
We would like to thank the reviewers for their thorough reviews and constructive comments on 
the manuscript.  The original comments are shown in regular black font. The responses to 
reviewer comments are shown in blue font, with text describing proposed additions and revisions 
of the manuscript shown in red font. Any original manuscript text is shown in gray font. Figures 
included in this response document that are labeled as “Figure. Rx” are provided for clarification 
only. Figures proposed for inclusion in the revised manuscript are labeled as “Figure x” or as 
supplementary figures “Figure. Sx”. 

Reply to Reviewer #1 Comments 

MAJOR COMMENTS  

With the three watersheds included in this study and the differences in spatial resolution of the 
original input datasets, I feel like there should be a bit more information included, which could 
benefit and strengthen the discussion in section 3.1. 

The first information to consider is land cover type for the different watersheds. Not being 
extremely familiar with all watersheds, it would be useful to know the different and dominant 
land cover types for each. Knowing that there are uncertainties linked to land cover type, this 
could help indicate why one forcing dataset might perform better for one watershed and not the 
other. 

In combination with land cover, knowing the initial altitude to which the surface properties are 
given for the different datasets could help identify sources for the SD/SWE variability. Again, 
there are uncertainties in modelled SWE associated to its altitude. 

Both information also provide discussion points with regards to rescaling the dataset to 150 m. I 
feel like this could explain some of the outputs we see in annual snowfall of Figure 2. 

As mentioned by the authors, the objective of this addition is not to identify which forcing 
dataset is best, but in a context of analyzing various domains, this could indicate the importance 
of which datasets to use in a multi-forcing experiment. 

Response:  

We appreciate the reviewer’s suggestion to provide additional information on land cover 
characteristics and the elevation of the forcing datasets, and to clarify how these factors influence 
the spatial variability of snowfall and SWE across the three watersheds. 

(1) Land cover type and forest fraction: we propose to add a new figure showing land cover 
type and fractional forest cover for the three study watersheds (Fig. R1). Land cover and 
forest fraction are prescribed as static model inputs for all experiments. Each forcing uses 
the same datasets – AVHRR for land cover (1 km) and GLCF for forest cover (30 m) – 
interpolated to the 150 m model grid using nearest neighbor interpolation. They are 
identical across forcing datasets within a given watershed but differ between watersheds. 



 
Figure S1 indicates significant differences in dominant land cover among the three 
domains. Merced is characterized primarily by grassland and wooded grassland, Aspen 
exhibits a mix of deciduous forest at lower elevations transitioning to wooded grassland 
and alpine terrain at higher elevations, and Gunnison East contains a heterogeneous mix 
of bare ground, deciduous forest, and wooded grassland. These differences in land cover 
affect snow accumulation and ablation processes. In forested areas (Aspen and Gunnison-
East), canopy interception and sublimation reduce the fraction of snowfall that reaches 
the ground, while canopy shading affects the surface energy balance and generally slows 
melt.  
 
The three forcing datasets have similar relative snowfall distributions across watersheds 
and elevation bands (with MERRA2 yielding the largest snowfall, followed by NLDAS2 
and ERA5, which are relatively comparable as shown in Fig. 2). However, the ASO SWE 
exhibits more significant differences between watersheds, leading to the varying 
performance of the forcing datasets. For example, ASO peak SWE in Merced is higher 
than peak SWE in Aspen and Gunnison East which also exhibit higher SWE later into the 
season. These differences across watersheds are likely in part due to differences in forest 
cover, which leads to more canopy interception and slower melt rates in Aspen and 
Gunnison-East. This indicates that differences in SWE performance are not driven only 
by snowfall magnitude, but by how snowfall errors distribute and propagate nonlinearly 
into SWE under specific land cover conditions.  

 

(2) Elevation and downscaling of forcing datasets: ERA5, MERRA2, and NLDAS2 are 
different in their raw resolutions and associated grid mean elevations. As described in 
Sect. 2.3 and Supplement S1, all meteorological variables are downscaled to the 150 m 
model grid by explicitly accounting for elevation differences between the coarse forcing 
grids and the high-resolution SRTM DEM used in the land surface model. For each 
dataset, forcing variables are first spatially interpolated, and the elevation associated with 
the forcings is obtained through interpolation of the raw elevations. The interpolated 
forcings are then topographically corrected and projected onto the SRTM elevations at 
150 m resolution.  
 
