Reviewer 1:

The paper introduces a Bayesian graphical causal inference framework to investigate solar
radiation and temperature effects on dissolved gaseous mercury (DGM) concentrations.
This is an exciting contribution with clear potential to advance environmental data analysis.

- We thank the reviewer for this kind comment. We agree that it is our intention with
this technical note to advance environmental data analysis in line with other fields
that use Causal and Bayesian methods.

However, major revisions are required to ensure that the method is applied following best
practices and clearly communicated to a broader audience in environmental sciences who
may not have a statistical background.

- We agree with the reviewer that we must ensure that our proposed framework
follows best practices and is communicated in a way that is applicable,
understandable, and useful for a broader audience in environmental science,

Major Comments
1. Justification for Bayesian Approach

The study does not explicitly demonstrate that frequentist methods fail or that Bayesian
inference provides a clear empirical advantage. No comparison is made (e.g., between
regression or structural equation models and their Bayesian alternatives) to show
instability or bias under a frequentist framework. Since Bayesian methods are technically
more complex, the manuscript should clarify when and why they are preferable and under
what conditions their use provides meaningful benefits.

- We thank the reviewer for the opportunity to justify our methodological choice of
using a Bayesian approach. We agree that frequentist methods would not
necessarily fail. However, we chose a Bayesian Data Analysis approach for three
specific advantages that align with our framework:

= Mediation analysis: A core component of our study is estimating indirect
effects (Section 5). In a frequentist approach, estimating indirect effects,
which involves the product of regression coefficients typically requires strong
approximations (Delta method in Sobel test for example), or bootstrapping.
The Bayesian approach allows the simple multiplication of posterior samples
of the path coefficients to derive the posterior distribution of the indirect
effect. We argue that the “up-front” complexity of the Bayesian setup is
rewarded with a rigorous and straightforward quantifaction of mediation.

= Formalising expert knowledge: Our framework aims to offer ways to formalise
the use of expert knowledge. Bayesian approaches provide a mathematically
consistent mechanism to encode physical constraints and domain
knowledge for example in the choice of priors.



= Regularisation: Even where prior knowledge is limited, the use of weakly
informative priors provide regularization. This ensures stability in parameter
estimation in situations with strong correlation of predictor variables, such as
the relationship between solar radiation and temperature.
- We have added a textbox in Section 4.5 summarising these justifications:

Section 4.5 Textbox at #386:

Justification for the Bayesian approach

Bayesian statistical modelling allows the explicit quantification of uncertainty due to mediated effects. Such a mediated
effect exists in our case due to the mediation of the effect of solar radiation through changing sea water temperature.
While conventional frequentist methods require for such quantitation approximations for the product of coefficient
(e.g., in the Sobel test) (Yuan and MacKinnon, 2009), Bayesian inference allows to obtain the mediated effect by
simply multiplying the posterior samples from the path coefficient (i.e., the effect sizes for each “arrow™ on the causal
path). Additionally, the Bayesian approach allows the formal inclusion of expert knowledge through priors. And even
when prior knowledge is limited, the use of weakly informative priors provide natural regularisation that can stabilise
estimates in the presence of correlated predictors (Lemoine, 2019). We therefore argue that the “up-front” complexity
of using a Bayesian approach is rewarded with a more rigorous quantification of mediated effects and greater stability

in parameter estimation.

2. Temporal Novelty and Model Structure (#255)

The authors claim that previous studies suffered from temporal limitations. While this
study uses high-frequency data, the model itself does not incorporate time as a structural
or dynamic dimension—it treats each time step as an independent observation. The
manuscript should clearly explain how this approach differs from earlier studies and
whether the higher temporal resolution truly enhances inference or simply provides finer
data granularity.

- We thank the reviewer for this observation. We agree that our models treat time
steps as independent observations and that they do not explicitly model temporal
dynamics for example through autoregressive terms. We have revised the
manuscript in Section 4.1 to clarify that with “temporal limitations” of previous
studies, which deployed discrete sampling strategies, we referred to their low
sampling frequency rather than any limitations in their modelling strategy.

- The high temporal resolution of the automated sampling deployed in our study is not
only aiming for a finer granularity of the data, but itis a prerequisite for being able to
separate direct and indirect effects for two specific reasons:

= Solarradiation varies on a timescale of minutes, wheres sea surface
temperature, as also highlighted by the second reviewer, responds more
slowly due to the thermalinertia. We need a high time resolution to
distinguish the immediate photochemical effects of sun radiation from the
indirect and slower thermal effects. Low-frequency data would collapse the
distinct timescales which makes the effects inseparable.



