Reviewer 2:
General

This paper provides a technical note on application of causal inference to the effects of
solar radiation and water temperature on dissolved gaseous mercury (DGM). This
research is really interesting, instrumental, and insightful.

This research showcases a wonderful collaboration between experimental scientists
and causal inference scholars.

What a Wonderful World is this interdisciplinary field.

This paper is expected to embrace a wide range of readers, including those who know or
have a good commend of causal inference already and also those who are lay people,
well-trained in experimental sciences, yet knowing little about causal inference and how
to use and apply it in their experimental science areas. The present reviewer is among
the latter group. Hence, this review will focus on two aspects: (1) experimental and (2)
how to help and guide the latter group of readers to follow, understand, and learn how to
use causal inference by means of the case study provided by this paper. Some readers,
if not many, may share the same or similar feedback as presented in this review.

- We thank the reviewer for the kind words about our paper. Indeed, one of the
aims of the paper was to demonstrate successful collaboration between two
different research disciplines; something the research community needs more of.
The paper is hopefully useful to a wide range of readers and aims to inform,
demonstrate and inspire future research collaborations between research fields.

Specific
1. Paper title

The paper title uses the word “on dissolved gaseous mercury”. Perhaps, this term in the
context of this research is kind of vague and could be more specific, say, on levels of
DGM, or generation process and mechanism of DGM, or speciation of Hg, etc. Soit’s a
bit unclear what is exactly the effect (effect of solar radiation on what exactly, DGM
level, dynamics, production?), since DGM itself is only a particular species of aquatic
Hg.

- We are thankful for the nice suggestions to make the title more informative and
clearer. We suggest a change of the title to “Technical note: A framework for
casual inference applied to solar radiation and temperature effects on measured
levels of gaseous elemental mercury in seawater.” The title in the paper has been
changed accordingly, see below:

Technical note: A framework for causal inference applied to solar
radiation and temperature effects on measured levels of gaseous
elemental mercury in seawater



2. Experimental
Regarding the in-situ field measurement of DGM, a number of questions arise:

First, the citation for this method seems to use a less relevant paper (by Andersson ME
et al., 2008b; see L140 in the present paper). | checked on this and found the relevant
references probably would be:

e Adescription of an automatic continuous equilibrium system for measurement
of dissolved gaseous mercury. By Andersson, Gardfeldt, and Wangberg, Anal.
Bioanal. Chem. 391, 2277-2282, 2008a

e Seasonal and spatial evasion of mercury from the western Mediterranean Sea by
Nerentorp Mastromonaco, Gardfeldt, and Wangberg, 2017 (L896-897 in the
present paper).

- We agree with the reviewer that the two suggested references fit betterto L140
than the previous added reference. The suggested Ref#1 has now replaced the
previous reference on L140 in the revised paper. Also, another reference has
been added: “Gardfeldt et al., 2002.: "Comparison of procedures for
measurements of dissolved gaseous mercury in seawater performed on a
Mediterranean cruise." Analytical and Bioanalytical chemistry 374.6 (2002): 1002-
1008.”, which further describes how the equations used to calculate DGM, using
the same continuous system as used in this study, were derived and verified.

- Section 2.1 #154-155:

Chrrw measured with the analyser can be used to calculate the concentration of dissolved gaseous mercury (DGM) in
incoming seawater. If C; is removed from Hg, the equation to calculate DGM can be simplified to: (Andersson et al., 2008a;

155 Gardfeldt et al., 2002):

Second, with limited time available, | consulted Ref. #2 above and had some findings as

detailed below.

Ref. #2 shows that the researchers also used another manual method, i.e., purge-and-
trap method, instead of the in-situ auto-method, to determine the DGM. For this manual
method, first, the Hg(0) in a water sample of a certain volume is completely purged out
of the water sample using zero air (or pure Ar or N2) and then collected on a Hg trap to
analyze the total Hg(0) purged out of the water sample. By measuring the volume of the
water sample and the total Hg(0) purged from the water sample and collected on the Hg
trap, the DGM can thus be calculated to be DGM = (total Hg(0) purged)/(volume of water
sample). This method gives a clear determination of the DGM for the water sample
without confusion or misunderstanding.

- We thank the reviewer for opening this interesting discussion. We believe that it is
indeed true that the discrete manual purge and trap method earlier has been the
most common method for analysing DGM in water samples. The reviewer is right,
when using the manual method, the approach is to completely purge the sample.
DGM is then calculated by dividing the amount of purged Hg by the sample



volume. We do agree with the reviewer that this method is more straight-forward
and leaves less confusion regarding the experimental performance. However,
discrete sampling would not have been an appropriate method to use for our
study. The number of data points needs to be large for the statistical significance
of our model, and a high time resolution of Hg analyses is crucial to match fast
changes in solar radiation. Using a manual method would require an immense
workload and would result in an insufficient time resolution that is needed for this
studly.

Moreover, Ref. #2 also mentioned that they compared the DGM results from the auto-
method and the manual method and found “a good correlation” between the two
method results. This means that the DGM calculated using Eq. 1 and the DGM obtained
by the manual method differ, although correlated, that is, one may not replace the other,
but one can be obtained from another using the correlation.

- We agree with the reviewer that Ref#2 (also Ref #1and Gardfeldt et al., 2002)
compared DGM results from the automated- and manual methods with good
correlations. Although this is a nice discussion point, it was not part of our paper
to compare manual and automated methods to measure DGM in surface water.

However, Ref. #2 does not mention or indicate if they used the correlation (or calibration)
to get the DGM corresponding to the actual DGM (calibrated by the manual method), or
they simply took the DGM results calculated using the equation of DGM = Ca(1/H +
ra/rw) (L141 Eq. 1 in the present paper). This missing detailis a highly important
technical detail, which is connected to the credibility of this auto-method, and
subsequent causal inference operations and outcomes.

- We understand the reviewer’s concern regarding the confusion. As mentioned
before, a rigorous comparison between the automated and manual sampling was
performed in Ref#1. To our knowledge, Ref#2 compared the two methods at five
measurement points, showing some agreement between the methods. The
comparison was performed to check and compare the two methods, not to
calibrate them against each other. Ref #2 used equation 1 to calculate DGM
concentrations in their paper, an equation that has been used to calculate DGM
in many other papers, without the necessity to re-calculate the values using
calibration against the manual method.

