We would like to thank the reviewers for their thorough reviews and constructive comments on
the manuscript. The original comments are shown in regular black font. The responses to
reviewer comments are shown in blue font, with text describing proposed additions and revisions
of the manuscript shown in red font. Any original manuscript text is shown in gray font. Figures
included in this response document that are labeled as “Figure. Rx” are provided for clarification
only. Figures proposed for inclusion in the revised manuscript are labeled as “Figure x” or as
supplementary figures “Figure. Sx”.

Reply to Reviewer #1 Comments
MAJOR COMMENTS

With the three watersheds included in this study and the differences in spatial resolution of the
original input datasets, I feel like there should be a bit more information included, which could
benefit and strengthen the discussion in section 3.1.

The first information to consider is land cover type for the different watersheds. Not being
extremely familiar with all watersheds, it would be useful to know the different and dominant
land cover types for each. Knowing that there are uncertainties linked to land cover type, this
could help indicate why one forcing dataset might perform better for one watershed and not the
other.

In combination with land cover, knowing the initial altitude to which the surface properties are
given for the different datasets could help identify sources for the SD/SWE variability. Again,
there are uncertainties in modelled SWE associated to its altitude.

Both information also provide discussion points with regards to rescaling the dataset to 150 m. I
feel like this could explain some of the outputs we see in annual snowfall of Figure 2.

As mentioned by the authors, the objective of this addition is not to identify which forcing
dataset is best, but in a context of analyzing various domains, this could indicate the importance
of which datasets to use in a multi-forcing experiment.

Response:

We appreciate the reviewer’s suggestion to provide additional information on land cover
characteristics and the elevation of the forcing datasets, and to clarify how these factors influence
the spatial variability of snowfall and SWE across the three watersheds.

(1) Land cover type and forest fraction: we propose to add a new figure showing land cover
type and fractional forest cover for the three study watersheds (Fig. R1). Land cover and
forest fraction are prescribed as static model inputs for all experiments. Each forcing uses
the same datasets — AVHRR for land cover (1 km) and GLCF for forest cover (30 m) —
interpolated to the 150 m model grid using nearest neighbor interpolation. They are
identical across forcing datasets within a given watershed but differ between watersheds.



Figure S1 indicates significant differences in dominant land cover among the three
domains. Merced is characterized primarily by grassland and wooded grassland, Aspen
exhibits a mix of deciduous forest at lower elevations transitioning to wooded grassland
and alpine terrain at higher elevations, and Gunnison East contains a heterogeneous mix
of bare ground, deciduous forest, and wooded grassland. These differences in land cover
affect snow accumulation and ablation processes. In forested areas (Aspen and Gunnison-
East), canopy interception and sublimation reduce the fraction of snowfall that reaches
the ground, while canopy shading affects the surface energy balance and generally slows
melt.

The three forcing datasets have similar relative snowfall distributions across watersheds
and elevation bands (with MERRA?2 yielding the largest snowfall, followed by NLDAS2
and ERAS, which are relatively comparable as shown in Fig. 2). However, the ASO SWE
exhibits more significant differences between watersheds, leading to the varying
performance of the forcing datasets. For example, ASO peak SWE in Merced is higher
than peak SWE in Aspen and Gunnison East which also exhibit higher SWE later into the
season. These differences across watersheds are likely in part due to differences in forest
cover, which leads to more canopy interception and slower melt rates in Aspen and
Gunnison-East. This indicates that differences in SWE performance are not driven only
by snowfall magnitude, but by how snowfall errors distribute and propagate nonlinearly
into SWE under specific land cover conditions.

(2) Elevation and downscaling of forcing datasets: ERAS, MERRA2, and NLDAS? are
different in their raw resolutions and associated grid mean elevations. As described in
Sect. 2.3 and Supplement S1, all meteorological variables are downscaled to the 150 m
model grid by explicitly accounting for elevation differences between the coarse forcing
grids and the high-resolution SRTM DEM used in the land surface model. For each
dataset, forcing variables are first spatially interpolated, and the elevation associated with
the forcings is obtained through interpolation of the raw elevations. The interpolated
forcings are then topographically corrected and projected onto the SRTM elevations at
150 m resolution.