=  Asecond, yet more secondary reason is that large sample sizes lead to a
more robust converge on posterior distributions, even if the prior
assumptions are non-informative or weak.

- We reflect these changes in Section 4.1 #309-319:

temporat-imitabiens: Barlier studies investigating the correlations between DGM concentration, solar radiation and temperature
310 relied on discrete sampling campaigns with limited temporal resolution (Amyot et al., 1997; Girdfeldt et al., 2001; Dill et al.,
2006). However, solar radiation varies on a timescale of minutes, whereas sea surface temperature responds more slowly due
to the thermal inertia of water. Low-frequency data collapse these distinct timescales which makes the variables statistically

collinear and inseparable. Therefore, in order to separate the direct effect of solar radiation on mercury concentrations from

the indirect effects mediated by sea surface temperature, the data must contain sufficient variability in both the exposure and
315 the mediator. Also, since sea surface temperature already is used to calculate DGM (see equations 1 and 2), €'y was chosen
as outcome variable instead of DGM in this study. This study provides data with high temporal resolution from automated

long-term measurements of gaseous Hg concentration, solar radiation and surface seawater temperature—wth-the st

= By using causal modelling, this study extends

prior correlation-based research by quantifying atms—te-quantify the direct and indirect effect sizes of solar radiation on Hg

320 concentration in seawater.

3. Distributional Assumption for C_{MW} (#355)

The assumption of a Normal likelihood for C_{MW}is weakly justified. While the Normal
distribution is commonly used, its prevalence does not imply appropriateness; the appeal
to the Central Limit Theorem oversimplifies environmental concentration data, which are
typically multiplicative and right-skewed -- Figure 11(e) shows a long-tailed distribution.
The authors could either demonstrate that residuals are approximately normal (supported
by residual-fitted value plots) or acknowledge this limitation and discuss whether a log-
normal likelihood would be more appropriate.

- We thank the reviewer for this observation and suggestion regarding the choice of
likelihood for Cmw . We agree that environmental data are often multiplicative and
that the Normal distribution. To address the alternative of a log-normal likelihood,
we have added the Appendix “Discussion on the distributional assumption for Cuw.
In this appendix, we plotted, as suggested, the residuals of the Normal model
against fitted values (Figure G1) and concluded that the plot suggests an increasing

variance with the mean of Cmy.

As a consequence, we implemented a modified model miog that uses a log-normal

likelihood. We then compared the parameter estimates of the Normal and Log-
Normal models by calculating the implied effects on Cuw, listed in Table G1.

The results of this comparison show that all effect sizes differ by less than 1%, which

is why we decided to accept the original Normal likelihood assumption. However,
we have updated the main text at Section 4.5 to acknowledge the limitation of the
Normal assumption, and we refer to the Appendix for the detailed analysis.
Section 4.5 #429-430:



430

935
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Normal distribution and environmental phenomena typically involve the aggregation of a large number of underlying processes.
Furthermore, we had no reason to assume another distribution for the outcome gy However, Appendix G discusses the

alternative choice of a log-normal likelihood for Cpyyy- that can often be appropriate for environmental data. As part of the

New Appendix G #932-962:

Appendix G: Discussion on the distributional assumption for Cprywy

While assuming that the outcome data is normally distributed can be sensible in many cases, environmental data may show a
multiplicative and right-skewed character which may also be indicated in the long-tail distribution of the observed C'ry- data
shown in Figure 11 (e). In order to check if the normal likelihood assumption is appropriate for C'yyw, we plotted the residuals
of model 7.4 against its fitted values. The resulting residual plot visualises the predication error between each observation
and the model’s estimate. If the assumption of normal distributed data for C'ysw holds, the residuals will be symmetrically
distributed arcound zero with a more or less constant spread. However, the plot in Figure G1 suggests that the spread of the
residuals is not constant but instead widens as the predicted Cpyw increases, indicating that the model’s error scales with the
magnitude of Cpyyy. This pattern would justify the adoption of a Log-Normal likelihood which, unlike the Normal likelihood,

models a multiplicative and long-tailed distribution nature of C'pyyy.