I’d think the correlation (equation) should be reported and used to get the real DGM as
calibrated using the correlation, rather than just using the DGM results directly from the
calculations using Eq. 1, for the reasons given below. By the way, it’s understandable
there is a need to have an in-situ auto method to continuously measure DGM in the field.

But, it remains unclear for the present paper under review, all the DGM results used for
the causal inference are those directly from the calculation using Eq. 1, or those after
processing using the correlation between the auto and manual methods (calibration of
the auto-method by the manual method). This important technical detail needs to be
clarified.



- We agree with the reviewer that the automated method would benefit from being
compared to other field methods to measure and calculate DGM concentrations
in seawater (although, to our knowledge, not many other methods exist yet).
However, in our study, the calculated DGM concentrations were not used in the
causal model. For the model we used measured (not calculated) Hg
concentrations (CMW) for comparing with solar radiation and temperature.

The reason for this choice was because Henry’s law constant, which is used in
equation 1 to calculate DGM, is temperature dependent (see equation 2) and
therefore, calculated DGM cannot be used in the causal model when comparing
DGM to temperature since it would cause an uncontrollable feedback loop.
Although we believe equation 1 to be correct for calculating DGM, we only used
this equation to calculate DGM values used for demonstration and comparison in
Table 3 and Figure 6.

We are sorry for the confusion. Throughout the text we have now tried to be
clearer that we are studying measured gaseous elemental Hg (CMW) rather than
DGM. In Section 2.1 we also added an explanation why we made this choice, see
below:

Section 2.1 #159-163:

r,, denote the flow rates of purging air and seawater (I/min), respectively. When studying Equations (1) and (2) it becomes
160 clear that sea water temperature is already integrated into the calculation of DGM, which can cause uncontrollable feedback
loops when studying direct effects between DGM and sea surface temperature in our model. To avoid this problem, Carw
was chosen as a outcome variable instead of DGM in this study. Calculated DGM concentrations, which in this study only are

presented for comparison, are presented in Table 3 and Figure 6 (f) in Section 5.1.

The auto-method appears not quite straightforward in conjunction with Eq. 1. By the
auto-method, a given water volume is first pumped into the inner cylinder. Then (or
simultaneously) zero air is used to purge the Hg(0) in the given water to the headspace of
the inner cylinder. Then the air concentration of Hg(0) in that headspace is measured by
Lumex (or Tekran 2537A). By the way, the efficiency of the purging is not mentioned or
discussed in this paper. The efficiency of purging is certainly critical for the manual
method. Incomplete purging of the DGM can cause under-estimation of real DGM level.

<y curious why Eq. 1 is used to calculate the real DGM of the sea water, instead of using
the same approach as the manual method to get the total Hg purged out of the water left
in the cylinder headspace and then the DGM thus determined. It is also highly curious
why the DGM is the Hg(0) concentration in the water of the cylinder supposedly at
equilibrium with the Hg(0) purged out of the same water then present in the headspace
measured by Lumex. Intuitively, this is quite confusing and not revealing. The key point
here is why the equilibrium of Hg(0) distribution between air and water gets involved in
the DGM determination? In any context, it is the real DGM of interest, not the equilibrium
DGM.

Itis very hard to see and understand how this so-calculated equilibrium Hg(0)
concentration can represent the real DGM in the water sample. First of all, the real DGM
should be the one at the equilibrium with the ambient air Hg(0) above the sea, rather
than with the Hg(0) purged out of the water sample in the cylinder headspace, unless



coincidentally, the Hg(0) in the ambient air has the same concentration as the purged
Hg(0) in the headspace. Itis very hard to see the materialization of such a coincidence,
consistently occurring all the time. Or was this coincidence confirmed experimentally?

Using the Henry’s law method to get DGM only gives the Hg(0) concentration in the water
at the equilibrium, while as known, water is commonly saturated or often over-saturated
with Hg(0), i.e., DGM at equilibrium < or << DGM-real.

- We understand that this confusion remained, but we hope that we now have
explained our choice of using equation 1 to calculate DGM concentrations used
for demonstration and comparison with other studies. In manual sampling,
Henry’s law is not needed, as itis needed in Equation 1 when using the
automated method. Henry’s law constant, that shows how much a gas dissolves
in water at equilibrium, is used in equation 1 to compensate for the choice of
measuring equilibrium concentrations rather than purging the total amount of Hg
in the sample, as in manual methods. This approach of measuring equilibrium
concentrations is also used for measuring other gases in water, such as CO2,
using similar methods and equations, using Henry’s law constant for CO2 in
seawater. Hence, the theory behind this method is not original but well studied.
See for example “Wanninkof, R. and K. Thoning (1993) Measurement of fugacity of
CO2 in surface water using continuous and discrete sampling methods. Mar.
Chem. 44: 189- 204”.

Table 3 and Fig. 6f all show quite low levels of DGM, as compared to many studies that
reported higher DGM levels for various waters. This suspected underestimation of the
DGM might be due to that the calculated DGM is only for the equilibrium condition as
calculated using Henry’s law.

The unclarity and confusion regarding the meaning and credibility of the DGM calculated
using Eqg. 1 need to be resolved in the first place before readers go further to see any
causalinference using the DGM results.