During downscaling, meteorological variables (e.g., air temperature) are corrected using
lapse rate corrections that explicitly depend on the elevation difference (AZ) between the
forcing dataset and the SRTM DEM. Therefore, discrepancies between the raw forcing
elevations and SRTM elevations propagate directly into the downscaled forcings.
Because basins differ in their elevation distributions, as represented by the SRTM DEM,
the same forcing dataset can perform differently across watersheds, including adjacent



basins such as Aspen and Gunnison-East that share the same native MERRA2 grid cell
(Fig. 1). As shown in Fig. S2, despite identical raw MERRAZ2 precipitation forcing,
Aspen exhibits systematically more positive AZ values (with more spread) than
Gunnison-East. Air temperature is spatially distributed using a fixed lapse rate applied to
the elevation difference AZ. Consequently, larger elevation differences lead to larger
temperature adjustments, which directly influence the rain-snow partitioning. As Aspen
exhibits larger positive AZ than Gunnison-East, it has systematically lower corrected
temperatures and therefore higher snowfall and peak SWE than Gunnison-East.

As discussed in the last paragraph of Sect. 2.3, topographic adjustment and bias
correction cannot fully remove representation errors inherent to coarse scale forcing
datasets. Large scale precipitation, air temperature, and radiation still smooth over
complex mountainous terrain, and product-dependent biases still exist after downscaling.
These contribute to the inter-dataset spread in annual snowfall and propagate to
differences in prior SWE. Therefore, differences in SWE performance primarily reflect a
combination of raw forcing errors and elevation representation errors relative to the
SRTM DEM.

To address the reviewer’s comment, we propose the following revisions:

1. Add land cover maps as a new supplementary figure (Fig. S1) and describe land cover in
Sect. 2.1. Add a new paragraph at the end of Sect. 2.1. “The three watersheds also exhibit
different dominant land cover types that influence snow accumulation and ablation
processes. Land cover type and fractional forest cover are derived from the AVHRR land
cover and GLCF forest cover datasets and interpolated to the 150 m model grid using a
nearest neighbor interpolation. As shown in Fig. S1, Merced is dominated by grassland
and wooded grassland, with relatively limited dense forest cover. Aspen exhibits a
transition from deciduous forest at lower elevations to wooded grassland and alpine
terrain at higher elevations. Gunnison-East contains a heterogeneous mix of bare ground,
deciduous forest, and wooded grassland. These differences influence canopy interception,
sublimation, and radiative fluxes.”

2. Add an interpretation of prior SWE differences based on land cover type. In line 316 after
“negative differences relative to the ASO-based reference in April”, add “Beyond
differences among forcing datasets, the ASO-based reference itself exhibits spatial
variability across the three watersheds. As shown in Fig. 4, ASO peak SWE in Merced is
higher than peak SWE in Aspen and Gunnison East which also exhibit higher SWE later
into the season. These differences across watersheds are likely in part due to differences
in forest cover, which leads to more canopy interception and slower melt rates in Aspen
and Gunnison-East.”



3. Explicitly explain elevation handling and reference DEM. At the end of the first
paragraph in Sect.2.3, add “All meteorological variables are downscaled to the 150 m
model grid by explicitly accounting for elevation differences between the coarse forcing
grids and the high-resolution SRTM DEM used in the land surface model. Discrepancies
between raw forcing elevations and SRTM elevations propagate directly into the
downscaled forcings.”