Prediction Error (Observed - Predicted)

Predicted Cyuy

Figure G 1. Residual plot which shows the prediction error against the predicted Cprw

Modified model m.4 with log-normal likelihood

As we cannot conclusively exclude the appropriateness of a Log-Normal likelihood for Cpryy, we modified the likelihood of

model 14 listed in Table (2) Equation (9) to

Cuw, ~ Log-Normal(p:, 7). (G1)



This modification provides a new model m{fg and it entails that the linear predictor equation for y; now defines the mean on
the log-scale. Although the mathematical notation of the equation does not change, the interpretation of the coefficients b.. ..
be.t. beaw, and b. - is now on a logarithmic scale which needs to be considered when comparing effect sizes later. Similarly, the
priors are now applied to multiplicative effects. However, as we use weakly informative priors together with a large number of

950 observations, the specific choice of prior scale is less critical for the posterior estimates.
Table G1 lists the resulting parameter estimates. To compare the parameter estimates thge table also lists the implied effect
size for each predictor. This allows us to compare the parameter estimates even if the models use different mathematical scales.

We calculated the implied effect size for the normal model as a percentage of the mean concentration, given by a.:

b
Effect(%) = —= - 100. (G2)

a,.

955 For the Log-Normal model, which is not additive but multiplicative, we calculated the implied effect size for each parameter

by directly using the exponential function:
Effect(%) = (e —1)-100. (G3)
The comparison suggests that although the log-normal is mathematically more rigorous, it has a very small effect on the

Table G1. Comparison of estimated parameters for Cyry- between the Normal (7m4)
and Log-Normal Enﬂfs) models. The parameters are standardised. The implied effect

is the change in % in C'yryy- per 1 SD increase in predictor.

Posterior Mean Implied Effect IMfE
Parameter Model
[90% CIj (%) [90% CI] (pp)
o ma (Normal) 0.383 [0.369, 0.395] +16.0[15.4, 16.5]
Solar Radiation (b, .) ) 02
m"® (Log-Normal)  0.147 [0.142, 0.152] 1158153, 164]
4 (Normal) 0.429 [0.416, 0.441] LIR0[17.4, 18.5]
Surface Temp. (ot} g 03
mlf® (Log-Normal) 0,168 [0.163, 0.174] +183 [17.7, 19.0]
_ m4 (Normal) 0.125[0.138,-0.113]  -5.2[-5.8 -47]
Wind Speed (b ..) ) _ 0.4
m® (Log-Normal)  -0.058 [0.063,-0.053]  -56[-6.1,-5.2]
ma (Normal) 0.265 [0.254, 0.276] 111 [106, 11.6]
Pump Speed (b.. ;) \ (1%
m'® (Log-Normal)  0.113[0.109, 0.118] +11.9[11.5,12.5]

"pp" denotes percentage points. Implied effects for m4 are approximate based on mean Cyyye 22 2.39.

parameter estimates, suggesting that the Normal assumption is a sufficient approximation for the data and that therefore the
960 scientific conclusions regarding the effect sizes for mercury concentration are robust to the choice of likelihood. This robustness
to the choice of the likelihood may stem from the small standard deviation compared to the average value for the concentration

data (Limpert et al., 2001},

4. Indirect Effects and DAG Interpretation (#520)

For model m4, the paper discusses indirect effects through Sol> T_S > C_{MW} and Sol >
W > C_{MW} but omits the valid multi-step path Sol>T_S~>r W-> C_{MW}. The authors
should clarify whether such compound mediation effects are included in the total indirect
effect and provide clearer guidance on interpreting direct, indirect, and total effects from
the DAG.

- We thank the reviewer for pointing to the compound mediation path Sol>T_S~>r_ W
> C_{MW}. We have revised Section 5.2 (just before Table 4) and added a note in the
table to acknowledge this additional path. We clarify that the multi-step path
contributes only weakly to the total indirect effect due to the small estimated effect
of sea surface temperature on pump speed b_{nt}, and which, unlike the estimated
effect of sol on pump speed b_{r,s}, contains zero in its 90% credible interval (Table
F1). Consequently, we do not interpret the compound path Sol>T_S~>r W~
C_{MW} as a substantively important mediation mechanism in model m_4.