- We thank the reviewer for demonstrating that a comparison with literature is
missing in our paper. The calculated DGM concentrations (that are in this paper
only presented for comparison and not used in the analysis) showed an average
concentration of 14 (5-28) pg/L. For comparison, surface DGM was measured
using an in situ purging system in mars/April 2015, also at the Swedish west coast
at Ra6/Rorvik station, about 160 km south of Kristineberg. Here, the average DGM
concentration was 13 pg/L, which is in good agreement with our results
(Nerentorp Mastromonaco PhD thesis, 2016). A literature review has now been
added in section 5.1, see below:



- Section 5.1: #537-545:

the pump speed rw and the measured Hg concentration Cpyw. Calculated DGM, shown in Figure 6 (f), show similar diurnal
patterns as for Cpry-. The average concentration during the measurement period was 14 pg/1 (Table 3). During the summers in
1997 and 1998, Gardfeldt et al. (2001) measured DGM by manual sampling at 20 cm depth in open seawater, about 1 km from
540 the Kristineberg Marine Research Station, resulting in DGM concentrations varying between 40-100 pg/L. However, it differs
about 20 years between their and our measurements. More recent continuous measurements of DGM, performed in spring 2015
at the Rag/Rorvik station in Sweden (about 160 km south of Kristineberg), showed an average DGM surface concentration of
13 pg/l (Mastromonaco, 2016), which is in good agreement with our study. The literature review presented in Mastromonaco
et al. (2017) show surface DGM concentrations varying between 11 to 32 pg/l in the Baltic Sea (15-20 pg/l in spring), 11 to
545 52 pg/lin the North Sea. 12 pg/l in the North Atlantic Ocean (summer) and about 20 to 30 pg/l in the Mediterranean Sea.

3. Causalinference general

Before and during reading this paper for a while, | always thought this causal inference
model or operation can determine if two factors given are actually indeed causally
related, instead of simply correlated. In other words, the expectation was that by
running the causal inference (going through the entire framework and running the causal
inference operations or models), it can be determined if one factor is causally related to
another, followed further by the effect size.

But, the more | read through, the more | thought or realized (maybe I’m still wrong or
doesn’t getit) that actually, it seems that to begin the causal inference, one needs to
assume, in the first place, the two factors are indeed causally related, and then running
the causalinference through the framework would provide more knowledge about the
relationship between the two factors, like the effect size, this percentage for this factor,
or that percentage for that factor, etc.

- We thank the reviewer for giving this insightful comment about the lacking
information regarding how to interpret and understand how the causal model
works. It is indeed true that for the model to work you need to first have an idea
how and if two factors are related. That’s why it is important to draw your DAGs
correct before running the model and interpret the results. That is what we
describe in the paper to be prior scientific knowledge. We have improved the
description of what causal models can do and what they cannot do throughout
the manuscript.

- Section 3: #239-240 and 245-249:

A key function of the graphical causal model is to make prior assumptions explicit. By explicitly encoding the researchers’

240 prior causal knowledge as DAG they become open to criticism and possible later refinement. Furthermore, it is necessary to

define the direction of cause-and-effect a-priori, because statistical models cannot distinguish between cause and effect as they

only identify association but not causation. If the direction of cause and effect is not known, or if the existence of a causal

relationship is uncertain a-priori, several alternative causal models can be proposed. Based on the proposed causal models,

independence criteria are derived using mathematical methods such as d-separation (Pearl et al., 2016). These independence

245 criteria derived from the assumed causal model can later be used to empirically validate the plausibility of the DAG against

the observed data by checking for expected associations, or the lack thereof. Causal relations are not discovered from the data

directly but evaluated by assessing whether the observed data are consistent with the independence relations implied by the a

priori defined causal models. This concept is referred to as the faithfiulness assumption, i.e., that the observed data follows the

independence criteria suggested in the assumed causal graph (Spirtes et al., 2000). Tools exist, such as DAGitty (Textor et al.,

250 2016) that automatically derive these independence criteria from graphical causal models.



- New Section 6.1 #680-695:
6.1 What causal inference adds bevond experiments and field observations

The causal framework in this study did not aim to discover previously unknown physical processes governing the forma-
675 tion of gaseous mercury in the oceans. Instead, the contribution lies in guantifving how known processes jointly contribute to
observed variability under observational conditions outside of a laboratory. Specifically, using the suggested causal frame-
work, it is possible to (i) separate total observed association between solar radiation and measured mercury into direct and
temperature-mediated components, (i1) quantify the relative importance of these causal pathways, and (i11) adjust effect esti-
mates for confounding influences such as environmental influences and instrument-intrinsic factors that are difficult to control
680 in field observations. While laboratory and field experiments showed that solar radiation and sea surface temperature influence
mercury emissions, the proposed causal framework allows these effects to be estimated simultaneously from observational data
under explicitly and transparently stated causal assumptions. This causal inference technique therefore provides effect size esti-
mates that are directly interpretable for large-scale modelling efforts or policy assessments, where controlled experiments may
be infeasible. Causal conclusions, however, are conditional on the assumed causal models. DAGs, as graphical representations
685 of causal knowledge. make prior causal knowledge explicit which allows other researchers to understand and criticise more
easily the underlying assumptions. Such criticism is important because causal models are not immune to misspecification,
such as by omitting unobserved but relevant confounders, leaving out, or misdirecting edges, which may lead to biased effect

estimates. Table 5 lists a set of possible misspecifications and their mitigation strategies.

- Section 6.3#731-737:

730 hand, allow to encode prior assumptions transparently such that the necessary restricting conditions for causal inference from
observational data are provided. This does not mean that graphical causal models remove the need for prior assumptions, nor do
they guarantee the correctness or completeness of prior causal knowledge. As with other causal frameworks, such as potential
outcome frameworks or Granger causality, the validity of any causal claim depends on the underlying prior assumptions and
the adequacy of the data. Other causal frameworks are not inherently “non-transparent” but they use different, and often more

735 implicit, mechanisms to communicate prior assumptions such as exchangeability assumptions (Herndn and Robins, 2020) or
stationarity requirements. In this sense, the primary contribution of graphical causal models is to offer a particularly explicit
and inspectable representation of prior causal knowledge. The importance of defining prior causal knowledge as graphical
causal models has been recognised in other scientific disciplines, such as medicine (Glass et al., 2013), economy (Imbens,

2020), social science (Imbens, 2024), and software engineering (Furia et al., 2019). Scientists in these fields proposed a set

So, top front, it would be very helpful to provide a general description of the causal
inference, it’s goal, logic assumption and framework, approach, what the causal
inference is and can or could do, what we can or could expect the causal inference to
offer, and moreover, what the causal inference cannot offer or do. This general
introduction is much needed. Or, readers, like me, would be struggling in the confusion
about if the causal inference can settle the case to determine the causality, or instead,
only can provide more inference about the relationship between two or more factors and
the effect size of each factor, beyond simple correlation analysis.

