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Abstract. In this study, we investigate the effect of climate change on tropical cyclone (TC) induced compound flooding and 

impacts for TC Idai, making landfall in Mozambique in 2019. TCs are one of the most damaging extreme events and are 

challenging to attribute using conventional, probabilistic methods. We develop a storyline attribution framework including a 10 

state-of-the-art modelling chain that combines hydrological, coastal, flood and impact models to simulate the changes in 

flooding and its impact under factual and counterfactual scenarios, with the climate trend removed. For the case of TC Idai, 

we find that sea level rise and change in wind-driven storm surge lead to the largest increase in flood damage (27 % compared 

to the counterfactual), while causing a less than 1 % increase in flood volume and flood extent. Climate trends in rainfall lead 

to the largest increase in flood volume and flood extent (9 % and 2 %, respectively, compared to the counterfactual) but account 15 

for a smaller increase in flood damage (4 %). Changes in all drivers combined lead to the same increase in flood volume and 

flood extent as the rain-only scenario (9 % and 2 %, respectively) but the largest increase in flood damage (31 %). A non-

linear relationship between flood hazard and flood damage results in a stronger climate footprint on TC impacts than hazards. 

Assessing the combination of all climate change-affected flood drivers is crucial for obtaining a comprehensive view on the 

effect of climate change. The attribution framework presented in this paper is applicable for TC-prone regions across the globe 20 

and can be applied in data-poor, yet often highly impacted and vulnerable areas which are currently underrepresented in 

attribution studies.  

 

Short summary (500 characters incl. spaces):  

This study highlights the need to disentangle climate change effects on flood drivers using storyline attribution. Whether the 25 

information is presented as change in one or multiple drivers, or as change in hazard or impact, determines the attribution 

statement. For the compound flooding from tropical cyclone Idai, that hit Mozambique in 2019, we attribute up to 9 % of the 

flood hazard and 31 % of the damage to climate change. The attribution framework can be applied to other events worldwide. 
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1 Introduction 

Compound flooding from tropical cyclones (TCs) is one of the most damaging climate extreme events and is exacerbated by 30 

climate change (Frame et al., 2020; Smith and Katz, 2013). This raises the question to what extent climate change is already 

worsening the occurrence and severity of TCs. This question is being addressed by climate attribution, which is a rapidly 

emerging academic field, aiming to assess the contribution of climate change to extreme events (Hegerl et al., 2010; 

Intergovernmental Panel on Climate Change (IPCC), 2014).  

 35 

There are various attribution methods; ranging from probabilistic using climate model ensembles to (semi-)conditional 

analogues and storylines (Faranda et al., 2022; van Garderen et al., 2021; van Oldenborgh et al., 2021; Stott et al., 2004). Most 

climate attribution assessments focussing on flood events use a meteorological driver as a proxy to represent the flood hazard, 

such as 3-day annual maximum precipitation (Davenport et al., 2021; Otto et al., 2022; Wang et al., 2023). However, flooding 

involves many non-linear processes that depend not only on the amount and intensity of local rainfall. The rainfall–runoff 40 

response is controlled by catchment size, antecedent conditions, land cover, elevation, and other factors (Jahanshahi and Booij, 

2023; Massari et al., 2023). Without the modelling of the flood event and associated drivers, it remains uncertain what aspect 

of the flood event is attributable to climate change (Scussolini et al., 2024). Moreover, attribution studies that do propagate the 

effect of climate change to flood hazard often model a single flood driver (Mester et al., 2023; Strauss et al., 2021), ignoring 

the interaction of multiple flood drivers, such as pluvial, fluvial or coastal flooding, that often co-occur during TC events 45 

(Ward et al., 2018).  

 

TCs are particularly challenging to attribute using conventional, probabilistic attribution methods (Philp et al., 2022). The 

reason is that probabilistic attribution relies on accurate model representation and good quality observations, which both have 

been shown to be challenging for TCs due to their relatively small spatial scale compared to climate model resolution, limited 50 

understanding of the underlying physics, their short observational records, and large internal variability (Camargo et al., 2023; 

Knutson et al., 2019; Philip et al., 2020)  

 

Instead of attributing all causal factors simultaneously, storyline attribution examines the causality chain through conditional 

explanations (e.g. conditioning on atmospheric dynamics) (Shepherd, 2016; Sillmann et al., 2021). Studying the plausibility 55 

rather than probability allows for assessing contributions of separate drivers affected by climate change, which is necessary 

for describing complex extremes such as TCs (Lloyd and Shepherd, 2021; Perkins-Kirkpatrick et al., 2024). A storyline 

approach is applicable for compound flooding from TCs and has been applied for event attribution (Mester et al., 2023).  

 

By modelling a comprehensive causality chain between hazards and impacts, storyline attribution also enables impact 60 

attribution, which builds on climate attribution. Impact attribution propagates the effect of climate change from hazard to 
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impact and includes elements of exposure and vulnerability contributing to societal impact (IPCC, 2023a; Mengel et al., 2021; 

Noy et al., 2024). By integrating the role of exposure and vulnerability, impact attribution helps improving climate impact 

assessments (IPCC, 2023a). It can be used to inform policies and actions and can help improve the description of the links 

between climate phenomena and impacts (Hope et al., 2022).  65 

 

Highly vulnerable and low-income regions, such as those in East Africa, remain underrepresented in attribution studies 

(Callaghan et al., 2021; Coumou et al., 2024; Perkins-Kirkpatrick et al., 2024). Most TC attribution studies focus on data-rich 

regions, like the United States (Bourdin et al., 2025; Grimley et al., 2024; Smiley et al., 2022; Strauss et al., 2021). This 

attribution gap is at least partly related to the lack of observational data. However, recent advances in global flood modelling 70 

(Ward et al., 2015; Wing et al., 2024) have created new information sources, including globally applicable methods for tropical-

cyclone induced flooding (Benito et al., 2025; Eilander et al., 2023a). These developments pave the way for addressing the 

attribution gap and building a globally applicable method for storyline attribution of TC-induced flooding. 

 

The goal of this paper is to demonstrate the applicability of an attribution framework utilizing global data and methods by 75 

attributing the effects of climate change on flood hazard and impact from TC Idai. TC Idai was one of the most devastating 

cyclones to ever hit the southern hemisphere (Warren, 2019). On 14 March 2019, it made landfall close to Beira City in 

Mozambique. A seven-day accumulated rainfall of more than 600 mm, strong winds above 150 km/h and storm surge heights 

estimated at 2.5 to 4.4 m impacted Mozambique, Malawi and Zimbabwe (Probst and Annunziato, 2019; WMO, 2019). In 

Mozambique alone, it is estimated that Idai caused over 3 billion USD in economic costs, destroyed over 200,000 homes, and 80 

caused 600 fatalities (Nhundu et al., 2021; OCHA, 2019). The storm ultimately affected approximately 1.85 million people 

across Mozambique. Also in the future, Mozambique is expected to be the highest impacted country by TCs in East Africa 

(Benito et al., 2024).  

 

We use a storyline attribution framework with a state-of-the-art modelling chain that dynamically simulates all TC flood 85 

drivers and damages in factual and counterfactual scenarios, where climate change trends are removed. The differences 

between the factual and counterfactual scenarios for flood hazard and impact are compared to construct climate and impact 

attribution assessments. Finally, we discuss the results and recommend further improvements for our attribution framework 

and directions for climate and impact attribution assessment of compound flooding from TCs. 

2 Methodology  90 

The attribution framework (Fig. 1) for TC Idai (9 to 25 March 2019) consists of multiple physics-based models for the different 

flood drivers (Sect. 2.1) and a flood impact model (Sect. 2.2). These models are used to simulate a factual scenario (Sect. 2.3.1) 

and multiple counterfactual scenarios with the climate change trend removed from rainfall, wind and sea level (Sect. 2.3.2). 

The factual and counterfactual scenarios are compared in terms of change in flood hazard (volume and extent) and flood impact 
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(direct damage) to determine the climate- and impact attribution (Sect. 2.3.3). Our entire workflow is built on open-source 95 

models and is accessible on GitHub (Vertegaal et al., 2025). 

 

Figure 1: Attribution framework consisting of steps to assess climate- and impact attribution for compound flooding from TCs. The 

compound flood modelling (Sect. 2.1) and flood impact modelling (Sect. 2.2) is applied to a factual (Sect. 2.3.1) and multiple 

counterfactual scenarios (Sect. 2.3.2), and is used to simulate flood hazard (volume and extent) and flood impact (direct damages). 100 
The input data for the different counterfactuals is based on changes in wind, rainfall and sea level rise. Stacked boxes show multiple 

(combined) adjusted driver conditions, model simulations or analyses. Climate attribution refers to the changes due to climate 

change on the hazard, whereas impact attribution propagates the effect to impact (Sect. 2.3.3). 

2.1 Compound flood modelling 

The modelling chain we develop for simulating the TC-induced compound flooding (fluvial, pluvial and coastal) is based on 105 

the Super-Fast INundation of CoastS v2.2.0 (SFINCS) model (van Ormondt et al., 2025a), building on the globally-applicable 

method presented in Eilander et al. (2023a). Discharge boundary conditions are modelled with the hydrological model wflow 

v0.8.1 (van Verseveld et al., 2025). Coastal water level boundary conditions are modelled with hydrodynamic model D-Flow 

FM v2025.01 from the Delft3D Flexible Mesh Suite (Kernkamp et al., 2011) to compute tide and storm surge. Nearshore wave 

setup is modelled using the coupled wave model SnapWave (Roelvink et al., 2025), that is integrated into SFINCS (Leijnse et 110 

al., 2025). The forcing for the factual and counterfactual scenarios is described in Sect. 2.3. Details on model parameters can 

be found in the GitHub repository (Vertegaal et al., 2025). To setup the models and process the in- and output, we make use 

of the python package Hydro Model Tools (HydroMT) with the model specific plugins (Deltares, 2025; Eilander et al., 2023b, 

2024, 2025), except for the D-Flow FM model where we make use of dfm_tools v0.35 (Veenstra, 2025).  