During downscaling, meteorological variables (e.g., air temperature) are corrected using 
lapse rate corrections that explicitly depend on the elevation difference (∆𝑍) between the 
forcing dataset and the SRTM DEM. Therefore, discrepancies between the raw forcing 
elevations and SRTM elevations propagate directly into the downscaled forcings. 
Because basins differ in their elevation distributions, as represented by the SRTM DEM, 
the same forcing dataset can perform differently across watersheds, including adjacent 



basins such as Aspen and Gunnison-East that share the same native MERRA2 grid cell 
(Fig. 1). As shown in Fig. S2, despite identical raw MERRA2 precipitation forcing, 
Aspen exhibits systematically more positive ∆𝑍 values (with more spread) than 
Gunnison-East. Air temperature is spatially distributed using a fixed lapse rate applied to 
the elevation difference ∆𝑍. Consequently, larger elevation differences lead to larger 
temperature adjustments, which directly influence the rain-snow partitioning. As Aspen 
exhibits larger positive ∆𝑍  than Gunnison-East, it has systematically lower corrected 
temperatures and therefore higher snowfall and peak SWE than Gunnison-East.  
 
As discussed in the last paragraph of Sect. 2.3, topographic adjustment and bias 
correction cannot fully remove representation errors inherent to coarse scale forcing 
datasets. Large scale precipitation, air temperature, and radiation still smooth over 
complex mountainous terrain, and product-dependent biases still exist after downscaling. 
These contribute to the inter-dataset spread in annual snowfall and propagate to 
differences in prior SWE. Therefore, differences in SWE performance primarily reflect a 
combination of raw forcing errors and elevation representation errors relative to the 
SRTM DEM.  
 

To address the reviewer’s comment, we propose the following revisions: 

1. Add land cover maps as a new supplementary figure (Fig. S1) and describe land cover in 
Sect. 2.1. Add a new paragraph at the end of Sect. 2.1. “The three watersheds also exhibit 
different dominant land cover types that influence snow accumulation and ablation 
processes. Land cover type and fractional forest cover are derived from the AVHRR land 
cover and GLCF forest cover datasets and interpolated to the 150 m model grid using a 
nearest neighbor interpolation. As shown in Fig. S1, Merced is dominated by grassland 
and wooded grassland, with relatively limited dense forest cover. Aspen exhibits a 
transition from deciduous forest at lower elevations to wooded grassland and alpine 
terrain at higher elevations. Gunnison-East contains a heterogeneous mix of bare ground, 
deciduous forest, and wooded grassland. These differences influence canopy interception, 
sublimation, and radiative fluxes.” 

2. Add an interpretation of prior SWE differences based on land cover type. In line 316 after 
“negative differences relative to the ASO-based reference in April”, add “Beyond 
differences among forcing datasets, the ASO-based reference itself exhibits spatial 
variability across the three watersheds. As shown in Fig. 4, ASO peak SWE in Merced is 
higher than peak SWE in Aspen and Gunnison East which also exhibit higher SWE later 
into the season. These differences across watersheds are likely in part due to differences 
in forest cover, which leads to more canopy interception and slower melt rates in Aspen 
and Gunnison-East.” 



3. Explicitly explain elevation handling and reference DEM. At the end of the first 
paragraph in Sect.2.3, add “All meteorological variables are downscaled to the 150 m 
model grid by explicitly accounting for elevation differences between the coarse forcing 
grids and the high-resolution SRTM DEM used in the land surface model. Discrepancies 
between raw forcing elevations and SRTM elevations propagate directly into the 
downscaled forcings.” 

