
Technical note: A framework for causal inference applied to solar
radiation and temperature effects on dissolved gaseous mercury
Hans-Martin Heyn1 and Michelle Nerentorp Mastromonaco2

1Computer Science and Engineering, University of Gothenburg and Chalmers, 40530 Göteborg, Sweden
2IVL Swedish Environmental Research Institute, 40014 Göteborg, Sweden

Correspondence: Hans-Martin Heyn (hans-martin.heyn@gu.se)

Abstract.

Environmental science usually requires researchers to rely on observational data alone. However, researchers want to identify

causal relationships and not only correlations between pollutant behaviour and other environmental factors such as weather.

Previously it has been shown that solar radiation associates with the volatilisation and evasion of the hazardous pollutant

mercury from sea surfaces into the atmosphere. Statistical and machine learning methods can help find and quantify such5

associations. However, association does not imply causation, and inferring causal relationships from observational data alone

remains a significant challenge. Here, we aim to create an ‘easy-to-follow’ framework, to be used by environmental researchers,

for using prior scientific knowledge encoded as graphical causal models to enable causal inference and to estimate effect sizes

of different related factors using collected field data. We demonstrate the framework through a case study estimating the effect

sizes of solar radiation and sea surface temperature on dissolved gaseous mercury (DGM) in seawater measured at the west10

coast of Sweden. Our causal analysis reveals that 32% of the total effect of solar radiation on DGM is mediated indirectly

via changes in sea surface temperature. Wind and instrumentation acted as confounders, biasing effect estimates by 4.5%.

Results from the case study show that our proposed framework allows for a rigorous design, validation, and reporting of causal

inference in environmental science. It shows potential in modelling causes of pollutant dynamics and quantifying the effect of

regulating policies such as the Minamata Convention For Mercury.15

1 Introduction

Environmental, and particularly atmospheric monitoring and research, rely on direct measurements and modelling to under-

stand the processes involved in the formation, transport, evasion, and deposition of different pollutants. The purpose of en-

vironmental monitoring is often defined and driven by national and international legislations and directives, defined within

the European Union (Council of the EU, 2004), or through international conventions such as the United Nations Framework20

Convention on Climate Change (United Nations, 1992) and the Convention on Long-range Transboundary Air Pollution CLR-

TAP (United Nations Economic Commission for Europe, 2024; United Nations, 1979). Depending on legislative and pollutant,

the requirements for monitoring could include either modelling, estimations, or direct and continuous measurements with

yearly reporting to co-operative programs under CLRTAP, e.g., the European Monitoring and Evaluation Programme (EMEP,
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2023). For mercury, directive 2004/107/EG describes the need of ensuring collecting publicly available information about con-25

centrations in air and deposition in every Member State of the European Union (European Parliament and Council, 2004). The

directive further demands that indicative measurements of mercury shall be performed at background sites at a spatial reso-

lution of 100 000 km2. Within the United Nations, a global convention, aimed to protect human health and the environment

from the exposure of mercury, was agreed on in January 2013 and was named the Minamata Convention on Mercury (United

Nations Environment Programme, 2013). The convention entered into force in August 2017 and is today ratified by more than30

150 parties all over the world. At present, an Effectiveness Evaluation Group has been selected to assess the effectiveness of

the convention by studying trends and changes in mercury concentrations in different media (United Nations Environment

Programme, 2024).

This leads to another aspect of environmental monitoring: the use of computer models to analyse and interpret complex en-

vironmental data to make predictions about unseen or future data points, to understand patterns and trends, and to evaluate the35

effectiveness of current legislatives. Learning about the dependencies between variables from observational data allows us to

build predictors that provide necessary estimates of previously unseen data. These predictors are statistical learning machines,

which can take the form of simple regression models or even highly complex and opaque ML models such as convolutional

neural networks (CNNs). However, environmental researchers are not only interested in building opaque, black-box prediction

machines that magically predict future data points from observational data. Instead, they are particularly interested in under-40

standing cause-effect relationships to suggest interventions that reduce pollutants in the environment. Causal knowledge, or in

other words the analysis of cause-effect relationships, is one of the ‘fundamental goals of science’ (Vowels et al., 2022; Rose

and van der Laan, 2011).

This paper reports the results of a case study on extracting causal knowledge about the contribution of different environmental

processes to the formation of dissolved gaseous mercury (DGM) in seawater and subsequent mercury evasion to air from45

observational data. Although measurements of gaseous mercury (Hg) in water is not yet a requirement within EU directives,

the results from novel continuous measurements of Hg in surface waters are used as an example. This paper proposes a

framework for obtaining and reporting causal knowledge from environmental observational data. Through a case study, this

paper explains how to build statistical models that not only predict future values of an outcome variable but also allow the

inference of causal relationships between predictor variables and the outcome using observational data.50

1.1 Environmental monitoring of mercury emissions

Mercury is considered by the World Health Organization to be one of the top ten chemicals or substances to be of major

concern to public health (Cohen et al., 2005). This volatile and toxic element is found naturally in various environmental

compartments and originates from both natural and anthropogenic sources, such as artisanal small scale gold mining, burning

of fossil fuels and various industrial activities. As a gas, mercury is stable and has a long residence time in air, resulting55

in a global spread via the atmosphere to remote, pristine, and vulnerable environments such as the polar regions. Mercury

is deposited from air by dry and wet deposition, often via oxidation from Hg0 to HgII . Oxidised mercury in seawater, for

example, transforms more easily into methylmercury which can bioaccumulate in aquatic food chains. However, it can also
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reduce back to its elemental form and evade back into the atmosphere, where it is capable of fast long-range transport. Mercury

evasion from sea surfaces accounts for almost 50% of the annual contributions to the atmospheric mercury load. This is60

because much of the oceans’ surfaces are supersaturated with elemental mercury compared to the atmosphere, resulting in net

water-to-air evaporation (AMAP, 2021). Understanding the drivers behind formation of DGM and subsequent flux is key to

understand the bioavailability of methylmercury in seawater and supporting global models with information about spatial and

temporal variability (Soerensen et al., 2013). Mercury flux models for seawater suggest that the flux, and thus the fluctuation

of DGM concentration in surface waters, is mostly influenced by environmental factors such as wind speed, temperature,65

photochemistry and microbial activity (Soerensen et al., 2013; Johnson, 2010; Kuss et al., 2009). What controls the formation

of DGM is also debated, and it is discussed that it is formed by demethylation processes of methyl- and dimethylmercury in

the subsurface ocean (Munson et al., 2018). Demethylation could be either abiotic or biotic, with an abiotic process being

photo-demethylation controlled by solar radiation (AMAP, 2021). The connection between the formation of DGM and solar

radiation has previously been studied in various environmental compartments such as the sea, lakes, soils, and salt marshes (Xie70

et al., 2019; Sizmur et al., 2017; Dill et al., 2006; Gårdfeldt et al., 2001; Amyot et al., 1997). In several studies, the relationship

between DGM and solar radiation was quantified by determining correlation coefficients of 0.66 (Cane Creek Lake, USA;

Dill et al. (2006)), 0.99 (river near Knobesholm, Sweden; Gårdfeldt et al. (2001)), and 0.39 (coastal Minamata Bay, Japan;

Marumoto and Imai (2015)), suggesting that solar radiation can be an important, though site-dependent, predictor of DGM.

Other studies report similar relationships between mercury evasion and solar radiation with correlation coefficients of 0.7,75

(Adriatic Sea; Floreani et al. (2019)) and 0.5-0.9 (Wuijang River, China; Fu et al. (2013)). However, there is probably more

to the story of how the concentration of DGM is influenced by external factors such as solar radiation. Sizmur et al. (2017)

hypothesised that the formation of DGM probably is affected by a combination of solar radiation and increased temperature.

Zhang et al. (2006) performed a Pearson analysis of DGM and various factors measured at Lake St. Pierre (Canada), including

air and water temperature, wind speed and solar radiation. The analysis showed significant correlations between DGM and all80

of these factors. Other aspects, such as water depth, have also been shown to have an effect on how strong the influence of

solar radiation is for the formation of DGM in surface seawater, since the correlation mainly has been observed at the coast

(Nerentorp Mastromonaco et al., 2017; Fantozzi et al., 2013; Ferrara et al., 2003; Lanzillotta et al., 2002; Andersson et al.,

2007). The reason has been suggested to be due to greater vertical and turbulence mixing (Nerentorp Mastromonaco et al.,

2017; Lanzillotta et al., 2002), lower friction velocities and surface roughness (Fantozzi et al., 2013), and the presence of85

dissolved organic carbon (DOC) and suspended particles (Ferrara et al., 2003; Amyot et al., 1997).

In summary, we see that merely calculating and discussing correlations will not capture the underlying causal mechanisms

by which different environmental forcings influence DGM. What is needed instead is an approach that can separate correlation

from causation while also accounting for cause–effect relationships among the forcings themselves, such as solar radiation

influencing temperature.90
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1.2 Outline and purpose of the paper

The intention of this paper is to provide a discussion of the role of graphical causal models in environmental research and to

present suggestions on how effect sizes from observational data in environmental science can be systematically obtained and

reported.

In Section 2, the paper describes the used case study of continuous measurements of DGM in seawater, carried out on the95

west coast of Sweden in 2020. Section 3 introduces a framework for causal inference using observational data. Section 4 then

describes how the proposed framework for causal inference is applied to the case data for inferring the effect sizes of different

forcing, such as solar radiation, sea surface temperature, wind speed, and speed of the instrument feeding water pump on

measured Hg concentrations CMW . Section 5 presents the results from the case study and in Section 6 these results and the

application of the framework for causal inference using observational environmental data are discussed, leading to concluding100

remarks and suggestions for further research presented in Section 7.

2 Description of case study: Continuous measurements of Hg concentration in seawater

The measurement campaign was conducted from 2019-12-05 to 2020-10-08 at the Kristineberg Marine Research Station,

located on the Swedish West-coast (58.25013°N, 11.44485°E). Kristineberg is located at the entry of the Gullmarsfjord in

the Skagerrak Sea which is classified as a natural reserve. With its shallow waters it serves as an important reproduction site105

for shellfish. The data for this study were collected during the period 2024-04-01 to 2024-04-25, which is an interesting time

period for our case study due to the good mixture between dark and sunlit hours in Scandinavia at this time of the year.

2.1 Measurements of Hg concentration in surface water

The experimental set-up for measuring DGM in surface seawater is presented in Figure 1. The measurements were conducted

in shallow waters (<10 m depth) at the harbour of Kristineberg. At the sampling site, a commercial 12V bilge pump1 with the110

capacity to pump 32 l/min was installed on a chain, attached to a buoy and an anchor, at 1 m below the buoy to keep the same

water depth to the surface, disregarding tide or waves, see Figure 1 a). A cage of fine mesh net was installed around the pump

to reduce pump clogging problems due to algal growth (not shown in figure). The seawater was pumped from the sampling site

to the measurement site through a rubber tubing, lying on the bottom of the sea. The distance between the sampling site and the

measurement site was less than 10 m. At the measurement site (Figure 1 b)), a weather protected box shielded all equipment115

for measuring Hg and other parameters. A temperature controlled radiator kept the equipment at a constant temperature. The

flow of incoming seawater from the measuring site was measured and controlled using a water meter and a valve. The regulated

water flow in Figure 1 is denoted rW . A constant water flow was hard to obtain due to the pump experienced problems with

growth of algae and clogging, despite installing a protective net. During April 2020, rw varied between 0 and 40 l/min, with

an average flow rate of 2.8 l/min.120

1Art.no. 25-9741, Biltema
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Figure 1. Experimental set-up for measuring gaseous mercury in surface water: a) sampling site consisting of a red buoy which holds up a

chain that is attached to the bottom with an anchor. The water pump is fixated on the chain about 1 m below the buoy; b) measurement site

containing the continuous equilibrium system for extracting gaseous mercury from seawater and the Lumex RA-914+ mercury analyser

An automated continuous equilibrium system was used to continuously extract gaseous mercury from incoming seawater.