So, if the causal inference cannot determine if two or more given factors are indeed
causally related, and which is the cause of which (or otherwise), then this nature of the
causal inference needs to be stated/indicated clearly in the very beginning. This would
help and benefit many readers, like me, who, inference-via-scientific-experiments
oriented, probably first time encounter a detailed case like the one provided by this
paper. For example, a lot has been known about how solar radiation can causally induce
and enhance DGM generation via photochemical reactions by means of well-controlled
manipulative experiments (with only one factor tested in variation and other factors fixed
to logically satisfy both necessity and sufficiency requirements for causal-effect
relationship determination).



40

45

50

200

- We are very grateful for this concrete suggestion to improve the paper. We have
added clarifications to the Introduction (Section 1) and to the outline of the
proposed framework in Section 3. In particular, we highlight that our suggested
framework does not establish causality from observational data alone. Instead,
causal inference means, in this context, estimating direct and indirect effect sizes
conditional on explicitly stated causal assumptions encoded as graphical causal
models following the methodology outlined by Pearl et al. (2016). We hope that
the additional information helps set the reader’s expectation early and to clarify
how the proposed framework goes beyond usual correlation analysis while
remaining conditional on the correctness and completeness of prior scientific
knowledge. For example, we knew before writing this paper that solar radiation
can induce DGM generation by photochemical processes. We also knew that
temperature affect DGM in some way, but what we did not know was how it was
all connected. Is it rather that solar radiation affects the measured mercury
concentration (Cuw ) indirectly by temperature increase alone? This we early
realized by running the model that this is not true. Then arose the question, how
much of the Cuw generation is affected by only solar radiation and only
temperature? In this model we could “turn off/lock” the effect of one factor to see
how much the other factor affected Cuw and vice versa. With the help of the
model we could apply lab experiments on real measured data in the field. And
this is the strength of this framework.

- Section 1 #44-52:

machines that magically predict future data points from observational data. Instead, they are particularly interested in under-
standing cause-effect relationships to suggest interventions that reduce pollutants in the environment. Causal knowledge. or in
other words the analysis of cause-effect relationships, is one of the “fundamental goals of science’ (Vowels et al.. 2022; Rose
and van der Laan, 2011).

Pearl et al. (2016) highlight that causal questions, i.e., question about what are causes and effects, usually cannot be answered
from observational data alone. Instead, additional assumptions are needed that specify an assumed causal structure underlying
the data-generating process. Causal inference from observational data is therefore not assumption-free. [ts conclusions depend
on the correctness and completeness of the prior knowledge represented as graphical causal model. Accordingly, the framework
presented in this paper does not aim to discover causal structure from data alone, nor does it aim to provide a definitive proof of
causation. Instead, its scope is to offer a transparent and principled way to reason about causal effect sizes using observational
environmental data and prior knowledge, and to assess the compatibility of that prior knowledge with the observed data. By
making prior knowledge and assumptions about cause-and-effect relationships explicit as graphical models, causal conclusions
drawn from observational data can be scrutinised, criticised, and revised.

This paper reports the results of a case study on extracting causal knowledge about the contribution of different environmental

- Section 3#195-202:

observational environmental data and prior scientific knowledge from researchers. Here, causal relationships are not discovered
from the observational data itself, but are assumed based on prior experimental and scientific knowledge. such as laboratory
studies demonstrating photochemical DGM production under controlled conditions. The scope of the proposed framework is
then to quantify how multiple established or assumed causal processes jointly contribute to observed variability under natural,
intervention-free field conditions. Using causal models, as suggested in this framework, conceptually allows individual causal
pathways to be “switched off” within the model. This allows assessing the causal pathways’ relative contribution without the

need to physically intervene in the environmental system, which often is impossible in field observation.



lll. Comments and thoughts

Line 62 (L62), “Hg...water-to-air evaporation”, evaporation refers to the escape of
molecules of the liquid from liquid phase of that particular molecule to gas phase (e.g.,
pure water evaporation), but here, there is no liquid Hg involved, only dissolved gaseous
Hg or Hg atoms as the solute in water (the solvent), the liquid is water. So rigorously, Hg
evasion or emission, not evaporation, is more appropriate or accurate.

We thank the reviewer for noting this mistake and suggesting improvements. We
have changed the word “evaporation” to “evasion” instead in the paper. See for
example #70-71:

accounts for almost 50% of the annual contributions to the atmospheric mercury load. This is because much of the oceans’

70 surfaces are supersaturated with elemental mercury compared to the atmosphere, resulting in net water-to-air evasion evap—

oratien (AMAP, 2021). Understanding the drivers behind formation of dissolved gaseous mercury (DGM) and subsequent

By the way, as mentioned before, three issues are involved here: DGM generation, DGM
emission or evasion, and DGM concentrations or levels. The title and the paper use
“..causal inference applied to solar radiation and temperature effects on DGM. Then,
exactly, which factor we are looking at? The DGM generation or emission, or
concentration, which are the factors under consideration or treatment with the causal
inference? This is unclear, another potential confusion point.

- We are grateful that the reviewer pointed out this confusion point. We have taken
the suggestion (stated in the beginning of this review) from the reviewer to change
the title of the paper to make it clearer. The title is now “Technical note: A
framework for casual inference applied to solar radiation and temperature effects
on measured levels of gaseous elemental mercury in seawater.” We have also
replaced “DGM” with gaseous elemental mercury (CMW), where appropriate in
the text. Examples of changes in the paper are presented below:

- Abstract#10 and #12:

10 effect sizes of solar radiation and sea surface temperature on levels of disselved gaseous elemental mercury (Cypy KBGMY in
seawater measured at the west coast of Sweden. Our causal analysis reveals that 32% of the total effect of solar radiation on

(Crrw) BEM is mediated indirectly via changes in sea surface temperature. Wind and instrumentation intrinsic factors biased

- Introduction #54-55:

This paper reports the results of a case study on extracting causal knowledge about the contribution of different environmental

processes to the observed levels of disselved gaseous elemental mercury (C'y7w ) in seawater s

55 {rom-ebservationaldata. Although measurements of gaseous mercury in water is not yet a requirement within any EU directive,

L103-107, the campaign was 2019-2020, but the data used for this study was from 2024
April 1 to April 25. This is another potential confusion point. Which data were used? If
the latter, why mentioning the 2019-2020 campaign?