4. Explicitly introduce elevation-dependent differences in snowfall that are caused by 
differences in raw elevation relative to SRTM DEM and illustrate this effect with a new 
supplementary figure (Fig. S2). Replace the sentence in line 182-183 “Differences among 
datasets …” with “Differences among datasets are consistent across many elevation 
bands due to the coarse resolution of the raw forcing products and the use of the same 
deterministic downscaling approach. In addition, part of the elevation-dependent snowfall 
differences arises from differences between the native elevations of the coarse forcing 
datasets and the high-resolution SRTM DEM used for downscaling. ERA5, MERRA2, 
and NLDAS2 are different in spatial resolution and associated elevations, and air 
temperature is adjusted based on the elevation difference (∆𝑍) between the SRTM DEM 
and interpolated forcing DEM; therefore, any errors in the applied lapse rates scale with 
basin-specific elevation distributions. This effect is illustrated in Fig. S2, which shows 
that although Aspen and Gunnison-East share the same native MERRA2 grid cell (Fig. 
1), Aspen exhibits systematically more positive ∆𝑍 (with more spread) in SRTM DEM 
than Gunnison-East. Air temperature is spatially distributed using a fixed lapse rate 
applied to the elevation difference ∆𝑍. Consequently, larger elevation differences lead to 
larger temperature adjustments, which directly influence the rain-snow partitioning. As 
Aspen exhibits larger positive ∆𝑍  than Gunnison-East, it has systematically lower 
corrected temperatures and therefore higher snowfall and peak SWE than Gunnison-East. 
As a result, adjacent basins with different elevation distributions can experience different 
snowfall partitioning even when forced by the same dataset.” 

5. Clarify the inter-product spread. Replace the sentence in line 189-190 “The observed 
inter-product variability reflects …” with “The observed inter-product variability reflects 
a combination of inherent differences in the raw datasets, elevation-dependent errors 
from the downscaling of coarse-scale forcings over complex terrain, and the spatially 
varying impacts of the applied bias corrections.” 



 

Figure S1. Land cover type (left) and fractional forest cover (right) for the Merced, Aspen, and 
Gunnison-East watersheds at 150 m resolution.  



 

Figure. S2: (a) Spatial map of the elevation difference ∆Z (SRTM – MERRA2 interpolation) 
over the Aspen and Gunnison-East watersheds used in the downscaling of non-precipitation 
forcing variables. (b) Violin plots showing the distributions of ∆Z  for each watershed. The black 
horizontal line denotes the median elevation, with the interquartile range (IQR) indicated by the 
vertical black bars. 

 

MINOR COMMENTS  

1. Figure 1: Would be interesting to add the land cover map, which is used in resampling (Figure 
3). 

Response: We propose to add the land cover map (Fig. S1) as a new supplementary figure, and 
reference it in the main text, because Fig.1 already contains multiple panels and is visually dense. 

 

2. Eqns. 1-3: Personally, I prefer the more compact ways of writing these equations. They could 

shorten into one equation	𝑊! =
∏!"##!

$

∑ ∏!"##!
$

#
 

Response: Suggestion adopted. We will use the compact equation:  



𝑊! =
∏%&!𝜎%'

∑ ∏%&!𝜎%'!
 

3. Eqns. 4-6: Same as the previous equations, it could be summarized by	𝑁! = 𝑊! × 𝑁 

Response: Suggestion adopted. We will use the compact equation:  

𝑁! = 𝑊! × 𝑁 

where 𝑁 = ∑ 𝑁!!  

4. L. 321: Please clarify what is meant by "SWE variations". I assume it is the difference with 
ASO SWE observations. 

Response: “SWE variations” is meant to represent the maximum difference among the three 
prior SWE estimates. We’ve revised the sentence to: “On the near-peak ASO date, the SWE 
variation, defined as the maximum difference among the three prior SWE estimates, is equal to 
0.46 m in Merced, 0.64 m in Aspen, and 0.51 m in Gunnison-East.”. 

5. Figure 4: it would be interesting to add error bars on the ASO measurements to show the 
spatial variability of SD and SWE across the different study areas and the spread in SWE due to 
the mean ensemble density estimation. You show which forcing data works better on average, 
but the error bars could indicate whether the different forcing datasets provide estimates within 
the range of measured properties. 