The system, developed by Andersson et al. (2008b) and further used in e.g., Nerentorp Mastromonaco et al. (2017) and in

Osterwalder et al. (2020), consist of an inner cylinder in which incoming seawater enters continuously from the top. A purging

system, consisting of a glass frit, was installed at the bottom of the inner cylinder. The air used for purging was pumped using

an air pump. A massflow controller regulated the air flow (ra) to a fixated 1.5 l/min. Ambient air normally contains small125

amount of Hg (ca0 in Figure 1b), but in our set-up, a coal canister was used to remove Hg from the purging air.

After purging through the water in the inner cylinder, the air outflow, now containing the equilibrium concentration of

extracted gaseous mercury (CMW ), was first led through a soda lime trap and a polytetrafluoroethylene (PTFE, 2 µm pore size,

47 mm diameter) filter to prevent particles and moisture from entering the analyser. The purged sea water flowed out via the

bottom of the inner cylinder, moving upwards inside the outer cylinder and was then discharged back to the sea via a rubber130

tubing. The purpose of the backflow system using an outer cylinder is to serve as isolation to keep the temperature in the inner

cylinder as stable as possible during purging. All small tubing in the system was made of FEP (fluorinated ethylene propylene).

Finally, the equilibrium concentration of extracted gaseous mercury (CMW ) in the air outflow was analysed every minute us-

ing a Lumex RA-914+ atomic absorbance spectrometer. Calibration of the instrument was performed automatically every three

hours by adjusting the baseline using mercury free air. The detection limit of the instrument has previously been determined135

to be 0.5 ng/m3, having a precision of ±5% (Nerentorp Mastromonaco et al., 2017). The blank of the automated continuous
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equilibrium system was determined by turning off the water pump, letting water within the system be depleted of gaseous Hg.

The detection limit of the system was determined to 0.32 pg/L, calculated as three times the standard deviation of the blanks.

CMW measured with the analyser can be used to calculate the concentration of dissolved gaseous mercury (DGM) in

incoming seawater. If Ca0 is removed from Hg, the equation to calculate DGM can be simplified to: (Andersson et al., 2008b):140

DGM = CMW

(
1

H ′ +
rA

rw

)
, (1)

where CMW is the measured Hg concentration in the air outflow from the purging system, H ′ is the dimensionless Henry’s law

constant that describes the partitioning of mercury between the gaseous and aqueous phase. The variables rA and rw denote

the flow rates of purging air and seawater, respectively. Henry’s law constant for mercury in seawater has previously been145

determined by Andersson et al. (2008a) to be temperature dependent and is calculated as

H ′ = e(−2404.3/T (K))+6.29. (2)

2.2 Measurements of solar radiation and surface water temperature

Solar radiation, denoted as Sol, was measured using a pyranometer sensor from Renke, model RS-TBQ measuring both direct150

and diffuse solar irradiance with a measurement range of 0− 2000 W/m2, a resolution of 1 W/m2 and an accuracy of ±3%.

The sensor was installed on the roof of the measurement box, having no shadowing. The output of the sensor was read by an

Arduino embedded computer which transformed the output voltage into irradiance in W/m2 and sent the result to a central

computer for logging alongside the other measurements. The temperature of the incoming seawater was measured at the inlet

to the automated continuous equilibrium system using a DS18B20 temperature probe connected and processed by the same155

Arduino embedded computer.

Other weather data, such as wind speed, were downloaded from a weather station situated in the Gullmarsfjord close to the

research station. These measurements are run by the University of Gothenburg and available online (of Gothenburg, 2024).

All variables have been resampled to 5 minutes intervals using a moving average filter. This has been done for two reasons:

firstly, we did not suspect that the dynamics of the observed effects are faster than 10 minutes, which is twice the new sam-160

pling rate and therefore fulfils the Nyquist–Shannon sampling theorem. Secondly, we reduced the amount of datapoints which

allowed for faster processing in the modelling steps.

3 A framework for causal inference using observational data in environmental research

The workflow to estimate effect sizes in this study is presented as a framework for researchers conducting causal inference

from observational data. It builds on existing causal inference workflows proposed in behavioural science (Deffner et al.,165

2022) and software engineering (Furia et al., 2024). However, unlike these domains, environmental research relies to a much
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higher degree on data from intervention-free observational studies, motivating a tailored framework for causal inference using

observational environmental data and prior scientific knowledge from researchers:

A framework for causal inference using observational data in environmental research

1. Formulate clear research questions.

2. Encode prior scientific knowledge and assumptions as a set of different plausible causal models in the form of

directed acyclic graphs (DAGs).

3. Derive independence criteria from the causal models.

4. Generate simulated data based on causal models and identified independence criteria.

5. Build statistical or machine-learning (ML) models for each alternative causal model.

6. Verify the statistical or ML models on the simulated data and show that the models can estimate given parameters

and identify independence relations in simulated data.

7. Run the models on observational data.

8. Check independence criteria and parameter estimates.

9. Validate the plausibility, workability, and adequacy of the statistical / ML models.

10. Report and interpret the results.

The proposed framework consists of ten steps which can be divided into three groups: steps for incorporating and testing170

prior knowledge (steps 1, 2, 3, and 8), steps for collecting evidence of plausibility, workability, and adequacy (steps 4, 6, and

9), and steps for generating answers to research questions (steps 5, 7, and 10). The steps are interlinked, which suggests an

order in which we propose to execute them as shown in Figure 2.

In steps 1-3, research questions are formulated, and prior scientific knowledge and assumptions are encoded in a set of

possible graphical causal models. A causal model describes “relevant features of the world and how they interact with each175

other” (Pearl et al., 2016). Which features are relevant depends on the research questions and scope of the investigation. A

causal model indicates how a change in one variable changes the value of another variable, regardless of the functional form

of the relationship. Causal models include two types of variables. The first type, exogenous variables, are not explained further

within the model. For example, solar radiation Sol affects ocean surface temperature TS (Sol→ TS). Here, we treat Sol as an

exogenous variable without modelling upstream mechanisms such as the sun’s fusion reactions. The second type, endogenous180

variables, by contrast, are always descendants of at least one exogenous variable. Directed Acyclic Graphs (DAGs) provide

an accessible visualisation of causal models with nodes representing the variables of a system of interest and directed edges

representing the direction of cause-and-effect. The causal model of the earlier example Sol → TS is in the form of a DAG,

with the arrow→ indicating that solar radiation is a cause of changes in surface temperature, and not the other way around.

The graphical representation of causal models through DAGs is qualitative, i.e., it provides information about the direction185

of cause-and-effects between variables, but it does not provide information about the strength or functional properties of the

causal relationships. Pearce and Lawlor (2016) provide an overview of properties of DAGs representing causal models:
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1) Research Questions

3) Independen. Criteria

RQ

5) Statistical/ML Model

4) Simulated Data

Sim

7) Model Inference

10) Result reporting

Answer

8) Independence Check

6) Model verification

9) Model validation

2) Causal Models

A

B

C?

Figure 2. A workflow for causal inference of statistical models using observational data and prior knowledge about plausible cause-effect

relationships.

– DAGs are directed, i.e., the arrows can only have a single head pointing from the cause towards the effect.

– DAGs are acyclic, meaning that there must not be a series of arrows (i.e., a path) resulting in a cyclic path. Causal models

are acyclic because a variable at a given point in time cannot be the cause of itself.190

– An arrow indicates that (we assume) a causal relationship exists between two variables, where the first variable has an

effect on the second variable.

– The absence of an arrow indicates that the values of two variables are not causally related, i.e., a change in the value of

one variable has no effect on the value of the second variable.

– The outcome variable is typically an endogenous variable which is the target of an investigation and effect of interest195

which value is influenced by parent variables of the causal system.

– The exposure variables represent causes of interest. They are usually nodes with outgoing edges. Exposure variables are

exogenous variables in a causal model if they have only outgoing edges. Otherwise, they are endogenous variables which

value are being influenced by other variables, such as for example sensor noise effects. Exogenous variables are always

root nodes in DAGs, i.e., they do not have incoming edges.200
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It is necessary to define the direction of cause-and-effect a-priori, because statistical models cannot distinguish between cause

and effect as they only identify association but not causation. If the direction of cause and effect is not known, or if the existence

of a causal relationship is uncertain a-priori, several alternative causal models can be proposed. Based on the proposed causal

models, independence criteria are derived using mathematical methods such as d-separation (Pearl et al., 2016). Tools exist,

such as DAGitty (Textor et al., 2016) that automatically derive these independence criteria from graphical causal models.205

In Step 4, simulated data are generated for each of the proposed causal models. These simulations emulate the suggested

causal relationships to create artificial outcome variable data. Then, in Step 5, the statistical models or ML models are defined.

The prior knowledge of causal relationships can be used to define the statistical models accordingly, which may result in several

different possible statistical models representing different prior assumptions. Some statistical models, such as generalised linear

models (GLMs) for Bayesian data analysis (BDA), allow the explicit inclusion of additional a-priori knowledge for example210

through the selection of predictor variables or the choice of prior distributions. In Step 6, the correctness of the models is

verified on simulated data. Each model is verified against each of the simulated data sets, where each data set represents one

of the possible causal models. It is tested whether the models can correctly represent prior knowledge (e.g., through prior

predictive plots) and whether the models can infer the effect sizes that were set to generate the simulated outcome data. This

not only tests whether the models work as intended, but also how the different models behave under different assumed causal215

relationships.

The models are run on the observed data in Step 7. Then, in Step 8, the inferred parameters are used, to check for statistical

independence between variables. This can be accompanied by manual independence checks such as scatter plots. The results

of the independence check are compared with the previously established independence criteria to provide evidence for a

final candidate model. Step 9 then aims to collect evidence for the plausibility, workability, and adequacy of the models.220

Plausibility can be established by checking that the defining parameters and settings of the models, such as the choice of a-

priori distributions, follow the prior knowledge of the researchers. Workability can be assessed by checking that the models

can infer results without encountering computational problems, such as numerical difficulties or divergences. Adequacy of the

models can be established by inspecting posterior predictive plots and checking that the models can infer the outcome variable

reasonably well. The different proposed models can be compared in terms of predictive capability (e.g., using divergence225

measures). However, the model with the highest predictive power is not necessarily the model that allows for the extraction of

correct causal knowledge from the estimated parameters which is further discussed as supplementary material in Appendix D.

In Step 10, a causal knowledge is extracted from the statistical models and possible answers to the research questions are

given. In addition to the outcome of the model inference itself, the answer should also report on the validation results of the

models, the outcome of the independence checks, and the included prior assumptions and knowledge encoded in the causal230

models. In the analysis and discussion, we have assumed that the regression coefficients can be interpreted as effect sizes.

This assumption requires the use of linear models2 and it requires that the underlying causal model is correct. The latter is the

reason why it is important that prior knowledge and assumptions in the form of a causal model are communicated as part of

the research answer. Without knowing the underlying assumed causal model, it is impossible to judge whether the regression

2see Pearl et al. (2016) for a detailed explanation of why regression coefficients can be treated as effect sizes in linear models
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coefficients can be correctly interpreted as effect sizes. It is a combination of all the elements in this framework that allow for235

the extraction of causal knowledge from the inference results: a) prior knowledge and assumptions, b) simulation, verification,

and validation outcomes, and c) inference results from the models.

