
S1. Meteorological forcing downscaling procedures 

To smooth the coarse forcing fields and remove artifacts from their native grids, 
meteorological variables at each model pixel are interpolated from the four nearest native grid 
cells for NLDAS2 (i.e., Girotto et al., 2014) for MERRA2 and ERA5 (i.e., Fang et al., 2022). 
Elevation values corresponding to these smoothed forcings are similarly interpolated from the 
raw forcing product gridded elevation datasets. These smoothed fields and elevations are referred 
to as the ‘interpolated forcings’ and ‘interpolated elevation’, respectively. 

The downscaling procedure adjusts interpolated forcings via topographic corrections. 
Specifically, elevation lapse rates of 6.5 and  4.1°K/km were used for air temperature and dew 
point temperature, respectively. Atmospheric pressure is downscaled by combining the ideal gas 
and hydrostatic laws (Cosgrove et al., 2003). Specific humidity follows the method of Liston and 
Elder (2006). Atmospheric emissivity is calculated based on air temperature, vapor pressure, and 
three elevation dependent empirical coefficients (Liston and Elder, 2006). Incoming longwave 
(LW) fluxes are derived from the sum of the downwelling atmospheric LW flux and the LW flux 
from surrounding terrain (Müller and Scherer, 2005). The downscaling of incoming shortwave 
(SW) radiation involves: (1) separating the total incoming shortwave radiation into direct and 
diffuse components (Allen et al., 2006), (2) adjusting these components by elevation corrections 
(Dubayah and Van Katwijk, 1992), (3) applying topographic corrections based on slope, aspect, 
shade, and sky view factor (SVF) (Müller and Scherer, 2005), and (4) combining the direct and 
diffuse components to calculate total incoming shortwave radiation. 

 

S2. Meteorological forcing bias correction and perturbations 

 The ensemble Bayesian framework considers the key sources of prior uncertainty and 
error including model parameters (i.e., snow albedo) and meteorological inputs. The bias 
correction and uncertainty models used in this study are the same as the models applied in 
generating SWE reanalysis datasets over the WUS (Fang et al., 2022), High Mountain Asia (Liu 
et al., 2021), and Andes (Cortés and Margulis, 2017). The downscaled prior forcings are bias-
corrected and perturbed as: 

PPT!,# = b!,# × PPT!                                                      Eq. S1 
T$,!,# = T$,! + ε$,!,#                                                      Eq. S2 
T%,!,# = T%,# + ε%,!,#                                                       Eq. S3 

SW!,# = SW! × (1 − γ!,#)                                                    Eq. S4 
 

where PPT,  T$, T%, and SW represent the precipitation, air temperature, dew point temperature, 
and shortwave radiation, respectively. The subscript i represents the meteorological forcing 
dataset while j represents the perturbed forcing realization within the ensemble. The random 
variable b represents a lognormally distributed multiplicative precipitation perturbation. The 



random variable 𝜀 represents normally distributed additive error perturbations of air temperature 
and dew point temperature. The random variable 𝛾 represents normally distributed multiplicative 
error perturbations of shortwave radiation and varies with solar index (SI). 

The moments of the precipitation parameter b distribution are estimated based on the 
same methodology described in Fang et al. (2022) from a sub-sample of 10 representative tiles 
across the WUS spanning a range of physiography and climatology (Fig. S1). The precipitation 
uncertainty is quantified by running the snow reanalysis framework using a uniform distribution 
for the parameter b~U(0.1,5) at the 10 tiles. After assimilating fSCA measurements using the 
PBS approach, a log-normal distribution is fitted to the posterior b values from all pixels and 
replicates in those 10 tiles. The derivation of uncertainty models for air temperature, dew point 
temperature, and shortwave radiation followed Girotto et al. (2014) by comparing downscaled 
forcings to in situ Snow Telemetry network (SNOTEL) and Soil Climate Analysis Network 
(SCAN) measurements across the WUS. Locations of in situ sites are highlighted in Fig. S1. The 
differences between downscaled temperature and in situ data are fitted with a  normal 
distribution. The in situ solar radiation measurements and downscaled solar radiation are used to 
the normal distribution of 𝛾 whose mean and standard deviation are polynomial functions of 
solar index (SI). The distribution of uncertainty parameters for different datasets are summarized 
in Table S1. Note that the bias-correction is a prior correction applied to the WUS, and the WUS 
shares the same distribution of uncertainty parameters. Snowfall is computed by downscaled and 
bias-corrected air temperature and precipitation using a rain-snow threshold of 275.15 K on an 
hourly basis. When air temperature is below the threshold, precipitation is considered as 
snowfall. 

 



 

Figure S1. Map of elevation over the WUS HUC2 basins with snow reanalysis tiles (1& × 1& 
squares). The tiles highlighted with bold black boxes are used for prior precipitation uncertainty 
analysis. The SNOTEL/SCAN measurements of air temperature, dew point temperature, and 
shortwave radiation are highlighted with the red dots. The study domains are highlighted with 
the white stars. 

 

 

 

 

 

 



Table S1. Uncertainty model parameters and distributions for ERA5, MERRA2, and NLDAS2. 