4. Explicitly introduce elevation-dependent differences in snowfall that are caused by
differences in raw elevation relative to SRTM DEM and illustrate this effect with a new
supplementary figure (Fig. S2). Replace the sentence in line 182-183 “Differences among
datasets ...” with “Differences among datasets are consistent across many elevation
bands due to the coarse resolution of the raw forcing products and the use of the same
deterministic downscaling approach. In addition, part of the elevation-dependent snowfall
differences arises from differences between the native elevations of the coarse forcing
datasets and the high-resolution SRTM DEM used for downscaling. ERAS5, MERRA2,
and NLDAS?2 are different in spatial resolution and associated elevations, and air
temperature is adjusted based on the elevation difference (AZ) between the SRTM DEM
and interpolated forcing DEM; therefore, any errors in the applied lapse rates scale with
basin-specific elevation distributions. This effect is illustrated in Fig. S2, which shows
that although Aspen and Gunnison-East share the same native MERRA?2 grid cell (Fig.
1), Aspen exhibits systematically more positive AZ (with more spread) in SRTM DEM
than Gunnison-East. Air temperature is spatially distributed using a fixed lapse rate
applied to the elevation difference AZ. Consequently, larger elevation differences lead to
larger temperature adjustments, which directly influence the rain-snow partitioning. As
Aspen exhibits larger positive AZ than Gunnison-East, it has systematically lower
corrected temperatures and therefore higher snowfall and peak SWE than Gunnison-East.
As aresult, adjacent basins with different elevation distributions can experience different
snowfall partitioning even when forced by the same dataset.”

5. Clarify the inter-product spread. Replace the sentence in line 189-190 “The observed
inter-product variability reflects ...” with “The observed inter-product variability reflects
a combination of inherent differences in the raw datasets, elevation-dependent errors
from the downscaling of coarse-scale forcings over complex terrain, and the spatially
varying impacts of the applied bias corrections.”
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Figure S1. Land cover type (left) and fractional forest cover (right) for the Merced, Aspen, and
Gunnison-East watersheds at 150 m resolution.
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Figure. S2: (a) Spatial map of the elevation difference AZ (SRTM — MERRA?2 interpolation)
over the Aspen and Gunnison-East watersheds used in the downscaling of non-precipitation
forcing variables. (b) Violin plots showing the distributions of AZ for each watershed. The black
horizontal line denotes the median elevation, with the interquartile range (IQR) indicated by the
vertical black bars.

MINOR COMMENTS

1. Figure 1: Would be interesting to add the land cover map, which is used in resampling (Figure
3).

Response: We propose to add the land cover map (Fig. S1) as a new supplementary figure, and
reference it in the main text, because Fig.1 already contains multiple panels and is visually dense.

2. Eqgns. 1-3: Personally, I prefer the more compact ways of writing these equations. They could
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Response: Suggestion adopted. We will use the compact equation:
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3. Eqns. 4-6: Same as the previous equations, it could be summarized by N; = W; X N

Response: Suggestion adopted. We will use the compact equation:
Ni == Wi X N
where N = }; N;

4. L. 321: Please clarify what is meant by "SWE variations". I assume it is the difference with
ASO SWE observations.

Response: “SWE variations” is meant to represent the maximum difference among the three
prior SWE estimates. We’ve revised the sentence to: “On the near-peak ASO date, the SWE
variation, defined as the maximum difference among the three prior SWE estimates, is equal to
0.46 m in Merced, 0.64 m in Aspen, and 0.51 m in Gunnison-East.”.

5. Figure 4: it would be interesting to add error bars on the ASO measurements to show the
spatial variability of SD and SWE across the different study areas and the spread in SWE due to
the mean ensemble density estimation. You show which forcing data works better on average,
but the error bars could indicate whether the different forcing datasets provide estimates within
the range of measured properties.