2.1.1 Compound flooding 115 

Compound flooding is simulated using the SFINCS model, a reduced-complexity and computationally efficient model (Leijnse 

et al., 2021). SFINCS has been successfully used to simulate TC-induced flooding in various studies (Benito et al., 2024, 2025; 
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Eilander et al., 2023a; Goulart et al., 2024; Grimley et al., 2024; Leijnse et al., 2025; Nederhoff et al., 2024). In this study, 

SFINCS is forced with river discharges (Sect. 2.1.2), coastal water levels (Sect. 2.1.3) and local rainfall (Sect. 2.3.1. & 2.3.2). 

The spatial resolution of the model is 100 m and the domain covers 8260 km2 (pink domain in Fig. 2). To reduce computational 120 

costs, we make use of the subgrid functionality that applies corrections of the flow momentum and continuity equation for bed 

level and friction variability within a cell and downscale the results to the higher resolution digital elevation model of 25 m 

(van Ormondt et al., 2025b). For topobathy, we merge the global bathymetry dataset GEBCO (GEBCO Bathymetric 

Compilation Group 2024, 2024) with the FABDEM digital elevation model (Hawker et al., 2022). Land Manning roughness 

is based on the land use data from Buchhorn et al. (2020) and infiltration data from Jaafar and Ahmad (2019). Flooded areas 125 

are identified by removing permanent water areas, using the Global Surface Water dataset (Pekel et al., 2016). A cell is 

considered as flooded if the water depth exceeds 0.05 meter. 

2.1.2 River discharge  

River discharge is simulated using the wflow model (van Verseveld et al., 2024), which is a distributed hydrological model. 

To account for the antecedent conditions, the wflow simulations consist of a warm-up run covering 365 days prior to the event, 130 

which provides the initial state for the event run. The wflow model has a spatial resolution of 0.0083° (~1 km). The model 

domain covers around 68,000 km2, entailing the catchments from the Pungwe and Buzi rivers (blue domain in Fig. 2). MERIT 

Hydro is used as hydrography data (Yamazaki et al., 2019), together with river geometries from Lin et al. (2019), and lakes 

and reservoirs from Lehner et al. (2022) and Linke et al. (2019). We use the same land cover dataset as for the SFINCS 

modelling (Buchhorn et al., 2020). Hourly output is generated at the river inflow points of the SFINCS model domain (Fig. 135 

S1) from which we remove the bankfull discharge (estimated as the 2-year return period; Wilkerson, 2008) to account for 

missing river bathymetry (Sect. S1.2). 

2.1.3 Coastal water levels 

Coastal water levels are composed of tides, storm surge, and wave setup (IPCC, 2023b). The tide and storm surge are simulated 

using a regional hydrodynamic D-Flow FM model. The spatially-varying grid has a resolution of ~2 km in the deep ocean and 140 

450 m at the coast. The finest resolution aligns with that of the GEBCO bathymetry dataset (GEBCO Bathymetric Compilation 

Group 2024, 2024). The model stretches along the whole coast of Mozambique (white domain in Fig. 2), covering 1,117,000 

km2. We combine the tide and surge with dynamically modelled wave setup, calculated from the SnapWave simulation. The 

SnapWave model has a spatially-varying grid with a resolution of 400 m off-shore to 50 m at the coast, covering an area of 

5400 km2 (yellow domain in Fig. 2). The D-Flow FM output is generated around the 5-meter depth contour within the SFINCS 145 

domain at a 10-minute temporal resolution (Fig. S1). The SnapWave output is also generated at a 10-minutes temporal 

resolution but for coastal transects. The wave setup is added to the D-Flow FM output at the same 5-meter depth contour (Sect. 

S1.4). 
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Figure 2: Overview of the different model domains to simulate the compound flooding (SFINCS domain in pink), river discharge 150 
(wflow domain in blue) and  coastal water levels (a part of the D-Flow FM domain in white; SnapWave domain in yellow). We also 

show the track of TC Idai from IBTrACS, where larger and more red coloured markers indicated higher wind speed. 

2.2 Impact modelling 

The fast impact assessment tool Delft-FIAT v0.3.2 (Wagenaar et al., 2017) is used to calculate direct flood damage by 

overlaying maximum flood depths with building footprints. The damage is calculated using the continental depth-damage 155 

curves for flooding and maximum potential damage per building type for Africa (Moel et al., 2017), similar to Eilander et al. 

(2023b) and Goulart et al. (2025). The currency of the maximum potential damage is in 2010 Euros, which is converted to 

2019 US Dollars using a 2010 Euro-to-USD exchange rate of 1.327 and adjusted for inflation using a 2010-to-2019 USD rate 

of 1.172 (Archived Consumer Price Index Supplemental Files, 2025).  

 160 

We use building footprints and type from OpenStreetMap (OSM; OpenStreetMap contributors, 2025) since it provides a recent 

and good coverage of the region, including rural areas and so-called informal settlements (Herfort et al., 2023; Wagenaar et 

al., 2018a; Zhou et al., 2022). The output is generated as total and relative damage (damaged fraction of the total asset value) 

per building, which is aggregated to cells of 0.025° and to the total compound flood domain. 
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2.3 Scenarios for attribution 165 

2.3.1 Factual scenario 

For the factual scenario, we make use of various datasets as meteorological and hydrodynamic forcing. The main 

meteorological forcing used is the ERA5 reanalysis dataset (Hersbach et al., 2020), available at hourly and daily temporal 

resolution and 0.25° (~30 km) spatial resolution. ERA5 provides one of the best source of globally complete and consistent 

historical climate data. The compound flood model SFINCS is forced with ERA5 hourly rainfall. The hydrological model 170 

wflow is forced with ERA5 daily (warm-up run) and hourly (event run) rainfall and temperature data. The wave model 

SnapWave is forced with ERA5 hourly wave conditions as the significant wave height. Since ERA5 underestimates the 

intensity of TCs (Dullaart et al., 2020), we use best track data (IBTrACS; Gahtan et al., 2024; Knapp et al., 2010) in 

combination with the Holland parametric model (Holland, 2008; Holland et al., 2010) to calculate TC wind and pressure 

forcing for the D-Flow FM and SFINCS models. The TC wind and pressure fields are merged with hourly background wind 175 

and pressure data from ERA5 by linearly fading the data at 0.75 fraction of the TC radius. In addition to the meteorological 

forcing, the regional D-Flow FM model is forced with tidal boundary conditions derived from the Global Tides and Surge 

Model (GTSM) v4.1 (Wang et al., 2022).  

2.3.2 Counterfactual scenarios 

For the counterfactual scenario, we adjust the forcing of the factual scenario by removing the long-term climate trends. Climate 180 

change is affecting TCs in multiple ways, with varying levels of scientific agreement. We focus on changes in rainfall, 

maximum wind speed and sea level rise (SLR) since there is a clear scientific consensus about the role of climate change on 

these drivers (Knutson et al., 2020). For the counterfactual scenarios, we adjust each of these drivers by removing the climate 

change trend. We assess the effect of changes for the three individual flood drivers as well as their combined effect (Table 1 

and S2). A complete description of the methodology that describes those changes is provided in Sect. S1.6. In all counterfactual 185 

scenarios, we keep the same TC track as the one observed during the factual event. Similar to Goulart et al. (2025), we adopt 

the Clausius Clapeyron relationship for the change in rainfall due to climate change. As Idai took place in a ~1.1 °C warmer 

world, this results in a 8 % reduction of rainfall for the counterfactual scenario. Following Mester et al. (2023), we use a 10 % 

reduction in maximum wind speed for the counterfactual scenario. This value is based on regional trends from observed TCs, 

and falls within the likely range of 2-11 % by Knutson et al. (2020). We use the dataset by Treu et al. (2024) to estimate the 190 

SLR between the time of the event and pre-industrial levels. This results in a SLR of 14 cm for the counterfactual scenario, 

which is removed from the coastal boundary condition and initial water levels.  

 

For all counterfactual scenarios, we assume that wave setup is the same as for the factual scenario. This simplification is made 

because our framework does not include a deep-water wave model, which would be required to generate a counterfactual 195 
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scenario. For the case of TC Idai, we consider this a valid assumption given that waves are of limited importance for coastal 

flooding due to the shallow and gentle sloping coast that stimulates wave dissipation (van Dongeren et al., 2007).  

 

Table 1: Overview of counterfactual runs where the climate change trend is removed for rain, wind and sea level rise. See Table S2 

for all combinations of drivers. 200 

Climate driver 

adjusted 
Rainfall change Wind change SLR  

Rain -8 % – – 

Wind – -10 % – 

SLR – – -0.14 m 

Wind & SLR 
 

– -10 % -0.14 m 

All -8 % -10 % -0.14 m 

 

2.3.3 Climate and impact attribution 

The change in flood hazard and impact attributable to climate change is expressed following Eq. (1): 

𝐴(%) =
 𝐹−𝐶𝐹

𝐹
 ∗  100 %   (1) 

Where A is the attributable change in %, F is the selected variable from factual scenario and CF from the counterfactual 205 

scenario.  

