely comparable (see 

MAE under G). The available energy (Rn – G) that is partitioned into the turbulent fluxes therefore follows a similar trend as 

Rn. The D index for EF estimates also show some degradation, with the MAE values exhibiting larger variations depending 

on the LST product applied in the EF spaces. As a result, variability in latent heat flux resembles that of EF, with additional 475 

influence introduced by the incertitude in radiation. Notably, the larger absolute differences observed between the EFs across 

overpass times - irrespective of the temperature emissivity separation method - suggest that the common assumption of EF 

conservation throughout the day may not always be valid. 

 
Figure 8: Heat maps of Willmott’s D index [-] and MAE [W.m-2] (or MAE [-] for EF) between the EVASPA SEB members (net 

radiation - Rn, ground heat flux - G, latent heat flux – LE, and evaporative fraction - EF) over all sites and seasons combined. The 480 
heat maps of the metrics are calculated by taking each individual member vs all other ensemble members. The numbering in the 

heatmaps/ensemble is done according to the list of variables given in Table A 1, e.g. for EF: 1-9 – all 9 EF methods using MYD11 

LST, 10-18 – all EF methods using MYD21 LSTs, 19-27 – all EFs using MOD11 LSTs, and 28-36 – all EFs using MOD21 LSTs. The 

distinct number of variable combinations in the heat maps are given in Table A 1: i.e., net radiation - 3 × 4 combinations [radiation 

× LST products] ; G flux – 9 × 3 × 4 [ G methods × radiation × LST products] ; LE fluxes involve 9 × 9 × 3 × 4 combinations [G 485 
methods × EF methods × radiation × LST products] ; EFs - 9 × 4 combinations [EF methods × LST products]. 

The heat maps corresponding to the different land covers and seasons are presented in the supplementary document. Across 

the land covers, the trends are generally similar to those in Figure 8 with only subtle differences (Figure S 4, supplements). In 

contrast, seasonal patterns show more pronounced variability, particularly in the net radiation and latent heat flux terms. During 

winter, the larger variability in net radiation members appears to propagate into the latent fluxes, leading to comparable 490 

variability. In summer, despite even larger differences the net radiation, the effect on latent flux estimates is muted, with EF 
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variability becoming more dominant. A similar trend is observed in spring and autumn where EF values from the different 

methods and LST products exert the primary influence on latent energy. 

4.3.2 Non-interpolated daily ET estimates 

Compared to the TES LST/E separation, the SW method appears to introduce more variability (in absolute terms) among the 495 

ET ensemble members. This is evident in the standard deviation plots (Figure 9c.i), where SW-based LST/E estimates 

generally diverge more strongly than those from TES, likely reflecting retrieval uncertainties tied to land cover classification 

products used to constrain emissivity ranges. Interestingly, when temporal interpolation is applied using radiation data to fill 

missing days, this trend reverses. Here, the SW based estimates exhibit lower uncertainties compared to the TES based 

estimates. This reversal suggests that interpolation stabilizes SW retrievals by leveraging radiation trends, thus highlighting 500 

the complex interaction between retrieval approaches and gap-filling methods in shaping the ensemble ET uncertainty. 

Nevertheless, while the TES versus SW distinction does contribute to the ensemble spread, another source of uncertainty 

appears to come from the use of LST/E observations acquired at different satellite overpass times. For the non-interpolated 

estimates, the acquisition time does appear to have some influence. However, the greater influence due to the overpass comes 

after gap filling (see Figure 9a,b, Figure A 2), and can thus be ascribed to the method/data used for interpolation. Even though 505 

the differences between estimates derived from TERRA and AQUA (thus morning and afternoon over-passes, respectively) 

appeared larger than those caused by temperature retrieval methods, the analysis on uninterpolated estimates does not lead to 

fully conclusive interpretations. 
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Figure 9: Bar graphs of standard deviation (SD) between the separate EVASPA ET estimates over the 2004-2024 simulation period. 

I.e., the specific uncertainty for all four distinct variables (across all sites combined) at: a) AQUA overpass – without and with gap 510 
filling / temporal interpolation ; b) TERRA overpass – without and with gap filling / temporal interpolation ; c) for the 4 LSTs 

(separately between 11 and 21 for TERRA, between 11 and 21 for AQUA, between AQUA and TERRA for 11, between AQUA and 

TERRA for 21) – c.i) based on non-interpolated estimates, c.ii) based on interpolated estimates. 