Response: We appreciate the reviewer’s suggestion to include error bars on the ASO SD and
SWE estimates in Fig.4. We agree that uncertainty information is important when interpreting
model performance relative to observations. However, we chose not to include error bars in this
figure for two reasons: (1) the uncertainty associated with ASO measurements in our framework
represents measurement error used within the data assimilation, instead of spatial variability of
SWE or SD across the watershed. The measurement error is not intended to quantify basin scale
variability or uncertainty in basin-averaged SWE and SD. Including these errors as bars on
basin-averaged time series could be misleading. (2) Fig. 4 presents daily time series of basin-
averaged SWE and SD, whereas spatial variability is analyzed in elevational distribution and
spatial SWE differences. (3) ASO SWE uncertainty due to snow density is relatively small (Fig.
R1). Basin-averaged SWE estimates adjusted using snow density derived from ERAS,
MERRA2, NLDAS2, and their mean show minimal spread and is therefore deemed a small
contributor to inter-product uncertainty.
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Figure R1. Basin-average ASO SWE adjusted by prior snow density from ERAS, MERRA2,
NLDAS?2, and their average.

6. Table 3: Probably a precision error but weights do not add up to 1 for Merced.

Response: Thanks for the comment. The number of replicates sum up to the total number of
replicates. The existing weights do not add up to 1 due to a precision error. We propose to revise
the weights using more significant digits for Merced in Table 3.

Table 3. Partitioning weights (/) and number of realizations used in the multi-forcing ensemble
for each domain based on the RMSE of prior mean SWE relative to ASO-based SWE near April
1,

Domains ERAS MERRA2 NLDAS2
Merced W . 0.55 0.125 0.325
# of realizations 66 15 39
Aspen ‘ W . 0.34 0.17 0.49
# of realizations 41 20 59
w 0.33 0.38 0.29

Gunnison-Fast # of realizations 39 46 35

7. Figure 7: I understand the idea behind keeping only the best and worst cases in this figure but I
think it would still be relevant to include all three forcing cases. I would also keep the same order
of presentation in the figure as previous figures to make it easier to compare. I also like to keep
the y-axis range the same when comparing plots horizontally. It helps to identify which site has
larger errors more easily.

Response: We appreciate the reviewer’s suggestion. We propose to revise Fig. 7 and Fig. 9 (as
shown below) to include all forcing cases in the same order of presentation, and keep the y-axis
range the same.
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Figure 7. Bar plots of the RMSE, absolute bias, and ubRMSE of prior mean SWE compared to
ASO-based SWE across all domains and ASO observation times. The rightmost column
summarizes the overall statistics across all domains and dates.
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Figure 9. Same as Fig.7, but for the posterior mean SWE. The added light grey shaded area
highlights the assimilation date.



Reply to Reviewer #2 Comments
MAJOR COMMENTS

The most major critique I have of the paper is that it does not include a sampling of hydrologic
conditions (i.e., wet, dry, and average years). The period analyzed (WY 2019) was a wet, high
snow accumulation year in both the California Sierra Nevada and the Colorado Rocky
Mountains. The main justification for this year seems to be that lidar snow data were available
across all three basins (L. 111-112), but I don’t think it is necessary that the same year be used in
distinct regions (CA vs. CO). It is the choice of the authors whether or not to bring additional
years (e.g. dry, average) into the analysis, but at a minimum I think the paper should provide
more description of the snow/weather conditions in the study year(s) and include some
discussion on how the type of snow year may influence the DA (e.g., see Margulis et al. 2019,
GRL).

Response: We thank the reviewer for this important comment regarding the representativeness of
hydrologic conditions and the influence of the type of snow year on DA performance. We agree
that WY2019 was a relatively wet year in both Sierra Nevada and Colorado Rocky Mountains.
This choice of WY 2019 was driven primarily by the availability of coincident, multiple-dates
ASO lidar data across all three watersheds. In particular, WY 2019 is the year for which ASO
data were available both near peak accumulation and during the melt season. Focusing on a wet
year also provides a meaningful test case for DA performance because longer melt periods allow
errors in meteorological forcing to propagate, thereby increasing the sensitivity of SWE
estimates to forcing uncertainty. Limiting the analysis to a single wet year does not constrain the
generality of the conclusions that integrating diverse meteorological forcing within a DA
framework improves SWE estimates, especially where the optimal forcing dataset is uncertain.
In response to the suggestion, we propose to explicitly describe the snow conditions for WY
2019 and add discussion on how snow year type may influence DA performance. While
extending the analysis to multiple years would be valuable, doing so requires additional ASO
coverage that is not currently available across all three watersheds. We therefore frame this study
as a focused demonstration under data rich, high snow conditions, and clarify multi-year analysis
as an important potential direction for future work.