4 Applying the framework for causal inference using observational data in environmental research to inferring the

effect of solar radiation on CMW

In this section we explore the use of the proposed framework for causal inference using observational data in environmental240

research described in Section 3 by following workflow outlined in Figure 2 using observational data from the case study

described in Section 2.

4.1 Step 1: Formulate clear research questions.

The observed association between two variables may be the result of several competing causal relationships between other

observed and unobserved variables. Researchers may then be interested in identifying the direct effect and the total effect245

between an observed variable and an observed outcome. The difference is that the direct effect quantifies only the part of the

association that relates to a direct influence of the variable of interest on the outcome. The total effect, however, also includes

associations that are due to indirect effects which, for example, are mediated by other variables.

Definition of direct and indirect effect

Figure 3. Example of direct and indirect effect.

Figure 3 illustrates the difference between the direct effect and the

indirect effect. Variable A has a direct effect on variable B:

Direct EffectA→B = bb,a. (3)

But, there is also a second causal path from A to B, mediated by a

third variable C. This leads to an additional indirect effect of A on

B, mediated by C:

Indirect EffectA→B = bc,a · bb,c. (4)

The total effect of A on B is the sum of direct and indirect effect:

Total EffectA→B = Direct EffectA→B + Indirect EffectA→B . (5)

Causal models allow us to distinguish between a direct effect, which includes the part of the total effect of a forcing that acts250

immediately on an outcome, and the indirect effect, which accounts for the share of the effect size that is mediated through

another factor.
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Definition of the effect size

The effect size is a quantitative measure of the strength of the relation between two variables and indicates the magni-

tude of change on one variable given a change in another variable. For example, an effect size of 0 means there is zero

change in variable B when variable A is changing, indicating no association between these two. An effect size of 1,

on the other hand, means that a one-unit increase in variable A results in an equivalent one-unit increase in variable

B. If the two variables are standardised, which is sometimes referred to as z-scores, an effect size of one implies that

a one standard deviation increase in variable A leads to a one standard deviation increase in variable B. Effect sizes

of standardised variables, therefore, provide a means to compare the relative influence of different variables on one

another.

Earlier studies investigating the correlations between DGM concentration, solar radiation and temperature have experienced

temporal limitations. This study provides data from long-term measurements of gaseous Hg concentration, solar radiation and255

surface seawater temperature, with the aim to investigate the hypothesis that there exist correlations between these factors. By

using causal modelling, this study aims to quantify the direct and indirect effect sizes of solar radiation on Hg concentration in

seawater.

Research Question 1

What is the direct and indirect effect of solar radiation on measured Hg concentration in seawater and subsequently

calculated DGM?

The presence of additional factors can influence one or more predictor variables and the outcome at the same time can lead260

to confounding and bias in the estimated effect size between a predictor variable and the outcome. In our observational study,

we considered wind, measured as wind speed W , and the speed of the water pump, measured as rW , as potential confounding

factors. We expected wind to affect CMW by diffusing mercury and to affect TS through heat transfer and evaporation of water.

Furthermore, we know that a fluctuating pump speed can influence the measured Hg concentration CMW . We also assume that

the pump speed can be influenced by solar radiation and temperature (e.g., through the growth of algae that clog the pump265

inlet) and by wind which causes waves that can affect the inlet of the pump. The identification of these confounding factors

led to the development of an additional model that was also tested in this study. This was done to identify how important they

are to our measured CMW and how they would affect the desired study of association between Sol and CMW . Ultimately,

this study aims to use causal and statistical modelling to infer the effect sizes of different forcings, such as solar radiation, sea

surface temperature, wind speed, and water flow on CMW , and subsequently calculated DGM.270

Research Question 2

What are the effect sizes of additional confounding factors affecting the measured Hg concentration in seawater and

subsequently calculated DGM?
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4.2 Step 2: Encode prior scientific knowledge and assumptions as a set of different plausible causal models in the

form of DAGs.

In this study, we intended to identify the effect of solar radiation Sol on the measured Hg concentration CMW . Figure 4 provides

an overview of three plausible models of the cause-effect relationships between the variables in this observational study, given275

the assumptions that Sol always affects TS .

(a) (b) (c)

Figure 4. Directed Acyclic Graphs (DAGs), which encode assumptions about causal relationships between variables in the dataset.Sol: solar

radiation; Ts: surface temperature of water; CMW : Hg concentration. (a) Model m1 representing an effect of Sol on CMW and on TS . (b)

Model m2 representing an effect of Sol on CMW mediated by TS . (c) Model m3 representing an effect of Sol on Ts and CMW and an effect

of Sol on TS .

The identification of the confounding factors wind speed W and water pump speed rW resulted in the development of a

fourth model, m4, presented in Figure 5. We first had to investigate which of the “base” models m1 - m3 is most plausible

given the data. Then, we included the external factors in m4 and estimated if the influence of the external factors is so strong

that they could compromise our choice of “base” model3280

4.3 Step 3: Derive independence criteria from the causal models.

The DAGs shown in Figures 4 provide information about plausible cause-and-effect relations and expected associations be-

tween the variables of interest. We expect an association between two variables if there is a cause-effect relationship between

them4. However, association alone does not provide information about the direction of cause and effect. If we find an asso-

ciation between solar radiation (Sol) and surface temperature (TS) in the data, we assume from experience that it is the sun285

radiation that causes the change in surface temperature. On the other hand, the absence of an arrow between two variables

suggests that there should be no association in the data. In the DAG depicted in Figure 4 (a), the solar radiation acts as common

3As an example: Based on the data, we assume there is a causal relationship between Sol and CMW . Including the external factor rW (water pump speed)

means that some of the effect between Sol and CMW can be explained by the influence of rW . We can then estimate how strong this would have to be in order

to “take over” the entire cause-effect relationship between Sol and CMW and thereby invalidate our previous assumption. If that estimate of the influence of

rw however is unplausibly high, we can assume that Sol indeed has a direct effect on CMW .
4In extraordinary rare circumstances, two causes can perfectly “cancel each other out” which can masks the association between the causes and the common

effect (Pearl et al., 2016)
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?

?

Figure 5. Model m4 extending models m1−m3 with confounding external factors W representing wind and rW representing water pump

speed.

cause on the measured Hg concentration (CMW ) and the water surface temperature. Because of Sol acting as common cause,

we will see a spurious correlation between CMW and TS in the data. This is called confounding and, in the DAG of Figure 4

(a), Sol is therefore a confounding variable. Association can flow “anti-causally”, i.e., against the direction of cause-effect,290

from TS to Sol and from there in the direction of cause to CMW . Pearl et Mackenzie describe this as “association that flows in

any direction along the edges” (Pearl and Mackenzie, 2018). However, the flow of association between CMW and TS can be

blocked by conditioning on Sol. Then, given that we condition the data on Sol, TS and CMW become independent.

However, many researchers encounter the problem that a number of different causal models are possible given the correla-

tions seen in the data. In our case, assuming that there is correlation between Sol, TS , and CMW , any of the cause models shown295

in Figure 4 is plausible. There are two approaches that combined can help us identify the correct causal model: prior scientific

knowledge and testing independence criteria. In fact, the causal models already include prior scientific knowledge by assuming

the directions of cause and effect because there is no point in adding other compatible models in which the direction of cause

and effect is obviously wrong, for example by assuming a change in TS could causes a change in Sol. Each DAG in Figure 4

suggests a set of conditional independence criteria for the research problem that can be used to validate or invalidate the as-300

sumptions about cause-effect relationships. Table 1 provides the implied independence criteria for the DAGs of Figure 4. For

Table 1. Implied statistical independence criteria

based on assumed causal relationships in Figure 4.

Model Implied independence criteria

m1 TS ⊥ CMW | Sol

m2 Sol⊥ CMW | TS

m3 No implied statistical independence.
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our study, we used two approaches to test independence, namely visual inspection of scatterplots and regression analysis. We

expected the coefficients of the independent variables to be close to zero if the independence assumption holds. Non-parametric

measures of association, such as the Spearman’s rank correlation coefficient are not well suited to testing conditional indepen-

dence between three continuous variables because these measures typically assess association, not independence, between only

two continuous variables.305

4.4 Step 4: Generate simulated data based on causal models and identified independence criteria.

Simulated data were generated for each of the proposed causal models. For brevity, the details and results of the simulation are

presented as supplementary material in Appendix B.

4.5 Step 5: Build statistical or machine-learning (ML) models for each alternative causal model.

Statistical modelling310

The aim of the statistical modelling for this research was to explore the causal relationships between the variables in the dataset.

Initially, we built three Bayesian generalised linear regression models (GLMs) based on the causal models of Figures 4. GLMs

are a flexible family of statistical models widely used in empirical science (Furia et al., 2019; Gelman et al., 2020). They extend

linear regression methods by introducing link functions and data type specific probability distributions which provides more

flexible and accurate modelling of relations between variables in the dataset. We applied Bayesian data analysis (BDA), in315

combination with linear regression models, as a simple form of iterative ML. It is iterative in the sense that availability of new

data in BDA allows for an update, not a complete recalculation, of the inference results. We followed a mathematical description

of the statistical model which is standard in statistical journals and outlined in three steps in Chapter 4.2 of McElreath (2020):

– Data are represented as variables. Unobservable characteristics like averages, rates, etc. are defined as parameters. Each

variable is either defined through other variables or probability distributions. Initial probability distributions assigned to320

the parameters are called priors.

– The combination of variables, parameters, and their probability distributions form a joint generative model which can be

used to analyse relations between variables, estimate parameters, infer unobserved variables, and predict future observa-

tions.

– All predictor variables are standardised to avoid numerical problems due to large values and to allow for negative val-325

ues (Marquardt, 1980). Standardisation means that all values are centred on zero and that the data have a standard

deviation of one. This approach is also known as z-score normalisation.

After we identified model m3 as most appropriate (see Section 5.2), we extended it to model m4, shown in Figure 5, by

introducing the external confounding elements wind W and pump speed rW .

The mathematical definition of the models are listed in Table 2.330
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Table 2. Model specifications.

Model Specification

m1:

CMWi
∼ Normal(µi,σ)

µi = ac + bc,s · Soli

ac ∼ Normal(0,1)

bc,s ∼ Normal(0.5,0.5)

σ ∼ Exponential(1)

(6)

m2:

CMWi
∼ Normal(µi,σ)

TSi
∼ Normal(νi, τ)

µi = ac + bc,t ·TSi

νi = at + bt,s · Soli

ac ∼ Normal(0,1)

at ∼ Normal(0.5,1)

bc,t, bt,s ∼ Normal(0.5,0.5)

σ,τ ∼ Exponential(1)

(7)

m3:

CMWi
∼ Normal(µi,σ)

TSi
∼ Normal(νi, τ)

µi = ac + bc,s · Soli + bc,t ·TSi

νi = at + bt,s · Soli

ac ∼ Normal(0,1)

at ∼ Normal(0.5,1)

bc,s, bc,t, bt,s ∼ Normal(0.5,0.5)

σ,τ ∼ Exponential(1)

(8)

m4:

CMWi
∼ Normal(µi,σ)

TSi
∼ Normal(νi, τ)

rWi
∼ Normal(ξi,χ)‡

µi = ac + bc,s · Soli + bc,t ·TSi
+ b†c,w ·Wi + b‡c,r · rW

νi = at + bt,s · Soli + b†t,w ·Wi

ξi = ar + b‡r,s · Soli + b‡r,t ·TSi
+ b†‡r,w ·Wi

ac,ar ∼ Normal(0,1)

at ∼ Normal(0.5,1)

bc,s, bc,t, bc,w
†, bc,r

‡, bt,s, bt,w
†, br,s

‡, br,t
‡, br,w

‡ ∼ Normal(0.5,0.5)

σ,τ,χ∼ Exponential(1)

(9)

†Terms that relate to the wind speed W . ‡Terms that were relate to the speed-pump rw .