Figure 10 presents the evolution of the global and specific uncertainties across the sites in the period 2004–2024 (i.e. the 

median SD). The LST-specific uncertainty curves are identical for both overpasses (as all four LST-based estimates are used 515 

in computing SD), but they differ between uninterpolated and gap-filled cases. Cross-site uncertainties are systematically 

higher during TERRA’s winter overpasses (Nov–Feb) compared to AQUA’s, indicating seasonal variations in input 

consistency that affect ET spread. The elevated winter uncertainties during TERRA’s overpass likely reflect low solar angles, 

which exacerbate inconsistencies in radiation products (Section 4.1.1). By contrast, non-winter periods and AQUA overpasses 

show greater radiation product consistency, lowering their influence on ET uncertainty. Under these conditions, radiation 520 

inputs rank below ground heat flux methods as drivers of ET uncertainty. This points to a seasonal shift in dominant uncertainty 

sources, linked to Sun–Earth geometry and atmospheric conditions and it is particularly evident in the uninterpolated ensemble 

estimates. 

a) 

b) 

c.i) c.ii) 
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Figure 10: Time series’ of specific and global uncertainties in the daily ET estimates – i.e., the median standard deviation (SD) for 

all days over the 2004-2024 simulation period. Separately for: a) non-interpolated and gap filled estimates at AQUA’s overpass; b) 525 
non-interpolated and gap filled estimates at TERRA’s overpass. 

Of the four variables examined, variations linked to evaporative fraction methods consistently ranked as the second largest 

source of uncertainty in the EVASPA estimates, ranking just below the LST. This trend holds across sites and time periods 

(except at TERRA’s overpass during winter), indicating that while EF method selection does not introduce the highest level 

of uncertainty, it still plays a significant and persistent role in the global variability of the estimates. The stable ranking 530 

highlights the need for careful EF method selection, particularly in terrestrial applications where moderate levels of sensitivity 

to modelling assumptions can impact the reliability of evapotranspiration estimates. 

Figure 11 shows the specific uncertainties assigned to the four distinct variables while changing the reference combination 

(i.e. MYD11, ERA5, EF7, G5) used in majority of the incertitude calculations. Only the bar graphs for all sites combined are 

shown since the site-specific graphs show a similar trend (e.g. see Figure A 2). From the plots, the overall trends (particularly 535 

on ranking of the four variables) appeared to largely similar across the analyses, even when alternative reference combinations 

of the distinct variables were considered. This suggests that the observed patterns are robust and not overly sensitive to the 

specific choice of reference inputs-methods combination. 
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Figure 11: Standard deviation bar graphs of the specific incertitude introduced by selecting different member combinations of LST-

Radiation-EF-G over the 2004-2024 simulation period. 540 
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4.3.3 Uncertainty in gap filled daily ET estimates and influence of the temporal interpolation method 

EVASPA ET time series’ were gap filled over missing days using an interpolation method that exploits the temporal dynamics 

in continuous radiation data (see section 2.1.4). Since the radiation input datasets have inherent uncertainties as presented in 

section 4.1.1, it is reasonable to expect that such could indeed influence the resulting ensemble ETs. Figure 9a,b illustrate the 

uncertainties in the interpolated ET estimates (and the respective SDs in the non-interpolated ETs for comparison) over all 545 

sites combined and seasons (also see per site graphs in Figure A 2). When the radiation datasets are relatively consistent, i.e. 

at AQUA’s overpass time, the impact of the flux interpolation is comparatively muted. In such cases, radiation variables still 

contribute to the overall uncertainty but rank third, behind the LST inputs and EF methods. Contrarily, at TERRA’s overpass, 

when the radiation inputs exhibit greater variability - particularly under challenging conditions such as low solar angles and 

generally low visibility during winter - the influence of radiations on the simulated ETs becomes more pronounced. Here, 550 

radiation input variables sometimes surpass EF methods in their contribution to ensemble uncertainty, ranking second behind 

LST. 