 

For the climate attribution assessment, the flood volume and flood extent of the factual and counterfactual scenarios are 

compared, similar to Grimley et al. (2024) and Mester et al. (2023). The flood extent is calculated by summing the cell area of 

all cells considered as flooded. The flood volume is calculated by multiplying the cell area of every flooded cell with its flood 210 

depth, and then summing the volume of all flooded grid cells to obtain the total flood volume. For the impact attribution 

assessment, the total damage from Delft-FIAT is calculated by summing the flood damage of all flooded buildings.  

3 Results 

3.1 Description of the factual event 

TC Idai caused widespread flooding covering 3600 km2, affecting mostly the floodplains of the Pungwe and Buzi rivers, and 215 

the city of Beira (Fig. 3, left panel). Most of the flooding is driven by the extensive fluvial flooding from the Buzi and the 
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Pungwe rivers, with peak discharges of 27,000 m3/s and 5,000 m3/s, respectively, compared to 4,000 m3/s and 2,000 m3/s under 

normal conditions (Table S1). The extreme discharge in the Buzi river leads to flood depths of > 3.5 m along the river banks. 

Local rainfall, which amounted to a mean of 420 mm accumulated during the time of the event over the study area, partially 

flooded the more elevated area northeast of Beira. The flooding in the city of Beira, however, is largely driven by coastal 220 

flooding as a result of coastal water levels up to 4.3 m + m.s.l. (near Beira). Despite occurring close to neap tide, it exceeds 

water levels during normal high tide with about 0.6 meter, and coincides with the peak rainfall (Fig. S13). The wave setup 

accounted for 10 % of the maximum total water level.  

 

In total, 84,000 buildings are estimated to be flooded with damages adding up to 349 million USD. The flooding from TC Idai  225 

particularly impacts the city of Beira (Fig. 3, right panel). About 79% of the total damage is situated in the Beira region. 

However, when considering relative damages (damaged fraction of the total asset value), the floodplains of the Pungwe and 

the Buzi, and the most southern estuary, are more severely damaged (Fig. 6). 

3.2 Model validation 

We compare the factual scenario against available observations and reported values in literature. Validating individual flood 230 

drivers is challenging due to lack of observations for rainfall and water levels during the event. For discharge, we can only 

compare against observations for the period 1954-1984 (The Global Runoff Data Centre, 2025). This comparison shows that 

the simulated discharge for the two major rivers in the region (the Pungwe and Buzi) captures the seasonal and long-term 

dynamics reasonable to well (KGE 0.28 and 0.87 for the Pungwe and Buzi rivers, respectively; Fig S5), although extremes are 

generally overestimated (Fig. S6). The overestimation of extreme discharge may be related to the limited calibration of the 235 

wflow model and reported overestimation of ERA5 rainfall for tropical cyclone Idai (Jaffrés and Gray, 2023). For TC Idai, the 

simulated discharge is in the same order of magnitude as calculated by Eilander et al. (2023a). No tide gauge stations are 

available but our simulated coastal water levels are consistent with Probst & Annunziato (2019) and Eilander et al. (2023a). 

However, Eilander et al. (2023a) estimate a wave setup of up to 24 % of the total water level, calculated using a simplified 

empirical approach that is known to overestimate wave setup (Leijnse et al., 2025), compared to our estimate of 10 % wave 240 

setup resulting from dynamic wave modelling. 

 

The maximum flood extent is validated against two satellite products, which show reasonable agreement (hit rate >76 %), but 

also considerable uncertainty in flood detection (Sect. S1.5). Our maximum flood extent is consistent with Mester et al. (2023) 

and Eilander et al. (2023a), although compared to the latter our results indicate more extensive coastal flooding in the Beira 245 

region. This can be explained by the modelling setup with higher-resolution regional coastal models, which results in higher 

coastal boundary conditions (Benito et al., 2025).  
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With regards to the flood damage, the Government of Mozambique (2019) estimated the total housing damages at 410 million 

USD for the Sofala, Manica, Tete and Zambezia provinces in Mozambique. Our estimated damage of 349 million USD only 250 

includes the most heavily impacted Sofala province and is thus in agreement with reported damages. 

 

Figure 3: Simulated maximum flood depths in meters (a), and aggregated (0.025° grid cells) total damage in million (M) USD (b) 

due to flooding for the factual scenario of TC Idai. The compound flood model (SFINCS) domain is shown in black. 

3.3 Climate and impact attribution 255 

3.3.1 Climate attribution 

The increase in flood volume and flood extent that can be attributed to climate change is 9 % and 2 %, respectively, 

corresponding to an increase of > 500 M m3 and > 85 km2 (Table 2). The difference between change in flood volume and flood 

extent can be related to the region’s topography, where higher elevated areas inhibit the extension of the flooded area. The 

climate change-induced rainfall leads to the largest increase in flooding (Fig. 4), with an increase of 9 % in flood volume and 260 

2 % in flood extent when comparing against the counterfactual. Climate change-induced wind speed and SLR lead to less than 

1 % increase in flood volume and flood extent. Still, changes in wind and SLR intensify the coastal flooding, which primarily 

affects the Beira region covering 270 km2. This in contrast to the climate change-induced rainfall, which intensifies river 

flooding in a widespread area, covering 3420 km2. The intensified river flooding affects the floodplains of the Buzi river the 

most, with an increase in flood depth of > 0.5 m. The intensified coastal flooding also reaches up to > 0.5 m. Our results show 265 

that the counterfactual adjustment of individual flood drivers exhibits negligible compounding effects in flood volume and 

flood extent due to the relatively small effect of climate change-induced wind and SLR. 
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Figure 4: The flood depth attributable to climate change (factual – counterfactual) from different flood drivers; rain (a), wind and 270 
SLR (b), and all drivers combined (c). The compound flood model (SFINCS) domain is shown in black.  

Table 2: The absolute and relative change in flood volume, flood extent and flood damage for factual (absolute values only) and 

counterfactual scenarios. The relative change in flooding and impact that is attributable to climate change is calculated by applying 

Eq. 1. 

 
Flood volume 

 
Flood extent 

 
Flood damage 

 
Scenario Absolute value 

[M m³] 

Relative 

change  

Absolute value  

[km²] 

Relative 

change  

Absolute value  

[M USD] 

Relative 

change  

Factual 5502 - 3592 - 349 - 

Counterfactual       

Rain 5023 9 % 3526 2 % 334 4 % 

SLR 5488 < 1 % 3589 < 1 % 313 10 % 

Wind 5474 < 1 % 3577 < 1 % 280 20 % 

SLR & Wind 5463 < 1 % 3574 < 1 % 256 27 % 

All 4984 9 % 3507 2 % 240 31 % 

 275 

3.3.2 Impact attribution 

Comparing the factual and counterfactual scenarios shows that 31 % (109 M USD) of the flood damage can be attributed to 

climate change. Climate change-induced wind and SLR lead to the largest increase in damage of 27 %, whereas climate change-

induced rainfall leads to an increase of 4 % (Table 2). Even though changes in SLR and wind are negligible in terms of changes 

in flood volume and flood extent, these drivers have a larger impact on flood damage than changes in rainfall (Fig. 5). The 280 

relative change in impact is larger than the relative change in flooding, except for the rain-only scenario. Increased wind and 
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SLR intensify coastal flooding, which is the main driver of damage in Beira, where total damages are concentrated due to the 

high density of buildings (Fig. 3, Fig. S14). When adjusting wind and SLR individually, wind emerges as a more significant 

driver of flood damage than SLR (Table 2). Since wind and SLR impact the same region, their individual impacts on damage 

are not additive; increases in flood depth translate non-linearly to damage due to the applied damage curves. In this case, there 285 

is a limited (< 1 %) compounding effect of attributing all flood drivers combined, as the increased rain-driven flooding (pluvial 

and fluvial) impacts buildings in different areas than the increased coastal flooding. Changes in all drivers combined leads to 

the largest changes in flood damage. Our results show that propagating the effects of climate change from hazard to impact 

influences the attribution assessment. The location of climate change-induced flooding is crucial in determining impacts, 

highlighting the role of exposure and vulnerability. 290 

 

Figure 5: The relative change in flood extent (dark blue), flood volume (light blue), and flood damage (red) due to climate change 

between the factual and counterfactual scenarios, driven by different flood drivers where “All” includes SLR, wind and rain. The 

relative change in flooding and impact is calculated by subtracting the counterfactual from the factual value (Eq. 1; Sect. 2.5). 

 295 

Relative damage, i.e. damaged fraction of the total asset value, provides another perspective on the impacts of climate change. 

While Beira appears as a hotspot for total damage attributable to climate change (Fig. S14); when considering relative damages, 

areas across the floodplains become more prominent (Fig. 6). When focussing on relative damage, increased rainfall is the 

most important driver of additional damage compared to wind and SLR. Only looking at aggregated urban areas that are 

usually the hotspot of capital, and therefore more likely of total damage, provides a biased view on the impacts of climate 300 

change. Within urban areas, the compounding impacts of TC Idai have been found to increase inequality and highlight the 

need for local studies considering how the impact and response is distributed (Williamson et al., 2023). 
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Figure 6: The aggregated (0.025° grid cells) relative damage (damaged fraction of total asset value) for the factual (a) and 

counterfactual (b) scenarios with all drivers combined, and the absolute difference (factual – counterfactual) attributable to climate 305 
change (c). The compound flood model (SFINCS) domain is shown in black. 

4 Discussion 

In this paper, we present a storyline attribution framework with a state-of-the-art modelling chain for TC compound flooding. 