The four resulting statistical models for predicting CMW differ due to different assumptions about cause-effect relationships

as shown in Figures 4 and 5. However, the models share a common structure: they contain definitions of the likelihood that

define probability distributions of the outcome (in our case the measured CMW ) given a set of parameters that define this

probability distribution, for example through the mean µ and standard deviation σ for Normal distributions. Models m2 and

m3 contain two likelihoods because in both models Sol affects the surface temperature Ts which then affects the measured335
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CMW . Therefore, we needed to define two linked regression models, one for Ts with Sol as the predictor variable, and one

for CMW with Ts as the predictor variable for model m2, and both Sol and Ts as the predictor variables for model m3. The

parameters of the likelihood are declared in the form of either a deterministic function assignment (denoted through =) or

stochastic relations (denoted through∼), i.e., a mapping of a variable or parameter onto a distribution. When a parameter (e.g.,

b(c,t)) is mapped onto a distribution (e.g., the Normal distribution), this distribution is then referred to as a prior distribution.340

Variables

There are four main variables in models: CMWi
represents the measured Hg concentration, associated via Equation (1) to

DGM. It is chosen as outcome variable for all models. The index i denotes an individual data frame in the total dataset. TSi

represents the surface temperature of the water and is a predictor variable in models m2 - m3. Soli is another predictor variable

in all models and represents solar radiation. In models m2 and m3, Soli is also a predictor for TSi
. The additional model m4345

includes the confounding variables W and rW . The biasing influence of confounding variables on our effect size estimates can

be compensated for by including them in the prediction model for CMWi
and TSi

. In this way, we “block” any anti-causal flow

of association between TS and CMW via W and rW . The model m4 including the external influences also includes parameters

describing the effect size of these external influencing factors W and rw: bc,w and bc,r represents the effect size between CMW

and W , respectively rW , bt,w and bc,t between TS and W , respectively rW , br,s between Sol and rW , and br,w between W350

and rW . The parameter ξ represents the estimated standard variation for the rW data.

Likelihood

The role of the likelihood is to link the observed data to the distributions of the inferred model parameters (Furia et al., 2019).

The likelihood provides a distribution function of how well the model explains the observed data given an inferred set of

distributions for the model parameters. We assumed that the observed data can be represented through a Normal distribution355

because the central limit theorem states that the distribution of the sum of a large number of independent processes approaches a

Normal distribution and environmental phenomena typically involve the aggregation of a large number of underlying processes.

Furthermore, we had no reason to assume another distribution for the outcome CMW . As part of the GLM, the likelihood

distribution is further specified through a linear model, i.e., the mean (e.g., µ is constructed through a linear combination of

other parameters (e.g., ac+bc,s) and predictor variables (e.g., Soli). This link function between the likelihood and the parameter360

distribution of the model can take any functional relation based on the prior knowledge of the researcher. We decided to use

a linear model because we do not have any prior knowledge that would justify the use of any other functional form, and it

represents the most conventional functional relation between an outcome and its predictor variables. Bayes’ rule is then used

to iteratively calculate a posterior distribution for the parameters of the model given the prior distributions, the observed data,

and considering the likelihood, i.e., how well the currently assumed parameters explain the data:365

posterior∝ prior · likelihood (10)
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Priors

In general, a prior tells researchers what is known about a parameter before they see any observed data. A prior can, but do not

have to, incorporate prior knowledge about the probability distribution of the parameter. If researchers choose to incorporate

prior knowledge, the prior is referred to as informative prior. A prior can be informative in the sense that researchers assume370

a certain probability distribution family (e.g., Normal distribution) which they expect the parameter to follow and in the sense

of the characteristics (e.g., mean and standard deviation) of that distribution. In Bayesian statistics, it is also possible to use

uninformative priors which do not convey any a-prior assumptions about the parameters. It is important to note that priors

(informative or not) are continuously updated with the available observed data. With each iteration in BDA, the posterior will

be used as new prior for the next iteration. That means, that the more data is available, the less influence prior beliefs have375

because with each iterative update, the prior distribution will be more influenced by the data distribution and thus will approach

the true parameter distribution. That is why it is possible to use completely uninformative priors, e.g., a uniform distribution

representing a flat line. The use of informative prior however allows for faster statistical inference with less available data given

that the informative prior is closer to the true distribution then an uninformative prior. Furthermore, an informative prior can

act as form of regularisation when data is noisy or contains many outliers that could cause instabilities in the statistical model.380

For the models of this study, we used weakly informative priors for all parameters in the sense that we assumed exponential

distributions for the parameters related to the variances because these must always be positive. For all other parameters we

use Normal distributions as priors for two reasons: Firstly, to ensure that the outcome variable CMW is normally distributed,

it makes mathematically sense to also assume that, in a linear combination, all elements of that combination are normally

distributed. Secondly, the Normal distribution can represent a wide range of shapes from perfectly symmetric to slightly skewed385

which makes it a suitable choice if no other strong information is available about the shape of the prior distribution. The prior

predictive plots simulation results for our models m1 to m4 are presented as supplementary material in Appendix C.

4.6 Step 6: Verify the models on the simulated data.

In this step we show that the models can estimate the parameters set for the simulation and identify independence relations

in simulated data. Each model was verified on the simulated data sets created in Step 4. It was tested whether the effect sizes390

match the values set when generating the simulated outcome data. The results of the parameter estimates for all models under

simulated data are given in Appendix B.

4.7 Step 7: Run the models on observational data.

Inferring data from the models means predicting the distributions of the parameters as well as predicting the posterior distri-

butions of the outcome (i.e., CMW in all models) given the observed data for TS , Sol, CMW , and in case of model m4 the395

external influences W and rW . We applied a stochastic process known as Markov Chain Monte Carlo (MCMC) to find the

posterior distribution. MCMC is considered a standard approach for Bayesian Data Analysis and an introduction to the tech-

nique is available in Brooks et al. (2011). In brief, MCMC works by running a Markov chain that samples data from posterior
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distribution. In a Markov chain, the next state only depends on the current state and not on any other states before that. Differ-

ent techniques, such as Hamiltonian Monte Carlo (HMC), can be applied to find the next state in the Markov chain. In HMC,400

the next state is not determined purely at random, but instead through the gradient of the posterior distribution which allows

an adaptive step size for each new state. To find the posterior distributions for the parameter and outcome using MCMC with

HMC, we used the R-packages rethinking (Richard McElreath, 2023) and Rstan (Stan Development Team, 2024).

4.8 Step 8: Checking of independence criteria and parameter estimates.

Initially, scatter plots were created to check for statistical independence between the variables. These are presented and dis-405

cussed as supplementary material in the Appendix E. Furthermore, the parameter estimates can be used to identify statistical

independence between variables, which is discussed as part of the results in Section 5.2. The results of the independence check

were compared with the established independence criteria to provide evidence for a final candidate model.

4.9 Step 9: Validating the plausibility, workability, and adequacy of the models.

Furia et al. (2022) recommend validating three characteristics of statistical models for BDA: The models must be plausible,410

workable, and adequate.

Plausibility

Plausibility can be achieved by checking that the model is “consistent with (expert) knowledge about the data domain” (Furia

et al., 2022). The key aspect here is that the models should include reasonable priors that they are consistent with expert

knowledge and that are neither too permissive nor too constraining, especially in the case of limited available data (McElreath,415

2020). The plausibility of the priors can be checked using prior predictive simulations which we provide as supplementary

material in Appendix C.

Workability

Second, the models must be workable, i.e., it must be computationally possible to fit the models to the provided data without,

for example, encountering numerical difficulties. Numerical difficulties can arise from multicollinearity (Furia et al., 2022):420

if two variables in the data are very strongly correlated, the model cannot determine the ratio of contribution to the outcome

between the two variables and we cannot determine the effect size for each of the variables. To check the workability of a

model, the sampling process can be independently repeated a few times and the similarity between each sampling process can

be estimated through the ratio of within-to-between chain variance R̂. An R̂-value close to 1 indicates a stationary posterior

distribution which is desirable. Another metric that provides an indication of the workability of the model is the effective425

sample size. It indicates the size of samples that are not autocorrelated, i.e., it measures how much information is lost due

to information redundancy between samples. A recommendation is that the effective sample size should be at least 10% for

each estimated parameter (Furia et al., 2022). Other indicators of numerical problems are divergent transition warnings that
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statistical toolboxes such as rethinking or the underlying Stan library may raise when evaluating the posterior distributions of

the models. As part of the model validation for the proposed models we provide the R̂-values and effective sample sizes for430

each model together with the detailed inference results in Appendix F. We also checked for warnings of divergent transitions

while training the models on the data.

Adequacy

A final aspect of model validation is that the models must be adequate for the problem under investigation. An adequate model

can generate data that are similar to the observational data (Furia et al., 2022). Adequacy can be tested by comparing the435

posterior predictive plots with the empirical data. A posterior predictive plot visualises the posterior predictive distribution

which is obtained by evaluating the posterior distributions of the likelihood parameters, in our case µ and σ, and then sampling

from the resulting probability distribution. We provide posterior predictive plots for each model as part of the model evalu-

ation in Figure 11. Statistical models can also be compared to each other using information criteria. The Watanabe-Akaike

Information Criterion (WAIC) is an example of an information criterion commonly used for relative comparison of statistical440

models (Watanabe and Opper, 2010). It approximates the relative out-of-sample Kullback-Leibler (KL) divergence, i.e., it tells

us something about the relative “statistical distance” of a model from the data. Because information criteria rely in some way

on the KL divergence, which is not a metric but a relative measure, WAIC, and most other information criteria, are also relative

measures of the adequacy of the models. They do not provide an absolute metric that can be used to determine the absolute

adequacy of an individual model. Instead, information criteria such as WAIC can be used to compare models against each other.445

We provide WAIC scores for all models as part of the model evaluation in Section 5.3 and in Figure 12.

4.10 Step 10: Report and interpret the results.

The results, discussions and answers to research questions are presented in Sections 5 and 6.

5 Results

5.1 Measured data450

The data used for this study were collected between April 1st 2020 (13:20) and April 25th 2020 (02:29). Figure 6 and Table 3

summarise and present the observed data. The data have a coverage rate of 92% for all measured parameters with 6149 valid

data points. The month of April was chosen due to the good data coverage, which makes it already visually possible to see

some co-variations between the variables in the data.

The measured CMW in Figure 6 (c) show clear diurnal patterns with peaking concentrations during daytime and lower455

concentrations during night-time. This coincides with the measured solar radiation shown in Figure 6 (a). Solar radiation

shows clear diurnal patterns with higher values during the day and lower values during the night, as to be expected. It is even

possible to see in the patterns of the data that the April 11th was a cloudy day, as less radiation was measured at noon. This
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Table 3. Summary statistics of the measured parameters CMW , solar radiation (Sol), surface water temperature (TS),

windspeed (W ), and speed of the water pump (rW ) during April 2020.