To address the reviewer’s comment, we propose the following revisions:

1. Add a sentence in line 111-112 to describe the snow conditions “WY 2019 was
characterized by well above average snow accumulation across much of the western
United States, making it a wet snow year relative to long-term climatology. In California,
peak statewide snowpack was 175 percent of average with records dating back to 1950
according to the hydroclimate report from California Department of Water Resources.”

2. Clarify scope and limitations of using a single wet year. Add a sentence to the end of the
first paragraph of Sect. 2.1 “We acknowledge that restricting the analysis to a single WY
limits the hydroclimate conditions examined. Therefore, this study is a demonstration of a



representative wet snow year. Extending the analysis across multiple snow regimes
would be valuable but is currently limited by the availability of consistent ASO
observations across all study domains.”

Add a new sentence at the end of the conclusions “Future work should extend this
framework to include dry, average, and wet snow years to characterize how hydroclimate
region influences forcing sensitivity and data assimilation performance.

Add a discussion regarding the impact of snow conditions on DA performance. Add the
paragraph at the end of the first paragraph in Sect. 3.3 “Previous work by Margulis et al.
(2019) demonstrated that in wet years with deep snowpack, assimilation near peak
accumulation tends to be most effective. In contrast, in an extreme record-dry year (WY
2015), DA may be less effective if prior ensembles contain limited snow or if
observations occur after partial melt, leading to weaker updates. The significant DA
impacts observed in this study are therefore consistent with the wet-year case analyzed by
Margulis et al. (2019). Extension of this analysis to dry and normal snow years would be
valuable for assessing the DA performance across hydroclimate regimes and is a key
direction for future work.”

GENERAL COMMENT:
I find that Section 3 is more of a “Results” section than a “Results and Discussion” section (as

intended). I see minimal elements that make a classic discussion section — e.g., comparisons to

other studies, discussions of future research needs, etc. I would suggest adding more discussion
elements throughout section 3 (as appropriate) or alternatively making a short subsection at the

end of section 3 that provides a more substantive discussion.

Response: We appreciate the reviewer’s comment. In response, we propose to revise Sect. 3 to
strengthen its discussion within subsections.

1.

Sect. 3.1: Add an interpretation of prior SWE differences based on land cover type. In
line 316 after “negative differences relative to the ASO-based reference in April”, add
“Beyond differences among forcing datasets, the ASO-based reference itself exhibits
spatial variability across the three watersheds. As shown in Fig. 4, ASO peak SWE in
Merced is higher than peak SWE in Aspen and Gunnison East which also exhibit higher
SWE later into the season. These differences across watersheds are likely in part due to
differences in forest cover, which leads to more canopy interception and slower melt rates
in Aspen and Gunnison-East.”

Sect. 3.1: Add a discussion of the impact of elevation on forcing disaggregation and prior
SWE in line 358. “ERAS5 and NLDAS?2 exhibit similar RMSE in the range of 0.3-0.45 m in
Aspen and Gunnison-East. However, a counterintuitive result is that MERRA2 exhibits different
weights in Aspen and Gunnison-East, despite being adjacent watersheds and falling within the
same native MERRA?2 grid cell. While raw MERRAZ2 precipitation is identical for both basins