To our knowledge, this is the first framework resolving all TC flood drivers (local rainfall, discharge, tides, storm surge and 

wave setup) using physics-based models and attributing them to climate change. This framework accurately reproduces 310 

compound flooding from TC Idai using global data, which is applied for both climate and impact attribution assessments. In 

the case of compound flooding from TC Idai, increased amounts of rainfall led to the largest increase in the flood hazard, 

which can be explained by the flooding being largely driven by the high river discharges (Eilander et al., 2023a). On the other 

hand, increased coastal flooding due to intensified wind speeds and SLR resulted in the largest increase in total damage, 

specifically in the coastal areas. The coastal areas are most densely inhabited – especially the coastal city of Beira – which 315 

explains the large effect of intensified wind speeds and SLR on impact despite their relatively small effect on the flooding 

itself, emphasizing the role of exposure and vulnerability. In terms of changes in relative damage, all flood drivers contribute 

significantly; buildings outside of Beira are also substantially damaged but have a lower total asset value. 

 

Our results show that propagating the effects of climate change from hazard to impact influences the attribution assessment. 320 

Firstly, focussing on a single flood driver may not give a good representation of the total impact of climate change for the 

event. For compound flooding, it is important to consider the dynamic interactions of the multiple flood drivers (Green et al., 

2025). Treating compound drivers independently may provide incomplete and incorrect attribution statements, 

underestimating the impact of climate change (Perkins-Kirkpatrick et al., 2024). The relative contribution of compound 

processes in TC-induced flooding becomes even more important in future climates (Grimley et al., 2024). Secondly, climate 325 

attribution results in different statements about the effect of climate change than impact attribution, which is explained by the 
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non-linear relationship between flood hazard and damages (e.g. Moel et al., 2016; Pistrika et al., 2014). This highlights the 

relevance of including both climate and impact attribution assessments for describing the impacts of climate change. Together, 

they provide comprehensive information to inform risk management and adaptation strategies (Carlson et al., 2024; Clarke et 

al., 2023; Coumou et al., 2024).  330 

 

Our attribution framework is applicable to TC events anywhere on earth and could easily be extended to other type of flood 

events. Since the framework solely requires global datasets and open-source software, it has great potential to address the 

attribution gap and analyse climate impact on flood events in underrepresented, data-poor, yet severely impacted and highly 

vulnerable regions. This study highlights once again the value and need for observations to improve and validate model results, 335 

such as in situ rain and tide gauges (Mekonnen et al., 2023). For areas with limited observational data, attribution statements 

should go hand in hand with a thorough uncertainty analysis. Echoing e.g. Eilander et al. (2023a) and Samadi et al. (2025), 

establishing high-quality observations should remain a priority for more accurate assessments in data-scarce regions and for 

providing more localized information on climate change impacts. 

  340 

Our framework is built on simplified and uniform assumptions on the effect of climate change on TC rainfall and wind speed. 

The counterfactual rainfall is homogenously scaled according to the conservative Clausius–Clapeyron relationship and 

neglects any changes in spatio-temporal patterns (Deng et al., 2025; Kim et al., 2022; Liu et al., 2019). The counterfactual 

maximum wind speed reduction of 10 % also neglect the complex dynamics of TCs and may overestimate the climate change-

increased coastal flooding (Knutson et al., 2020). The development of the counterfactual scenarios could be improved by 345 

further refining climate change trends in flood drivers, for example based on observed regional changes rather than global 

estimates. Moreover, we could evaluate the effect of climate change on additional flood drivers, such as change in TC size 

(Yamada et al., 2017), translation speed (Knutson et al., 2020; Seneviratne et al., 2021) and significant wave height (Thompson 

et al., 2021), which could also increase coastal flooding. As demonstrated by Dullaart et al. (2024) and Grimley et al. (2024), 

it is also possible to develop storyline approaches where the counterfactual is informed by TC statistics from pseudo global 350 

warming simulations. A promising but still developing method to construct comprehensive TC counterfactuals is the use of 

climate storyline simulations (Athanase et al., 2024b; Feser and Shepherd, 2025; Sánchez-Benítez et al., 2022). These 

simulations are nudged towards observed dynamics and can compare counterfactual realisations of near-real-time events. This 

method has been proven successful for mid- and high-latitude storms but is thus far limited for TCs due to the stronger role of 

convective processes (Athanase et al., 2024a; Goulart et al., 2024; Schubert-Frisius et al., 2017). 355 

 

Our impact attribution is based on the calculation of damages to buildings using a simple but commonly used relationship 

between flood depth and damage. This method could be improved using multivariate depth damage curves that account for 

local characteristics of building types (Strauss et al., 2021) and other variables than flood depth influencing flood hazard such 

as duration, velocity, salinity or contamination (Adeke and Mugume, 2025; Delgado et al., 2016; Thieken et al., 2005). Impact 360 
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attribution could be improved by including additional metrics of direct impacts, such as the displaced population (Mester et 

al., 2023); multi-hazard impacts, such as combined wind and flood damage (Wagenaar et al., 2018b); and indirect impacts, 

such as loss of livelihood options (Nhundu et al., 2021). Additionally, including dynamic changes in exposure and 

vulnerability, next to changes in the hazard, can improve our assessment of flood impact drivers. For example, the rising 

exposure and vulnerability in sub-Saharan Africa are found to increase damages from river flooding (Sauer et al., 2021). Such 365 

changes in exposure and vulnerability can be induced by climate change, but also by non-climatic drivers (Hope et al., 2022) 

such as land use change, urbanisation, or population growth (Paprotny et al., 2025; Rentschler et al., 2023; Rogers et al., 2025; 

Rogger et al., 2017). Lastly, total and relative damage provide different but incomplete perspectives on climate change impacts 

and we therefore recommend impact attribution to provide population differentiated assessments reflecting socio-spatial 

characteristics, such as age, gender and poverty (Puig et al., 2025). Differentiated assessments require a thorough 370 

understanding of the impacted population; studying population characteristics and their intersectionality as well as their 

response to different impact metrics. Such assessment can inform equitable and just adaptation measures to improve local 

resilience at the risks of climate change (Kind et al., 2017).  

5 Conclusion  

Our study advances climate and impact attribution of compound flooding from TCs by providing a framework that physically 375 

resolves multiple flood drivers (rainfall, river discharge, tide, surge and waves) using a state-of-the-art modelling chain. Our 

framework was applied to TC Idai, that devastated Mozambique in March 2019, and was shown to accurately reproduce 

compound flooding. We demonstrate that considering multiple flood drivers enables a comprehensive view on the impacts of 

climate change. For the case of TC Idai, we find that propagating the effects of climate change from hazard to impact affects 

the outcome of an attribution assessment, due to the non-linear relationship between flood hazard and damages. The attribution 380 

analysis shows that 9 % of the flood volume, 2 % of the flood extent, and 31 % of the damages can be attributed to climate 

change. The amplification from change in hazard to impact can be linked to the majority of the damages occurring near the 

city of Beira, where coastal flooding was increased by wind and sea level rise. Our framework is applicable for TC-prone 

regions across the globe, including data-poor but highly impacted and vulnerable regions, potentially contributing to addressing 

the attribution gap.  385 

 

Storyline attribution improves the description of how climate change-exacerbated flood drivers translate from hazard to 

impacts, which is relevant for anticipating further climate risks. Including the local context through the propagation to impact 

for specific extreme events has the potential to improve awareness by aligning closely with the lived experience of society. 

Our findings are sensitive to the applied impact metrics and simplified assumptions of the climate change effect on TC-induced 390 

flood drivers. Uncertainties in factual and counterfactual forcing persist in regions with a lack of long-term good quality 

observations, and stresses the ongoing priority for more observations and thorough uncertainty analyses. In the light of ongoing 
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and intensifying climate change, we recommend research efforts to focus on extending climate to impact attribution for other 

highly impacted and vulnerable areas, and different type of compound events.  

 395 

Code availability 

The scripts and data used to set up the experiments in this study are available from Zenodo at 

https://doi.org/10.5281/zenodo.17107289 (Vertegaal et al., 2025). 

 

Author contribution 400 

DV, BvdH, AC, and SM conceived the idea for this study, jointly designed the experiments, and interpreted initial results. DV 

executed the experiments and set up the SFINCS, wflow and D-Flow FM models with help from NA, TB, and AC; NA helped 

with testing and setting up the D-Flow FM model; TB and AC helped with testing and setting up the wflow and SFINCS 

models; DV set up the Delft-FIAT model. FG and TL provided the necessary SnapWave simulations. DV conducted the 

computational processing and analysis of results with input from HMG and AC. DV wrote the manuscript with input from 405 

BvdH, AC, HMG, and SM. 

 

Competing interests 

The authors declare that they have no conflict of interest. 

 410 

Acknowledgements 

We would like to thank Albrecht Weerts for support with the wflow simulations, Jelmer Veenstra for support on the 

counterfactual SLR integration in the D-Flow FM model, and Brendan Dalmijn and Sarah Rautenbach for support with Delft-

FIAT and HydroMT-FIAT. We also thank Dirk Eilander and Nadia Bloemendaal for their input during the initial discussions 

of this work. We thank OpenAI’s ChatGPT and GitHub Copilot for assistance with coding and for suggestions on phrasing 415 

and text clarity during the preparation of this work. 

 

Funding 

This research was done as part of the “Compound extremes attribution of climate change: Towards an operational service” 

(COMPASS) project, which is funded by the European Union’s HORIZON Research and Innovation Actions Programme 420 

under Grant Agreement No. 101135481.   

