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Abstract. Accurate evaluation of both observations and forecasts is essential for advancing atmospheric composition 

research and improving operational prediction. Traditionally, this has relied on separate workflows with product-specific 

preprocessing, often limiting reproducibility and creating inconsistencies between models and observational datasets or 

across different products. Modern data assimilation systems provide precise observation operators for mapping model 15 

variables into observation space, yet these capabilities remain underutilized outside assimilation. Here, we demonstrate how 

the Joint Effort for Data assimilation Integration (JEDI) framework addresses this gap by offering a unified, modular, and 

model-agnostic system that integrates data assimilation with systematic evaluation. JEDI enables consistent 

intercomparisons of observations, forecasts, and reanalyses by interfacing with diverse forecast models and gridded datasets, 

while leveraging carefully designed observation operators to compute equivalent quantities for a wide range of observation 20 

products. These include satellite instruments such as Tropospheric Emissions: Monitoring of Pollution (TEMPO), The 

TROPOspheric Monitoring Instrument (TROPOMI), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible 

Infrared Imaging Radiometer Suite (VIIRS), and Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE), as well as 

ground-based networks like Aerosol Robotic Network (AERONET), Pandora, and U.S. Environmental Protection Agency 

(EPA) AirNow. Case studies illustrate the flexibility of this workflow: (1) NO2 forecasts from the Weather Research and 25 

Forecasting model coupled with Chemistry (WRF-Chem) evaluated against TEMPO, TROPOMI, and Pandora retrievals; (2) 

surface fine particulate matter and ozone forecasts from WRF-Chem assessed against AirNow measurements using EPA 

regulatory thresholds; and (3) aerosol optical depth (AOD) retrievals from multiple satellites compared with Modern-Era 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2) and validated against AERONET. These 

examples highlight JEDI’s ability to detect systematic regional biases, reconcile complementary sampling characteristics 30 

across platforms, and assess the added value of unified observation operators for cross-comparison. Overall, JEDI provides a 

consistent and extensible framework for model validation and observation assessment, reducing redundant preprocessing and 
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aligning evaluation with operational data assimilation practices, and ultimately advancing both research and operational 

applications in atmospheric composition. 

1 Introduction 35 

With the growth of Earth system observations from both spaceborne and ground-based platforms, new types of products 

enabled by advanced instruments and retrieval algorithms now provide increasingly detailed snapshots of atmospheric 

composition and dynamics. However, these observations are inherently limited: they represent discrete samples in space and 

time, they do not provide continuous global coverage, and they are restricted to the present and past. In addition, 

observations are subject to random and systematic errors arising from instrument precision, calibration uncertainties, and 40 

sensor degradation over time. As a result, observations alone are insufficient for comprehensive characterization of the Earth 

system state. Numerical models remain indispensable for filling these gaps. They produce three-dimensional fields at regular 

intervals, offering spatially and temporally continuous representations of processes across the Earth system in the past, 

present, and future—capabilities that are fundamentally beyond observational datasets. These include numerical weather 

prediction (NWP) models extended with atmospheric composition, global chemistry–climate models, and chemical transport 45 

models. Such models have been widely used for both operational forecasting and research. Yet, as with observations, model 

representations of the earth system are prone to errors as they remain constrained by underlying assumptions, 

approximations, and parameterizations that limit their accuracy and predictive skill. 

In this context, it is essential to make systematic comparisons between observations and models. Such evaluation not only 

identifies systematic errors and uncertainties but also strengthens confidence in the use of datasets for prediction and analysis 50 

(Levy et al. 2013; Giles et al., 2019). Evaluation and data assimilation (DA) are intrinsically linked: observations are used to 

update (or initialize) the model state for forecasts, while forecasts can serve as both a baseline for assessing those 

observations or as a priori for retrieval algorithms (Bocquet et al., 2010).  

Traditionally, evaluation has been performed outside of DA frameworks, often relying on ad hoc approaches or stand-alone 

verification tools, in which observations are compared against model simulations or, conversely, models are evaluated 55 

against observational datasets. Depending on the application, the baseline may be a single model used to assess multiple 

observational products, or a set of observations used to intercompare multiple models. For example, the MELODIES-

MONET system (Baker and Pan, 2017) and the METplus system (Jensen et al., 2024) provide flexible platforms for model–

observation comparison and verification, but they generally require product-specific preprocessing and rely sometimes on 

simplified transformations that are not fully representing the observation characteristics and or the underlying model physics.  60 

In contrast, observation operators developed within DA systems are explicitly designed to represent the observational 

characteristics and physical processes that link model state variables to observed quantities. Because errors in these operators 

propagate during the DA procedure, they require the highest precision and consistency (Courtier et al., 1998; Bannister, 

2017). Leveraging them for evaluation therefore provides a unique opportunity to evaluate observations and models within a 
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unified DA framework. Without such integration in evaluation frameworks, separate forward models must be built, requiring 65 

redundant efforts and introducing additional sources of uncertainty. In that sense leveraging DA capabilities for evaluation 

purposes with well-vetted observation operators ensures consistency and reliability across both applications (Kalnay 2003; 

Carrassi et al. 2018). 

The Joint Effort for Data assimilation Integration (JEDI; Trémolet and Auligné, 2020) framework provides exactly this 

capability. Designed as a flexible, modular, and model-agnostic system, JEDI integrates observation operators, standardized 70 

data formats, and statistical tools to enable seamless comparison of forecasts, analyses, and diverse observational datasets 

through common interfaces. Its modular design allows users to engage with specific components without needing to master 

the full system. Although originally developed for DA, JEDI also supports consistent processing and evaluation of diverse 

observational datasets independent of assimilation. Built on object-oriented and generic programming principles, it facilitates 

side-by-side comparisons and cross-platform integration, creating new opportunities for unified evaluation and 75 

intercomparison studies. 