Examining the uninterpolated estimates in section 4.3.2 (see also Figure 9, Figure 10), we observed that the ground heat flux 

tends to occasionally introduce greater uncertainty (particularly during AQUA’s overpass and in non-winter periods) 

surpassing the radiation inputs as a source of variability in the simulations. For the gap filled estimates, however, the variability 555 

inherent in the radiation products becomes more prominent, even during periods typically associated with greater stability - 

such as at AQUA’s overpass. Despite the relatively better consistency between the radiation datasets at these times, their 

influence on the interpolation process is amplified, perhaps due to their primary role in filling temporal gaps. As a result, the 

uncertainties introduced on the outputs by the radiation inputs start to outweigh those associated with the ground heat flux 

methods (see the ‘All Sites’, ‘All Seasons’ bar graphs in Figure 9a,b). 560 

Specifically looking at the LST/E products, we observed that the overpass time tended to yield significant variability in the 

gap-filled daily ET estimates compared to the temperature emissivity separation methods. This is likely due to diurnal 

variability in LST and radiative fluxes, which are highly sensitive to the timing of observation. The overpass time determines 

the prevailing solar radiation, atmospheric characteristics, and surface/radiative energy partitioning, all of which largely 

influence the SEB and evaporative fluxes. Indeed, the uncertainty introduced by the two temperature separation methods at 565 

each acquisition show a tendency to remain the same for both the non-interpolated and gap filled daily ET estimates (see Figure 

9c). This is because the radiation used for interpolation is the same for each set - for example, the radiation used to interpolate 

the estimates based on MYD11 and MYD21 LST/Es is the same (i.e. at AQUA’s overpass time), similarly for the TERRA 

based set.  Conversely, two sets of radiation datasets are required to interpolate the MYD11 and MOD11 (similarly MYD21 
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and MOD21) estimates, depending on the acquisition time. These uncertainties propagate during interpolation resulting in the 570 

increased SD between AQUA and TERRA based estimates. 

5 Summary and conclusions 

In this study, we applied remote sensing data over the south of France to investigate the sources of uncertainty in contextual 

modelling of ET. Our objective was to identify how different input datasets and methodological assumptions affect the 

variability and reliability of satellite-derived ET estimates. To this end, we used the ensemble-based EVASPA scheme - a tool 575 

that generates estimates of surface energy balance (SEB) components, including latent heat flux used as a basis for ET. The 

tool was implemented in a multi-data, multi-method setup, involving five LST/E products (four from MODIS, one from 

VIIRS), three radiation products (ERA5, MERRA, MSG), nine evaporative fraction methods (based on T-VI and S-SEBI), 

and nine ground heat flux methods (informed by NDVI, LAI, and FVC). This comprehensive setup allowed us to systematically 

assess where uncertainties emerge and how they propagate through the ET modelling workflow. 580 

Practically, our findings suggest that of all the four considered variables, the LST inputs introduce the largest spread (thus 

uncertainty) in the EVASPA ETs, followed by the EF methods and the radiation products, with the ground heat flux methods 

– G - having the least influence. This highlights the key role of LST and EF methods in determining: 1) the available energy 

(Rn − G) at the near-land surface (where LST is a key input term for the net radiation, Rn), and 2) how this available energy 

is partitioned between the turbulent heat fluxes in contextual modelling of ET, i.e., when deriving the evaporative fraction at 585 

the pixel scale. While the differences in temperature-emissivity separation methods impact the agreement between ensemble 

members, the temporal aspect of LST/E acquisition introduces a broader and more systematic influence on ET uncertainty – 

primarily due to the associated variability in the radiation inputs at those times. For applications requiring high precision or 

sensitivity to temporal dynamics (e.g., crop stress monitoring or irrigation scheduling), these timing effects may need to be 

accounted for explicitly, either through ensemble weighting strategies or temporal normalization approaches. Future ET 590 

modelling efforts may benefit from leveraging terrestrial emission data from missions with higher revisits so as to minimize 

the uncertainty associated with acquisition time.  

We nevertheless note that the uncertainty in ensemble-based modelling (particularly the global uncertainty where all methods 

are combined)  could be lower when compared to analysis including variations of additional factors, such as albedo estimation 

algorithms, additional evaporative fraction methods applying more complex edge detection algorithms, or a larger range of 595 

input data (see Olioso et al., 2023)). These aspects, in addition to the directional influence of LSTs acquired from low elevation 

angles on the ETs (as is apparent in point SEB (Mwangi et al., 2023a, 2023b)), are to be explored in the near future. 
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Being among the initial steps in the definition of an algorithm that will provide continuous ET estimates together with the 

uncertainty on a pixel basis, this study aims to contribute to the definition of the operational ET product for the TRISHNA 

mission. The study underscores the importance of both spatial and temporal resolution in the remote sensing of ET and 600 

associated near-land surface energy fluxes. In particular, the sensitivity of ET estimates to satellite overpass time highlights a 

fundamental limitation of current LST acquisitions, which often capture land surface conditions at diverse times diurnally. 