Response: We appreciate the reviewer’s suggestion to include error bars on the ASO SD and 
SWE estimates in Fig.4. We agree that uncertainty information is important when interpreting 
model performance relative to observations. However, we chose not to include error bars in this 
figure for two reasons: (1) the uncertainty associated with ASO measurements in our framework 
represents measurement error used within the data assimilation, instead of spatial variability of 
SWE or SD across the watershed. The measurement error is not intended to quantify basin scale 
variability or uncertainty in basin-averaged SWE and SD. Including these errors as bars on 
basin-averaged time series could be misleading. (2) Fig. 4 presents daily time series of basin-
averaged SWE and SD, whereas spatial variability is analyzed in elevational distribution and 
spatial SWE differences. (3) ASO SWE uncertainty due to snow density is relatively small (Fig. 
R1). Basin-averaged SWE estimates adjusted using snow density derived from ERA5, 
MERRA2, NLDAS2, and their mean show minimal spread and is therefore deemed a small 
contributor to inter-product uncertainty.  



 

Figure R1. Basin-average ASO SWE adjusted by prior snow density from ERA5, MERRA2, 
NLDAS2, and their average. 

6. Table 3: Probably a precision error but weights do not add up to 1 for Merced. 

Response: Thanks for the comment. The number of replicates sum up to the total number of 
replicates. The existing weights do not add up to 1 due to a precision error. We propose to revise 
the weights using more significant digits for Merced in Table 3.  

Table 3.  Partitioning weights (W) and number of realizations used in the multi-forcing ensemble 
for each domain based on the RMSE of prior mean SWE relative to ASO-based SWE near April 
1st. 

Domains  ERA5 MERRA2 NLDAS2 

Merced W 0.55 0.125 0.325 
# of realizations 66 15 39 

Aspen W 0.34 0.17 0.49 
# of realizations 41 20 59 

Gunnison-East W 0.33 0.38 0.29 
# of realizations 39 46 35 

 

7. Figure 7: I understand the idea behind keeping only the best and worst cases in this figure but I 
think it would still be relevant to include all three forcing cases. I would also keep the same order 
of presentation in the figure as previous figures to make it easier to compare. I also like to keep 
the y-axis range the same when comparing plots horizontally. It helps to identify which site has 
larger errors more easily. 

Response: We appreciate the reviewer’s suggestion. We propose to revise Fig. 7 and Fig. 9 (as 
shown below) to include all forcing cases in the same order of presentation, and keep the y-axis 
range the same. 



 

Figure 7. Bar plots of the RMSE, absolute bias, and ubRMSE of prior mean SWE compared to 
ASO-based SWE across all domains and ASO observation times. The rightmost column 
summarizes the overall statistics across all domains and dates. 

 

Figure 9. Same as Fig.7, but for the posterior mean SWE. The added light grey shaded area 
highlights the assimilation date. 

 



Reply to Reviewer #2 Comments 

MAJOR COMMENTS  

The most major critique I have of the paper is that it does not include a sampling of hydrologic 
conditions (i.e., wet, dry, and average years). The period analyzed (WY 2019) was a wet, high 
snow accumulation year in both the California Sierra Nevada and the Colorado Rocky 
Mountains. The main justification for this year seems to be that lidar snow data were available 
across all three basins (L. 111-112), but I don’t think it is necessary that the same year be used in 
distinct regions (CA vs. CO).  It is the choice of the authors whether or not to bring additional 
years (e.g. dry, average) into the analysis, but at a minimum I think the paper should provide 
more description of the snow/weather conditions in the study year(s) and include some 
discussion on how the type of snow year may influence the DA (e.g., see Margulis et al. 2019, 
GRL). 

Response: We thank the reviewer for this important comment regarding the representativeness of 
hydrologic conditions and the influence of the type of snow year on DA performance. We agree 
that WY2019 was a relatively wet year in both Sierra Nevada and Colorado Rocky Mountains. 
This choice of WY 2019 was driven primarily by the availability of coincident, multiple-dates 
ASO lidar data across all three watersheds. In particular, WY 2019 is the year for which ASO 
data were available both near peak accumulation and during the melt season. Focusing on a wet 
year also provides a meaningful test case for DA performance because longer melt periods allow 
errors in meteorological forcing to propagate, thereby increasing the sensitivity of SWE 
estimates to forcing uncertainty.  Limiting the analysis to a single wet year does not constrain the 
generality of the conclusions that integrating diverse meteorological forcing within a DA 
framework improves SWE estimates, especially where the optimal forcing dataset is uncertain. 
In response to the suggestion, we propose to explicitly describe the snow conditions for WY 
2019 and add discussion on how snow year type may influence DA performance. While 
extending the analysis to multiple years would be valuable, doing so requires additional ASO 
coverage that is not currently available across all three watersheds. We therefore frame this study 
as a focused demonstration under data rich, high snow conditions, and clarify multi-year analysis 
as an important potential direction for future work.  