ERA5 

b (PPT) lognormal Mean CV 
1.37 0.88 

𝛆(𝐓𝐚) normal 
Mean CV 
0.53 K 1.34 K 

𝛆(𝐓𝐝) normal 
Mean CV 

-0.61 K 1.24 K 

𝛄(𝐒𝐖) normal 

Mean Std. Dev. Solar Index 
(SI) 

0.3321 0.32 <0.5 
3.14SI# − 7.17SI$ + 4.81SI − 0.68 −0.24SI + 0.44 0.5 to 1 

0.1093 0.21 >1 
MERRA2 

b (PPT) lognormal Mean CV 
1.80 0.69 

𝛆(𝐓𝐚) normal Mean CV 
0.85 K 1.39 K 

𝛆(𝐓𝐝) normal Mean CV 
-1.37 K 1.20 K 

𝛄(𝐒𝐖) normal 

Mean Std. Dev. Solar Index 
(SI) 

0.2548 0.39 <0.5 
3.66SI# − 1.88SI$ + 1.39SI − 0.05 −0.39SI + 0.58 0.5 to 1 

0 0.19 >1 
NLDAS2 

b (PPT) lognormal Mean CV 
1.88 0.9 

𝛆(𝐓𝐚) normal Mean CV 
-0.06 K 1.46 K 

𝛆(𝐓𝐝) normal Mean CV 
-0.29 K 1.25 K 

𝛄(𝐒𝐖) normal 

Mean Std. Dev. Solar Index 
(SI) 

0.2902 0.45 <0.5 
3.52SI# − 8.21SI$ + 5.56SI − 0.88 −0.60SI + 0.75 0.5 to 1 

0 0.15 >1 
 

 

 

 



S3. Generating ASO-based SWE for Evaluation 

 The ASO SWE and ASO-based SWE refer to two different SWE products. ASO SWE is 
a data product generated by combining ASO snow depth observations with snow density 
estimates derived from the iSnobal energy-balance model (Marks et al., 1999; Painter et al., 
2016). In contrast, the ASO-based SWE in this study is computed by combining ASO snow 
depth observations with average snow density estimates obtained from the SSiB3-SAST model 
(Sun and Xue, 2001). These snow density estimates are generated from ensemble simulations 
driven by different meteorological forcing datasets (i.e., ERA5, MERRA2, and NLDAS2). For 
each ASO measurement day, the ASO-based SWE is calculated using the corresponding model-
derived snow density for that day. For the prior analysis, the snow density is taken from the prior 
model simulations, while for the posterior analysis, it is taken from the reanalysis after 
assimilation. Since SSiB3-SAST is used as a forward model to generate SWE estimates that are 
subsequently updated through ASO snow depth assimilation, the ASO-based SWE allows us to 
evaluate model performance while minimizing the influence of model-based snow density 
uncertainty. In Fig. S2, ASO SWE is shown as the product of ASO snow depth and ASO snow 
density, while the ASO-based SWE is computed by multiplying ASO snow depth by the average 
model derived snow density. The ASO snow density is back-calculated by dividing the ASO 
SWE product by the ASO snow depth.  

 

Figure S2. Illustration of ASO SWE and ASO-based SWE derivation. ASO SWE is a product of 
ASO snow depth and iSnobal modeled snow density (Painter et al., 2016), with snow density 
here back-calculated as ASO SWE divided by ASO SD. ASO-based SWE is computed using 
ASO SD and average snow density from the SSiB3-SAST model driven by multiple 
meteorological forcings. 

 Building on the ASO-based SWE derivation approach, we generate two versions of ASO-
based SWE to enable direct comparison with both prior model simulations and posterior 
reanalysis outputs. In both cases, ASO-based SWE is calculated by combining ASO snow depth 
with an average snow density field, either from the model (prior) or from the reanalysis 
(posterior). This approach provides a consistent basis for SWE comparison that reduces the 
influence of snow density uncertainty.  



Figure S3 shows the average prior snow density at ASO measurement times for Merced, 
Aspen, and Gunnison-East, derived from SSiB3-SAST simulations forced by ERA5, MERRA2, 
and NLDAS2. Despite differences in the forcing datasets, the modeled snow densities show 
limited variation, and their basin-average values are generally consistent. For reference, the ASO 
snow density, computed by dividing ASO SWE by ASO SD is also shown. The value is only 
available in regions where ASO snow depth is greater than zero. During snowmelt periods, the 
ASO-derived snow density tends to be higher than the average modeled density across all 
domains.  

 

Figure S3. Prior snow density (g/cm') at ASO measurement times for Merced, Aspen, and 
Gunnison-East, derived from SSiB3-SAST simulations forced by ERA5, MERRA2, and 
NLDAS2. The average modeled snow density is computed by averaging estimates from the three 
forcing datasets. ASO snow density is also shown, calculated by dividing ASO SWE by ASO 
snow depth, and is only available in areas where snow depth is greater than zero. Basin-average 
snow density values are labeled for each map. 

We apply the same ASO-based SWE derivation method using the average posterior snow 
density field (Fig. S4). Note that the posterior snow density fields are similar to the prior 
estimates in both spatial pattern and magnitude. Therefore, the ASO-based SWE used for prior 
and posterior comparisons are largely consistent, suggesting that the assimilation process 
primarily adjusts snow depth while maintaining the modeled snow density. 

 



 

Figure S4. Same as Fig. S3, but for posterior snow density.  
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