DGM [pg/L] CMW [pg/L] Sol [W/m2] TS [K (°C)] W [m/s] rW [l/min]

Average 14 2.4 155 282 (8.1) 6.9 2.8

Max 28 5.0 836 293 (20) 25 14

Min 5 0.7 0.0 276 (2.5) 0 0

Standard deviation 4 0.9 206 2.8 4.4 1.7

Number of data points 5282 6149 6149 6149 6149 6149

(a)

Measured solar radiation Sol

(b)

Measured water temperature TS 

(c)

Measured gaseous Hg CMW

(d)

Measured wind speed W 

(e) 

Measured water pump speed rW and gaseous Hg CMW

(f)

Calculated DGM

Figure 6. Observational data collected in April 2020 used in the analysis.

explains why the peak in measured CMW was lower at this time. The measured surface water temperature, plotted in Figure 6

(b), also shows variations with higher temperatures during the day and lower temperatures during the night, suggesting an460

association between solar radiation and surface water temperature. In Figure 6 (d) we also plotted CMW to show how the

distinct covariation of the pump speed rW and the measured Hg concentration CMW .
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Figure 7. Coefficient estimates for ac, the constant term for CMW , and aT , the constant term for TS .

5.2 Parameter estimates and causal inference

After fitting the models to the observed data, we obtained posterior distributions for each parameter of the models. Figure 7

shows the estimates for the constant parameters aC and aT of the models listed in Table 2. The first parameter aC is the465

constant offset in the Sol→ CMW ← TS part of the models. It is approximately equal to the mean of the CMW values in data

which is 2.4 pg/L. The estimate for aT is close to zero for all models because we have standardised the predictor parameters

Sol and TS . Figure 8 provides the estimates for the coefficients of effect sizes bt,s, bc,s, and bc,t. These estimates are important

to answer what the direct and indirect effect of solar radiation on Hg concentration are (RQ1).

None of the effect size estimates are zero, which means that we cannot assume any statistical independence between the470

variables. We confirmed these results using manual examination of scatter plots, which is outlined as supplementary material

in Appendix E. Hereafter, we propose model m3 is the most plausible causal model for the variables of interest.

Detailed argumentation on why model m3 is most plausible

The parameter bc,s is the effect size between the standardised predictor variable Sol and CMW . It gives us an estimate of the

strength of the association, and hence the assumed causal relationship, between solar radiation and measured Hg CMW . The475

estimated mean value for bc,s is 0.547 for model m1 and 0.360 for model m3. Model m2 has no estimate for bc,s because

it assumed (incorrectly) a-priori that there is no causal relationship between Sol and CMW . Because we used standardised

predictor variables, these effect size estimates imply that one standard deviation of solar radiation is associated with a change

in CMW of 0.547pg
L , and 0.360pg

L respectively for model m3. Dividing the estimated effect size bc,s by the original standard

deviation of the data for Sol gives the de-standardised effect size estimate bo
c,s:480

bo
c,s =

bc,s

σSol
. (11)
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Figure 8. Coefficient estimates for the effect size of solar radiation on temperature (bt,s), the effect size of solar radiation on Hg concentration

(bc,s), and the effect size of sea surface temperature on Hg concentration (bc,t).

Using the standard deviation of Sol given in Table 3, model m1 estimates that an increase of solar radiation by 1 W
m2 is associated

with an average increase in CMW of 0.547
206.29 ·

pg
L ( W

m2 )−1 = 0.00265 pg
L ( W

m2 )−1. Model m3 estimates an increase in CMW of
0.360
206.29 ·

pg
L ( W

m2 )−1 = 0.00175 pg
L ( W

m2 )−1, which is 66% of the estimate from m1. Assuming that there is a causal relationship

between solar radiation and CMW , which model gives the correct estimate of the strength of the causal relationship between485

Sol and CMW ?

Total effect and direct effect

In fact, both estimates of the strength of the causal relationship are correct. However, model m1 provides with bc,s the total

effect. Model m3 provides instead the direct effect of Sol on CMW . If there is a causal relationship between Sol on CMW ,

there is also a “flow” of association between these variables. This “flow” of association can take different “routes” between490

the variables. In our case, solar radiation Sol has a direct effect on the concentrations of Hg (CMW ), which means that we can

measure an association between these two variables. Its effect size is estimated in our models as bc,s:

Direct Effect
Sol→CMW

= bc,s. (12)

However, Sol also affects the sea surface temperature TS , which in turn affects CMW . Besides a direct effect, Sol also has an

indirect effect on CMW , moderated by TS . The indirect effect of Sol on CMW can be calculated by multiplying the effect sizes495
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for the paths Sol→ TS and TS → CMW :

Indirect Effect
Sol→CMW

= bt,s · bc,t. (13)

In summary, a part of the association between Sol and CMW “flows” via TS . The total effect of Sol on CMW is the sum of

direct effect and indirect effect.

Total Effect
Sol→CMW

= bc,s + bt,s · bc,t. (14)500

For model m3, the direct effect equals, on average, to bc,s = 0.360 and the indirect effect equals, on average, to bt,s · bc,t =

0.445·0.420 = 0.187, as illustrated in Figure 9 (b). Using Equation (14), the total effect of Sol on CMW is then 0.360+0.187 =

0.547, which is exactly the estimate for bc,s that model m1 provided. By removing the path between TS and CMW , we do

not allow a “flow” of association between TS and CMW in model m1, as illustrated in Figure 9 (a). The association related

to the indirect effect of Sol on CMW that is mediated by TS , therefore cannot flow through TS and is instead “rerouted” onto505

the direct path between Sol and CMW (red, wide dotted line in Figure 9 (a)). Consequently, the effect size bc,s, estimated by

model m1, is the sum of the direct and indirect effects, thus in fact the total effect of Sol on CMW .

(a) (b)

Figure 9. DAGs with illustration of flow of association. Red, wide dotted line: association of solar radiation Sol on Hg concentration CMW ,

mediated by sea surface temperature TS . Blue, dense dotted line: association of Sol on CMW , not influenced by Sol. Green, mixed dotted

line: association of TS on CMW . (a) Model m1 where the path TS → CMW is not allowed and the indirect effect of Sol on CMW is therefore

“rerouted” on top of the direct effect of Sol on CMW . (b) Model m3 where the path TS → CMW is allowed and the indirect effect of Sol on

CMW therefore can flow via TS .

A similar line of argumentation can be provided for the difference of the estimate of bc,t between model m2 and model

m3. Because the path Sol→ CMW is not allowed in model m2, the association related to the direct effect of Sol on CMW is

“rerouted” on the path Sol→ TS → CMW . This results in an overestimate of the direct effect bc,t of TS on CMW . Due to the510

misspecification of models m1 and m2, these two models result in a higher standard deviation σ for the CMW data as shown

in Figure 10 because the models cannot correctly map all association between Sol, TS , and CMW . However, the standard

deviation τ for the relation Sol → TS is identical for all models, because the path between Sol and TS exists in all models.

Table 4 summarises the estimated effect sizes for model m3.
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Figure 10. Estimates of standard deviation σ for CMW and standard deviation τ for TS .

Adding estimates for the effect of external influencing factors in model m4515

After having identified the most plausible “core” model, we extended it by adding estimates of external influencing factors.

Wind, denoted as W , is an environmental factor that could affect the measurements of CMW . The speed of the water pump,

rW , however, is a instrument-intrinsic factor that could have effect on the measurements for CMW . In line with other predictor

variables, we chose identical priors for W and rW based on a prior predictive check. The results of the estimated effected sizes

on CMW of the updated model m4 are presented in Table 4, while all parameter estimates are listed in Appendix F. The average520

effect size of wind W on surface temperature TS , denoted as bt,w is −0.24. This agrees with our expectations that an increase

in wind speed results in a lowering of the sea surface temperature. The estimated average effect size of W on Hg concentration

CMW , denoted as bc,w is −0.13. The estimated average effect size of wind is smaller compared to5 the effect sizes of surface

temperature bc,t = 0.43 and solar radiation bc,s = 0.38. As we expected after inspecting Figure 6 (e), the water pump speed

rW has a distinct effect on the measured Hg concentration CMW , with an estimated average effect size of bc,r = 0.27. An525

interesting observation can be made when estimating the effect sizes of the other environmental variables, Sol, TS , and W ,

on the water pump speed. The effect sizes of solar radiation and sea surface temperature on the water pump speed are small

with average effect sizes of br,s− 0.04 and br,t− 0.09 respectively. But the influence of wind speed on the water pump speed

is strong with an average effect size of br,w = 0.27. All inferred effect sizes are listed in Table F1 in Appendix F. A possible

explanation for the strong relationship between wind speed and water pump speed is that due to high winds, sea waves could530

have cleared the inlet of the pump from algae, resulting in a higher flow speed. In summary, the inclusion of the confounding

external factors wind W and water pump speed rW lead to a noticeable increase in the estimated effect size of solar radiation

Sol on measured Hg concentration CMW by 6.3% compared to the estimate of model m3.

5The effect sizes of the different predictors are comparable because all predictor variables were standardised.
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Table 4. Estimates of the direct, indirect, and total effects based on observed data in April 2020 without (model m3) and with (model m4)

recognition of wind and pump speed as confounding external influences. Bold values are mean values; standard deviations are in

parentheses; 90% confidence intervals are depicted in square brackets.

Effect on mea-
sured gaseous
Hg CMW

Parameters Standardised value (std. dev.) De-standardised value (std. dev.) Unit for
de-standardised
values

Change due
to external
influences

[90% confidence interval] [90% confidence interval]

Model m3 Model m4 Model m3 Model m4

Direct effect of

solar radiation Sol

bc,s 0.360 (0.009)

[0.345, 0.374]

0.383 (0.008)

[0.371, 0.395]

1.75·10−3

(4.36·10−5)

[1.67, 1.81]·10−3

1.86·10−3

(3.67·10−5)

[1.80, 1.92]·10−3

pg
L ·

(
W

m2

)−1
+6.3%

Indirect effect of

Sol mediated by

sea surface tem-

perature TS

bt,sbc,t+

br,sbc,r

0.189 (0.006)

[0.177, 0.197]

0.186 (0.007)

[0.175, 0.198]

0.92·10−3

(2.91·10−5)

[0.86, 0.96]·10−3

0.90·10−3

(3.66·10−5)

[0.84, 0.96]·10−3

pg
L ·

(
W

m2

)−1
-1.8%

Total effect of Sol bc,s +

bt,sbc,t+

br,sbc,r

0.549 (0.011)

[0.530, 0.564]

0.572 (0.011)

[0.553, 0.590]

2.65·10−3

(5.33·10−5)

[2.57, 2.73]·10−3

2.77·10−3

(5.44·10−5)

[2.68, 2.86]·10−3

pg
L ·

(
W

m2

)−1
+4.5%

Direct effect of

TS

bc,t 0.420 (0.009)

[0.405, 0.435]

0.429 (0.008)

[0.417, 0.441]

1.53·10−1

(3.28·10−3)

[1.48, 1.58]·10−1

1.56·10−1

(2.91·10−3)

[1.51, 1.61]·10−1

pg
L ·K−1 +1.96%

Direct effect of

wind speed W

bc,w – -0.125 (0.007)

[-0.137, -0.114]

– -2.87·10−2

(1.61·10−3)

[-3.14, -2.60]·10−2

pg
L ·

( m
s

)−1 –

Direct effect of

pump speed rW

bc,r – 0.265 (0.007)

[0.253, 0.277]

– 2.21·10−3

(6.67·10−5)

[2.11, 2.31]·10−3

pg
L ·

( L
min

)−1 –

5.3 Results from model validation on observed data

We have already established that model m3 and its extension with external influences to model m4 are most plausible. Further-535

more, all models are workable meaning that it is computationally possible to fit the models to the data provided. Evidence for

this claim is that the R2-values for all parameters in all models are close to 1 indicating stable posterior distributions as listed in

Table F1 in Appendix. Further evidence of the workability of the models are the effective sample sizes neff which indicate that

the samples contain sufficient information to infer the model parameters. The overall sample size was n = 6149. The smallest

effective sample size occurred for parameter br,t of model m4 with neff = 811 which is more than the recommended ratio of540

at least 10% of the total sample size. We did not receive any numerical warnings during the training of the models. Finally,

we also checked that the models are adequate by comparing the posterior predictive plots with the empirical data as shown in

Figure 11 a) – d). The closer the points in these plots are to the black diagonal line, the better a model can predict the outcome

variable. It is obvious that model m3 and m4 seem most adequate to predict CMW . This is further confirmed by plotting the

posterior distribution densities, as shown in Figure 11 e). The posterior density of CMW in this plot is closest to the observed545

data density for model m4. We have also calculated the R2-values, shown in Figure 11 f), using the mean of the posterior

predictions for CMW for all models. Model m3 has an R2-value of 0.544 and model m4 has the highest R2-value of all models
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with a value of 0.626, which indicates a moderate to good fit to the data. It is important to remember that model m3 only

accounts for solar radiation, temperature changes and the interaction between these two external variables, and model m4 adds

the additional influences of wind and variation of the water speed pump. The models ignore any additional external factors that550

might influence CMW . It is therefore a rather simple model of CMW , but yet the fit to the data is quite acceptable.