To address the reviewer’s comment, we propose the following revisions: 

1. Add a sentence in line 111-112 to describe the snow conditions “WY 2019 was 
characterized by well above average snow accumulation across much of the western 
United States, making it a wet snow year relative to long-term climatology. In California, 
peak statewide snowpack was 175 percent of average with records dating back to 1950 
according to the hydroclimate report from California Department of Water Resources.” 

2. Clarify scope and limitations of using a single wet year. Add a sentence to the end of the 
first paragraph of Sect. 2.1 “We acknowledge that restricting the analysis to a single WY 
limits the hydroclimate conditions examined. Therefore, this study is a demonstration of a 



representative wet snow year. Extending the analysis across multiple snow regimes 
would be valuable but is currently limited by the availability of consistent ASO 
observations across all study domains.”  
Add a new sentence at the end of the conclusions “Future work should extend this 
framework to include dry, average, and wet snow years to characterize how hydroclimate 
region influences forcing sensitivity and data assimilation performance. ” 

3. Add a discussion regarding the impact of snow conditions on DA performance. Add the 
paragraph at the end of the first paragraph in Sect. 3.3 “Previous work by Margulis et al. 
(2019) demonstrated that in wet years with deep snowpack, assimilation near peak 
accumulation tends to be most effective. In contrast, in an extreme record-dry year (WY 
2015), DA may be less effective if prior ensembles contain limited snow or if 
observations occur after partial melt, leading to weaker updates. The significant DA 
impacts observed in this study are therefore consistent with the wet-year case analyzed by 
Margulis et al. (2019). Extension of this analysis to dry and normal snow years would be 
valuable for assessing the DA performance across hydroclimate regimes and is a key 
direction for future work.” 

 

GENERAL COMMENT: 
I find that Section 3 is more of a “Results” section than a “Results and Discussion” section (as 
intended). I see minimal elements that make a classic discussion section – e.g., comparisons to 
other studies, discussions of future research needs, etc. I would suggest adding more discussion 
elements throughout section 3 (as appropriate) or alternatively making a short subsection at the 
end of section 3 that provides a more substantive discussion. 

Response: We appreciate the reviewer’s comment. In response, we propose to revise Sect. 3 to 
strengthen its discussion within subsections. 

1. Sect. 3.1: Add an interpretation of prior SWE differences based on land cover type. In 
line 316 after “negative differences relative to the ASO-based reference in April”, add 
“Beyond differences among forcing datasets, the ASO-based reference itself exhibits 
spatial variability across the three watersheds. As shown in Fig. 4, ASO peak SWE in 
Merced is higher than peak SWE in Aspen and Gunnison East which also exhibit higher 
SWE later into the season. These differences across watersheds are likely in part due to 
differences in forest cover, which leads to more canopy interception and slower melt rates 
in Aspen and Gunnison-East.” 

2. Sect. 3.1: Add a discussion of the impact of elevation on forcing disaggregation and prior 
SWE in line 358. “ERA5 and NLDAS2 exhibit similar RMSE in the range of 0.3-0.45 m in 
Aspen and Gunnison-East. However, a counterintuitive result is that MERRA2 exhibits different 
weights in Aspen and Gunnison-East, despite being adjacent watersheds and falling within the 
same native MERRA2 grid cell. While raw MERRA2 precipitation is identical for both basins 



prior to downscaling, the snowfall forcing is different due to elevation-dependent temperature 
corrections and basin-specific elevation distributions. As shown in Fig. S2a, bilinearly 
interpolated MERRA2 elevations differ from SRTM elevations in both magnitude and spatial 
pattern. Aspen has a higher median elevation and a larger elevation range than Gunnison-East as 
represented by SRTM (Fig. S2b). These differences directly influence the lapse rate-based 
temperature correction applied during forcing disaggregation. Therefore, Aspen experiences 
lower corrected temperatures, leading to a higher fraction of precipitation falling as snow and 
greater peak SWE, whereas Gunnison-East exhibits warmer corrected temperatures and reduced 
snowfall.” And add a sentence to line 365 “In contrast, MERRA2 exhibits lower RMSE in 
Gunnison-East on April 7th, 2019, where random errors dominate and its elevation adjusted 
snowfall aligns better with ASO-based SWE.” 