In this paper, we showcase the evaluation capability of JEDI across a range of atmospheric composition datasets. Case 

studies demonstrate comparisons between forecast models, reanalysis fields, and diverse observational products, including 

satellite retrievals, ground-based networks, and regulatory air quality monitoring, with minimal code development. The 

examples presented here highlight both the diagnostic power of JEDI’s observation operators and its broader potential as a 80 

common system for evaluation, verification, and cross-comparison in atmospheric composition research and operations. The 

paper is organized as follows: Section 2 describes the evaluation framework and its components; Section 3 and 4 introduce 

the observation and model datasets used for this demonstration; Section 5 presents use cases for various atmospheric 

composition applications such as regional air quality and global aerosol composition using NO2 satellite retrievals, surface 

pollutants, and aerosol optical depth (AOD) observations; finally Section 6 provides a summary. 85 

2 Evaluation framework description 

2.1 A model agnostic system 

The system described in this paper is mainly based on the JEDI (Trémolet and Auligné, 2020; Abdi-Oskouei and Barré, 

2025) maintained by the Joint Center for Satellite Data Assimilation (JCSDA). The JEDI is a modular framework designed 

to support diverse DA and evaluation applications. Built with object-oriented and generic programming techniques, JEDI 90 

consists of independent components, allowing users to interact with specific DA aspects without needing to master in depth 

the entire system. Central to JEDI is the Object-Oriented Prediction System (OOPS), which provides abstraction for the DA 

building blocks (e.g., forecast models and observations with their respective errors) to interact modularly. By separating 

algorithm design from model- or observation-specific details, OOPS allows integration of different numerical models and 

observation datasets, while supporting variational, ensemble, and hybrid assimilation approaches. With that extended 95 

capability, the current system description leverages parts of the entire JEDI framework. 
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The overall workflow is illustrated in Figure 1. Observations from satellite granules or ground stations are first converted 

into the common Interface for Observation Data Access (IODA) format using Python-based converters. IODA files store 

metadata (e.g., latitude, longitude, time, level), observation values, observation errors, quality control (QC) flags, and 

ancillary data (averaging kernels, scattering weights, a priori) in a standardized structure. Model forecasts states 100 

(conventionally denoted x) are ingested through the gridded data interface VIND (Versatile Implementation for Native 

Data), which allows spatial interpolation onto the gridded state at observation locations to provide Geophysical Variables at 

Locations (GeoVaLs), i.e. the full model vertical profiles for a set of required variables. The Unified Forward Operator 

(UFO) then applies the observation operator (conventionally denoted H) on the GeoVaLs to derive model equivalents, H(x), 

which are stored in new IODA files alongside the original observations. The differences between observations and H(x) 105 

provide the basis for assimilation and also evaluation. 

For evaluation, verification and statistics, resulting H(x) IODA files can be directly processed by users’ own diagnostic and 

visualization tools or passed to a verification package, such as METplus (Jensen et al., 2024) via a Python utility that 

converts the paired data into METplus-readable format. Additional diagnostic and visualization tools are needed to process 

the statistical outputs produced by METplus. 110 
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Figure 1. Flowchart of the evaluation system combining JEDI and METplus (FHO for Forecast, Hit, Observation Rates; CTC for 

Contingency Table Counts; CTS for Contingency Table Statistics; CNT for Continuous Statistics; SL1L2 for Scalar L1L2 Partial 

Sums). 

2.2 IODA and UFO 115 

The IODA provides a unified data format within JEDI for storing and exchanging observational datasets. IODA files 

organize information into standardized groups, including MetaData (e.g., latitude, longitude, time, pressure level), ObsValue 

(measured quantities), and optional groups such as quality flags or error estimates. This consistent structure allows diverse 

observations (from satellite retrievals to in situ measurements) to be handled by the same tools and workflows. To generate 

these files, IODA converters are used to transform native observation formats (e.g., NASA satellite granules, EPA AirNow 120 

CSVs, or campaign data) into IODA-compliant files. These converters are typically implemented in Python and maintained 
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within the JCSDA repositories (see code and data availability section), ensuring reproducibility and compatibility across 

applications. By adopting the IODA convention, JEDI facilitates interoperability, reduces the need for custom preprocessing 

scripts, and enables a seamless connection between observational data and forward operators. 

The UFO plays a key role in linking model states to observations by simulating model equivalent quantities to observations. 125 

This capability enables direct comparison of forecasts with actual observations during DA cycles. The UFO offers a 

consistent, extensible interface that supports a wide variety of observation types, ranging from satellite radiances processed 

through radiative transfer models to satellite retrieval products to in situ measurements. Beyond forward modeling, the UFO 

also handles key pre- and post-processing tasks such as filtering, quality control, bias correction, and the computation of 

observation-minus-background (observations relative to the model state) and observation-minus-analysis (observations 130 

relative to the completed data assimilation procedure) quantities. 

The UFO is designed to operate independently of any specific forecast model interface. As mentioned in Section 2.1, it 

receives GeoVaLs as input, which are background state variables interpolated in space and time to the observation points by 

the model interface (see Section 2.3). Model interfaces within JEDI are responsible for producing GeoVaLs, while OOPS 

coordinates the transfer of information from the model to UFO. Once provided, the observation operator can perform further 135 

vertical processing, such as interpolation, coordinate transformations, or integration, depending on the nature of the 

measurements. This architecture keeps the interpolation process uniform across models while allowing each observation 

operator to encapsulate its own specialized logic, promoting flexibility, maintainability, and scalability. The following 

sections describe the three observation operators applied in this study. 