prior to downscaling, the snowfall forcing is different due to elevation-dependent temperature
corrections and basin-specific elevation distributions. As shown in Fig. S2a, bilinearly
interpolated MERRAZ2 elevations differ from SRTM elevations in both magnitude and spatial
pattern. Aspen has a higher median elevation and a larger elevation range than Gunnison-East as
represented by SRTM (Fig. S2b). These difterences directly influence the lapse rate-based
temperature correction applied during forcing disaggregation. Therefore, Aspen experiences
lower corrected temperatures, leading to a higher fraction of precipitation falling as snow and
greater peak SWE, whereas Gunnison-East exhibits warmer corrected temperatures and reduced
snowfall.” And add a sentence to line 365 “In contrast, MERRAZ2 exhibits lower RMSE in
Gunnison-East on April 7", 2019, where random errors dominate and its elevation adjusted
snowfall aligns better with ASO-based SWE.”

3. As done in Major comments: Add a discussion regarding the impact of snow conditions
on DA performance. Add the paragraph at the end of the first paragraph in Sect. 3.3
“Previous work by Margulis et al. (2019) demonstrated that in wet years with deep
snowpack, assimilation near peak accumulation tends to be most effective. In contrast,
during dry years, DA may be less effective if prior ensembles contain limited snow or if
observations occur after partial melt, leading to weaker updates. The significant DA
impacts observed in this study are therefore consistent with the wet-year case analyzed by
Margulis et al. (2019). Extension of this analysis to dry and normal snow years would be
valuable for assessing the DA performance across hydroclimate regimes and is a key
direction for future work.”

A result that is interesting but not discussed in detail is that there are quite different weights for
Aspen versus Gunnison-East (e.g., Tables 3 and 5). This is surprising (at least to me), considering
that they are adjacent basins (Fig. 1). Why is this result obtained and what might it suggest about
the forcing data and/or the snow in these basins?

Response: We thank the reviewer for highlighting this point. Although Aspen and Gunnison-East
are geographically adjacent and fall within the same MERRAZ2 grid cell (Figure 1), differences in
forcing weights can arise from elevation-driven differences in snowfall after downscaling. To
smooth the coarse-resolution MERRA?2 and reduce grid-scale artifacts, the raw forcing (e.g.,
MERRAZ2) is first interpolated to the model grid using bilinear interpolation. As shown in Fig.

S2 (see response to Reviewer 1), the interpolated elevation from MERRA?2 exhibits differences
from SRTM elevation, and these elevation differences (AZ) vary spatially between the two
basins. The violin plots in Fig. S2 shows that Aspen has a higher median AZ and larger elevation
difference distribution than Gunnison-East, indicating a larger discrepancy between MERRA2
elevation and the SRTM DEM in Aspen.

These elevation differences directly affect the temperature lapse rate correction applied during
forcing disaggregation. The forcing weights are derived by comparing modeled near-peak SWE
to ASO observations, which are primarily controlled by accumulation-season snowfall. Because
total precipitation from MERRAZ2 is nearly identical for the two basins (as they share the same



MERRAZ2 grid cell), any differences in snowfall most likely arise from differences in air
temperature disaggregation. Air temperature is spatially distributed using a fixed lapse rate
applied to the elevation difference between the native forcing DEM (MERRA2) and the SRTM
DEM. Consequently, larger elevation differences lead to larger temperature adjustments, which
directly influence the rain-snow partitioning. Any errors in the fixed lapse rate will be enhanced
by larger elevation differences (AZ).

As Aspen exhibits systematically larger AZ (and more spread) than Gunnison-East, it
experiences larger temperature corrections, resulting in lower corrected temperatures, increased
snowfall, and higher peak SWE. Overall, the different forcing weights result from a combination
of raw forcing elevation errors and the effects of disaggregation. The weighting framework used
in this paper is based on the RMSE between modeled SWE and the ASO SWE reference, not on
geographic proximity. Each basin preferentially weights the forcing dataset whose elevation
adjusted snowfall most closely matches the observed SWE. Therefore, even adjacent basins can
yield different forcing weights when their elevation distributions and temperature corrections
differ.