- We thank the reviewer for noticing this error that simply was a typing mistake. The
real period for the measurement period is “2020-04-01 to 2020-04-25". This has
been changed accordingly in the paper, see below:



- Section 2 #115:

the Skagerrak Sea which is classified as a natural reserve. With its shallow waters it serves as an important reproduction site

115  for shellfish. The data for this study were collected during the period 2020-04-01 to 2020-04-25, which is an interesting time

L140-148, all parameters or quantities should be given together with their individual

units, if any.

- The reviewer is right, and we are grateful for pointing this out. We have added
units for the factors presented in the equations, accordingly, see below:

- Section 2.1 #157 and #159:

where Cjyyy is the measured Hg concentration in the air outflow from the purging system (pg/l) . H' is the dimensionless
Henry’s law constant that describes the partitioning of mercury between the gaseous and aqueous phase. The variables r 4 and
r,, denote the flow rates of purging air and seawater (V/min), respectively. When studying Equations (1) and (2) it becomes

160 clear that sea water temperature is already integrated into the calculation of DGM, which can cause uncontrollable feedback

Here, it may be helpful to mention the DGM, Solar, and T data are given or summarized
in Table 3 and Fig. 6. At any rate, the data used for this study need to be presented
clearly top front, rather than later. We need to know in the first place clearly what are the
measurement data used for this study. This data can help readers to see or inspect,
now, before the causal inference, the potential causal relationship, intuitively, or based
on previous research experiences, independent of the causal inference.

- We thank the reviewer for pointing this out. Although we decided not to present
any measurement results in the method part, we now added information in
section 2 about where the data is presented so it will be easier for the reader to

find it, see examples below:

- Section2#116-117:

115 for shellfish. The data for this study were collected during the period 2020-04-01 to 2020-04-25, which is an interesting time

period for our case study due to the good mixture between dark and sunlit hours in Scandinavia at this time of the year. All

data are presented in Table 3 and Figure 6 in Section 5.1.

Fig. 6e has no legend, but it has two parameters, which is for which?

- We thank the reviewer for this suggestion. We added a legend to Figure 6(e).
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L141, from subsequent info, we know ra/rw < 1, this means for Eq. 1, DGM roughly =
Ca/H, if so, why leave the item of ra/rw in the equation. This needs to be discussed.
When the whole equation is needed, when the approximate, simplified one may be
relevant in use. By the way, if the simplified equation is used, then the question
regarding the meaning of the so calculated DGM arises, as discussed previously.

- We agree with the reviewer that it’s true that when rw is much bigger than ra, this
term in the equation is small (in our case in average the factor would be 1.5/2.8 =
0.5). The reason why we feel it necessary to present the two factors in equation 1
is because we in our model discuss the influence of the water flow on measured
CMW. The reviewer is again right with the point that the meaning of the calculated
DGM is pointless for our study since we use CMW in the causal model. However,
we think that many readers would find it interesting to compare calculated DGM
concentrations in this study with other studies, since CMW is not a factor
commonly reported.

Table 3 and Fig. 6 show the DGM levels are quite low, as mentioned before. This is
curious.

- Thereviewer is again pointing out a good point that no literature comparison was
presented in the paper. Although the reviewer finds the DGM concentration rather
low, we do believe that the calculated DGM concentrations are in good
agreement with other studies. A comparison with literature has been added to
section 5.1, see below.

- Section 5.1 #537-545:

the pump speed rw and the measured Hg concentration Cprw. Calculated DGM, shown in Figure 6 (f), show similar diurnal
patterns as for C'yy . The average concentration during the measurement period was 14 pg/l (Table 3). During the summers in
1997 and 1998, Gardfeldt et al. (2001) measured DGM by manual sampling at 20 cm depth in open seawater, about 1 km from
540 the Kristineberg Marine Research Station, resulting in DGM concentrations varying between 40-100 pg/L. However, it differs
about 20 years between their and our measurements. More recent continuous measurements of DGM, performed in spring 2015
at the Ra&/Rérvik station in Sweden (about 160 km south of Kristineberg), showed an average DGM surface concentration of
13 pg/l (Mastromonaco, 2016), which is in good agreement with our study. The literature review presented in Mastromonaco
et al. (2017) show surface DGM concentrations varying between 11 to 32 pg/l in the Baltic Sea (15-20 pg/l in spring), 11 to
545 52 pg/l in the North Sea, 12 pg/l in the North Atlantic Ocean (summer) and about 20 to 30 pg/l in the Mediterranean Sea.

L1689, itis unclear which step in the framework will determine if the two or more factors
are causally related, if the causal inference can determine that?

- We thank the reviewer for this question. Causal inference itself cannot determine
if two or more factors are causally related from observational data alone. Itis
necessary to define a priori causal assumptions in the form of causal models as
suggested in our framework. However, it is possible to check if the a priori causal
assumptions encoded in the causal model “fits” to the observed data. If two
factors are causally not(!) related, they are also independent (except in very very
very rare circumstances in which two opposing causal effects exactly cancel
each other out). As the causal model provides (automatically) a set of
independence criteria between variables, these criteria can be checked against



245

the observed data. If they match, the model is said to be “faithful (see Spirtes et
al., 2000) to the data. We clarify this concept now explicitly in Section 3:

Section 3 #244-249:

independence criteria are derived using mathematical methods such as d-separation (Pearl et al., 2016). These independence
criteria derived from the assumed causal model can later be used to empirically validate the plausibility of the DAG against
the observed data by checking for expected associations, or the lack thereof. Causal relations are not discovered from the data
directly but evaluated by assessing whether the observed data are consistent with the independence relations implied by the a
priori defined causal models. This concept is referred to as the faithfilness assumption, i.e., that the observed data follows the

independence criteria suggested in the assumed causal graph (Spirtes et al., 2000). Tools exist, such as DAGitty (Textor et al..

250 2016) that automatically derive these independence criteria from graphical causal models.