2.2.1 Identity and Vertical interpolation 140 

The identity operator in UFO is used to generate the H(x) quantities at the surface with only horizontal interpolation 

involved during the forward calculation. This operator as default directly extracts the lowest model level from the 

concentrations GeoVaLs. If users wish to perform a comparison with measurements over altitudes the vertical interpolation 

is also available in UFO, this has not been used in this paper but widely used in other JEDI applications (i.e., Abdi-Oskouei 

and Barré, 2025). For additional technical details are provided in the JEDI online documentation: 145 

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/inside/jedi-

components/ufo/obsops.html#obsops-identity and https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-

hosted.com/en/latest/inside/jedi-components/ufo/obsops.html#vertical-interpolation 

2.2.2 Column retrieval 

The column retrieval operator in UFO provides a generalized capability for assimilating vertically integrated atmospheric 150 

retrievals from satellite, airborne, and ground-based sensors. By utilizing averaging kernels and a priori profiles included 

with retrieval products, the operator maps model state variables, such as trace gas mixing ratios, into the observation space, 

producing partial or total column quantities. This design supports a consistent two-step assimilation methodology across 
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multiple platforms. In this work, we apply the column retrieval operator to various NO2 retrievals (see Section 3), 

demonstrating its ability to handle various observational datasets. Additional technical details are provided in the JEDI 155 

online documentation: https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/inside/jedi-

components/ufo/obsops.html#column-retrieval-operator 

2.2.3 CRTM AOD 

The Community Radiative Transfer Model (CRTM) AOD operator in JEDI provides the capability to simulate satellite-

retrieved aerosol quantities directly from model aerosol mixing ratios. Within UFO, CRTM is applied in a simplified 160 

configuration using pre-defined lookup tables (LUTs). These LUTs specify mass extinction coefficients for each aerosol 

species over a range of wavelengths, which are used as relative weights for mass concentration of each species to compute 

total aerosol AOD at each vertical level. With this design CRTM AOD allows for consistent forward modeling of diverse 

aerosol products, accounting for species-specific optical properties under assumptions of particle shape, size distributions, 

and refractive indices. In this work, we used the Goddard Chemistry Aerosol Radiation and Transport (GOCART) GEOS5 165 

LUT with CRTM. While currently demonstrated application relies on the GEOS-5 LUTs to approximate aerosol 

microphysics, the operator provides a flexible framework for future enhancements, including the use of other operational 

aerosol models or coupling with online microphysics schemes. Additional technical information of this operator can be 

found at: https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/inside/jedi-

components/ufo/obsops.html#aerosol-optical-depth-aodcrtm 170 

2.3 Versatile Implementation for Native Data (VIND) 

While observations are processed through IODA and UFO components, as described above, numerical forecast models 

require a different set of common interfaces within JEDI. Regardless of the model variables and native coordinates used in 

each model, they must implement OOPS abstract interfaces for shared components (for example what defines the model 

geometry, the state x, the model forecast and so on) in order to use the generic algorithms available in JEDI. To this end, the 175 

Versatile Implementation for Native Data (VIND) provides all required interfaces for shared components except for the 

forecast step. As a result, VIND can run any OOPS-based DA method that does not require a prediction model or its tangent-

linear/adjoint formulation (e.g., in 4D-Var). VIND builds on ATLAS, an open-source C++ library from ECMWF 

(Deconinck et al., 2017; https://sites.ecmwf.int/docs/atlas/), which provides data structures for handling fields on a wide 

range of global and regional grid geometries. Integrating a new modeling system into VIND requires little to no additional 180 

development, apart from implementing lightweight file readers and writers for model field data if existing ones are not 

already compatible. This simplicity, together with broad grid compatibility provided by ATLAS, makes VIND an attractive 

entry point for new users of the JEDI framework. 
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2.4 METplus 

The Model Evaluation Tools (MET; Brown et al., 2021; Prestopnik et al., 2025) is a community-supported software package 185 

developed by the Developmental Testbed Center (DTC) to provide standardized methods for verifying NWP forecasts. MET 

includes a suite of applications for traditional grid-to-grid and grid-to-observation comparisons, statistical diagnostics, and 

visualization of forecast skill. Building on MET, METplus (Jensen et al., 2024) is a Python-based wrapper that streamlines 

the configuration and execution of MET tools through a modular, workflow-oriented interface. By abstracting the underlying 

MET applications into reusable components, METplus reduces the technical burden on users and enables flexible chaining 190 

of tasks for complex evaluation pipelines. 

Within the atmospheric composition context, METplus allows users to compute a wide range of statistics—such as bias, 

root-mean-square error, contingency table counts, and categorical verification scores—using paired model and observational 

data. Its flexible configuration system supports both deterministic and ensemble forecasts and can be adapted to regulatory 

thresholds (e.g., EPA breakpoints for PM2.5 and ozone). The role of METplus is primarily in post-processing and 195 

verification; it does not provide complex observation operators to generate H(x) over a variety of model outputs. Instead, 

these functions are supplied through JEDI’s IODA data format and observation operators. Together, these components 

provide a unified evaluation framework in which atmospheric composition forecasts can be systematically compared with in-

situ and satellite retrievals, thereby bridging the gap between research-oriented and operational verification practices. 