- Changes in Section 5.2 #626-633:

could have cleared the inlet of the pump from algae, resulting in a higher flow speed. Unlike model 13, where the indirect
620 effect of solar radiation on Cpyyy is only mediated by the sea surface temperature T's, model m, allows for two additional
mediation paths: Sol— rw — Carw, and Sol — Ts — rw — Carw . However, the latter mediation path contributes only very
weakly to the total indirect effect due to the small effect of surface temperature on pump speed (b, ;). In contrast to the effect
of solar radiation on pump speed (b,. .). which is also relatively small, the credibility interval of the effect size b, ;, listed in
Table F1, contains zero. We therefore cannot exclude the possibility that the effect of sea surface temperature on pump speed
625 is practically negligible and consequently do not interpret this compound path as a substantively important part of the total

indirect effect. In summary. the inclusion of the confounding external factor wind W and instrument-intrinsic factor water

- Change in Table 4:

Table 4. Estimates of the direct, indirect, and total effects based on observed data in A pril 2020 without (model m3 ) and with (model my )
recognition of wind and pump speed as external influences. Bold values are mean values; standard deviations are in parentheses; 90%

confidence intervals are depicted in square brackets.

Effect on mea- Parameters Standardised value (sid. dev. ) De-standardised value (std. dev.) Unit for Change due
sured gaseous [0 confidence interval] [90% confidence interval] de-standardised to external
He Chrw Model 3 Model 14 Model 1z Model m 4 values Influcnces
Direct effect of  be. 0.360 (0.009) 0.383 (0.008) 1751077 1.86-10 7 m. {f’;)_l +6.3%
solar radiation Sol [0.345, 0.374] [0.371, 0.395] (436-107%) (3.67-107%)
[1.67, 1.81]-10~% [1.80, 1.92]-1077
Indirect effect of  beche ot 0,189 (0.006) 0.186 (0.007) 0.92.1077 0.90-107 2% o 18%
sl brosher  [0177,0.197] [2.175, 0.198] (291-107%) (3.66-107%)
[0.86, 0.96]- 107 [0.84, 0.96]- 1072
Total effect of b, , + 0.549 (0.011) 0.572(0.011) 2.65-107 277107 . {f})_l +4.5%
Soi'! beshe s+ [0.530,0.564] [0.553, 0.590] (5.33.107%) (5.44-107%)
by aber [257, 2731072 |2.68, 2.86]-107 2
Direct effect of b, 0,420 (0.009) 0,429 (0.008) 1.53.107¢ 156101 L +1.96%
Ts [D.405, 0.435] [0417, 0.441] (328107 %) (2.91-10~%)
[1.48, 1.58]-107 ! [1.51, 1.61]-10 ¢
Direct effect of b - -0.125 (0.007) - 287107 .zt -
wind speed W [-0.137,-0.114] (1.61-107%)
[-3.14, -2.60]- 10~ 2
Direct effect of b, . - 0.265 (0.007) - 221107 no(L)y~ -
pump speed [0.253, 0.277] (6.67-107%)
[2.11,2.31]-1077

!: The additional compound mediation path Sol— T's — ry — Capwe (b, by b, ) is practically negligible due to the small effect b, ,

which includes zero in its 90% credibility interval (see Table F1).

5. Limitation of dependence on DAG specification (#665)

The causal conclusions rely on the correctness of the assumed DAG structure in many
aspects, in addition to independence, mis-specified relationships or omitted variables -
such as unmodeled nonlinear effects or unobserved confounders - could lead to
misleading causal inferences. The authors should discuss the potential impact of those
DAG misspecification.

- We thank the reviewer for suggestion to include a discussion on the potential
misspecification of causal models. We agree that the causal conclusion derived
from observational data depends on the assumed causal structure and that DAGs,
as representation for assumed causal structures, can be misspecified through
omitted variables, incorrect directions of cause-and-effect, or inadequate functional
assumptions which can affect the causal interpretation of the results. We have
therefore revised the manuscript to explicitly reflect and discuss these limitations.



In Section 3, when introducing the framework for causal inference, we clarify that a
key function of graphical causal models is to make the researchers’prior causal
assumptions explicit which opens these assumptions to criticism and possible
refinement. Furthermore, as part of the discussion in Section 6, we explicitly state
that the causal conclusions are conditional on the assumed causal models and that
DAGs are notimmune to misspecification. We introduced Table 5, which
summarises a set of possible DAG misspecifications such as omitted confounders,
unmodelled nonlinearities and missing or misdirected edges, discusses their
potential impact on the results, and provides general mitigation strategies.