L180-185, it appears that the causal arrow is what we assign or assume before the
causal inference, rather than an outcome of the causal inference. This is, among others,

what confuses me.

220

We thank the reviewer for this bringing up this point. The reviewer is right in that
causal arrows in the proposed framework are specified a priori and are not an
outcome of the causal inference itself because itis not possible to directly
estimate the direction of cause-and-effect from data alone (a computer cannot
distinguish associations from causations). In the proposed framework, the a
priori causal models provide a qualitative specification of assumed cause-effect
directions based on domain knowledge and experimental evidence. Causal
inference, as suggested in our framework, then provides the quantitative effect
sizes conditional on this assumed causal structure, and it evaluates, via the
earlier discussed independence criteria, whether the observational data are
consistent with the qualitative causal model. We have clarified this distinction
now in Section 3 of the manuscript:

Section 3 #219-220 and #222-224:

with the arrow — indicating that solar radiation is a cause of changes in surface temperature, and not the other way around.
Note that in this framework, causal arrows are not inferred from data but represent a priori assumptions about cause-effect
directions derived from domain knowledge or experimental evidence. The graphical representation of causal models through

DAGs is qualitative, i.e., it provides information about the direction of cause-and-effects between variables, but it does not

provide information about the strength or functional properties of the causal relationships. Causal inference, as proposed in

this framework, provides the quantification of effect sizes and it evaluates whether the observational data is consistent with the

assumed qualitative causal structure. Pearce and Lawlor (2016) provide an overview of properties of DAGs representing causal

225 models:

From time to time, this becomes unclear: the casual inference is for solar and Ca or for
solar and DGM?

The reviewer is right, and we thank the reviewer for pointing out this issue since
this was causing confusion in our paper. We have now added information about
our choice to use CMW instead of DGM in our model and have changed the text
throughout the paper to be clear that we used and studied CMW, not DGM, in the
model, see text below:



- Section 2.1 #159-163:

r,, denote the flow rates of purging air and seawater (/min), respectively. When studying Equations (1) and (2) it becomes
160 clear that sea water temperature is already integrated into the calculation of DGM, which can cause uncontrollable feedback
loops when studying direct effects between DGM and sea surface temperature in our model. To avoid this problem, Cyyw
was chosen as a outcome variable instead of DGM in this study. Calculated DGM concentrations, which in this study only are

presented for comparison, are presented in Table 3 and Figure 6 (f) in Section 5.1.

L250-251, regarding the nature of the effect, direct or indirect, again it seems that we
need to pre-assign or assume it like the causal arrow, rather than an outcome of the
causal inference.

- We thank the reviewer for raising this point about the nature of direct and indirect
effect and the role of causal models. We agree that the classification of effects as
direct or indirectis not discovered automatically by the causal inference itself,
but is rather defined a priori by the assumed causal model. In our proposed
framework, the DAG specifies in a transparent way which causal paths are
assumed to exist, and thereby also if an effect acts directly or indirectly on an
outcome. Then, our with such an a priori assumed causal model, our frameworks
allows to estimate the magnitude of the corresponding direct and indirect effects,
conditional on the assumed causal model.

To clarify this potential ambiguity, we have added a clarification in Section 4.1:

- Section 4.1 #304-306:

Causal models allow us to distinguish between a direct effect, which includes the part of the total effect of a forcing that acts
immediately on an outcome, and the indirect effect, which accounts for the share of the effect size that is mediated through
another factor. In other words, the distinction between direct and indirect effects is defined with respect to an a priori assumed

305 causal graph. With such a graph, our frameworks estimates the magnitude of these effects conditional on the specified causal

paths which usually cannot be identified from observational data alone.

L306-308, how were the simulated data generated? From the data of Table 3 and Fig. 6,
or from running the causal inference model? This is unclear. What software used to
generate the simulated data?

A general comment, by the way, throughout this paper, it is always unclear if the causal
inference was run or conducted by what software or causal inference model(s), any
commercial software? If so, unless it is copyright or patent protected and thus cannot
be disclosed, we need to know the brands or names of all the software and models used
in this study, and which is used in which step to do what. This important info is missing
and needs to disclosed in the early beginning as given by a list (like for experimental
work, a list of chemicals and equipment used), like in a methodology section for the
causal inference.

Furthermore, each time when a specific causal inference operation along the way going
through the framework, we’d like to know what specific software or model(s) was used
for this specific step or task or operation, with relevant references provided for more
technical details.



- We thank the reviewer for this important comment regarding the transparency
about the used software and code. We have clarified in the manuscript that the
simulated data were generated by forward-sampling from generative models that
represent the assumed causal models. The simulations were used only to verify
that the statistical models can recover known parameters and were not used as a
substitute for inference from observational data later in the paper. We have
clarified this in Section 4.4., including a statement listing the software packages
used for creating the simulated data.

In addition, based on the reviewer’s recommendation, we have added a
dedicated paragraph at the beginning of Section 4 that lists the software and
modelling tools used throughout the causal inference workflow. We emphasise
also that the full software implementation, including simulation code, model
specifications, diagnostics, and creation of the visualisations, are publicly
accessible in the replication package which hopefully supports full
reproducibility of our results.

- New paragraph in Section 4 #289-294:

Software and implementation

All steps of the framework were implemented using open-source software. DAGs and implied conditional independence rela-
290 tions were derived using DAGitty (Textoretal., 2016). Bayesian statistical models were specified in R with the rethinking
package (McElreath, 2020) and St an (Stan Development Team) as underlying inference engine. Data preprocessing and visu-
alisations were performed in both R and Python using standard specific libraries. No commercial causal inference software
or simulation software was used. All code and data required to reproduce the steps of the causal framework are provided in the

replication package accompanying this manuscript.

- Section 4.4 #371-375:

370 4.4 Step 4: Generate simulated data based on causal models and identified independence criteria.

Simulated data were generated for each of the proposed causal models. Each simulated dataset was generated from a data-
generating process using forward-sampling with fixed parameter values that reflect the causal assumptions encoded in the
DAGs. As software, we used R with the rethinking package and Stan as underlying inference engine to implement the
generative models. The simulations serve as a verification step to test if the statistical models can recover known parameters
375 under assumed causal structure. They do not serve as a substitute for inference on observational data. Further details and results

of the simulation are presented as supplementary material in Appendix B.