Future missions should prioritise higher temporal resolution in addition to improved spatial scales, especially for applications 

in agro-hydrology and land surface modelling where rapid surface changes contribute in driving the water and energy budgets. 

Together with TRISHNA, other emerging missions such as, LSTM, and SBG represent significant progress in this direction, 605 

offering the potential for high-resolution thermal observations with shorter revisit times, especially if the fusion of observations 

across missions/platforms is enabled. In addition to spatio-temporal improvements in satellite instruments, there is also a need 

for standardized processing protocols and ensemble modelling frameworks. Our findings highlight the need for ensemble-

based approaches such as EVASPA, which can incorporate multiple datasets and methods to characterize uncertainty and thus 

improve ET estimation accuracy, while also enhancing the resilience of Earth observation products. 610 
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6 Appendices 

EVASPA ensemble: inputs and methods 

Herein, we use different LST and radiation input datasets. These are used to drive the EVASPA algorithm while utilizing 

different formulations of evaporative fraction and ground heat flux methods as tabulated below,  

Table A 1: Ensemble construction: inputs – LST, Radiation ; methods - EF (for wet and dry edge determination) and G flux functions 620 
used in this study. 

LST Inputs 

Input name Product description 

MYD11 AQUA LST – derived using the Split Window (SW) LST/E separation method. 
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MYD21 

MOD11 

MOD21 

*VIIRS21 

AQUA LST – derived using the Temperature Emissivity Separation (TES) method. 

TERRA LST – derived using the Split Window (SW) LST/E separation method 

TERRA LST – derived using the TES method 

*VIIRS LST – derived using the TES method 

Radiation Inputs 

ERA5 

MSG 

MERRA 

Radiation reanalysis data (short and longwave) from ECMWF 

Radiation (short and longwave) from EUMETSAT Satellite Application Facility (LSA SAF) 

Radiation reanalysis data (short and longwave) from GMAO NASA 

Evaporative Fraction (EF) Methods 

Method name (Space) Dry Edge calculation Wet Edge calculation 

EF1 (LST-Albedo) 

Simplified Tang et al. (2010) ; outliers are not 

removed. An albedo threshold set at 

>mean(albedo) ; thus slope and intercept 

derived using LST(where albedo is greater 

than mean(albedo)) and albedo(where albedo 

is greater than mean(albedo)) 

Simplified Tang et al. (2010) ; outliers are not 

removed. An albedo threshold set at 

<mean(albedo) ; thus slope and intercept 

derived using LST(where albedo is less than 

mean(albedo)) and albedo(where albedo is less 

than mean(albedo)) 

EF2 (LST-Albedo) 

Simplified Tang et al. (2010) ; outliers are 

removed with smoothhist2D (Eilers & 

Goeman, 2004). Albedo threshold set at 

>mean(albedo) ; thus slope and intercept 

derived using LST(where albedo is greater 

than mean(albedo)) and albedo(where albedo 

is greater than mean(albedo)) 

Simplified Tang et al. (2010) ; outliers are 

removed with smoothhist2D (Eilers & Goeman, 

2004). Albedo threshold set at <mean(albedo) ; 

thus slope and intercept derived using 

LST(where albedo is less than mean(albedo)) 

and albedo(where albedo is less than 

mean(albedo)) 

EF3 (LST-Albedo) 

Simple flat edge function, dry edge set to 

maximum LST. Albedo threshold set at 

>mean(albedo) ; thus the maximum edge 

temperatures and the intercept are derived 

from LST(where albedo is greater than 

mean(albedo)), while the slope is 0 

Simple flat edge function, wet edge set to 

minimum LST. Albedo threshold set at 

<mean(albedo) ; thus the minimum edge 

temperatures and the intercept are derived from 

LST(where albedo is less than mean(albedo)), 

while the slope is 0 

EF4 (LST-Albedo) 

Using the 5th percentile temperatures for each 

abscissa range. Albedo threshold set at 

>mean(albedo) ; thus slope and intercept 

derived using LST(where albedo is greater 

than mean(albedo)) and albedo(where albedo 

is greater than mean(albedo)) 

Using the 95th percentile temperatures for each 

abscissa range. Albedo threshold set at 

<mean(albedo) ; thus slope and intercept 

derived using LST(where albedo is less than 

mean(albedo)) and albedo(where albedo is less 

than mean(albedo)) 