- Changes in Section 3 #239-249:

A key function of the graphical causal model is to make prior assumptions explicit. By explicitly encoding the researchers’
240 prior causal knowledge as DAG they become open to criticism and possible later refinement. Furthermore, it is necessary to
define the direction of cause-and-effect a-priori, because statistical models cannot distinguish between cause and effect as they
only identify association but not causation. If the direction of cause and effect is not known, or if the existence of a causal
relationship is uncertain a-priori, several alternative causal models can be proposed. Based on the proposed causal models,
independence criteria are derived using mathematical methods such as d-separation (Pearl et al., 2016). These independence
245 criteria derived from the assumed causal model can later be used to empirically validate the plausibility of the DAG against
the observed data by checking for expected associations, or the lack thereof. Causal relations are not discovered from the data
directly but evaluated by assessing whether the observed data are consistent with the independence relations implied by the a
priori defined causal models. This concept is referred to as the faithfulness assumption, i.e.. that the observed data follows the
independence criteria suggested in the assumed causal graph (Spirtes et al., 2000). Tools exist, such as DAGitty (Textor et al.,
250 2016) that automatically derive these independence criteria from graphical causal models.

- Section 6.1 #684-688 and Table 5:

be infeasible. Causal conclusions, however, are conditional on the assumed causal models. DAGs, as graphical representations
685 of causal knowledge, make prior causal knowledge explicit which allows other researchers to understand and criticise more
easily the underlying assumptions. Such criticism is important because causal models are not immune to misspecification,
such as by omitting unobserved but relevant confounders, leaving out, or misdirecting edges, which may lead to biased effect

estimates. Table 3 lists a set of possible misspecifications and their mitigation strategies.

Table 5. Potential impacts of DAG misspecification and generalised mitigation strategies.

Misspecification Potential Impact Possible Mitigation Strategies

Omitted variable An unobserved and omitted confounder can create a  Explicitly documenting assumed causal structures as DAGs allows
“back-door” path which can lead to biased effect estimates.  for easier peer review and criticism. Another strategy can be to
determine the required strength of an unobserved confounder to

negate an assumed causal relationship.

Unmodelled nonlin-  DAGs themselves do not communicate assumptions about  The use of posterior predictive checks and visual residual analy sis
earity linearity or nonlinearity. Then, especially when using (see Appendix G) can he used to detect sy stematic misfits.
GLM, a linear approximation may miss threshold effects

or misrepresent rates of change in complex systems.

Missing or misdi- Incorrect or missing edges may reverse the interpreted  The justification of the direction of cause-and-effect using physical
rected edges flow of causality which potentially can lead to collider bias  laws, temporal precedence, or literature.

(see Appendix D) or incorrect interventions.




Minor Comments
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1. #330

The priors (e.g., Normal(0.5, 1), Normal(0.5, 0.5)) appear somewhat arbitrary and
not elicited from domain experts. The study would be strengthened by (a)
justifying these priors through expert input or empirical reasoning, or (b) using
uninformative priors.

We thank the reviewer for raising the point regarding the justification for the choice
of priors. We have revised the paragraph that provides the rationale and the role of
the used priors in Section 4.5.

Specifically, we now explicitly state that the priors are weakly informative rather than
expert-elicted or non-informative, and we explain why this choice is appropriate for
our analysis. We further added a clarification that uninformative priors are not
generally preferable in applied regression models, and we refer to recent
methodological work that recommends weakly informative prior as a principled
default in BDA (Lemoine, 2019). Finally, we also emphasise that the plausibility of
the priors was asses using prior predictive simulations.

Section 4.5 #4481-454:
Priors

In general, a prior tells researchers what assumptions are made about a parameter before they see any observed data. These
assumptions can range from highly informative, where the distribution encodes strong prior beliefs about the parameter values,
through weakly informative priors that provide mild regularisation, to non-informative priors that have very little influence on
the posterior distribution. It is important to note that priors are continuously updated with the available observed data. With
each iteration in BDA, the posterior will be used as new prior for the next iteration. That means, that the more data is available,
the less influence prior beliefs have. With each iterative update, the prior distribution will be more influenced by the data
distribution and therefore become increasingly dominated by the likelihood. In BDA, weakly informative priors are preferred
in applied regression modelling because they provide mild regularisation (Lemoine, 2019). This prevents, for example, extreme
parameter values, while at the same time allowing the data to shape the posterior distribution.