L390, how to verify?

- We thank the reviewer for this question. In Step 6, we added more details about
the verification process, including when we considered verification to be
successful.

- Section 4.6 #460-463:
4.6 Step 6: Verify the models on the simulated data.

In this step we show that the models can estimate the parameters set for the simulation and identify independence relations
460 in simulated data. Each model was verified on the simulated data sets created in Step 4 by comparing the posterior parameter
estimates with the known parameter values used in the data-generating process. The verification was considered successful if
the posterior means recovered the true parameter values and if parameters corresponding to absent causal paths were estimated

close to zero. The results of the parameter estimates for all models under simulated data are given in Appendix B.



L498-499, total effect = direct effect + indirect effect, this is valid only for the cases
where both effects are positive or negative, i.e., same direction. If one is positive and the
other is negative, that total effect sum is not valid, or what is the meaning of that sum?
For example, solar effect on T, two effects, one effect is that solar can enhance DGM
generation, leading more DGM in water, while on the other hand, the other effect is that
solar can increase water T, which in turn can lead to higher Henry’s coefficient, and thus
less DGM at the higher T, e.g., at Tw =1 C, DGM at equilibrium =7.2 pg/L, at 25 C, DGM =
3.8 pg/L. So, the two effects of solar radiation are opposite in direction. Then, how can
these two opposite effects be additive in the causal inference? Or how the causal
inference handles the opposite effects? Or the direction of the effect does not matter,
since the cause inference tells if the effect is operative or not and in what extent?

- We thank the reviewer for raising this important conceptual point. The total effect
is the sum of direct and indirect effects. If some factors are negative and some
positive, some of the effect would cancel each other out. The total effect would
then be the sum that is left. This definition holds regardless of the sign of the
individual causal paths. We have clarified this in Section 5.2.

We agree that calculated DGM is indeed negatively influenced by seawater
temperature, as evident when studying Equation 1 and 2. However, we further
clarify that the causal model in this study is specified at the level of measured
mercury concentration Cuw, rather than an isolated subprocess such as
equilibrium partitioning governed by Henry’s law. Empirically, the inferred effect
of seawater temperature on Cwy is positive in the observational data, indicating
that temperature-related processes in this measurement context dominate the
sub-mechanisms described by Henry’s law. We have clarified this aswell in the
manuscript under Section 5.2.

- Section 5.2 #581-582:

580 Indirect Effect, =bs s beg. (13)

Sal— Cpgwr

In summary, a part of the association between Sel and Cyry “flows™ via Tg. The total effect of Sol on Cpryy is the sum

of direct effect and indirect effect. This definition holds regardless of the sign of the individual path-specific effects: indirect

effects with opposite signs represent competing causal mechanisms that (partially) can cancel each other out.

#591-595:

1My, is the sum of the direct and indirect effects, thus in fact the total effect of Sol on C'yy . Although individual mechanisms,
such as the temperature dependence of Henry’s law, may suggest opposing effects on equilibrium DGM, the causal model in
this study is specified for measured mercury concentrations Cprw . Empirically, the inferred effect b, , of seawater temperature
T's on Cprw is positive in the observational data, which suggest that temperature-related processes in this measurement context

595 are stronger than the opposing sub-mechanisms.

L582-583, What can the causal inference tell about the factors and their relationships
that we still don’t know, as from this particular study regarding DGM? In other words,
what are new from the causal inference that has not been achieved by scientific
experiments and field measurements?

- We thank the reviewer for this important question. We have added a subsection
in the Discussion outlining the novelty and contribution of causal inference within



mercury emissions from oceans in particular and environmental research in
general. We clarify in this subsection that the novelty of causal inference does not
lie in identifying new physical mechanisms but in quantifying and decomposing
the effect of already hypothesised, orin lab experiments discovered, physical
drivers but using only observational and intervention-free data. The insight our
proposed framework provide go beyond correlation analyses and complement
therefore experimental studies by providing effect size estimates that are valid
under explicitly, and transparently, stated causal assumptions. The new
subsection also contain a discussion on the limitation

- New Section 6.1 #680-695:

6.1 What causal inference adds beyond experiments and field observations

The causal framework in this study did not aim to discover previously unknown physical processes governing the forma-
675 tion of gaseous mercury in the oceans. Instead, the contribution lies in quantifving how known processes jointly contribute to
observed variability under observational conditions outside of a laboratory. Specifically, using the suggested causal frame-
work, it is possible to (i) separate total observed association between solar radiation and measured mercury into direct and
temperature-mediated components, (ii) quantify the relative importance of these causal pathways, and (iii) adjust effect esti-
mates for confounding influences such as environmental influences and instrument-intrinsic factors that are difficult to control
680 in field observations. While laboratory and field experiments showed that solar radiation and sea surface temperature influence
mercury emissions, the proposed causal framework allows these effects to be estimated simultaneously from observational data
under explicitly and transparently stated causal assumptions. This causal inference technique therefore provides effect size esti-
mates that are directly interpretable for large-scale modelling efforts or policy assessments, where controlled experiments may
be infeasible. Causal conclusions, however, are conditional on the assumed causal models. DAGs, as graphical representations
685 of causal knowledge, make prior causal knowledge explicit which allows other researchers to understand and criticise more
easily the underlying assumptions. Such criticism is important because causal models are not immune to misspecification,
such as by omitting unobserved but relevant confounders, leaving out, or misdirecting edges, which may lead to biased effect

estimates. Table 5 lists a set of possible misspecifications and their mitigation strategies.

Table 5. Potential impacts of DAG misspecification and generalised mitigation strategies.

Misspecification Potential Impact Possible Mitigation Strategies

Omitted variable An unobserved and omitled confounder can create a  Explicitly documenting assumed causal structures as DAGs allows
“back-door” path which can lead to biased effect estimates.  for easier peer review and criticism. Another strategy can be to
determine the required strength of an unobserved confounder to

negale an assumed causal relationship.