References  

Adeke, D. P. and Mugume, S. N.: A methodology for development of flood-depth-velocity damage functions for improved 

estimation of pluvial flood risk in cities, J Hydrol (Amst), 653, 132736, https://doi.org/10.1016/J.JHYDROL.2025.132736, 

2025. 425 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



17 

 

The Global Runoff Data Centre: https://portal.grdc.bafg.de/, last access: 2 July 2025. 

Athanase, M., Sánchez-Benítez, A., Monfort, E., Jung, T., and Goessling, H. F.: How climate change intensified storm Boris’ 

extreme rainfall, revealed by near-real-time storylines, Commun Earth Environ, 5, 676, https://doi.org/10.1038/s43247-024-

01847-0, 2024a. 

Athanase, M., Sánchez-Benítez, A., Goessling, H. F., Pithan, F., and Jung, T.: Projected amplification of summer marine 430 

heatwaves in a warming Northeast Pacific Ocean, Commun Earth Environ, 5, 53, https://doi.org/10.1038/s43247-024-01212-

1, 2024b. 

Benito, I., Aerts, J. C. J. H., Eilander, D., Ward, P. J., and Muis, S.: Stochastic coastal flood risk modelling for the east coast 

of Africa, npj Natural Hazards, 1, 10, https://doi.org/10.1038/s44304-024-00010-1, 2024. 

Benito, I., Aerts, J. C. J. H., Ward, P. J., Eilander, D., and Muis, S.: A multiscale modelling framework of coastal flooding 435 

events for global to local flood hazard assessments, Natural Hazards and Earth System Sciences, 25, 2287–2315, 

https://doi.org/10.5194/NHESS-25-2287-2025, 2025. 

Bourdin, S., Camargo, S. J., Lee, C. Y., Lin, J., Vrac, M., Vaittinada Ayar, P., and Faranda, D.: Improving analogues-based 

detection & attribution approaches for hurricanes, Environmental Research Letters, 20, 024042, https://doi.org/10.1088/1748-

9326/ADAA8D, 2025. 440 

Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N. E., Linlin, L., and Tarko, A.: Copernicus Global 

Land Service: Land Cover 100m: Version 3 Globe 2015-2019: Product User Manual (Dataset v3.0, doc issue 3.3, 

https://doi.org/10.5281/zenodo.3938963, September 2020. 

Callaghan, M., Schleussner, C. F., Nath, S., Lejeune, Q., Knutson, T. R., Reichstein, M., Hansen, G., Theokritoff, E., 

Andrijevic, M., Brecha, R. J., Hegarty, M., Jones, C., Lee, K., Lucas, A., van Maanen, N., Menke, I., Pfleiderer, P., Yesil, B., 445 

and Minx, J. C.: Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies, Nat Clim Chang, 

11, 966–972, https://doi.org/10.1038/s41558-021-01168-6, 2021. 

Camargo, S. J., Murakami, H., Bloemendaal, N., Chand, S. S., Deshpande, M. S., Dominguez-Sarmiento, C., González-

Alemán, J. J., Knutson, T. R., Lin, I. I., Moon, I. J., Patricola, C. M., Reed, K. A., Roberts, M. J., Scoccimarro, E., Tam, C. Y. 

(Francis), Wallace, E. J., Wu, L., Yamada, Y., Zhang, W., and Zhao, H.: An update on the influence of natural climate 450 

variability and anthropogenic climate change on tropical cyclones, Tropical Cyclone Research and Review, 12, 216–239, 

https://doi.org/10.1016/J.TCRR.2023.10.001, 2023. 

Carlson, C. J., Mitchell, D., Carleton, T., Chersich, M., Gibb, R., Lavelle, T., Lukas-Sithole, M., North, M., Lippi, C., New, 

M., Ryan, S. J., Shumba, S., and Trisos, C.: Designing and describing climate change impact attribution studies: a guide to 

common approaches, https://doi.org/10.31223/X5CD7M, 2024. 455 

Clarke, B., Otto, F., and Jones, R.: When don’t we need a new extreme event attribution study?, Clim Change, 176, 60, 

https://doi.org/10.1007/S10584-023-03521-4, 2023. 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



18 

 

Coumou, D., Arias, P. A., Bastos, A., Gonzales, C. K. G., Hegerl, G. C., Hope, P., Jack, C., Otto, F., Saeed, F., Serdeczny, O., 

Shepherd, T. G., and Vautard, R.: How can event attribution science underpin financial decisions on Loss and Damage?, PNAS 

Nexus, 3, 277, https://doi.org/10.1093/PNASNEXUS/PGAE277, 2024. 460 

Davenport, F. V, Burke, M., and Diffenbaugh, N. S.: Contribution of historical precipitation change to US flood damages, 

Proceedings of the National Academy of Sciences, 118, e2017524118, https://doi.org/10.1073/pnas.2017524118, 2021. 

Delgado, J. M. P. Q., Guimarães, A. S., De Freitas, V. P., Antepara, I., Kočí, V., and Černý, R.: Salt Damage and Rising Damp 

Treatment in Building Structures, Advances in Materials Science and Engineering, 2016, 1280894, 

https://doi.org/10.1155/2016/1280894, 2016. 465 

Deltares: HydroMT-FIAT: Automated and reproducible Delft-FIAT model building, 

https://github.com/Deltares/hydromt_fiat/releases/tag/v0.5.7, 3 September 2025. 

Deng, E., Xiang, Q., Chan, J. C. L., Dong, Y., Tu, S., Chan, P. W., and Ni, Y. Q.: Increasing temporal stability of global 

tropical cyclone precipitation, NPJ Clim Atmos Sci, 8, 11, https://doi.org/10.1038/s41612-025-00896-2, 2025. 

van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., and Reniers, A.: Shoaling and 470 

shoreline dissipation of low-frequency waves, J Geophys Res Oceans, 112, 2011, https://doi.org/10.1029/2006JC003701, 

2007. 

Dullaart, J. C. M., Muis, S., Bloemendaal, N., and Aerts, J. C. J. H.: Advancing global storm surge modelling using the new 

ERA5 climate reanalysis, Clim Dyn, 54, 1007–1021, https://doi.org/10.1007/S00382-019-05044-0, 2020. 

Dullaart, J. C. M., de Vries, H., Bloemendaal, N., Aerts, J. C. J. H., and Muis, S.: Improving our understanding of future 475 

tropical cyclone intensities in the Caribbean using a high-resolution regional climate model, Sci Rep, 14, 6108, 

https://doi.org/10.1038/s41598-023-49685-y, 2024. 

Eilander, D., Couasnon, A., Leijnse, T., Ikeuchi, H., Yamazaki, D., Muis, S., Dullaart, J., Haag, A., Winsemius, H. C., and 

Ward, P. J.: A globally applicable framework for compound flood hazard modeling, Natural Hazards and Earth System 

Sciences, 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, 2023a. 480 

Eilander, D., Boisgontier, H., Bouaziz, L. J. e., Buitink, J., Couasnon, A., Dalmijn, B., Hegnauer, M., Jong, T. de, Loos, S., 

Marth, I., and Verseveld, W. van: HydroMT: Automated and reproducible model building and analysis, J Open Source Softw, 

8, 4897, https://doi.org/10.21105/JOSS.04897, 2023b. 

Eilander, D., Couasnon, A., Sperna Weiland, F. C., Ligtvoet, W., Bouwman, A., Winsemius, H. C., and Ward, P. J.: Modeling 

compound flood risk and risk reduction using a globally applicable framework: a pilot in the Sofala province of Mozambique, 485 

Hazards Earth Syst. Sci, 23, 2251–2272, https://doi.org/10.5194/nhess-23-2251-2023, 2023c. 

Eilander, D., de Goede, R., Leijnse, T., van Ormondt, M., Nederhoff, K., and Winsemius, H. C.: HydroMT-SFINCS, 

https://doi.org/10.5281/ZENODO.13693006, 2024. 

Eilander, D., Boisgontier, H., van Verseveld, W., Bouaziz, L., Hegnauer, M., Buitink, J., and Dalmijn, B.: hydroMT-wflow, 

https://doi.org/10.5281/ZENODO.15182718, 2025. 490 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



19 

 

Faranda, D., Bourdin, S., Ginesta, M., Krouma, M., Noyelle, R., Pons, F., Yiou, P., and Messori, G.: A climate-change 

attribution retrospective of some impactful weather extremes of 2021, Weather and Climate Dynamics, 3, 1311–1340, 

https://doi.org/10.5194/wcd-3-1311-2022, 2022. 

Feser, F. and Shepherd, T. G.: The concept of spectrally nudged storylines for extreme event attribution, Commun Earth 

Environ, 6, 677, https://doi.org/10.1038/s43247-025-02659-6, 2025. 495 

Frame, D. J., Wehner, M. F., Noy, I., and Rosier, S. M.: The economic costs of Hurricane Harvey attributable to climate 

change, Clim Change, 160, 271–281, https://doi.org/10.1007/S10584-020-02692-8, 2020. 

Gahtan, J. , Knapp, K. R., Schreck, C. J., Diamond, H. J., Kossin, J. P., and Kruk, M. C.: International Best Track Archive for 

Climate Stewardship (IBTrACS) Project, Version 4r01, ALL, NOAA National Centers for Environmental Information, 

https://doi.org/10.25921/82ty-9e16, last access: 7 October 2024. 500 

van Garderen, L., Feser, F., and Shepherd, T. G.: A methodology for attributing the role of climate change in extreme events: 

A global spectrally nudged storyline, Natural Hazards and Earth System Sciences, 21, 171–186, 

https://doi.org/10.5194/NHESS-21-171-2021, 2021. 