3. As done in Major comments: Add a discussion regarding the impact of snow conditions 
on DA performance. Add the paragraph at the end of the first paragraph in Sect. 3.3 
“Previous work by Margulis et al. (2019) demonstrated that in wet years with deep 
snowpack, assimilation near peak accumulation tends to be most effective. In contrast, 
during dry years, DA may be less effective if prior ensembles contain limited snow or if 
observations occur after partial melt, leading to weaker updates. The significant DA 
impacts observed in this study are therefore consistent with the wet-year case analyzed by 
Margulis et al. (2019). Extension of this analysis to dry and normal snow years would be 
valuable for assessing the DA performance across hydroclimate regimes and is a key 
direction for future work.” 
 

A result that is interesting but not discussed in detail is that there are quite different weights for 
Aspen versus Gunnison-East (e.g., Tables 3 and 5). This is surprising (at least to me), considering 
that they are adjacent basins (Fig. 1). Why is this result obtained and what might it suggest about 
the forcing data and/or the snow in these basins? 

Response: We thank the reviewer for highlighting this point. Although Aspen and Gunnison-East 
are geographically adjacent and fall within the same MERRA2 grid cell (Figure 1), differences in 
forcing weights can arise from elevation-driven differences in snowfall after downscaling. To 
smooth the coarse-resolution MERRA2 and reduce grid-scale artifacts, the raw forcing (e.g., 
MERRA2) is first interpolated to the model grid using bilinear interpolation. As shown in Fig. 
S2 (see response to Reviewer 1), the interpolated elevation from MERRA2 exhibits differences 
from SRTM elevation, and these elevation differences (∆𝑍) vary spatially between the two 
basins. The violin plots in Fig. S2 shows that Aspen has a higher median ∆𝑍 and larger elevation 
difference distribution than Gunnison-East, indicating a larger discrepancy between MERRA2 
elevation and the SRTM DEM in Aspen. 

These elevation differences directly affect the temperature lapse rate correction applied during 
forcing disaggregation. The forcing weights are derived by comparing modeled near-peak SWE 
to ASO observations, which are primarily controlled by accumulation-season snowfall. Because 
total precipitation from MERRA2 is nearly identical for the two basins (as they share the same 



MERRA2 grid cell), any differences in snowfall most likely arise from differences in air 
temperature disaggregation. Air temperature is spatially distributed using a fixed lapse rate 
applied to the elevation difference between the native forcing DEM (MERRA2) and the SRTM 
DEM. Consequently, larger elevation differences lead to larger temperature adjustments, which 
directly influence the rain-snow partitioning. Any errors in the fixed lapse rate will be enhanced 
by larger elevation differences (∆𝑍).  

As Aspen exhibits systematically larger ∆𝑍 (and more spread) than Gunnison-East, it  
experiences larger temperature corrections, resulting in lower corrected temperatures, increased  
snowfall, and higher peak SWE. Overall, the different forcing weights result from a combination 
of raw forcing elevation errors and the effects of disaggregation. The weighting framework used 
in this paper is based on the RMSE between modeled SWE and the ASO SWE reference, not on 
geographic proximity. Each basin preferentially weights the forcing dataset whose elevation 
adjusted snowfall most closely matches the observed SWE. Therefore, even adjacent basins can 
yield different forcing weights when their elevation distributions and temperature corrections 
differ. 

 

Line Comments 

L. 14-20: One nuance that is not conveyed clearly here is that the multi-forcing reduces errors 
relative to most forcing datasets, but not all forcing datasets. As written, it sounds like the multi-
forcing is always the most accurate. Can you convey this nuance while also indicating that the 
“best” forcing dataset cannot be known a priori, and the “best” dataset may vary in space and 
time? 