Unmodelled nonlin-  DAGs themselves do not communicate assumptions about  The use of posterior predictive checks and visual residual analysis
earity linearity or nonlinearity. Then, especially when using  (see Appendix G) can he used to detect systematic misfits.
GLM, a linear approximation may miss threshold effects

or misrepresent rates of change in complex systems.

Missing or misdi- Incorrect or missing edges may reverse the interpreted  The justification of the direction of cause-and-effect using physical
rected edges flow of causality which potentially can lead to collider bias  laws, temporal precedence, or literature.

(see Appendix D) or incorrect interventions.

L588-589, pump speed or water flow rate rw, L119 mentions that rw varied between 0
and 40 L/min. Then, first, if rw = 0, rA/rw is meaningless mathematically; if rw = 40, then
rA/rw is 1/5/40 = 0.0375, very small, and so this item can be ignored, then DGMcal =
Cmw/H. So this pump speed variation largely limits the accuracy of this auto-method.
By the way, it remains hard to grasp or understand why DGM-real can be obtained by
Cmw(1/H + rA/rw), how equilibrium gets there and why rA and rw got involved. The first



itemin Eq. 1is about equilibrium and the second one is about the dynamics of the
sampling flow, and then why DGM involves both equilibrium and dynamics?

- We thank the reviewer for discussing this issue further. The second term in
equation 1 is present due to the design of the system where the contact time
between water and air is crucial to determine if the system is in steady state or
not. This is important when calculating the efficiency of the system of how much
mercury can be extracted from the system. The flow rates of air and water do
affect the calculated DGM, as the reviewer also has noted with the above
comment. Since equation 1 to calculate DGM only is used for demonstration in
our study (and not used in the causal study), we advise the reviewer and the
reader to further explore the derivation of the equation where it is originally
explained in Andersson et al. 2008a.

The pump speed involves measurement operational error or artifact, and so itis not a
real physical effect for DGM like solar and/or Tw. Pump speed is not a direct effect, nor
an indirect effect; it just has operational errors. One is about aquatic mechanisms and
processes involving DGM generation kinetics and equilibrium and the other is about
DGM measurement and measurement errors. Mixing the two in the causal inference is
confusing.

- We thank the reviewer for raising the importance of differentiating between real
physical processes of mercury emissions and measurement-related artefacts.
We agree that pump speed does not represent a physical process. To address
this concern, we modified the terminology throughout the entire manuscript to
consistently refer to pump speed as instrument-intrinsic factor. The causal
analysis remains focused on disentangling the effect of environmental
processes, such as solar radiation and sea surface temperature. However, the
statistical models recognise the disturbing influence a varying pump speed.

32% effect for solar radiation is due to indirect effect of water temperature. But, as
mentioned before, the effects of solar and T on DGM are opposite. This result of 32%
effect size seems to show that T has a positive effect just like solar radiation, higher
solar higher DGM, but higher T, lower DGM based on equilibrium.

By the way, in many cases as shown by many field studies, the water T varied quite less
during a day (as compared to solar radiation), only to a small extend as a result of very
high specific heat of pure water (due to the Hydrogen bonding of the highly polar water
molecules). But, 32% is almost 1/3, which means the effect of T is almost very strong.

On the other hand, T can not only change Henry’s constant and the Hg air/water
distribution equilibrium (constant), but also can change the kinetic rate constants (and
rates) of photochemical and/or thermal reduction of Hg(ll) to Hg(0). This is another effect
of water T. Then this effect is positive, enhancing DGM generation, like solar radiation.
Thus, T has two opposite effects: positive to enhance the kinetics, and negative to
increase H, then decrease DGM at equilibrium.

- Itis averyinteresting point raised by the reviewer and we thank the reviewer for
this nice discussion point. We agree that calculated DGM is negatively correlated



with temperature, via the calculation of Henry’s law coefficient, see equations 1
and 2. However, in our study, we removed this issue when choosing to instead
study the measured Hg concentration (CMW). Our findings in this study were that
our measured CMW showed a positive correlation to measured seawater
temperature where an increase of 1K would lead to an increase in CMW of 0.156
pg/l (see Table 4). Our study also showed that the fraction of this temperature
effect, that was associated with the indirect effect of solar radiation affecting the
temperature, was 32%, which can be observed when looking at the standardised
values of model m4 in Table 4: 0.186 (indirect effect of Sol mediated by sea
surface temperature) versus 0.429 (the total effect of Ts) = 32%. This interestingly
shows that the temperature effect on CMW can be explained by the indirect
effect on solar radiation to only 32%. Other effects of temperature on CMW could
be, as the reviewer mentioned, for example changing kinetic rates of abiotic,
biotic and thermal reduction processes.

Last but not the least, it would be helpful to provide a short glossary of the terms as an
appendix, especially those involving causal inference.

- We thank the reviewer for this suggestion. We have added a short glossary in
appendix.

New Appendix | #976-994:

Appendix I: Glossary of terms from causal inference and mercury chemistry

I1 Causal inference related terms

Causal inference is the estimation of effect sizes under explicit assumptions about the causal structure underlying the data.
Causal models are an explicit specification of assumed canse-effect relationships between variables in the data.
980 Confounder is a variable that causally influences both an exposure and an outcome of interest which can lead to biased effect estimates.
Conditional independence is the independence between two variables given a third variable.
d-separation 1s a graphical method on DAGs for deriving conditional independence relations from a causal model.

Directed acyclic graphs (DAGs) are a graphical representation of a causal model in which nodes represent variables and directed edges

causal directions.
985 Direct effect is the component of an effect that is represented by a direct causal path between two variables.
Indirect effect is the component of an effect that is mediated by one more more intermediated variables.

Total effect is the sum of direct and indirect effects.
12 Mercury related terms

Dissolved gaseous mercury (DGM) is gaseous mercury species dissolved in water.
990 Elemental mercury (Hg”) is the volatile, gaseous form of mercury.
Measured gaseous mercury (T ) is the concentration of elemental mercury measured in the gas phase extracted from seawater.
Mercury evasion is the emission of elemental mercury from seawater into the atmosphere.
Sea surface temperature (T's) is the temperature of surface seawater at the influx to the measurement device.

Solar radiation (Sel) is the incoming radiation from the sun measured at the experiment side.
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