3 Observations 200 

3.1. TEMPO NO2 tropospheric columns 

The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is a geostationary ultraviolet–visible (UV–Vis) 

spectrometer that provides hourly observations of atmospheric pollutants over North America at 2 × 4.75 km2 resolution 

(Zoogman et al., 2017). Operating from 91°W longitude over the 290–740 nm spectral range, TEMPO measures key trace 

gases including nitrogen dioxide (NO2), ozone, and formaldehyde. NO2 retrievals are derived by estimating slant column 205 

densities (SCDs), removing the stratospheric contribution using GEOS-CF and DA constraints, and converting to vertical 

column densities (VCDs) via air mass factors (AMFs) that account for viewing geometry, surface reflectance, and 

atmospheric profiles (Nowlan et al., 2016). Algorithm details are provided in the TEMPO ATBD (Nowlan et al., 2025). In 

this study, we use version 3 Level 2 tropospheric NO2, retaining only pixels with quality flag being zero and cloud fraction 

less than 0.5 (https://doi.org/10.5067/IS-40e/TEMPO/NO2_L2.003). 210 

3.2. TROPOMI NO2 tropospheric columns 

The TROPOspheric Monitoring Instrument (TROPOMI), onboard Sentinel-5 Precursor since October 2017, is a nadir-

viewing hyperspectral sensor operating in the ultraviolet and visible (UV–Vis) with spatial resolution improved from 3.5 × 7 
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km2 to 3.5 × 5.5 km2 in 2019, enabling urban-scale mapping of NO2 (Eskes et al., 2022). NO2 retrievals use the Differential 

Optical Absorption Spectroscopy (DOAS) technique to derive SCDs, which are converted to VCDs via AMFs based on 215 

radiative transfer and a priori profiles (Veefkind et al., 2012). The product includes both tropospheric and stratospheric NO2 

and is widely applied in air quality and model validation studies. In this work, we use version 2.4.0 of the Level 2 

tropospheric NO2 product, following the User Manual (Eskes et al., 2022) recommendation to retain only pixels with quality 

assurance value above 0.75, thereby excluding cloud fractions above 0.5 (https://doi.org/10.5270/S5P-9bnp8q8).  

3.3 PANDORA NO2 total columns 220 

The Pandora spectrometer system is a ground-based remote sensing instrument designed to provide high-resolution 

measurements of trace gases such as NO2 and ozone. Operating in the UV-Vis spectral range, Pandora instruments retrieve 

total column abundances by analyzing direct solar irradiance spectra, and can also produce tropospheric columns when 

combined with a priori information and stratospheric corrections (Herman et al., 2009). Pandora systems have been deployed 

in networks such as the Pandonia Global Network (PGN), which supports long-term monitoring and satellite validation 225 

efforts. In this study, total column NO2 retrievals from Pandora are used to complement satellite observations, offering 

higher temporal resolution (with retrievals available at intervals of seconds to minutes) and localized ground-truth 

measurements.  

3.4. AirNow ozone and PM2.5 at surface 

The AirNow system, operated by the U.S. Environmental Protection Agency (EPA), delivers near-real-time, surface-level air 230 

quality observations across the United States, focusing on key regulatory pollutants such as ozone and fine particulate matter 

(PM2.5). These data are collected from a network of fixed monitoring stations operated by federal, state, tribal, and local air 

quality agencies. Observations are reported hourly and undergo preliminary quality control to ensure reliability for 

operational applications and scientific analysis.  

3.5. OCI AOD 235 

The Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission was successfully launched in February 2024 (Werdell 

et al., 2019). PACE provides a broad suite of datasets through its primary sensor, the Ocean Color Instrument (OCI). In this 

paper we use AOD retrievals from OCI using the Unified Aerosol Algorithm (UAA; Remer et al. 2019a, b). The UAA 

inherits Dark Target (DT; Levy et al., 2024) and Deep Blue (DB; Hsu et al., 2013) algorithms for the ocean and land surface, 

respectively, and provides AOD retrievals at 0.354, 0.388, 0.48, 0.55, 0.67, 0.87, 1.24, 1.64, and 2.2 μm. Version 3 240 

(https://doi.org/10.5067/PACE/OCI/L2/AER_UAA/3.0) of the product is used here, while version 3.1 was released during 

the preparation of this draft. The released versions of the UAA AOD product remain in testing mode and are not yet 

recommended for scientific applications. Once validated, however, these datasets will offer diverse spatial, spectral, and 

biogeophysical insight across Earth's ocean–atmosphere–land interface, providing unique opportunities to characterize global 
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aerosol properties from space. In addition to AOD, various other observation types 245 

(https://pace.oceansciences.org/data_table.htm#23) can be readily incorporated into JEDI with minimal implementation 

effort. By enabling retrieval assessment and unified intercomparison, the JEDI framework can play a pivotal role in 

maximizing the value of these novel datasets for both observational studies and forecasting applications.  

3.6. MODIS AOD 

The Level 2 AOD retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1; Levy and 250 

Hsu et al., 2015) on satellite Terra (MOD04_L2) and Aqua (MYD04_L2) are processed in this study. It provides the 

combined product for AOD at 550 nm from Dark Target (Levy et al., 2013) and Deep Blue (Hsu et al., 2013) algorithms, 

which were originally developed for different surface types. When the Normalized Difference Vegetation Index (NDVI) is 

larger than 0.3, DT retrievals are provided. When NDVI is smaller than 0.2, DB retrievals are provided. For the remaining 

pixels, the average of DT and DB retrievals or the available one passing the recommended quality assurance, which is 3 for 255 

DT and 2 for DB, is used. The retrieval is based on 20 by 20 pixels at the blue band (500 m resolution), resulting in a 

resolution of 10 km at nadir.  