GEBCO Bathymetric Compilation Group 2024: GEBCO 2024 Grid - a continuous terrain model of the global oceans and land, 

NERC EDS British Oceanographic Data Centre, NOC, https://doi.org/10.5285/1c44ce99-0a0d-5f4f-e063-7086abc0ea0f, 505 

2024. 

Goulart, H. M. D., Benito Lazaro, I., Van Garderen, L., Van Der Wiel, K., Le Bars, D., Koks, E., and Van Den Hurk, B.: 

Compound flood impacts from Hurricane Sandy on New York City in climate-driven storylines, Natural Hazards and Earth 

System Sciences, 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, 2024. 

Goulart, H. M. D., Athanasiou, P., van Ginkel, K., van der Wiel, K., Winter, G., Pinto, I., and van den Hurk, B.: Exploring 510 

coastal climate adaptation through storylines: Insights from cyclone Idai in Beira, Mozambique, Cell Reports Sustainability, 

2, 100270, https://doi.org/10.1016/J.CRSUS.2024.100270, 2025. 

Government of Mozambique: Mozambique Cyclone Idai Post Disaster Needs Assessment Conference Version, 2019. 

Green, J., Haigh, I. D., Quinn, N., Neal, J., Wahl, T., Wood, M., Eilander, D., De Ruiter, M., Ward, P., and Camus, P.: A 

comprehensive review of compound flooding literature with a focus on coastal and estuarine regions, Hazards Earth Syst. Sci, 515 

25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, 2025. 

Grimley, L. E., Hollinger Beatty, K. E., Sebastian, A., Bunya, S., and Lackmann, G. M.: Climate change exacerbates compound 

flooding from recent tropical cyclones, npj Natural Hazards, 1, 45, https://doi.org/10.1038/s44304-024-00046-3, 2024. 

Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., and Neal, J.: A 30 m global map of elevation with forests 

and buildings removed, Environmental Research Letters, 17, 024016, https://doi.org/10.1088/1748-9326/AC4D4F, 2022. 520 

Hegerl, G. C., Hoegh-Guldberg, O., Casassa, G., Hoerling, M., Kovats, S., Parmesan, C., Pierce, D., and Stott, P.: Good 

Practice Guidance Paper on Detection and Attribution Related  to Anthropogenic Climate Change, in: Meeting Report of the 

Intergovernmental Panel on Climate  Change Expert Meeting on Detection and Attribution of Anthropogenic Climate Change, 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



20 

 

edited by: Stocker, T., Field, C., Dahe, Q., Plattner, G.-K., Tignor, M., Midgley, P., and Ebi, K., IPCC Working Group I 

Technical Support Unit, University of Bern, Bern, Switzerland, 2010. 525 

Herfort, B., Lautenbach, S., Porto De Albuquerque, J., Anderson, J., and Zipf, A.: A spatio-temporal analysis investigating 

completeness and inequalities of global urban building data in OpenStreetMap, Nat Commun, 14, 3985, 

https://doi.org/10.1038/s41467-023-39698-6, 2023. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, 

D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, 530 

G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., 

Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., 

Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Quarterly Journal of the Royal 

Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/QJ.3803, 2020. 

Holland, G.: A Revised Hurricane Pressure–Wind Model, Mon Weather Rev, 136, 3432–3445, 535 

https://doi.org/10.1175/2008MWR2395.1, 2008. 

Holland, G. J., Belanger, J. I., and Fritz, A.: A revised model for radial profiles of hurricane winds, Mon Weather Rev, 138, 

4393–4401, https://doi.org/10.1175/2010MWR3317.1, 2010. 

Hope, P., W. Cramer, M. van Aalst, G. Flato, K. Frieler, N. Gillett, C. Huggel, J. Minx, F. Otto, C. Parmesan, J. Rogelj, M. 

Rojas, S.I. Seneviratne, A. Slangen, D. Stone, L. Terray, R. Vautard, and X. Zhang: Cross-Working Group Box 540 

ATTRIBUTION | Attribution in the IPCC Sixth Assessment Report, in: Climate Change 2022: Impacts, Adaptation and 

Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate 

Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., 

Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, 

NY, USA, 149–152, 2022. 545 

Intergovernmental Panel on Climate Change (IPCC): Climate Change 2014: Synthesis Report. Contribution of Working 

Groups I, II and III to the Fifth Assessment Report of the  Intergovernmental Panel on Climate Change [Core Writing Team, 

R.K. Pachauri and L.A. Meyer (eds.)], IPCC, Geneva, Switserland, 151, 2014. 

Intergovernmental Panel on Climate Change (IPCC): Key Risks across Sectors and Regions, Climate Change 2022 – Impacts, 

Adaptation and Vulnerability, 2411–2538, https://doi.org/10.1017/9781009325844.025, 2023a. 550 

Intergovernmental Panel on Climate Change (IPCC): Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021 – 

The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on 

Climate Change, Cambridge University Press, Cambridge, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2023b. 

Jaafar, H. and Ahmad, F.: GCN250, global curve number datasets for hydrologic modeling and design, 

https://doi.org/10.6084/m9.figshare.7756202.v1, 2019. 555 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



21 

 

Jaffrés, J. B. D. and Gray, J. L.: Chasing rainfall: estimating event precipitation along tracks of tropical cyclones via reanalysis 

data and in-situ gauges, Environmental Modelling & Software, 167, 105773, 

https://doi.org/10.1016/J.ENVSOFT.2023.105773, 2023. 

Jahanshahi, A. and Booij, M. J.: Exploring controls on rainfall-runoff events: spatial dynamics of event runoff coefficients in 

Iran, Hydrological Sciences Journal, 68, 954–966, https://doi.org/10.1080/02626667.2023.2193297, 2023. 560 

Kernkamp, H. W. J., Van Dam, A., Stelling, G. S., and De Goede, E. D.: Efficient scheme for the shallow water equations on 

unstructured grids with application to the Continental Shelf, Ocean Dyn, 61, 1175–1188, https://doi.org/10.1007/S10236-011-

0423-6, 2011. 

Kim, D., Park, D. S. R., Nam, C. C., and Bell, M. M.: The parametric hurricane rainfall model with moisture and its application 

to climate change projections, NPJ Clim Atmos Sci, 5, 86, https://doi.org/10.1038/S41612-022-00308-9, 2022. 565 

Kind, J., Wouter Botzen, W. J., and Aerts, J. C. J. H.: Accounting for risk aversion, income distribution and social welfare in 

cost-benefit analysis for flood risk management, Wiley Interdiscip Rev Clim Change, 8, e446, 

https://doi.org/10.1002/WCC.446, 2017. 

Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.: The International Best Track Archive for 

Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data, Bull Am Meteorol Soc, 91, 363–376, 570 

https://doi.org/10.1175/2009BAMS2755.1, 2010. 

Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C. H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, 

K., and Wu, L.: Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution, Bull Am Meteorol Soc, 

100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1, 2019. 

Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C. H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, 575 

K., and Wu, L.: Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming, 

Bull Am Meteorol Soc, 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1, 2020. 

Lehner, B., Messager, M. L., Korver, M. C., and Linke, S.: Global hydro-environmental lake characteristics at high spatial 

resolution, Sci Data, 9, 351, https://doi.org/10.1038/s41597-022-01425-z, 2022. 

Leijnse, T., Van Ormondt, M., Nederhoff, K., and Van Dongeren, A.: Modeling compound flooding in coastal systems using 580 

a computationally efficient reduced-physics solver: Including fluvial, pluvial, tidal, wind-and wave-driven processes, Coastal 

Engineering, 163, 103796, https://doi.org/10.1016/j.coastaleng.2020.103796, 2021. 

Leijnse, T. W. B., van Dongeren, A., van Ormondt, M., de Goede, R., and Aerts, J. C. J. H.: The importance of waves in large-

scale coastal compound flooding: A case study of Hurricane Florence (2018), Coastal Engineering, 199, 104726, 

https://doi.org/10.1016/j.coastaleng.2025.104726, 2025. 585 

Lin, P., Pan, M., Allen, G., Frasson, R., Zeng, Z., Yamazaki, D., and Wood, E.: Global estimates of reach-level bankfull river 

width leveraging big-data geospatial analysis, https://doi.org/10.5281/ZENODO.3552776, 2019. 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



22 

 

Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S., 

Moidu, H., Tan, F., and Thieme, M.: Global hydro-environmental sub-basin and river reach characteristics at high spatial 

resolution, Sci Data, 6, 283, https://doi.org/10.1038/s41597-019-0300-6, 2019. 590 

Liu, M., Vecchi, G. A., Smith, J. A., and Knutson, T. R.: Causes of large projected increases in hurricane precipitation rates 

with global warming, NPJ Clim Atmos Sci, 2, 38, https://doi.org/10.1038/s41612-019-0095-3, 2019. 

Lloyd, E. A. and Shepherd, T. G.: Climate change attribution and legal contexts: evidence and the role of storylines, Clim 

Change, 167, 28, https://doi.org/10.1007/S10584-021-03177-Y, 2021. 

Massari, C., Pellet, V., Tramblay, Y., Crow, W. T., Gründemann, G. J., Hascoetf, T., Penna, D., Modanesi, S., and Brocca, L.: 595 

On the relation between antecedent basin conditions and runoff coefficient for European floods, J Hydrol (Amst), 625, 130012, 

https://doi.org/10.1016/j.jhydrol.2023.130012, 2023. 