Figure 11. Posterior predictive plot for models (a) m1, (b) m2, (c) m3, and (d) m4. The dotted lines indicate where the posterior prediction

and the sample match exactly. (e) provides the posterior distribution density for all models. (f) provides the coefficients of determination

(R-squared values) for all models.

Finally, we calculated the WAIC information criterion which allows us to make a relative comparison of the statistical

models. Figure 12 suggests that model m4 has the lowest deviance and is therefore the most adequate model. A lower deviance

calculated by WAIC indicates a smaller statistical distance between the estimated posterior distribution of the model and the

probability distribution of the observed data which we have also checked manually using the posterior distribution density plots555

in Figure 11 (e).
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Figure 12. Comparison of models using WAIC.

6 Discussion

When using statistical or ML methods to analyse observational data, researchers need to distinguish between predictive and

analytical models. In a predictive model, the aim is to use the data to train a model that predicts future trends in an outcome

of interest. Any observed variable that adds predictive power reduces the uncertainty of the outcome, and these variables are560

typically strongly associated with the outcome of interest. ML algorithms therefore require large amounts of data to find as

many associations in the data as possible. However, purely predictive models are black boxes in terms of which features, or

variables, in the data contribute to the outcome and to what extent. A warning example of how adding any variable that adds

predictive power can lead to erroneous conclusions on effect sizes is given in Appendix D.

Besides predicting future trends, environmental research also seeks understanding of why an outcome occurs and to quantify565

the effects that determine them. Therefore, researchers need to move away from purely predictive models, which work only

with associations in the data. Instead, they should refocus on analytical models, which provide estimates of the strength of

different cause–effect relationships and help answer why-questions. Unfortunately, in most cases, it is not possible to estimate

cause-effect relationships from observational data alone. In other fields, such as medicine or social science, researchers can

conduct randomised controlled trials (RCTs) to determine the strength of causal relationships. Because RCTs are typically570

infeasible in environmental research due to the impossibility of isolating a “control” Earth system, alternative strategies must

be found.

Here, we demonstrated how prior domain knowledge can be encoded as graphical causal models, providing:

1. Constraints in terms of the directions of cause and effect based on prior knowledge of researchers;

2. A basis for estimating effect sizes from observational data;575

3. Independence conditions that enable model validation and provide transparency of assumptions.

Prior knowledge of researchers as foundation for causal inference

By encoding prior knowledge about cause-effect relationships as causal models, associations in observational data can

be mapped to causal relationships. This allows to distinguish between different effect sizes of forcing influencing an

outcome.
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In the following, we revisit the research questions and summarise and discuss the answers we found and their implications

for the mercury research community. Then, based on the findings and learnings from the case study, we discuss the use of

causal inference in combination with prior knowledge in terms of its applicability to environmental research in general.580

Answers to research questions

By applying the causal inference framework suggested in this paper, we found that solar radiation influences measured Hg

concentrations in seawater both directly, and indirectly through its effect on sea surface temperature. We verified that the final

model m4, although being a simple model of the cause-effect relationships for Hg concentration in seawater, can reconstruct

the probability density of the observed data adequately well with an R2-value of 0.626. After adjusting for additional external585

influences (RQ2), we identified the following effect sizes:

Answer to RQ1 - What is the direct and indirect effect of solar radiation on measured Hg concentration in seawater and

subsequently calculated DGM?

The total effect of solar radiation on CMW and subsequently DGM at the measurement point at Kristineberg, Sweden

in April 2020, was 2.77 · 10−3 (W/m2)−1 pg/L. Out of this total effect, 0.90 · 10−3 (W/m2)−1 pg/L was an indirect

effect of solar radiation mediated by a changing sea surface temperature. The direct effect of solar radiation was

1.86 · 10−3 (W/m2)−1 pg/L. This means, that about 32% of the effect of solar radiation can be explained by a change

of sea surface temperature, which in turn affects the measured CMW and subsequently DGM.

We found that wind has a confounding influence on the effect estimates of solar radiation on CMW , and that variations in

pump speed significantly affect the measured gaseous Hg concentration, which is explained by Equation 1. Accordingly, the

additional causal modelling of wind as a confounder and pump speed as an instrument-intrinsic factor in model m4 allowed us590

to adjust the total, indirect, and direct effects of solar radiation on measured mercury concentration in seawater:

Answer to RQ2- What are the effect sizes of additional confounding factors affecting the measured Hg concentration

in seawater and subsequently calculated DGM?

Wind speed and water pump speed were identified as confounders and were included in the final statistical model

m4. Specifically, wind speed had a direct effect on the measured Hg concentration of −2.87 · 10−2 (m/s)−1 pg/L.

The speed of the water pump, which is an instrument-intrinsic factor influencing the outcome, had a direct effect of

2.21·10−3 (L/min)−1 pg/L. By accounting for these additional influences, the estimated direct effect of solar radiation

increased by 6.3%, while the indirect effect mediated by sea surface temperature decreased by 1.8%, relative to model

m3, in which these factors were not included.
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6.1 Implications for future mercury research and policies

As mentioned in Section 1.1, several studies report an observed significant correlation between the two variables DGM and

solar radiation. However, considering the regression only between these two factors results in a very simple model, comparable595

to our model m1 (Figure 4 (a)). This model is not comprehensive enough to allow for drawing correct causal conclusions. In

contrast, model m4 (Figure 5), which includes mediating effects (TS) and confounding factors (W and rW ), produces a noisier

but also more reliable representation of the underlying causal relationships. It is noisier because more features are considered in

the regression model. The model is more reliable because it reduces bias from additional competing effects, confounders, and

background conditions that, if ignored, would give a misleading picture of the underlying causal relationship. For example,600

the regression in Figure 13 shows that a regression based on model m1 (Figure 13 (a)) predicts a direct effect in mercury

concentration of about 0.56 pg/L for an increase in solar radiation from 600 W/m2 to 800 W/m2. A regression based on model

m4 (Figure 13 (b)), which includes causal knowledge, predicts only about 0.44 pg/L. Thus, the estimated effect size of solar

radiation on mercury emission is about 21% lower if causal relationships are accounted for. In summary, if causal relationships

are ignored, there is a risk of overestimating the effect of solar radiation on DGM.605

(a) (b)

Figure 13. Comparison of regressions of the effect of solar radiation Sol on mercury concentration CMW using model m1 (a) and model

m4 (b). Grey shading indicates the 95% confidence interval.

However, to succeed with the challenging task of evaluating for example the effectiveness of the Minamata Convention on

Mercury (United Nations Environment Programme, 2024), better and more reliable computer models are needed to support

sparse mercury measurements. Re-emissions of volatile mercury from sea surfaces is one of the largest contributors to the

mercury load in the atmosphere, which is highly depending on the concentration of DGM. To build better computer models

we need reliable predictors. One of our contributions towards finding more reliable predictors is showing the importance610

of modelling prior causal knowledge and including it in statistical models to correctly identify and connect competing and

29

https://doi.org/10.5194/egusphere-2025-4511
Preprint. Discussion started: 10 October 2025
c© Author(s) 2025. CC BY 4.0 License.



confounding factors to DGM. The use of graphical causal models strengthens reliability in the results because these models

make the underlying causal assumptions transparent and guide the choice of which predictors to include in the regression

analysis.

6.2 General implications for causal inference in environmental science615

Previous attempts to apply causal inference in environmental research have often avoided using prior knowledge. Instead, they

tried to discover causal relationships in time series using methods such as Granger causality tests (Runge et al., 2023), potential

outcome framework (Reich et al., 2021), or by mimicking randomised controlled trails (Pearce and Lawlor, 2016). However,

these approaches rely on strong and often non-transparent assumptions (Maziarz, 2015). Graphical causal models, on the other

hand, allow to encode prior assumptions transparently such that the necessary restricting conditions for causal inference from620

observational data are provided. The importance of a-priori defined graphical causal models has been recognised in other

scientific disciplines, such as medicine (Glass et al., 2013), economy (Imbens, 2020), social science (Imbens, 2024), and

software engineering (Furia et al., 2019). Scientists in these fields proposed a set of different workflows to work with graphical

causal models. Here, we proposed a framework for causal inference using observational data in environmental research with

three general elements:625

1. First, we suggest incorporating prior knowledge about (assumed) cause-effect relationships in form of a DAG. If a

researcher is uncertain about some of the cause-effect relationships, we proposed to define different possible causal

models for a given scientific question. Based on mathematical operations that can be performed on the graphical models,

known as d-separation (Pearl et al., 2016), independence criteria can be derived for each model. These independence

criteria, applied on the observational data, can be used to provide evidence for the selection of one or several candidate630

causal models.

2. In a second element of the framework, further evidence is collected that show that the proposed statistical or ML models

based on the selected causal models are plausible, workable, and adequate.

3. In a final element, the reporting of the results, we argue that the results of the analysis must not only include reporting

on the inference outcome, i.e., the parameter estimates. The collection of evidence arguing for the models’ plausibility,635

workability, and adequacy and the incorporated prior knowledge in form of graphical causal models should become a

natural part of the result report as well. Only if the causal models that underpin the statistical analysis are available, peers

can scrutinise the underlying prior assumptions and argue for or against the findings.

7 Conclusions

This study proposed and demonstrated a framework for estimating the effect sizes of multiple forcings on environmental640

outcomes using observational data. Our case study quantified the direct and indirect effects of solar radiation on measured

gaseous Hg, and subsequently dissolved gaseous mercury (DGM), in seawater. We showed that 34% of the total effect was
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mediated by sea surface temperature, and that wind and water pump speed acted as confounders. The results from the case

study support a framework for inferring effect sizes of cause-effect relationships using observational data which is the key

contribution of this study. The framework includes concise steps for integrating expert knowledge into causal models, validating645

these models against data, and reporting both statistical inference results and the assumptions underpinning them.