Response: Suggestion adopted. We propose to revise the paragraph: The multi-forcing ensemble 
generally reduces errors compared to most individual forcing datasets and improves prior SWE 
accuracy across the study regions. Assimilation of near-peak lidar-derived snow depth 
substantially corrects prior SWE errors, reducing the influence of forcing-driven biases 
accumulated during the snowfall season. As a result, random error is the dominant source of 
posterior error. Although assimilation narrows performance differences, the multi-forcing 
ensemble still yields slightly better overall accuracy and improved uncertainty characterization. 
This work demonstrates that integrating diverse meteorological forcings within a data 
assimilation framework can improve SWE estimates (both model-based and reanalysis-based) 
when the optimal forcing dataset cannot be identified a priori and varies across space and time. 

 

L. 45: “transboundary” is often used in water studies in regard to rivers that cross international 
political boundaries, which is not true for all the mountain ranges referenced here (e.g., Sierra 
Nevada). Please reword. 



Response: Suggestion adopted. We propose to revise the sentence: Coarse resolution products 
often fail to capture snow storage patterns in transboundary rain shadow mountain regions (e.g., 
Sierra Nevada and Andes) where snowmelt feeds watersheds that supply distinct downstream 
populations (Fang et al., 2023). 

 

L. 47: To be more exact, I suggest replacing “estimates” with “process-based estimates” or 
“hydrological model estimates”. Physical versus statistical approaches for estimating runoff are 
impacted differently by snow data uncertainty, and I think the sentence is more relevant to the 
former. 

Response: Suggestion adopted. We propose to replace estimates of runoff with process-based 
estimates of runoff. 

 

L. 91: What does “readily available” mean in this context? 

Response: By “readily available”, we mean widely used, publicly accessible meteorological 
forcing datasets, specifically ERA5, MERRA2, and NLDAS2. We propose to revise the 
sentence: Does one of the readily available widely used meteorological forcing datasets (ERA5, 
MERRA2, or NLDAS2) yield the most accurate model-based prior SWE spatio-temporal 
estimates? 

 

L. 125-126: Need to add downwelling longwave radiation here? 

Response: Suggestion adopted. We propose to revise the sentence to “… surface downwelling 
shortwave and longwave radiation, …” 

 

L. 167-168: Broxton et al. (2016) may also be relevant here. 

Response: Suggestion adopted. We propose to add the citation to “… datasets, and evaluations of 
global reanalysis products have identified systematic underestimation of SWE associated with 
forcing and model representation errors (Broxton et al., 2016), suggesting that similar biases are 
expected in ERA5. ” 

 

L. 270: Suggest include the RMSE^2 equation as a distinct/numbered equation (#4). 

Response: Suggestion adopted. We propose to revise the sentence to “The RMSE can be 
decomposed into bias and unbiased RMSE (ubRMSE) components according to Entekhabi et al. 
(2010):  



RMSE' = bias' + ubRMSE'	 (Eq. 4)” 

 

L. 286: For clarity, make this “(i.e., N=120)”. 

Response: Suggestion adopted. We propose to replace the “(i.e., 120)” to “(i.e., N=120)”. 

 

L. 321: Remove “variations”. 

Response: “SWE variations” is meant to represent the maximum difference among the three 
prior SWE estimates. We propose to revise the sentence to “On the near-peak ASO date, the 
SWE variation, defined as the maximum difference among the three prior SWE estimates, equals 
0.46 m in Merced, 0.64 m in Aspen, and 0.51 m in Gunnison-East”. 

L. 322: Replace “differences” with “ranges”? 

Response: Same as L. 321, We propose to replace “Corresponding SD differences” with 
“Corresponding SD variations” 

 

L. 342-345 and Fig. 5: The SWE depth versus elevation plots are useful, but I would argue that 
not all elevation bands are “equal” in a hydrologic sense and a snow storage sense, considering 
that there may be very different amounts of land area contained in each elevation band 
(depending on the hypsometry). It would be useful to know how this looks for SWE volume 
versus elevation, perhaps as a supplementary figure? 