3.7. VIIRS AOD 

The Visible Infrared Imaging Radiometer Suite (VIIRS), onboard the Suomi-NPP and NOAA-20 satellites, provides Level 2 

aerosol optical depth (AOD) retrievals using two complementary algorithms: DT (Levy et al., 2015; Sawyer et al., 2020) and 260 

DB (Hsu et al., 2013; Lee et al., 2024). The DT algorithm retrieves AOD over dark, vegetated land surfaces and oceans by 

exploiting the low surface reflectance in the visible and shortwave infrared bands, while the DB algorithm extends AOD 

retrievals to bright-reflecting surfaces such as deserts and arid regions, where DT is less reliable. Together, these products 

deliver near-global AOD coverage at a native resolution of approximately 6 km, enabling detailed monitoring of aerosol 

distributions. In this study, we utilize both DT and DB AOD products from Suomi-NPP and NOAA-20 to evaluate aerosol 265 

simulations, benefiting from their complementary spatial coverage and surface-type sensitivity.  

3.8. AERONET AOD 

The Aerosol Robotic Network (AERONET) provides high-quality ground-based observations of AOD through a global 

network of sun photometers. In this study, we use Level 1.5 AOD measurements from AERONET version 3 (Giles et al., 

2019), which include cloud-screened and quality-assured retrievals at multiple wavelengths. AERONET data serve as an 270 

essential reference for evaluating aerosol products and observation operators, offering well-calibrated, long-term records 

with high temporal resolution. 
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4 Gridded inputs 

4.1 WRF-Chem 

A week of hourly forecasts from WRF-Chem v4.5.2 (Grell et al., 2005; Skamarock et al., 2021) system, focused on New 275 

York State and the surrounding areas, is used to demonstrate the case for trace gases evaluation. The system uses the 

National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) forecasts as its meteorological initial 

and lateral boundary conditions. To constrain the meteorological conditions, a fully cycle 3-dimensional variational DA 

system based on the Gridpoint Statistical Interpolation (GSI) (Kleist et al., 2009) is implemented. It assimilates conventional 

data in the NCEP Global Data Assimilation System (GDAS) and the New York State Mesonet (NYSM) surface 280 

meteorological data (Brotzge et al., 2020) and wind profiler observations (Shrestha et al., 2021) every 6 hours at 00, 06, 12, 

and 18 UTC. 

For chemical initial and lateral boundary conditions, 6-hourly 0.9º x 1.25º forecasts from the Whole Atmosphere Community 

Climate Model’s (WACCM; Gettleman et al., 2019) are used. Biogenic emissions are calculated by the Model of Emissions 

of Gases and Aerosols from Nature (MEGAN; Guenther et al., 2006), and biomass burning emissions are supplied from the 285 

FIre Inventory from NCAR (FINN) version 2.5.1 (Wiedinmyer et al., 2023). Anthropogenic emissions are based on the EPA 

National Emission Inventory (NEI) 2016 modeling platform. The chemistry scheme used in the system is T1-MOZCART, 

which couples the MOZART-T1 (Emmons et al., 2020) with GOCART aerosols (Chin et al., 2003; Colarco et al., 2010). 

4.2 MERRA-2 

MERRA-2 (Gelaro et al., 2017; Randles et al., 2017) is the reanalysis dataset produced by the NASA Global Modeling and 290 

Assimilation Office (GMAO) based on the GEOS-5 system. It assimilates AOD measurements from AERONET, the 

Multiangle Imaging Spectro Radiometer (MISR), MODIS, and the Advanced Very-High-Resolution Radiometer (AVHRR) 

instruments. Note that the MODIS AOD product assimilated in MERRA-2 is bias corrected via a neural network algorithm, 

which is a different product from the MODIS C6.1 used in this study. MERRA-2 data is publicly available at NASA’s 

Goddard Earth Sciences Data and Information Services Center (https://gmao.gsfc.nasa.gov/gmao-products/merra-2/data-295 

access_merra-2/). In this study, preprocessing is performed to combine 3-hourly reanalysis of meteorological conditions 

(https://doi.org/10.5067/WWQSXQ8IVFW8) and aerosol mixing ratios (https://doi.org/10.5067/LTVB4GPCOTK2). 

5 Use Cases 

5.1 Space and ground-based NO2 retrievals vs WRF-Chem 

Figure 2 compares tropospheric NO2 retrievals from TEMPO and TROPOMI with an example of a 1-hour window centered 300 

at 19 UTC 24 August 2024 against corresponding WRF-Chem forecasts. This example shows the potential for evaluating 

forecast performance using satellite data, which is quantified by innovation statistics, i.e., the differences between simulated 
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observation equivalents, H(x), and retrievals. In this example, TEMPO’s higher spatial resolution provides finer detail, while 

discrepancies between TEMPO and TROPOMI are evident over Boston, western Pennsylvania, and southern New Jersey 

areas. WRF-Chem underestimates NO2 tropospheric columns over the New York metropolitan area, overestimates near 305 

Montreal and Vermont, and shows better agreement with elevated concentrations near Toronto. This highlights the capability 

to cross-compare different satellite products and model outputs. 

 

Figure 2. Spatial distribution of tropospheric NO2 retrievals from (a) TROPOMI ObsValue and (b) TROPOMI H(x) and (c) 

TEMPO ObsValue and (d) TEMPO H(x) valid between 13:30 and 14:30 LST (18:30 and 19:30 UTC) 24 August 2024. H(x) is 310 
based on the 19-hour forecast valid at 14:00 LST (19:00 UTC) 24 August 2024 from WRF-Chem. 