For the models of this study, we used weakly informative priors for all parameters. Because all predictor variables were
standardised. such that the coefficients represent effects on a common scale, we used Normal priors with modest location and
scale parameters that encode a coarse, “order-of-magnitude” expectation about plausible effect sizes and allowing both positive
and negative effect sizes. Furthermore. the Normal distribution can represent a wide range of shapes from perfectly symmetric
to slightly skewed which makes it a suitable choice if no other strong information is available about the shape of the prior

distribution. We assumed exponential distributions for the parameters related to the variances because these must always be

positive. The plausibility of the priors was assessed using prior predictive simulations for our models my to m,. which are

presented as supplementary material in Appendix C.



2. #445

Please clarify how model convergence was assessed under the Bayesian MCMC
framework. Including trace plots or diagnostics is important for verifying
convergence. A useful reference is: Reich, Brian J., and Sujit K. Ghosh. Bayesian
Statistical Methods. Chapman and Hall/CRC, 2019.

- We thank the reviewer for suggesting to improve the documentation of the model
convergence under the Bayesian MCMC framework in the manuscript. We have
revised the manuscript accordingly to explicitly describe how we assessed
convergence, including visual trace plots. In Section 4.9 (Paragraph Workability) we
refer to a new appendix section (Appendix H) that presents trace plots and provides
a detailed discussion of the convergence assessment.

- Section 4.9 #503-504:

500 statistical toolboxes such as rethinking or the underlying Stan library may raise when evaluating the posterior distributions of
the models. As part of the model validation for the proposed models we provide the R-values and effective sample sizes for
each model together with the detailed inference results in Appendix F. We also checked for warnings of divergent transitions
while training the models on the data. A detailed discussion of the convergence assessment, including visual trace plots for the

effect size parameters, can be found in Appendix H.
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New Appendix H

#964-975:

Appendix H: Workability: Assessing the convergence under Bayesian MCMC

We conducted Bayesian inference using a Markov Chain Monte Carlo (MCMC) sampling approach with Hamiltonian Monte
Carlo implemented in Stan (Stan Development Team) using the rethinking interface by McElreath (2020). We assessed conver-
gence using both quantitative diagnostics, including /2 and the effective samples size (ESS/n.) as well as visual diagnostics,
following standard recommendation for Bayesian workflows (Vehtari et al., 2021; Reich and Ghosh, 2019). First, the 1 values
for all parameters were close to 1 and < 1.01 as reported in Table F1. Second, all parameters have effective sample sizes
(ESS/mygr) exceeding 10% of the total sample sizes which we assume sufficiently large (see Vehtari et al. (2021) and Furia et al.
(2022) for a discussion on the sufficient ESS for BDA). Finally, we visually inspected the trace plots to verify adequate mixing,
absence of strange divergent behaviour and stationarity. The trace plots are provided in Figure H1 and show no indication of

non-convergence such as slow trends, chain separation or autocorrelation. Together, these diagnostics provide evidence that the

MCMC chains converged.
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Figure H1. Trace plots for all effect size parameters of models m, (red), ma (orange), ms (green), and my4 (blue).
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3. #445

Both R2 and WAIC are reported and appear consistent. However, if they diverged,
how should this be interpreted? A short explanation of their conceptual difference
would improve clarity.

We thank the reviewer for this suggestion. We added in Section 4.9 a brief
clarification on the difference between R"2 (in-sample explanatory fit) and WAIC
(expected out-of-sample predictive accuracy estimate). We also discuss how a
potential divergence can be interpreted.

Addition made to Section 4.9 #518-521:

adequacy of an individual model. Instead, information criteria such as WAIC can be used to compare models against each
other. We provide WAIC scores for all models as part of the model evaluation in Section 5.3 and in Figure 12. Wheras WAIC
provides an expected out-of-sample predictive accuracy estimate, the coefficient of determination R? summarises in-sample
explanatory fits. In this analysis, WAIC and R? are consistent for the models, but if they were to diverge, it would indicate that

a model either fits the observed data well but generalises poorly, or generalises well but shows a reduced in-sample fit.



4. #605

Figure 13(b) seems to show narrower confidence intervals than (a), but this is hard
to discern. The figure could be redesigned for better contrast. Also, revise the
phrasing “noisier but also more reliable,” as “noisier” typically suggests lower
precision.

- We thank the reviewer for suggesting to improve Figure 13 (b). We have revised the
Figure to improve contrast and interpretability by plotting now the posterior mean
regression functions and their associated 95% posterior credible intervals instead of
the earlier posterior predictive simulations which included observational noise.