EF5 (LST-Albedo) Same as EF2 

Outliers removed similar to EF2, but taking the 

average of the temperatures and setting slope to 

0 

EF6 (LST-NDVI) 
Simplified Tang et al. (2010), outliers are not 

removed 

Simplified Tang et al. (2010), outliers are not 

removed 

EF7 (LST-NDVI) 
Simplified Tang et al. (2010), outliers are 

removed using smoothhist2D 

Simplified Tang et al. (2010), outliers are 

removed using smoothhist2D 

EF8 (LST-NDVI) 
Simple flat edge function, dry limit is set to 

maximum LST 

Simple flat edge function, wet edge is set to 

minimum LST 

https://doi.org/10.5194/egusphere-2025-4522
Preprint. Discussion started: 20 October 2025
c© Author(s) 2025. CC BY 4.0 License.



32 

 

 

 

 

 

EF9 (LST-NDVI) 
Using the 95th percentile temperatures for each 

abscissa range 

Using the 5th percentile temperatures for each 

abscissa range 

Ground heat flux (G) Methods 

Method name Biophysical variable G/Rn ratio function 

G1 
Normalized Difference Vegetation Index 

(NDVI) MODIS product 
G Rn⁄ = 0.4 − (0.33 ∗ NDVI) 

G2 NDVI MODIS product G Rn⁄ = 0.3 − (0.29 ∗ NDVI) 

G3 NDVI MODIS product G Rn⁄ = 0.5 − (0.33 ∗ NDVI) 

G4 NDVI MODIS product G Rn⁄ = 0.4 − (0.29 ∗ NDVI) 

G5 

Fraction Vegetation Cover (FVC) calculated 

from NDVI MODIS product (G/Rn function 

following Su (2002)) 

I.e. FVC = 1 − (
NDVI−0.951

0.13−0.951
)

2

 

G Rn⁄ = 0.05 ∙ FVC + 0.35 ∙ (1 − FVC) 

G6 Leaf Area Index (LAI) MODIS product G Rn⁄ = 0.3 ∙ e−0.5LAI 

G7 LAI MODIS product G Rn⁄ = 0.4 ∙ e−0.5LAI 

G8 
LAI from NDVI MODIS product; 

I.e. LAI =
1

0.67
ln (

NDVI−0.951

0.13−0.951
)  

Same as G6 but using LAI calculated from 

NDVI 

G9 
LAI from NDVI MODIS product; 

I.e. LAI =
1

0.67
ln (

NDVI−0.951

0.13−0.951
)  

Same as G7 but using LAI calculated from 

NDVI 

**Ensemble construction: distinct surface energy balance (SEB) outputs from EVASPA 

SEB term Required inputs and/or methods Total distinct ensemble members 

Rn (net radiation) 
 LST: MYD11, MYD21, MOD11, MOD21 

 Radiation: ERA5, MSG, MERRA 
4·3 (12) Rn estimates 

G (ground heat flux) 

 Rn: combining all four LST and three 

radiation datasets 

 G methods: G1 thru G9 

12·9 (108) G estimates 

EF (evaporative 

fraction) 

 LST: MYD11, MYD21, MOD11, MOD21 

 EF methods: EF1 thru EF9 
4·9 (36) EF estimates 

LE (latent heat flux) 

 Rn: combining all four LST and three 

radiation datasets 

 G methods: G1 thru G9 

 EF methods: EF1 thru EF9 

12·9·9 (972) LE estimates 

* VIIRS21-based results mostly presented in the supplementary document. For consistency, main text mainly focuses on EVASPA estimates based on AQUA and TERRA LSTs. 

** As in the main text where only AQUA and TERRA LST data are applied. 
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Viewing information of AQUA, TERRA and VIIRS platforms 

 
Figure A 1: The overpass time (showing the effects of the orbit drift in the AQUA and TERRA satellites from mid/late 2020) and 625 
view angle (showing issues with the VIIRS sensor when viewing from the west) over the 2004-2024 period. 
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Figure A 2: Bar graphs of standard deviation (SD) between the separate EVASPA ET estimates over the 2004-2024 simulation 

period. I.e., the specific uncertainty for all four distinct variables (across all sites combined and individually) at: a) AQUA overpass 

– without and with gap filling / temporal interpolation ; b) TERRA overpass – without and with gap filling / temporal interpolation. 630 

a) 

b) 
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