Mekonnen, K., Velpuri, N. M., Leh, M., Akpoti, K., Owusu, A., Tinonetsana, P., Hamouda, T., Ghansah, B., Paranamana, T. 

P., and Munzimi, Y.: Accuracy of satellite and reanalysis rainfall estimates over Africa: A multi-scale assessment of eight 

products for continental applications, J Hydrol Reg Stud, 49, 101514, https://doi.org/10.1016/J.EJRH.2023.101514, 2023. 600 

Mengel, M., Treu, S., Lange, S., and Frieler, K.: ATTRICI v1.1 - Counterfactual climate for impact attribution, Geosci Model 

Dev, 14, 5269–5284, https://doi.org/10.5194/GMD-14-5269-2021, 2021. 

Mester, B., Vogt, T., Bryant, S., Otto, C., Frieler, K., and Schewe, J.: Human displacements from Tropical Cyclone Idai 

attributable to climate change, Hazards Earth Syst. Sci, 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, 2023. 

Moel, H. d., Huizinga, J., and Szewczyk, W.: Global flood depth-damage functions: Methodology and the database with 605 

guidelines, Publications Office of the European Union, Luxembourg (Luxembourg), https://doi.org/10.2760/16510, 2017. 

Nederhoff, K., van Ormondt, M., Veeramony, J., van Dongeren, A., Antolínez, J. A. Á., Leijnse, T., and Roelvink, D.: 

Accounting for uncertainties in forecasting tropical-cyclone-induced compound flooding, Geosci Model Dev, 17, 1789–1811, 

https://doi.org/10.5194/gmd-17-1789-2024, 2024. 

Nhundu, K., Sibanda, M., and Chaminuka, P.: Economic Losses from Cyclones Idai and Kenneth and Floods in Southern 610 

Africa: Implications on Sustainable Development Goals, in: Cyclones in Southern Africa: Volume 3: Implications for the 

Sustainable Development Goals, Springer International Publishing, Cham, 289–303, https://doi.org/10.1007/978-3-030-

74303-1_19, 2021. 

Noy, I., Stone, D., and Uher, T.: Extreme events impact attribution: A state of the art, Cell Reports Sustainability, 1, 100101, 

https://doi.org/10.1016/J.CRSUS.2024.100101, 2024. 615 

van Oldenborgh, G. J., van der Wiel, K., Kew, S., Philip, S., Otto, F., Vautard, R., King, A., Lott, F., Arrighi, J., Singh, R., 

and van Aalst, M.: Pathways and pitfalls in extreme event attribution, Clim Change, 166, 13, https://doi.org/10.1007/s10584-

021-03071-7, 2021. 

OpenStreetMap contributors: OpenStreetMap, https://www.openstreetmap.org, 2025. 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



23 

 

van Ormondt, M., Leijnse, T., Nederhoff, K., de Goede, R., van Dongeren, A., Bovenschen, T., and van Asselt, K.: SFINCS: 620 

Super-Fast INundation of CoastS model Version 2.2.0 col d’Eze Release 2025.01, 

https://doi.org/10.5281/ZENODO.13691724, 2025a. 

van Ormondt, M., Leijnse, T., de Goede, R., Nederhoff, K., and van Dongeren, A.: Subgrid corrections for the linear inertial 

equations of a compound flood model - a case study using SFINCS 2.1.1 Dollerup release, Geosci Model Dev, 18, 843–861, 

https://doi.org/10.5194/GMD-18-843-2025, 2025b. 625 

Otto, F. E. L., Zachariah, M., Wolski, P., Pinto, I., Barimalala, R., Nhamtumbo, B., Bonnet, R., Vautard, R., Philip, S., Kew, 

S., Luu, L. N., Heinrich, D., Vahlberg, M., Singh, R., Arrighi, J., Thalheimer, L., Van Aalst, M., Li, S., Sun, J., Vecchi, G., 

and Harrington, L. J.: Climate change increased rainfall associated with tropical cyclones hitting highly vulnerable 

communities in Madagascar, Mozambique & Malawi, 2022. 

Paprotny, D., ’t Hart, C. M. P., and Morales-Nápoles, O.: Evolution of flood protection levels and flood vulnerability in Europe 630 

since 1950 estimated with vine-copula models, Natural Hazards, 121, 6155–6184, https://doi.org/10.1007/S11069-024-07039-

5, 2025. 

Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term 

changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016. 

Perkins-Kirkpatrick, S. E., Alexander, L. V., King, A. D., Kew, S. F., Philip, S. Y., Barnes, C., Maraun, D., Stuart-Smith, R. 635 

F., Jézéquel, A., Bevacqua, E., Burgess, S., Fischer, E., Hegerl, G. C., Kimutai, J., Koren, G., Lawal, K. A., Min, S.-K., New, 

M., Odoulami, R. C., Patricola, C. M., Pinto, I., Ribes, A., Shaw, T. A., Thiery, W., Trewin, B., Vautard, R., Wehner, M., and 

Zscheischler, J.: Frontiers in attributing climate extremes and associated impacts, Frontiers in Climate, 6, 

https://doi.org/10.3389/fclim.2024.1455023, 2024. 

Philip, S., Kew, S., van Oldenborgh, G. J., Otto, F., Vautard, R., van der Wiel, K., King, A., Lott, F., Arrighi, J., Singh, R., 640 

and van Aalst, M.: A protocol for probabilistic extreme event attribution analyses, Adv Stat Climatol Meteorol Oceanogr, 6, 

177–203, https://doi.org/10.5194/ASCMO-6-177-2020, 2020. 

Philp, T. J., Champion, A. J., Hodges, K. I., Pigott, C., MacFarlane, A., Wragg, G., and Zhao, S.: Identifying Limitations when 

Deriving Probabilistic Views of North Atlantic Hurricane Hazard from Counterfactual Ensemble NWP Re-forecasts, in: 

Hurricane Risk in a Changing Climate, edited by: Collins, J. M. and Done, J. M., Springer International Publishing, Cham, 645 

233–254, https://doi.org/10.1007/978-3-031-08568-0_10, 2022. 

Pistrika, A., Tsakiris, G., and Nalbantis, I.: Flood Depth-Damage Functions for Built Environment, Environmental Processes, 

1, 553–572, https://doi.org/10.1007/S40710-014-0038-2, 2014. 

Probst, P. and Annunziato, A.: Tropical Cyclone Idai: analysis of the wind, rainfall and storm surge impact, European 

Commission - Joint Research Centre, 2019. 650 

Puig, D., Adger, N. W., Barnett, J., Vanhala, L., and Boyd, E.: Improving the effectiveness of climate change adaptation 

measures, Clim Change, 178, 7, https://doi.org/10.1007/S10584-024-03838-8, 2025. 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



24 

 

Rentschler, J., Avner, P., Marconcini, M., Su, R., Strano, E., Vousdoukas, M., and Hallegatte, S.: Global evidence of rapid 

urban growth in flood zones since 1985, Nature, 622, 87–92, https://doi.org/10.1038/S41586-023-06468-9, 2023. 

Roelvink, D., van Ormondt, M., Reyns, J., and van der Lugt, M.: SnapWave: fast, implicit wave transformation from offshore 655 

to nearshore, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-492, 2025. 

Rogers, J. S., Maneta, M. M., Sain, S. R., Madaus, L. E., and Hacker, J. P.: The role of climate and population change in global 

flood exposure and vulnerability, Nat Commun, 16, 1287, https://doi.org/10.1038/S41467-025-56654-8, 2025. 

Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga, M., Chaplot, V., Gallart, F., Glatzel, G., Hall, J., 

Holden, J., Holko, L., Horn, R., Kiss, A., Kohnová, S., Leitinger, G., Lennartz, B., Parajka, J., Perdigão, R., Peth, S., Plavcová, 660 

L., Quinton, J. N., Robinson, M., Salinas, J. L., Santoro, A., Szolgay, J., Tron, S., van den Akker, J. J. H., Viglione, A., and 

Blöschl, G.: Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research, Water 

Resour Res, 53, 5209–5219, https://doi.org/10.1002/2017WR020723, 2017. 

Samadi, V., Fowler, H. J., Lamond, J., Wagener, T., Brunner, M., Gourley, J., Moradkhani, H., Popescu, I., Wasko, C., Wright, 

D., Wu, H., Zhang, K., Arias, P. A., Duan, Q., Nazemi, A., van Oevelen, P. J., Prein, A. F., Roundy, J. K., Saberian, M., and 665 

Umutoni, L.: The Needs, Challenges, and Priorities for Advancing Global Flood Research, WIREs Water, 12, e70026, 

https://doi.org/https://doi.org/10.1002/wat2.70026, 2025. 

Sánchez-Benítez, A., Goessling, H., Pithan, F., Semmler, T., and Jung, T.: The July 2019 European Heat Wave in a Warmer 

Climate: Storyline Scenarios with a Coupled Model Using Spectral Nudging, J Clim, 35, 2373–2390, 

https://doi.org/10.1175/JCLI-D-21-0573.1, 2022. 670 

Sauer, I. J., Reese, R., Otto, C., Geiger, T., Willner, S. N., Guillod, B. P., Bresch, D. N., and Frieler, K.: Climate signals in 

river flood damages emerge under sound regional disaggregation, Nat Commun, 12, 2128, https://doi.org/10.1038/s41467-

021-22153-9, 2021. 