Bias and root-mean-square error (RMSE) statistics are computed over time in Figure 3. This offers insight into systematic 

over- or underestimation patterns in time that can inform on atmospheric model process and emission inventory 

improvements. The temporal sampling of TEMPO and TROPOMI provides complementary perspectives. TEMPO, in 

geostationary orbit, delivers hourly coverage across North America, capturing diurnal cycles and short-lived events. In 315 

contrast, polar low earth orbiting TROPOMI provides only one revisit per day around 1:30 PM local time for NO2 

measurements, therefore is incapable of providing insights on diurnal variability. 

https://doi.org/10.5194/egusphere-2025-4503
Preprint. Discussion started: 24 September 2025
c© Author(s) 2025. CC BY 4.0 License.



13 

 

 

Figure 3. Time series of (a) Bias and (b) RMSE derived from hourly differences of tropospheric NO2 between retrievals from 

satellite sensors (blue: TROPOMI; orange: TEMPO) and H(x) from WRF-Chem from 22 August to 1 September 2024. Mean 320 
values are provided in parentheses. 

Beyond NO₂ columns, the JEDI column retrieval operator supports evaluation of other trace gases. Tested cases include total 

and partial columns of carbon monoxide (CO) and ozone, demonstrating its flexibility across species with varying averaging 

kernels and a priori information dependencies. Although not shown here, these applications highlight the broader utility of 
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JEDI for multi-species analysis. Looking ahead, the same framework can be extended to retrievals of formaldehyde (HCHO) 325 

and sulfur dioxide (SO2), key for studying photochemistry and emission sources. While not yet tested, their integration is 

expected to be straightforward within JEDI’s modular design. 

Figure 4 shows the PANDORA total column NO2 retrievals and corresponding H(x) based on WRF-Chem forecasts. The 

temporal resolution of PANDORA retrievals can vary from a few seconds to a couple of minutes, which is higher than the 

hourly outputs from WRF-Chem. WRF-Chem did not capture the high NO2 concentration event over New York City and its 330 

surrounding areas, while it shows better agreement with PANDORA retrievals in Boston and the west coast of Lake Ontario. 

In this use case, we produced H(x) within a 1-hour window centered at 19Z 24 August 2024. The type of H(x) demonstrated 

in this study follows what is typically used in a 3DVar assimilation. All observations in a given time window or more 

commonly called assimilation window time are compared to a single time background or model file. In our case study the 

observations are available every 6 seconds but we have hourly model output files. We average the results comparisons over 335 

the hourly time window. Note that if more frequent model output is available, users can adjust the window length (e.g., 30 

minutes) for the VIND application. 

 

Figure 4. Spatial distribution of PANDORA total column NO2 retrieval observations and H(x) over (a, d) New York, (b, e) Boston, 

and (c, f) Toronto areas valid between 13:30 and 14:30 LST (18:30 and 19:30 UTC) 24 August 2024. H(x) is based on the 19-hour 340 
forecast valid at 14:00 LST (19:00 UTC 24) August 2024 from WRF-Chem. 

5.2 AirNow (PM2.5 and ozone) vs WRF-Chem 

To evaluate and monitor surface levels of pollution, model forecasts and surface observations are typically evaluated against 

U.S. EPA regulatory thresholds. In this study, hourly forecasts from WRF-Chem were compared with hourly EPA AirNow 
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measurements of PM2.5 and ozone. Although EPA air quality standards are defined for 24-hour average PM2.5 and 8-hour 345 

running mean ozone, we applied these breakpoints directly to hourly output data, enabling a consistent contingency table 

framework for categorical evaluation. 

To facilitate this analysis, we developed a Python interface to the StatAnalysis tool in METplus 

(https://metplus.readthedocs.io/en/latest/Users_Guide/wrappers.html#statanalysis) that reads paired model–observation data 

in IODA format. This workflow leverages the existing statistical capabilities of METplus, such as the computation of 350 

categorical counts based on user-defined thresholds, while maintaining compatibility with the JEDI-based H(x) outputs. 

Users can specify thresholds corresponding to regulatory breakpoints or other criteria of interest, allowing flexible evaluation 

of model skill across multiple categories. Using the observation locations shown in Figure 5 and the same WRF-Chem 

model outputs as in Section 5.1, an example of resulting contingency statistics is provided in Table 1. 

 355 

Figure 5. Available AirNow sites within the domain of the WRF-Chem system from 22 August to 1 September 2024. Sites with 

ozone measurements in black circles; PM2.5 in blue dots. 

Here we showcase how JEDI’s UFO observation operators, IODA observation format, and METplus’ statistical analysis 

tools can be combined into a unified approach to assess forecast performance against regulatory air quality standards. This 

integration supports operational-style evaluations of air quality models, linking process-based research with metrics directly 360 

relevant to public health and policy. 

PM2.5 (µg/m3) Good (0 - 9) Moderate (9 - 35.4) Unhealthy (> 35.4) 
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Counts = 43273 O_Y O_N O_Y O_N O_Y O_N 

F_Y 
19096 

(44.13%) 

16057 

(37.11%) 

1041 (2.41%) 7073 

(16.35%) 

0 

(0%) 

6 

(0.01%) 

F_N 
7009 

(16.20%) 

1111 

(2.57%) 

15979 

(36.93%) 

19180 

(44.32%) 

28 

(0.06%) 

43239 

(99.92%) 

Ozone (ppb) Good (0 - 54) Moderate (54 - 70) Unhealthy (> 70) 

Counts = 52488 O_Y O_N O_Y O_N O_Y O_N 

F_Y 
0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

415 

(0.79%) 

52073 

(99.21%) 

F_N 
46646 

(88.87%) 

5842 

(11.13%) 

4228 

(8.06%) 

48260 

(91.94%) 

0 

(0%) 

0 

(0%) 

Table 1. Example of a contingency table of surface PM2.5 and ozone based on the EPA breakpoints table. (F: WRF-Chem forecasts, 

O: AirNow measurements, F/O_Y: Forecast or observation falls into the category, F/O_N: Forecast or observation does not fall 

into the category). 