Response: We thank the reviewer for this insightful comment. Figure 5 was designed to show 
elevation dependent differences in mean SWE depth, which is useful for diagnosing how forcing 
performance varies with elevation, but it does not directly represent the contribution of each 
elevation band to total basin snow storage. That said, the elevation bins were not uniform but 
chosen to include the same number of pixels, which should lead to each bin having similar land 
areas. To confirm this, we have added Fig. R3 that shows the distribution of SWE volume as a 
function of elevation, computed by integrating SWE over the land area within each elevation 
band. Because the elevation bins were constructed to contain equal numbers of pixels, each bin 
represents approximately the same land area within the watershed. As a result, SWE volume 
within each elevation bin is proportional to mean SWE, yielding similar elevational patterns for 
SWE depth. 



 

Figure R3. Elevational distribution of ASO-based SWE volume and prior mean SWE volume 
produced using ERA5, MERRA2, and NLDAS2 forcings across (a) Merced, (b) Aspen, and (c) 
Gunnison-East. 

L. 400-401: Note here that the absolute bias of the multi-forcing is still higher than ERA5 and 
NLDAS2. 

Response: We propose to revise the sentence to: For absolute bias, the multi-forcing case 
significantly reduces errors to 0.24 m, compared to 0.49 m for MERRA2, but still higher than 
ERA5 and NLDAS2. 

 

L. 444-446: I do not disagree with this discussion point. However, I think it may also be worth 
noting that there are quite different time periods for the accumulation season vs. the ablation 
season, and that means there is more opportunity for errors (bias) to build up in the accumulation 
season. The accumulation season may be two to three times longer in duration than the ablation 
season, and in this study the “ablation season” is only partial because the ASO survey occur part 
of the way through the ablation season (i.e., before complete melt out). 

Response: Suggestion adopted. We propose to revise the sentence to “ This comparison indicates 
that winter accumulation forcings likely contribute on the order of twice as much SWE error as 
melt-season forcings, making them the dominant source of uncertainty in the model. Note that 



the accumulation season RMSE is based on peak SWE near the end of the accumulation period, 
whereas the melt-season RMSE is derived from mid-melt season and corresponds only to a 
partial ablation period prior to complete melt out.” 

 

L. 471: Add “(Fig. 7)” after “unknown”. 

Response: Suggestion adopted. 

 

L. 480-481: This is a great point and one that the community should appreciate on the value of 
SD data assimilation. 

Response: We agree. 

 

L. 527-528: Add “(class 0)” after “ASO-based SWE” and “(class 3)” after “none of them do” to 
help clarify the conventions. 

 Response: Suggestion adopted. 

 

 

Figures and Tables 

Figure 1: In the lower right panel, suggest rounding the mean value to the nearest mm. 

Response: Suggestion adopted. 



 

 

Figure 7 and Figure 9: I found these confusing and it took me some time to finally figure out 
what they are showing. At first I thought that some of the forcing cases were missing, and it 
wasn’t clear to me until I read the results text that the “middle” case (not best, not worst) was 
being omitted. For clarity, consistency, and completeness, I think it would make sense to include 
all 3 forcing scenarios and the multi-forcing (as in the right panels). You could denote the 
best/worst by placing a marker above the corresponding bar. 

Response: Suggestion adopted. Same as the response to reviewer 1 (Minor Comment 7). 



 

Figure 12: Would this be better displayed as a table rather than a figure? 

 Response: We thank the reviewer for this suggestion. We agree that the information shown in 
Fig. 12 could be presented in a table. However, we chose to keep Fig. 12 to facilitate the visual 
comparison across forcing datasets, basins, and experimental configurations. 

 

References 

Broxton, P. D., Zeng, X., and Dawson, N.: Why Do Global Reanalyses and Land Data 
Assimilation Products Underestimate Snow Water Equivalent?, Journal of Hydrometeorology, 
17, 2743–2761, https://doi.org/10.1175/JHM-D-16-0056.1, 2016. 

Margulis, S. A., Fang, Y., Li, D., Lettenmaier, D. P., and Andreadis, K.: The Utility of 
Infrequent Snow Depth Images for Deriving Continuous Space‐Time Estimates of Seasonal 
Snow Water Equivalent, Geophysical Research Letters, 46, 5331–5340, 
https://doi.org/10.1029/2019GL082507, 2019. 

 