Schubert-Frisius, M., Feser, F., von Storch, H., and Rast, S.: Optimal Spectral Nudging for Global Dynamic Downscaling, 

Mon Weather Rev, 145, 909–927, https://doi.org/10.1175/MWR-D-16-0036.1, 2017. 675 

Scussolini, P., Luu, L. N., Philip, S., Berghuijs, W. R., Eilander, D., Aerts, J. C. J. H., Kew, S. F., van Oldenborgh, G. J. , 

Toonen, W. H. J., Volkholz, J., and Coumou, D.: Challenges in the attribution of river flood events, WIREs Climate Change, 

15, e874, https://doi.org/10.1002/WCC.874, 2024. 

Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskander, I., Kossin, J., and Lewis, 

S.: Weather and climate extreme events in a changing climate, in: Climate Change 2021: The Physical Science Basis. 680 

Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited 

by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, 

M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, 

B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1513–1766, 

https://doi.org/10.1017/9781009157896.013, 2021. 685 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



25 

 

Shepherd, T. G.: A Common Framework for Approaches to Extreme Event Attribution, Curr Clim Change Rep, 2, 28–38, 

https://doi.org/10.1007/S40641-016-0033-Y, 2016. 

Sillmann, J., Shepherd, T. G., van den Hurk, B., Hazeleger, W., Martius, O., Slingo, J., and Zscheischler, J.: Event-Based 

Storylines to Address Climate Risk, Earths Future, 9, e2020EF001783, https://doi.org/10.1029/2020EF001783, 2021. 

Smiley, K. T., Noy, I., Wehner, M. F., Frame, D., Sampson, C. C., and Wing, O. E. J.: Social inequalities in climate change-690 

attributed impacts of Hurricane Harvey, Nat Commun, 13, 3418, https://doi.org/10.1038/s41467-022-31056-2, 2022. 

Smith, A. B. and Katz, R. W.: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases, 

Natural Hazards, 67, 387–410, https://doi.org/10.1007/S11069-013-0566-5, 2013. 

Stott, P. A., Stone, D. A., and Allen, M. R.: Human contribution to the European heatwave of 2003, Nature, 432, 610–614, 

https://doi.org/10.1038/NATURE03089, 2004. 695 

Strauss, B. H., Orton, P. M., Bittermann, K., Buchanan, M. K., Gilford, D. M., Kopp, R. E., Kulp, S., Massey, C., Moel, H. 

de, and Vinogradov, S.: Economic damages from Hurricane Sandy attributable to sea level rise caused by anthropogenic 

climate change, Nat Commun, 12, 2720, https://doi.org/10.1038/s41467-021-22838-1, 2021. 

Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.: Flood damage and influencing factors: New insights from the August 

2002 flood in Germany, Water Resour Res, 41, W12430, https://doi.org/10.1029/2005WR004177, 2005. 700 

Thompson, C., Barthe, C., Bielli, S., Tulet, P., and Pianezze, J.: Projected Characteristic Changes of a Typical Tropical Cyclone 

under Climate Change in the South West Indian Ocean, Atmosphere (Basel), 12, 232, https://doi.org/10.3390/atmos12020232, 

2021. 

Treu, S., Muis, S., Dangendorf, S., Wahl, T., Oelsmann, J., Heinicke, S., Frieler, K., and Mengel, M.: Reconstruction of hourly 

coastal water levels and counterfactuals without sea level rise for impact attribution, Earth Syst Sci Data, 16, 1121–1136, 705 

https://doi.org/10.5194/ESSD-16-1121-2024, 2024. 

UN Office for the Coordination of Humanitarian Affairs (OCHA): Mozambique: Cyclone Idai & Floods Situation Report No. 

2, ReliefWeb, 2019. 

Archived Consumer Price Index Supplemental Files: https://www.bls.gov/cpi/tables/supplemental-files/, last access: 27 

August 2025. 710 

Veenstra, J.: dfm_tools: A Python package for pre- and postprocessing D-FlowFM model input and output files (v0.35.0), 

Zenodo, https://doi.org/10.5281/zenodo.14901200, 2025. 

van Verseveld, W. J., Weerts, A. H., Visser, M., Buitink, J., Imhoff, R. O., Boisgontier, H., Bouaziz, L., Eilander, D., Hegnauer, 

M., Ten Velden, C., and Russell, B.: Wflow-sbm v0.7.3, a spatially distributed hydrological model: From global data to local 

applications, Geosci Model Dev, 17, 3199–3234, https://doi.org/10.5194/GMD-17-3199-2024, 2024. 715 

van Verseveld, W., Visser, M., Buitink, J., Bouaziz, L., Boisgontier, H., Bootsma, H., Weerts, A., Baptista, C. F., Pronk, M., 

Eilander, D., Hartgring, S., Dalmijn, B., Hofer, J., Hegnauer, M., and Mendoza, R.: Deltares/Wflow.jl, 

https://github.com/Deltares/Wflow.jl/releases/tag/v0.8.1, 2025. 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



26 

 

Vertegaal, D. M., Aleksandrova, N., Bovenschen, T., Couasnon, A., and Goulart, H. M. D.: Climate and impact attribution of 

TC Idai, https://doi.org/10.5281/zenodo.17107289, 12 September 2025. 720 

Wagenaar, B. H., Augusto, O., Ásbjörnsdóttir, K., Akullian, A., Manaca, N., Chale, F., Muanido, A., Covele, A., Michel, C., 

Gimbel, S., Radford, T., Girardot, B., and Sherr, K.: Developing a representative community health survey sampling frame 

using open-source remote satellite imagery in Mozambique, Int J Health Geogr, 17, 37, https://doi.org/10.1186/s12942-018-

0158-4, 2018a. 

Wagenaar, D., Slager, K., and Calero, J. S.: Delft-FIAT: An open-source flood impact analysis tool, Zenodo, 725 

https://doi.org/https://doi.org/10.5281/zenodo.1400183, 2017. 

Wagenaar, D., Lüdtke, S., Schröter, K., Bouwer, L. M., and Kreibich, H.: Regional and Temporal Transferability of 

Multivariable Flood Damage Models, Water Resour Res, 54, 3688–3703, https://doi.org/10.1029/2017WR022233, 2018b. 

Wang, J., Chen, Y., Tett, S. F. B., Stone, D., Nie, J., Feng, J., Yan, Z., Zhai, P., and Ge, Q.: Storyline attribution of human 

influence on a record-breaking spatially compounding flood-heat event, Sci Adv, 9, eadi2714, 730 

https://doi.org/10.1126/sciadv.adi2714, 2023. 

Wang, X., Verlaan, M., Veenstra, J., and Lin, H. X.: Data-assimilation-based parameter estimation of bathymetry and bottom 

friction coefficient to improve coastal accuracy in a global tide model, Ocean Science, 18, 881–904, 

https://doi.org/10.5194/OS-18-881-2022, 2022. 

Ward, P. J., Jongman, B., Salamon, P., Simpson, A., Bates, P., De Groeve, T., Muis, S., De Perez, E. C., Rudari, R., Trigg, M. 735 

A., and Winsemius, H. C.: Usefulness and limitations of global flood risk models, Nat Clim Chang, 5, 712–715, 

https://doi.org/10.1038/nclimate2742, 2015. 

Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S., Veldkamp, T. I. E., Winsemius, H. C., and Wahl, 

T.: Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries, 

Environmental Research Letters, 13, 084012, https://doi.org/10.1088/1748-9326/AAD400, 2018. 740 

Warren, M.: Why Cyclone Idai is one of the Southern Hemisphere’s most devastating storms, Nature, 

https://doi.org/10.1038/D41586-019-00981-6, 2019. 

Wilkerson, G. V.: Improved bankfull discharge prediction using 2-year recurrence-period discharge, J Am Water Resour 

Assoc, 44, 243–257, https://doi.org/10.1111/J.1752-1688.2007.00151.X, 2008. 

Williamson, C., McCordic, C., and Doberstein, B.: The compounding impacts of Cyclone Idai and their implications for urban 745 

inequality, International Journal of Disaster Risk Reduction, 86, 103526, https://doi.org/10.1016/J.IJDRR.2023.103526, 2023. 

Wing, O. E. J., Bates, P. D., Quinn, N. D., Savage, J. T. S., Uhe, P. F., Cooper, A., Collings, T. P., Addor, N., Lord, N. S. , 

Hatchard, S., Hoch, J. M., Bates, J., Probyn, I., Himsworth, S., Rodríguez González, J., Brine, M. P., Wilkinson, H., Sampson, 

C. C., Smith, A. M., Neal, J. C., and Haigh, I. D.: A 30 m Global Flood Inundation Model for Any Climate Scenario, Water 

Resour Res, 60, e2023WR036460, https://doi.org/10.1029/2023WR036460, 2024. 750 

World Meteorological Organisation (WMO): Tropical Cyclone Idai hits Mozambique, 2019. 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



27 

 

Yamada, Y., Satoh, M., Sugi, M., Kodama, C., Noda, A. T., Nakano, M., and Nasuno, T.: Response of Tropical Cyclone 

Activity and Structure to Global Warming in a High-Resolution Global Nonhydrostatic Model, J Clim, 30, 9703–9724, 

https://doi.org/10.1175/JCLI-D-17-0068.1, 2017. 

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High‐Resolution 755 

Global Hydrography Map Based on Latest Topography Dataset, Water Resour Res, 55, 5053–5073, 

https://doi.org/10.1029/2019WR024873, 2019. 

Zhou, Q., Zhang, Y., Chang, K., and Brovelli, M. A.: Assessing OSM building completeness for almost 13,000 cities globally, 

Int J Digit Earth, 15, 2400–2421, https://doi.org/10.1080/17538947.2022.2159550, 2022. 

  760 

 

https://doi.org/10.5194/egusphere-2025-4502
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.