5.3 AOD products vs. MERRA-2 365 

In this section, we demonstrate the capability of the JEDI system to evaluate AOD retrievals against reanalysis products, 

using the MERRA-2 reanalysis as a common baseline. The UFO/CRTM AOD operator with GEOS-5 LUTs was applied to 

aerosol mixing ratios from MERRA-2 to generate model equivalents, H(x), at 550 nm. These were compared with multiple 

satellite AOD retrievals, including PACE OCI UAA, MODIS C6.1, and VIIRS DT and DB, as well as ground-based 

AERONET observations. 370 

Figure 6 illustrates an example of the spatial distribution of observation-minus-background average (1-30 November 2024), 

with MERRA-2 reanalysis as the background, binned onto MERRA-2 grids (0.5° × 0.625°). Overall, AOD H(x) values from 

MERRA-2 is systematically lower than all the retrievals, with notable underestimation over India, Brazil, and tropical 

Africa. Regional patterns also emerge, with biases evident over North America, the Sahara Desert, and Australia, as well as 

fire-active regions such as central Africa and the Amazonia. These comparisons underscore the value of systematic 375 

intercomparisons across retrieval products using a consistent reanalysis baseline. 
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Figure 6. Averaged observation-minus-background aggregated on MERRA-2 grids (0.5° x 0.625°) for 1-30 November 2024 from 

(a) OCI UAA AOD on PACE, (b) MODIS AOD on Aqua, (c) VIIRS Dark Target AOD on NOAA-20, and (d) VIIRS Deep Blue 

AOD on NOAA-20. 380 

To quantify performance, Figure 7 presents two-dimensional density distributions of AOD observations against H(x) on 

MERRA-2 reanalyses, against each AOD product. The AOD from MERRA-2 shows better agreement with AERONET than 

with any of the satellite retrievals, exhibiting higher correlations, lower RMSE, and smaller biases (Table 2). This highlights 

for example the utility of AERONET as a benchmark for both model evaluation and observation operator performance. 

Figure 8 displays the spatial distribution of available AERONET sites and its data volume used for the verification. 385 
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Figure 7. Density distribution plots of AOD H(x) at 550 nm (500 nm for AERONET) on MERRA-2 reanalyses (y-axis) against 

AOD observation products (x-axis) from (a) OCI UAA on PACE, (b) MODIS C6.1 on Aqua, (c) VIIRS Dark Target on NOAA-20, 

(d) VIIRS Deep Blue on NOAA-20, and (e) AERONET Level 1.5. Axes are in the logarithmic scale. 
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 390 

Figure 8. The site map of AERONET Level 1.5 data for November 2024. 

An additional advantage of the IODA/UFO workflow is that metadata flags, such as land–water classification, are preserved 

throughout the JEDI procedure and retained in the output files, enabling categorized statistical analysis. This capability 

allows stratified statistics to be generated without the need for external file matching or pixel collocation. Table 2 

summarizes bias, RMSE, and correlation (R2) for each dataset relative to MERRA-2, including separate land–water statistics 395 

for the satellite products. These comparisons highlight differences in retrieval performance across surface types and 

underscore the complementary strengths of each dataset. 

 OCI UAA PACE MODIS Aqua MODIS Terra VIIRS DT NOAA-20 

Bias -0.093 (-0.088, -0.096) -0.075 (-0.059, -0.081) -0.088 (-0.071, -0.095) -0.070 (-0.070, -0.070) 

RMSE 0.171 (0.225, 0.132) 0.137 (0.187, 0.114) 0.157 (0.203, 0.132) 0.141 (0.228, 0.102) 

R2 0.432 (0.423, 0.448) 0.407 (0.402, 0.421) 0.386 (0.401, 0.403) 0.439 (0.421, 0.458) 

 VIIRS DB NOAA-20 VIIRS DT S-NPP VIIRS DB S-NPP AERONET Level 1.5 

Bias -0.079 (-0.089, -0.074) -0.101 (-0.110, -0.098) -0.077 (-0.071, -0.080) -0.035 

RMSE 0.154 (0.214, 0.106) 0.207 (0.265, 0.187) 0.157 (0.216, 0.110) 0.144 

R2 0.504 (0.472, 0.513) 0.312 (0.430, 0.185) 0.451 (0.427, 0.521) 0.633 

Table 2. Summary table of Bias, RMSE, and R2 of AOD H(x) using MERRA-2 reanalysis against each AOD product. Numbers in 

parentheses are statistics for land and water, respectively. Separate statistics over land and water are not calculated for 

AERONET Level 1.5 AOD 400 

It is important to note that this section does not present a full scientific assessment of AOD products or reanalysis 

performance. Rather, it demonstrates the comprehensive capability of the JEDI system to integrate diverse aerosol datasets, 
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generate consistent H(x) simulations using CRTM as the observation operator, and produce diagnostic statistics through a 

unified IODA framework. This functionality provides a powerful tool for routine evaluation and intercomparison of AOD 

products in both research and operational contexts. 405 

6 Summary 

This study demonstrates the capability of the JEDI framework to serve not only as a DA system but also as a unified and 

flexible platform for the evaluation of atmospheric composition observations and models. Leveraging JEDI’s modular 

design, we used the already existing suite of observation operators to generate observation equivalents H(x) from both WRF-

Chem forecasts and the MERRA-2 reanalysis. These H(x) quantities were then compared with a diverse set of ground-based 410 

and satellite observation products. The demonstrated comparisons include AirNow, Pandora, TEMPO, TROPOMI, MODIS, 

VIIRS, PACE, and AERONET and can be extended to much more observations products for not only atmospheric 

composition but also other application components of the earth system (weather, ocean, land surface). 

