Response to all reviewers
Climate and impact attribution of compound flooding induced
by tropical cyclone Idai in Mozambique

We thank all three anonymous reviewers for their elaborate comments and suggestions on how to
improve the manuscript. We address each point raised by the reviewers below (in blue). Line numbers
refer to the revised documents (manuscript or supplement) with tracked changes.

Given the alignment of the comments of all three reviewers, we would like to clarify the scope of the
paper, and justify the validity of our approach. The aim of the paper is to showcase the applicability of
a storyline attribution framework for tropical cyclones using global data only, thereby exploring an
approach that could be implemented operationally, particularly in data-scarce contexts such as
Mozambique. In this novel storyline attribution framework, we make significant steps for climate and
impact attribution of compound flooding from tropical cyclones. We have clarified in the revised
version of the manuscript that this framework provides a conditional attribution assessment of the
observed event under a range of plausible climate trends. This framework focuses on changes in TC
flood drivers for which there is robust scientific evidence.

For the attribution experiments within our paper, we utilize well established storyline attribution
principles (Lloyd and Shepherd, 2021; Shepherd, 2016; Sillmann et al., 2021). For event-based
attribution of tropical cyclones (TCs), assumptions and benchmark choices are necessary. For instance,
keeping the original TC track reduces the number of degrees of freedom in choosing counterfactual
scenarios necessary for practical application of the attribution approach, which is a typical example of
a conditional attribution assessment (Mester et al., 2023; Strauss et al., 2021). Constructing
counterfactuals per definition violates consistencies as it puts an event into a different environment,
which implies assuming an infinite number of unchanged impacts that could have unfolded differently
in the real world. A conditional attribution experiment should be considered a thought experiment, not
a physical reconstruction where all physical forces and budgets are closed. Consequently, counterfactual
scenarios are designed to study plausible what-if scenarios of the effect of climate change on the event
(Lloyd and Shepherd, 2020). Such what-if scenarios are especially relevant for low-likelihood high-
impact events, such as tropical cyclones (Sillmann et al., 2021). Inherently, our experimental setup
relies on assumptions, which are kept constant between scenarios. We argue that some of the sensitivity
experiments requested by the reviewers go beyond the essential reasoning of the intent of a storyline
attribution experiment. Including uncertainties in all modelling parameters will blow-up uncertainty
levels that will bury useful information, especially for data-scarce regions with many unknowns (where
some uncertainty might not even be quantifiable), as is the case for Mozambique. We rely on the best
available global datasets to allow global applicability of our framework, also in data-scarce
environments, and use state-of-the-art or conservative estimates for model parameter uncertainty.

We agree with the reviewers’ suggestions to include uncertainty quantification of the effect of climate
change on the flood drivers and have therefore provided our results as a range of plausible values for
the conditional attribution statement. We have included additional counterfactual scenarios with
plausible values for the climate trend in the flood drivers of tropical cyclone Idai (see Table 1 and
updated section 2.3.2 in manuscript) based on best available literature. We now present the results
including a low, medium, and high plausible climate trends for different driver combinations (22
combinations; see Table below):
e Low, medium and high counterfactual values for TC rainfall (-4%, -8% and -16%),
following Clausius Clapeyron for the medium counterfactual scenario (-8%; Knutson et al.,
2020), the super-Clausius Clapeyron principle for the high counterfactual scenario (-16%;
Guzman and Jiang, 2021; Liu et al., 2019; Patricola and Wehner, 2018) and a plausible TC



rainfall reduction by negative ocean-atmosphere feedback for the low counterfactual scenario
(-4%; Tu et al., 2022).

e Low, medium and high counterfactual values for TC wind speed (-1%, -5%, and -10%),
according to the findings from Knutson et al. (2020) for the low and medium counterfactual
scenarios (-1%, -5%), as suggested by reviewer 1. The high counterfactual scenario (-10%) is
based on the TC wind speed trend from IBTrACS for the southern Indian Ocean from Mester
et al. (2023).

e Low, medium and high counterfactual values for SLR (-0.05 m, -0.10 m, and -0.15 m). Our
best-estimate SLR is based on Treu et al. (2024) and is the mean of all stations along the coast
of Mozambique, within our D-Flow FM domain, resulting in a plausible -0.10 m value for the
medium counterfactual scenario. We add a plausible low and high counterfactual SLR scenario
of £0.05 m based on Strauss et al. (2021), resulting in -0.05 m and -0.15 m. For our best-
estimate SLR analysis, we have switched from the geocentric water level to the water level
dataset of Treu et al., which includes vertical land movement, as it is considered to be more
plausible data for the effect of SLR on flooding.