Line Comments

L. 14-20: One nuance that is not conveyed clearly here is that the multi-forcing reduces errors
relative to most forcing datasets, but not all forcing datasets. As written, it sounds like the multi-
forcing is always the most accurate. Can you convey this nuance while also indicating that the
“best” forcing dataset cannot be known a priori, and the “best” dataset may vary in space and
time?

Response: Suggestion adopted. We propose to revise the paragraph: The multi-forcing ensemble
generally reduces errors compared to most individual forcing datasets and improves prior SWE
accuracy across the study regions. Assimilation of near-peak lidar-derived snow depth
substantially corrects prior SWE errors, reducing the influence of forcing-driven biases
accumulated during the snowfall season. As a result, random error is the dominant source of
posterior error. Although assimilation narrows performance differences, the multi-forcing
ensemble still yields slightly better overall accuracy and improved uncertainty characterization.
This work demonstrates that integrating diverse meteorological forcings within a data
assimilation framework can improve SWE estimates (both model-based and reanalysis-based)
when the optimal forcing dataset cannot be identified a priori and varies across space and time.

L. 45: “transboundary” is often used in water studies in regard to rivers that cross international
political boundaries, which is not true for all the mountain ranges referenced here (e.g., Sierra
Nevada). Please reword.



Response: Suggestion adopted. We propose to revise the sentence: Coarse resolution products
often fail to capture snow storage patterns in transbeundary rain shadow mountain regions (e.g.,
Sierra Nevada and Andes) where snowmelt feeds watersheds that supply distinct downstream
populations (Fang et al., 2023).

L. 47: To be more exact, I suggest replacing “estimates” with “process-based estimates” or
“hydrological model estimates”. Physical versus statistical approaches for estimating runoff are
impacted differently by snow data uncertainty, and I think the sentence is more relevant to the
former.

Response: Suggestion adopted. We propose to replace estimates of runoff with process-based
estimates of runoff.

L. 91: What does “readily available” mean in this context?

Response: By “readily available”, we mean widely used, publicly accessible meteorological
forcing datasets, specifically ERAS, MERRA2, and NLDAS2. We propose to revise the
sentence: Does one of the readily-avatlable widely used meteorological forcing datasets (ERAS,
MERRA2, or NLDAS?2) yield the most accurate model-based prior SWE spatio-temporal
estimates?

L. 125-126: Need to add downwelling longwave radiation here?

Response: Suggestion adopted. We propose to revise the sentence to ... surface downwelling
shortwave and longwave radiation, ...”

L. 167-168: Broxton et al. (2016) may also be relevant here.

Response: Suggestion adopted. We propose to add the citation to ““... datasets, and evaluations of
global reanalysis products have identified systematic underestimation of SWE associated with
forcing and model representation errors (Broxton et al., 2016), suggesting that similar biases are
expected in ERAS.”

L. 270: Suggest include the RMSE"2 equation as a distinct/numbered equation (#4).

Response: Suggestion adopted. We propose to revise the sentence to “The RMSE can be
decomposed into bias and unbiased RMSE (ubRMSE) components according to Entekhabi et al.
(2010):



RMSE? = bias? + ubRMSE? (Eq. 4)”

L. 286: For clarity, make this “(i.e., N=120)".

Response: Suggestion adopted. We propose to replace the “(i.e., 120)” to “(i.e., N=120)".

L. 321: Remove “variations”.

Response: “SWE variations” is meant to represent the maximum difference among the three
prior SWE estimates. We propose to revise the sentence to “On the near-peak ASO date, the
SWE variation, defined as the maximum difference among the three prior SWE estimates, equals
0.46 m in Merced, 0.64 m in Aspen, and 0.51 m in Gunnison-East”.