Through case studies, we illustrated how the system can (1) evaluate WRF-Chem forecasts against high-resolution NO2 

retrievals from TEMPO, TROPOMI, and Pandora, (2) assess surface PM2.5 and ozone WRF-Chem predictions relative to 415 

AirNow monitoring networks using EPA regulatory thresholds, and (3) intercompare multiple satellite AOD products 

against MERRA-2 reanalysis and AERONET. The examples highlight systematic differences between gridded model 

outputs and satellite observations, revealing retrieval biases that depend on region and surface type. Such examples also 

demonstrate the added value of complementary satellite products, such as TEMPO’s hourly geostationary coverage versus 

TROPOMI’s global polar-orbiting sampling, in characterizing temporal and spatial variability. 420 

A central strength of this workflow lies in the use of the IODA data format and UFO observation operators, which are 

designed for data assimilation and therefore aim to perform with the best possible precision. While the UFO provides a 

model-agnostic framework through JEDI’s standardized interfaces, its operators apply appropriate algorithmic and physical 

transformations and keep modularity and genericity. For instance, in atmospheric composition applications, UFO allows a 

choice of radiative transfer model and a choice of aerosol optical properties for AOD computations. Also, correct vertical 425 

integration and weighting function smoothing that is generic to most gas phase satellite nadir retrieval products is available. 

Such operators have been designed in a sophisticated and accurate manner to fulfil the modern data assimilation 

requirements of precision, genericity and built-in quality control filtering functionality. This paper demonstrates how to 

leverage this already existing capability within JEDI. In combination with METplus statistical tools, JEDI enables efficient 

generation of standard verification metrics, contingency tables, and stratified statistics based on observation metadata. This 430 

avoids the need for product-specific preprocessing and facilitates side-by-side evaluation across multiple instruments and 

models. 

While our focus was on demonstrating system capability rather than delivering a comprehensive scientific assessment, the 

framework is readily extensible. Future developments include expanding observation conversion to the IODA format for 
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additional trace gases such as HCHO and SO2, refining aerosol optical property representations in the CRTM AOD operator, 435 

and extending the workflow across diverse Earth system models interfaced with VIND and JEDI. By unifying data 

assimilation infrastructure with systematic evaluation, JEDI provides a robust foundation for advancing atmospheric 

composition research and enabling more effective use of rapidly growing satellite and ground-based observing systems in 

scientific and operational contexts. Looking ahead, JEDI also provides a powerful environment for testing the design and 

impact of observing systems through Observing System Experiments (OSEs) and Observing System Simulation Experiments 440 

(OSSEs). By enabling the generation of synthetic observations and evaluation of their impact, JEDI not only advances the 

assessment of existing observing systems but also opens new pathways for exploring and shaping future observing strategies. 

Code and data availability 

The JEDI-ACE and related MERRA-2 data processing code has been made available on GitHub 

(https://github.com/weiwilliam/JEDI-ACE.git). Users can follow the instruction to check out the commits for VIND and 445 

JEDI components. The sample input data and the output of H(x) IODA files and METplus statistics files have been made 

public available on Zenodo at https://doi.org/10.5281/zenodo.17058099 (Wei et al., 2025). The code for WRF-Chem v4.5.2 

has been made publicly available through GitHub (https://github.com/wrf-model/WRF/releases/tag/v4.5.2).  

Here we list the products used in this work: TEMPO NO2: doi.org/10.5067/IS-40e/TEMPO/NO2_L2.003; TROPOMI NO2: 

doi.org/10.5270/S5P-9bnp8q8; OCI UAA AOD on PACE: doi.org/10.5067/PACE/OCI/L2/AER_UAA/3.0; MODIS AOD 450 

on Aqua: doi.org/10.5067/MODIS/MYD04_L2.061; MODIS AOD on Terra: doi.org/10.5067/MODIS/MOD04_L2.061; 

VIIRS DT AOD on Suomi-NPP: doi.org/10.5067/VIIRS/AERDT_L2_VIIRS_SNPP.002; VIIRS DT AOD on NOAA-20: 

doi.org/10.5067/VIIRS/AERDT_L2_VIIRS_NOAA20.002; VIIRS DB AOD on Suomi-NPP: 

doi.org/10.5067/VIIRS/AERDB_L2_VIIRS_SNPP.002; VIIRS DB AOD on NOAA-20: 

doi.org/10.5067/VIIRS/AERDB_L2_VIIRS_NOAA20.002. The doi is not available for data of AERONET, PANDORA, 455 

and AirNow, but they are publicly available. AERONET AOD data can be accessed through their API following the 

instructions on https://aeronet.gsfc.nasa.gov/print_web_data_help_v3_new.html. PANDORA data can be accessed from 

http://data.pandonia-global-network.org/. The hourly PM2.5 and ozone data are accessible with AirNow API credentials on 

the webpage (https://docs.airnowapi.org/). The v5.12.4 of MERRA-2 reanalysis data is publicly available on Goddard Earth 

Sciences (GES) Data and Information Services Center (DISC) (https://disc.gsfc.nasa.gov/). The doi of the meteorological 460 

condition from M2I3NVASM is 10.5067/WWQSXQ8IVFW8. The doi for aerosol mixing ratios from M2I3NVAER is 

10.5067/LTVB4GPCOTK2. 
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