RAIN  WIND SLR
NR RUN NAME %] %] m]
1 | Factual 0 0 0
2 | CF_all low -4 -1 -0.05
3 | CF_all medium -8 -5 -0.10
4 | CF all high -16 -10 -0.15
5 | CF rain_low -4 0 0
6 | CF_rain_medium -8 0 0
7 | CF _rain_high -16 0 0
8 | CF_wind low 0 -1 0
9 | CF_wind medium 0 -5 0
10 | CF_wind high 0 -10 0
11 | CF_SLR low 0 0 -0.05
12 | CF_SLR_medium 0 0 -0.10
13 | CF_SLR high 0 0 -0.15
14 | CF _rainwind low -4 -1 0
15 | CF _rainwind medium -8 -5 0
16 | CF _rainwind high -16 -10 0
17 | CF _rainSLR low -4 0 -0.05
18 | CF_rainSLR_medium -8 0 -0.10
19 | CF rainSLR high -16 0 -0.15
20 | CF_windSLR_low 0 -1 -0.05
21 | CF_windSLR medium 0 -5 -0.10
22 | CF_windSLR_high 0 -10 -0.15

Also worth noting is that we removed Table S2 from the supplement, as Table 2 in the manuscript is
now updated to include a range of plausible counterfactual values for the considered scenarios.
Moreover, we have updated the land cover dataset to Vito 2019 compared to the earlier used Vito 2015
for consistency but this had a negligible impact on the factual flooding values.



Reply to reviewer 1

This manuscript addresses an important gap in attribution science by developing a storyline framework
for tropical cyclone-induced compound flooding in data-sparse regions. The authors demonstrate
technical sophistication in coupling multiple state-of-the-art models (SFINCS, wflow, D-Flow FM) to
resolve all flood drivers dynamically. The application to TC Idai in Mozambique is particularly valuable
given the underrepresentation of African cyclones in attribution literature. The work makes meaningful
contributions to understanding how climate signals propagate from hazard to impact through nonlinear
damage relationships.

However, the manuscript requires strengthening in several critical areas before publication. The
counterfactual design lacks sufficient scientific justification for key parameter choices, the validation
strategy needs refinement given data limitations, and the uncertainty quantification is inadequate for the
compounding uncertainties inherent in this multi-model framework.

We thank the reviewer for the detailed comments and feedback they have provided. As explained in the
general response section, quantifying all uncertainties and propagating these through the whole
framework is not in the scope of our study and would also reduce the framework’s applicability for
possible future operational applications in data-scarce regions. We have made significant revisions to
the manuscript to ensure that the results are interpreted within their limitations, presenting plausible and
informative attribution statements that advance current attribution science. We agree that the description
of those inherent uncertainties, limitations and inconsistencies lacked in the submitted manuscript,
which has now been revised.

Major Comments

1. Counterfactual Design and Scientific Justification

The manuscript's attribution conclusions depend entirely on robust counterfactual scenarios, yet the
justification for key parameters is insufficient:

For all of the points below, Sections 2.3.3 and S1.6 have been updated in the revised manuscript and
supplementary material. We have included uncertainty bounds in Fig. 5 and Table 2 of the manuscript.
The earlier described medium counterfactual scenarios are used for Fig. 4 and 6. We have also added
more emphasis on the plausibility of these values, to better convey our confidence in the conditional
attribution assessment. Since Fig. 5 only shows relative changes, we added a figure below for reference
showing the uncertainty bounds of the different plausible climate trends on the absolute values for flood
extent, flood volume and flood damage.
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o Rainfall reduction (8%): While the Clausius-Clapeyron relationship is cited, the manuscript
should explicitly demonstrate this calculation rather than only asserting it. Recent literature
supports 8% reductions for ~1.1°C warming, but this warrants a dedicated methods subsection
showing this applied to the case here and a discussion of uncertainties in this approach,
particularly for tropical cyclones, where dynamic effects may deviate from thermodynamic
expectations.

Following the suggestion of the reviewer, we have added additional counterfactual rainfall scenarios of
-4% (lower than Clausius—Clapeyron due to possible enhanced cooling from slower TC translation
speeds in a warmer climate; Tu et al., 2022) and -16% (super Clausius—Clapeyron; Guzman and Jiang,
2021; Liu et al., 2019; Patricola and Wehner, 2018), and added scientific support for these values in
L195-202. We have also explicitly added the Clausius—Clapeyron relationship used for the calculation
of the counterfactual rainfall values in the method Section 2.3.2 in L197. Lines L195-202 are presented
below for convenience:

“The plausible climate trend of TC rainfall, maximum wind speed and SLR is based on best available
literature and global datasets. For the climate change effect on TC rainfall, some studies find that the
trend is in line with the Clausius— Clapeyron relationship (7 %/°C of warming; Knutson et al., 2020),
while other studies show trends higher than Clausius—Clapeyron (Guzman and Jiang, 2021, Liu et al.,
2019a, Patricola and Wehner, 2018), referred to as super Clausius—Clapeyron (14 %/°C of warming),
and lower due to enhanced cooling from slower TC translation speeds in a warmer climate (Tu et al.,
2022). As Idai took place in a ~1.1 °C warmer world, we adopt plausible reductions of rainfall of 4 %,
8 % and 16 % for the low, medium and high counterfactual scenarios, respectively. ”

e  Wind speed reduction (10%): This is more problematic. Knutson et al. (2020) report median
projections of 1-10% intensity increases for 2°C warming, suggesting 0.5-5% for current
~1.1°C warming. A 10% reduction appears to overestimate the counterfactual change,
potentially inflating the attributed impact from wind-driven processes. The manuscript cites
Mester et al. (2023), who used regional observed trends, but doesn't establish why this particular
value is appropriate.