The results are relevant for environmental research in several ways: Today’s statistical and even advanced ML models

cannot identify and quantify causal relationships in observational data alone. Because we usually cannot conduct randomised

controlled trials in environmental research to quantify causal relationships, we must use other methods to identify the strength

of causal relationships. By using causal modelling as part of the analysis of observational data, researchers can explicitly650

include their prior domain knowledge and assumptions in the otherwise purely automatic statistical analysis of the data. This

prior knowledge can be used to impose constraints on statistical models that allow researchers to quantify different effect sizes

from observational data. Being able to distinguish between the effect sizes of different forcings on an observed outcome is

important because it also allows to distinguish between direct and indirect effects, and thus the effect of future interventions

on the environment. For example, because the final causal models and data suggest that sea surface temperature positively655

moderates DGM, we know that an increase in sea surface temperature, for example due to climate change, will accelerate the

release of mercury and we can quantify this effect using explicit assumptions about causal relationships. In addition, providing

prior knowledge in the form of graphical causal models as part of the results of a statistical analysis strengthens the validity of

those results because the assumptions about cause-effect relationships made by the researchers are explicitly recorded and can

be scrutinised together with the results of the statistical or ML models.660

7.1 Limitations and further research

There are limitations to using causal models as a guide for inferring causal knowledge from observational data in environmental

research. For example, we have shown that the results of causal inference can be highly sensitive to confounding factors, such as

the presence of unmeasured external factors. Future research should explore how to inform future data collection by identifying

sensitivity to unmeasured confounders using causal models. Furthermore, missing and noisy data should be explicitly modelled,665

as their causes may be entangled with the variables under study.

Another limitation of our approach is that independence criteria alone may not be sufficient to select a correct causal model

for analysis. There are situations where several causal models may have identical independence criteria, and we cannot dis-

tinguish between them. Future research can explore how the proposed framework can be extended with causal discovery

approaches to suggest candidate causal models (Spirtes and Zhang, 2016). We discussed earlier that current approaches to670

automatic causal discovery from observational data require too strong and non-transparent assumptions to be useful. However,

combining automatic causal discovery with prior expert knowledge could be a promising approach.

Finally, the case study is limited by the limited amount of available data. In future research, it would be interesting to

validate effect sizes using long-term measurements over several months or even years. Also, we only studied a few identified

confounding factors. An improvement to this study could be to include for example measurements of dissolved organic carbon675

since this has been suggested to influence DGM concentration (Ferrara et al., 2003; Amyot et al., 1997).
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Code and data availability. A replication package containing the software code and data required to reproduce the findings presented in this

paper is available under the DOI https://doi.org/10.7910/DVN/4P59FV6

Appendix A: Causal inference from observational data

When building predictive or analytical models using statistical methods, such as linear regression, or even advanced machine680

learning (ML) approaches such as deep learning (DL), the models learn associations between variables from observational

data to infer properties of an underlying mathematical structure (Peters et al., 2017). Whether we use statistical modelling

or advanced methods of ML, the learned underlying mathematical structure only allows us to identify associations between

variables in the dataset which can then be used to build models for prediction and classification (Ghahramani, 2015). We learn

the statistical dependence between variables in the observational data and then infer patterns and trends: For example, we learn685

that if X changes by 1 unit, on average, Y changes by 2 units, on average, and vice versa. However, statistical models cannot

provide the direction of cause- and effect; we cannot infer the causal interdependencies of the underlying system (Runge

et al., 2019). Is it X that causes Y to change, or is it Y that affects X? Reichenbach extended this problem to common

causes: Neither X nor Y could affect each other, instead there could be a third variable Z that is a common cause of both X

and Y (Reichenbach and Morrison, 1956). Without additional information, the three cases X → Y , Y →X , and Y ← Z→X690

cannot be distinguished using observational data and statistical modelling alone (Schölkopf, 2022). This limitation even applies

to deep neural networks, whose opaque mode of operation usually does not allow the extraction of cause-effect relationships

from observational data alone (Montavon et al., 2018).

Causal inference refers to the process of learning about causal relationships and the process of reasoning about outcomes

of interventions and answering counterfactual questions. A common research design for inferring causal relationships are695

randomised controlled trials (RTC). In an ideal RTC, the subject under study is randomly assigned to different treatments (or

effects of something), allowing researchers to isolate the effect of the treatment on the outcome of interest and thus identify

and quantify average effect sizes (Hernán and Robins, 2020). This is a rigorous approach to evaluating causal relationships

and allows, for example, the effectiveness of interventions to be assessed. Unfortunately, randomised experiments are often

not possible due to prohibitive costs, ethical concerns, or other impracticalities of such experiments. Researchers in many700

fields, including environmental research, must therefore rely on observational data alone and find methods to infer causality. In

environmental monitoring, the assignment of sampling times and sites to “unaffected” and “potentially affected” is not under

the control of the researcher and therefore cannot be assigned at random (Stewart-Oaten, 1996). The author suggested that

causal inference in environmental research only can be successful if there are diagnostic checks to exclude plausible causal

models that do not fit the data, and measures of model uncertainty for those models that are not excluded. With beginning of705

the 2010s, political discussions are increasingly focused on the causes and effects of climate change and the impact of human

activities on the environment. Environmental monitoring data are used to derive policies and conversation rules. One possible

6The replication package will be published together with the article. For review purposes, the replication package can be accessed under

https://dataverse.harvard.edu/previewurl.xhtml?token=78e59872-5610-4c49-a4e2-6c75fbd5b54a.
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approach to extract knowledge about contributing factors to pollution is positive matrix factorisation (PMF) which is a factor

analysis tool to judge the level of contribution of different factors to an outcome (Kyllönen et al., 2020). Sun et al. (2022) found

that more than 1000 studies have been published using PMF as a tool to study source appointment for different environmental710

pollutants, whereof several have used it in mercury studies (Feng et al., 2022; Michael et al., 2016). PMF can be useful

to explore latent patterns in data. However, it does not provide mechanisms for distinguishing correlation from causation.

Causal modelling has been suggested to be a key aspect in evaluating the effects of environmental policies, such as laws,

self-regulation of industry, or governmental oversight (Sills and Jones, 2018). The authors suggest that especially graphical

modelling of cause-effect relationships using DAGs are useful to describe the potential effect of environmental policies.715

Appendix B: Simulation of data and validation of causal models

Before applying the observed data to the models, we conducted a simulation study to validate that the proposed analytical

models could correctly identify associations between the variables. This process involved generating simulated observations

CMW under three generative models sm1 – sm3 , each representing different causal assumptions for the three prediction models

m1 – m3. For the first dataset, sm1 , we assumed that only Sol but not TS has an influence on the generated C
(1)
MW data. For the720

second dataset sm2 , we assume that only TS but not Sol influences C
(2)
MW . The last dataset sm3 represents an influence of both

Sol and TS on C
(3)
MW . The datasets are generated using the following generative process:

s(m1) : C
(1)
MW ∼N (aC + bc,s · Sol ,σ) (B1)

s(m2) : C
(2)
MW ∼N (aC + bc,t ·TS ,σ) (B2)

s(m3) : C
(3)
MW ∼N (aC + bc,s · Sol + bc,t ·TS ,σ) (B3)725

In these models, the outcome C
(i)
NW is normally distributed with a mean including a constant term aC . The parameters bc,s

and bc,t represent the effect sizes of solar radiation and sea surface temperature, respectively. Standardised values were used

for the predictors to avoid numerical issues. A standard deviation σ was assumed to introduce uncertainty. Table B1 list the

values for the parameters of the simulation models that generated the test data.

Table B1. Parameters for the generative models to create the simulation datasets.

Parameter Meaning s(m1) s(m2) s(m3)

ac Constant term for CMW 2.4 2.4 2.4

bc,s Effect size of solar radiation on CMW 0.3 0.0 0.3

bc,t Effect size of sea surface temperature on CMW 0.0 0.6 0.6

σ Standard deviation of the assumed Normal distribution 0.4 0.4 0.4
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The interpretation is as follows: for model s(m1), setting bc,s = 0.3 implies that a one standard deviation change in solar730

radiation leads to a bc,s-times change in the simulated outcome. Similarly, model s(m2) with bc,t = 0.6 implies a corresponding

change due to sea surface temperature. Model s(m3) combines both effects. Figure B1 presents the resulting simulated data for

C
(i)
NW under the three different causal assumptions.

Table B2. Parameter estimates for all models under simulated datasets s(m1), s(m2), and s(m3).

Model Data Parameter Mean SD 5% 95% neff R̂

m1

s(m1) ac 2.41 0.005 2.40 2.42 1700 0.999

s(m2) ac 2.40 0.009 2.38 2.41 1690 1.000

s(m3) ac 2.40 0.009 2.39 2.41 1602 0.999

s(m1) bc,s 0.30 0.005 0.29 0.30 2436 1.000

s(m2) bc,s 0.27 0.009 0.25 0.28 1844 0.999

s(m3) bc,s 0.57 0.009 0.55 0.58 1854 1.000

s(m1) σ 0.40 0.004 0.39 0.40 1254 1.000

s(m2) σ 0.67 0.006 0.66 0.68 1239 0.999

s(m3) σ 0.67 0.006 0.66 0.68 1575 0.998

m2

s(m1) ac 2.41 0.006 2.40 2.42 1953 1.000

s(m2) ac 2.40 0.005 2.39 2.41 1424 0.999

s(m3) ac 2.40 0.007 2.39 2.41 1700 0.999

s(m1) bc,t 0.13 0.006 0.12 0.14 2112 0.999

s(m2) bc,t 0.60 0.005 0.59 0.61 1936 0.999

s(m3) bc,t 0.73 0.006 0.72 0.74 2006 0.998

s(m1) σ 0.48 0.004 0.47 0.48 1343 1.000

s(m2) σ 0.40 0.004 0.40 0.41 1140 0.999

s(m3) σ 0.48 0.004 0.48 0.49 1056 1.001

m3

s(m1) ac 2.41 0.005 2.40 2.42 1185 1.002

s(m2) ac 2.40 0.005 2.39 2.41 1427 0.998

s(m3) ac 2.40 0.005 2.39 2.41 2005 0.998

s(m1) bc,s 0.30 0.006 0.29 0.31 1272 1.000

s(m2) bc,s 0.00 0.006 -0.01 0.01 1092 1.000

s(m3) bc,s 0.30 0.006 0.29 0.31 1174 1.001

s(m1) bc,t 0.00 0.006 -0.01 0.01 1470 1.001

s(m2) bc,t 0.60 0.005 0.59 0.61 1315 0.998

s(m3) bc,t 0.60 0.006 0.59 0.61 883 1.003

s(m1) σ 0.40 0.004 0.39 0.40 863 1.000

s(m2) σ 0.40 0.004 0.40 0.41 1040 0.999

s(m3) σ 0.40 0.004 0.40 0.41 1293 0.999

We then performed Bayesian model inference using the three models on each dataset. The inference results are listed in

Table B2 and visualised in Figure B1.735
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Dataset sm1
Dataset sm2

Dataset sm3

Figure B1. Resulting datasets sm1−sm3 for simulated outcome C
(i)
NW under three different causal assumptions using observed solar radiation

Sol and sea surface temperature TS . Arrows indicate assumed direction of cause and effect.
Dataset sm1

Dataset sm2
Dataset sm3

Figure B2. Results of model inference under three different simulated datasets sm1 − sm3 , each representing different causal assumptions

for CMW . The left row shows inference under dataset sm1 , the middle row under dataset sm2 , and the right row under dataset sm3 . Solid

black lines indicate the true parameter values set for the simulation.
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Ideally, models should recover the original parameter values despite the added uncertainty σ = 0.4. Furthermore, we could

examine what happens if we estimate the parameters using an incorrectly specified model for the dataset. For example, model

m2 assumes no causal relationship between solar radiation and CMW , but the datasets sm1 and sm3 simulate such a causal

relationship. Consequently, model m2 incorrectly estimates bc,t for these datasets, mapping effects from solar radiation to sea

surface temperature. In these cases, the estimated σ also increases beyond 0.4 as the model fails to account for all variance740

in the data. By contrast, model m3 correctly estimates zero effects for irrelevant variables under datasets sm1 and sm2 which

indicates the ability to detect statistical independence consistent with expectations listed in Table 1.