L. 322: Replace “differences” with “ranges”?

Response: Same as L. 321, We propose to replace “Corresponding SD differences” with
“Corresponding SD variations”

L. 342-345 and Fig. 5: The SWE depth versus elevation plots are useful, but I would argue that
not all elevation bands are “equal” in a hydrologic sense and a snow storage sense, considering
that there may be very different amounts of land area contained in each elevation band
(depending on the hypsometry). It would be useful to know how this looks for SWE volume
versus elevation, perhaps as a supplementary figure?

Response: We thank the reviewer for this insightful comment. Figure 5 was designed to show
elevation dependent differences in mean SWE depth, which is useful for diagnosing how forcing
performance varies with elevation, but it does not directly represent the contribution of each
elevation band to total basin snow storage. That said, the elevation bins were not uniform but
chosen to include the same number of pixels, which should lead to each bin having similar land
areas. To confirm this, we have added Fig. R3 that shows the distribution of SWE volume as a
function of elevation, computed by integrating SWE over the land area within each elevation
band. Because the elevation bins were constructed to contain equal numbers of pixels, each bin
represents approximately the same land area within the watershed. As a result, SWE volume
within each elevation bin is proportional to mean SWE, yielding similar elevational patterns for
SWE depth.
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Figure R3. Elevational distribution of ASO-based SWE volume and prior mean SWE volume
produced using ERAS5, MERRA?2, and NLDAS?2 forcings across (a) Merced, (b) Aspen, and (c)
Gunnison-East.

L. 400-401: Note here that the absolute bias of the multi-forcing is still higher than ERAS and
NLDAS?2.

Response: We propose to revise the sentence to: For absolute bias, the multi-forcing case
significantly reduces errors to 0.24 m, compared to 0.49 m for MERRAZ2, but still higher than
ERAS and NLDAS?2.

L. 444-446: 1 do not disagree with this discussion point. However, I think it may also be worth
noting that there are quite different time periods for the accumulation season vs. the ablation
season, and that means there is more opportunity for errors (bias) to build up in the accumulation
season. The accumulation season may be two to three times longer in duration than the ablation
season, and in this study the “ablation season” is only partial because the ASO survey occur part
of the way through the ablation season (i.e., before complete melt out).

Response: Suggestion adopted. We propose to revise the sentence to “ This comparison indicates
that winter accumulation forcings likely contribute on the order of twice as much SWE error as
melt-season forcings, making them the dominant source of uncertainty in the model. Note that



the accumulation season RMSE is based on peak SWE near the end of the accumulation period,
whereas the melt-season RMSE is derived from mid-melt season and corresponds only to a
partial ablation period prior to complete melt out.”

L. 471: Add “(Fig. 7)” after “unknown”.

Response: Suggestion adopted.

L. 480-481: This is a great point and one that the community should appreciate on the value of
SD data assimilation.

Response: We agree.

L. 527-528: Add “(class 0)” after “ASO-based SWE” and “(class 3)” after “none of them do” to
help clarify the conventions.

Response: Suggestion adopted.

Figures and Tables
Figure 1: In the lower right panel, suggest rounding the mean value to the nearest mm.

Response: Suggestion adopted.
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Figure 7 and Figure 9: I found these confusing and it took me some time to finally figure out
what they are showing. At first I thought that some of the forcing cases were missing, and it
wasn’t clear to me until I read the results text that the “middle” case (not best, not worst) was
being omitted. For clarity, consistency, and completeness, I think it would make sense to include
all 3 forcing scenarios and the multi-forcing (as in the right panels). You could denote the
best/worst by placing a marker above the corresponding bar.

Response: Suggestion adopted. Same as the response to reviewer 1 (Minor Comment 7).



Figure 12: Would this be better displayed as a table rather than a figure?

Response: We thank the reviewer for this suggestion. We agree that the information shown in
Fig. 12 could be presented in a table. However, we chose to keep Fig. 12 to facilitate the visual
comparison across forcing datasets, basins, and experimental configurations.
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