This change allows for a better direct visual comparison of the effect sizes. We have
also revised the corresponding Section 6.1 to remove the “noiser”term and to
clarify why model m4 provides a less biased and more causally interpretable
estimate by accounting for mediating and confounding processes.

- Revised Figure 13:
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Figure 13. Comparison of posterior mean regressions of the effect of solar radiation Sol on mercury concentration Carw using model

ma (dotted line) and model ma4 (solid line). Grey shading indicates the 95% confidence interval. Vertical reference lines at Sol= 600 and

800 W/m? are the solar radiation levels used to compare effect sizes between the models.
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Section 6.2 (former 6.1) #711-721:

6.2 Implications for future mercury research and policies

As mentioned in Section 1.1, several studies report an observed significant correlation between measured gaseous mercury and
solar radiation. However, considering the regression only between these two factors results in a very simple model, comparable
to our model 723 (Figure 4 (a)). This model is not comprehensive enough to allow for drawing correct causal conclusions. In
contrast, model m4 (Figure 5) explicitly incorporates both mediation by sea surface temperature (T's) , confounding by wind
speed (1¥"), and an instrument-intrinsic influence through the pump speed (ry ). The model is more reliable because it reduces
bias from additional competing effects, confounders, and background conditions that, if ignored, would give a misleading
picture of the underlying causal relationship. Figure 13 illustrates the practical implication of this difference. For an increase
in solar radiation from 600 W/m? to 800 W/m?, model m; predicts an increase in measured mercury of about 0.56 pg/L. In
contrast, the causally adjusted model m4 predicts a smaller increase of only about 0.42 pg/L. Thus, the estimated effect size

of solar radiation on mercury emission is about 25% lower if causal relationships are accounted for. In summary, if causal

715 relationships are ignored, there is a risk of overestimating the effect of solar radiation on gaseous mercury.

730

735

5. #615

The rationale for preferring graphical causal models over alternatives (e.g., Granger
causality, potential outcomes) is generally sound. Graphical models do enhance
transparency and facilitate the integration of mechanistic knowledge. However, they
do not eliminate assumptions or guarantee correctness. Traditional causal
frameworks are not inherently “non-transparent” but rely on different theoretical
foundations. Acknowledging this nuance would make the argument more balanced.

We thank the reviewer for suggesting a more balanced comparison between
graphical causal models and other causal frameworks. We have therefore revised
Section 6.2 to clarify that alternative causal frameworks are not inherently non-
transparent but instead formalise assumptions using different constructs such as
exchangeability assumptions. We further emphasise that the primary contribution of
graphical causal models lies in making prior causal assumptions explicit and
inspectable rather than removing prior assumptions altogether.

Section 6.3 (former 6.2) #731-737:

hand, allow to encode prior assumptions transparently such that the necessary restricting conditions for causal inference from
observational data are provided. This does not mean that graphical causal models remove the need for prior assumptions, nor do
they guarantee the correctness or completeness of prior causal knowledge. As with other causal frameworks, such as potential
outcome frameworks or Granger causality, the validity of any causal claim depends on the underlying prior assumptions and
the adequacy of the data. Other causal frameworks are not inherently “non-transparent” but they use different, and often more
implicit, mechanisms to communicate prior assumptions such as exchangeability assumptions (Herndn and Robins, 2020) or
stationarity requirements. In this sense, the primary contribution of graphical causal models is to offer a particularly explicit
and inspectable representation of prior causal knowledge. The importance of defining prior causal knowledge as graphical
causal models has been recognised in other scientific disciplines, such as medicine (Glass et al., 2013), economy (Imbens.

2020), social science (Imbens, 2024), and software engineering (Furia et al., 2019). Scientists in these fields proposed a set



6. #805

Appendix E Figure E1, used to validate statistical independence, could be clearer.

Adding fitted lines with distinct colors for different temperature levels would

improve readability and interpretation.

- We thank the reviewer for suggesting adding fitted lines with distinct colours to the

scatter plots. We have revised Figure E1 accordingly.

Scatter plot of Ts vs. Cuw conditioned on Sof
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Scatter plot of Sol vs. Cuw conditioned on Ts
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Figure E1. Scatter plots for inspecting suggested independence between variables for (a) mi: T's L Cayw | Sol

and (h) Mol Sol l C}\;w | Ts.
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