Dataset sm1
Dataset sm2

Dataset sm3

Figure B3. Model comparison using WAIC. Lower deviance values indicate that a model is more adequate for the data.

The WAIC-based model comparison, shown in Figure B3 shows:

– For dataset sm1 : Models m1 and m3 are adequate.

– For dataset sm2 : Models m2 and m3 are adequate.745

– For dataset sm3 : Only model m3 is adequate.

In conclusion, the results of the simulation study show that the models are workable, meaning that, given the chosen priors,

they can infer an a-priori determined set of parameters in simulated datasets. We saw that if a model does not by design allow

for an association that is present in the dataset, the model will instead incorrectly “map” the missing association onto other

allowed associations, which can inflate unrelated effect sizes. Finally, we saw that model m3 can detect the non-existent of750

association between variables in the datasets. Paired with domain-derived independence criteria (Table 1), this allows making

statements about possible causal relationships in observational data.

Appendix C: Prior predictive plots simulations

Prior predictive plots assist in identifying reasonable initial values for the parameters of the prior distributions. This is done by

simulating the model outputs solely using the priors (McElreath, 2020).755

Because the predictor values are standardised, we set at = 0. The outcome variable CMW , however, was not standardised,

which is why we set the prior mean of ac to 2.7, corresponding to the mean of the observed CMW . These values are reasonable

initial choices for at and ac as both parameters represent intercepts of a linear regression. The prior predictive plots were then

used to identify initial values for bc,s,bt,s, and bc,t. Each plot in Figure C1 (a) - (c) shows 100 randomly drawn lines using

models m1 – m4, with parameter values sampled from the corresponding priors. Observed data are shown as black circles.760
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Figure C1. Prior predictive simulation results. The observed data is shown as grey circles. (a): at ∼Normal(0,1), bt,s ∼Normal(0.5,0.5).

(b): ac ∼Normal(2.7,1), bc,s ∼Normal(0.5,0.5). (c): ac ∼Normal(2.7,1), bc,t ∼Normal(0.5,0.5). (d): ac ∼Normal(2.7,1), bc,s ∼
Normal(20,20), which is an example of an implausible prior.
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Our aim was to choose the parameters of the prior distributions such that the simulation results obtained by sampling were

plausible given the observed data. Figure C1 (d) illustrates an example of an implausible prior distribution. It was not our aim to

match the observed data precisely because priors only serve as a “starting point” for the Bayesian data analysis. The influence

of the priors diminishes the more observational data are available as the model iteratively updates its estimates based on the

data. Nonetheless, selecting reasonable priors improves the efficiency of inference by reducing the time required to estimate765

the posterior distributions.

Appendix D: A warning about colliders and uninformed machine learning (ML) models

A common approach might be to include all possible predictor variables in a statistical or ML model. However, a particular

situation arises when colliders are part of the causal model. A collider is any variable with several causes affecting it. Figure D1

provides an example of a devised example based on the previous model m3. Assume that variable A represents the particle770

density of algae in the water and that the growth of algae is positively affected by solar radiation. Assume also that mercury has

some form of inhibitory effect on algae, which reduces the density of algae in waters with high mercury concentration7. Variable

A represents a collider in the causal model because it has arrows pointing towards it from both Sol and CMW . One problem in

Sol
bc,s

CMW

Direct effect of Sol->CMW

Anti-causal association
between Sol->CMW

Legend

TS

A

Figure D1. Directed Acyclic Graphs (DAGs), which contains a collider A.

causally interpreting the results of statistical or ML models that arises in the presence of colliders is collider bias. It entails an

association between two variables that “flows” against the direction of cause and effect. For example, a researcher might try to775

build a statistical model that predicts the effect of solar radiation on CMW . The researcher conveniently has data on the density

of algae particles and assumes that, because algae growth is affected by both solar radiation and Hg concentration, it is a good

predictor for CMW . We extended the previous simulation model sm3 with a variable A depicting simulated algae growth that

7This is not based on real measurements but a simulation / thought-experiment
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depends on solar radiation and CMW to illustrate the consequence of including a collider as a predictor for estimating the effect

size of solar radiation on CMW .780

Table D1. Added parameters to sm3 for the generation of an extended dataset sm3 that includes a collider A.

Parameter Meaning s(mc)

aa Constant term for algae concentration A 3.0

ba,s Effect size of solar radiation on algae concentration A 0.7

ba,c Effect size of CMW on algae concentration A -0.2

σ Standard deviation of the assumed Normal distribution 0.4

Table D1 lists the parameters of the new simulation model smc . By setting ba,s = 0.7, we assume that solar radiation has a

strong positive effect on the concentration of algae. Conversely, by setting ba,c =−0.2, we assume a weakly negative effect of

the presence of mercury on the concentration of algae. All other parameters are identical to those in simulation model sm3 as

given in Table B1.

Variable A is included as predictor of CMW by extending model m3 to a new statistical model, mc, specified in Table D2.785

Table D2. Model specification for collider model mc.

Model Specification

mc:

CMWi
∼ Normal(µi,σ)

TSi
∼ Normal(νi, τ)

Ai ∼ Normal(ξi,ϑ)⋆

µi = ac + bc,s · Soli + bc,t ·TSi
+ b⋆

a,c ·Ai

νi = at + bt,s · Soli

ξi = aa + b⋆
a,s · Soli

ac ∼ Normal(0,1)

aa ∼ Normal(2,1)⋆

at ∼ Normal(0.5,1)

bc,s
⋆, ba,s

⋆, bc,s, bc,t, bt,s ∼ Normal(0.5,0.5)

σ,τ,ϑ⋆ ∼ Exponential(1)

(D1)

⋆Terms that relate to algae growth A.

The inference results for model mc are presented in Table D3 together with the previous results from model m3.

The new model correctly estimates the simulated effect sizes for algae density ba,c and bas
. If not conditioned upon, colliders

act as “sinks” for the flow of association (Holmberg and Andersen, 2022). That is, the “flow” of association between Sol and

CMW via A will be stopped by the collider variable A if we do not control for this variable. However, by including algae as

a predictor for CMW , the model inadvertently conditioned on a collider. Thereby, a collider bias is introduced in the estimate790

of the effect size of solar radiation on CMW because additional association “flows” against the correct direction of cause-and-

effect. Therefore, the effect size of solar radiation on CMW , bc,s, changes from its true value of 0.3 to a higher value of 0.41
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Table D3. Parameter estimates for models m3 and mc under simulated data smc .

Model Parameter Mean SD 5% 95% neff R̂

m3

ac 2.39 0.005 2.39 2.40 1295 1.001

bc,s 0.31 0.006 0.30 0.32 1319 1.001

bc,t 0.60 0.005 0.59 0.61 1092 1.001

mc

ac 2.39 0.005 2.39 2.40 1976 0.999

ba,c -0.17 0.009 -0.19 -0.15 918 0.999

ba,s 0.69 0.005 0.68 0.70 1557 1.001

bc,s 0.41 0.010 0.40 0.43 953 0.999

bc,t 0.58 0.006 0.57 0.59 1389 0.998

to compensate for the additional “anti-causal” association flowing via A. In addition, the uncertainty in the effect size estimate

bc,s increases as illustrated in the larger bars in Figure D2 (a).

(a) (b)

Figure D2. Estimate of effect size Sol→ CMW (a) and model comparison (b) for model with Algae growth A as predictor (mc) and without

A as predictor (m3).

Unfortunately, including additional predictors that are correlated with CMW increases the predictive ability of the model as795

shown in Figure D2 (b). This means that model mc can predict CMW better, even if the effect size estimates (the causes to why

CMW changes over time) are not correct. The danger is that when using ML model, the algorithm may include all predictor

variables that it can find in the data. The result will be a model that predicts the outcome variable very well, but the effect sizes

may be wrong. It is therefore important to carefully argue, using causal modelling for example, which variables to include

in a dataset for ML, leading to an informed ML. Otherwise, conventional ML approaches, including advanced approaches800

such as convolutional deep neural networks, might inadvertently condition on collider variables and estimate incorrect effect

sizes (Hernán and Robins, 2020).
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Figure E1. Scatter plots for inspecting suggested independence between variables for (a) m1: TS ⊥ CMW | Sol

and (b) m2: Sol⊥ CMW | TS .

Appendix E: Validation through independence checking using scatterplots

E1 Independence checking

In addition to assessing the estimated effect size coefficients to evaluate independence between variables, we also conducted a805

manual inspection of scatter plots to visually assess statistical independence between the predictor variables and the outcome.

Figure E1 presents the scatter plots corresponding to the independence criteria outlined in Table 1. For example, if CMW were

conditionally independent of solar radiation given sea surface temperature, as suggested by model m1, we would expect no

apparent pattern or trend between TS and CMW at different levels of Sol. However, Figure E1 (a) indicates a linear relationship

between TS and CMW at each level of Sol. Similarly, Figure E1 (b) indicates a linear relation between Sol and CMW which810

appears to be more distinct with higher values for TS . Overall, the visual inspection of the scatter plots suggests that statistical

independence between the variables is not supported, implying that the assumed causal models m1 and m2 are not plausible.

Appendix F: Parameter estimates under observed data

Table F1 lists the inference results using models m1, m2, and m3 under the observed data.
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Table F1. Parameter estimates for all models under observed data.

Model Parameter Mean SD 5% 95% neff R̂

m1

ac 2.39 0.010 2.37 2.41 1762 0.999

bc,s 0.55 0.009 0.53 0.56 1401 1.000

σ 0.72 0.007 0.71 0.73 1362 1.000

at 0.00 0.012 -0.02 0.02 1453 0.999

bt,s 0.45 0.012 0.43 0.46 1399 1.001

τ 0.90 0.008 0.88 0.91 1412 0.999

m2

ac 2.39 0.009 2.37 2.40 1465 1.000

bc,t 0.58 0.009 0.57 0.60 1347 0.999

σ 0.68 0.007 0.68 0.70 1493 1.000

at 0.00 0.012 -0.02 0.02 1271 1.000

bt,s 0.45 0.011 0.43 0.46 1373 0.999

τ 0.90 0.008 0.88 0.91 1389 1.000

m3

ac 2.39 0.008 2.38 2.40 1261 1.002

bc,s 0.36 0.009 0.35 0.37 1051 1.000

bc,t 0.42 0.009 0.41 0.43 1223 1.001

σ 0.61 0.005 0.60 0.62 1349 1.000

at 0.00 0.011 -0.02 0.02 1392 0.999

bt,s 0.45 0.011 0.43 0.46 1521 1.000

τ 0.90 0.008 0.88 0.91 1139 0.998

m4

ac 2.39 0.007 2.38 2.40 1257 1.002

bc,s 0.38 0.008 0.37 0.40 983 0.999

bc,t 0.43 0.008 0.42 0.44 959 1.001

bc,w -0.13 0.009 -0.14 -0.11 1068 0.999

bc,r -0.27 0.007 -0.27 -0.14 1068 0.999

σ 0.55 0.005 0.54 0.55 1047 1.002

at 0.00 0.011 -0.02 0.02 1125 0.999

bt,s 0.47 0.011 0.45 0.48 1098 0.998

bt,w -0.24 0.012 -0.26 -0.22 921 1.000

τ 0.86 0.008 0.85 0.88 1095 0.998

ar 0.00 0.014 -0.02 0.02 1047 0.999

br,t -0.01 0.010 -0.02 0.01 811 0.999

br,s -0.02 0.014 -0.07 -0.02 999 0.998

br,w 0.27 0.012 0.25 0.29 1050 0.999

v 0.95 0.009 0.94 0.97 1008 1.002
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