Following the suggestion of the reviewer, we have added additional counterfactual wind speed scenarios
of -1% and -5%, both based on Knutson et al. (2020) and rounding to integers (L202-206), to capture
uncertainty in the climate change effect on TC wind speed:

“For the climate change effect on TC maximum wind speeds, we use plausible reductions of a 1%, 5%
and 10 % for the low, medium and high counterfactual scenarios, respectively. The low and medium
scenarios are based on the likely range of 1-5 % per °C of warming for the Southern Indian ocean from
climate models (Knutson et al., 2020), and the high scenario of a 10 % wind speed reduction is based
on regional trends from observed TCs (Mester et al., 2023).”

e Sea level rise component: The methodology for SLR estimation needs clarification:

o Authors use the Treu et al. (2024) dataset but this contains systematic biases. The
manuscript must explicitly address whether such biases affect factual and
counterfactual equally (canceling in differences) or differently (amplifying attribution
error)

To capture uncertainty in the climate change effect on SLR, we have added two additional
counterfactual SLR scenarios. As mentioned in the general response section, we have switched from
the geocentric water level to the water level dataset from Treu et al. (2024), which includes vertical land



movement. This is also incorporated in our correction for the vertical datum of the bathymetry (see
Section 1.6). Analyzing the water level dataset from Treu et al. (2024) for the stations in Mozambique
within our D-Flow FM domain leads to a mean SLR of +0.10 m at the time of Idai since 1901 (see
updated Sections 2.3.2 and S1.6). For our medium counterfactual scenario, we remove this best estimate
of SLR (-0.10 m). For the low and high counterfactual scenarios, we take +0.05 m from the medium
counterfactual SLR scenario based on Strauss et al. (2021), which results in values of -0.05 m and -0.15
m for the low and high scenarios (L204-210):

“For the climate change effect on SLR, we use plausible reductions of 5, 10 and 15 cm for the low,
medium and high counterfactual scenario, respectively. The medium scenario is based on the dataset
by Treu et al. (2024), used to estimate the SLR between the time of the event and pre-industrial levels,
and the low and high scenarios are based on uncertainty bounds from Strauss et al. (2021)”

The dataset of True et al. (2024) is derived by combining different state-of-the-art global datasets. While
there may be biases (as with any dataset), we now include additional counterfactual scenarios to account
for uncertainty in our attribution results (see Table 2 in the revised manuscript). As such, we consider
the dataset by Treu et al. (2024) to be suitable for the type of application that we present here.

o Figure S10 shows only 2015 data, yet the authors extrapolate to 2019, assuming linear
trends.

Instead of extrapolating the 2015 SLR data from Treu et al. (2024), we have now extrapolated the data
based on 30 years of data and used both linear and LOWESS extrapolation, see figure below. The
difference between these extrapolation methods is minimal (1.6%), but the LOWESS-based
extrapolation fits slightly better and is therefore adopted (updated figure S10 in Supplement).

Extrapolated ISIMIP SLR trend for stations within D-Flow FM domain
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e Long-term tide gauge observations from the region should be incorporated to validate the 14
cm estimate

There is no tide gauge data available along the coast of Mozambique, but we did a trend analysis for
the nearest tide gauge station with sufficient data, located in Durban, South Africa, using Permanent
Service for Mean Sea Level (PSMSL) data (Holgate et al., 2013; Permanent Service for Mean Sea Level



(PSMSL), 2026). Similar to the long-term SLR data from True et al., we have fitted a LOWESS trend
to the tide gauge data:

Monthly PSMSL tide gauge data for Durban (SA) with LOWESS trend
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For our comparison, we assume equal SLR of the tide gauge data as at the start of the 30-year timeseries
from Treu et al. (2024). Comparing the SLR at the time of event, we find the tide gauge data to result
in a SLR of 119 mm compared to our SLR estimate of 96 mm. The tide gauge SLR value of 119 mm
falls within the additionally included plausible range for SLR (150 mm).

Extrapolated ISIMIP SLR trend for stations within D-Flow FM domain
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e Bankfull discharge assumption: The 2-year return period assumption for bankfull discharge
should scale between scenarios. If climate change increases discharge, the effective channel
capacity may differ between factual and counterfactual. Holding this constant creates an
inconsistent comparison -the counterfactual world would have had different equilibrium
channel geometries. This deserves explicit discussion or sensitivity testing.

We thank the reviewer for the comment about possible realistic changes of climate change on river
bathymetry due to increased precipitation, but argue that this is beyond the scope of this study. As



explained in the general response section, we assume similar river bathymetry for the purpose of this
storyline attribution assessment. We have made this assumption explicit in L192-193: “We assume no
change of non-flood drivers, such as exposure and vulnerability.” and 1.225-226: “The attributable
change is conditional on the considered counterfactual flood drivers, and on the assumptions made in
the model schematizations and input datasets.

2. Methodological Concerns

e Model simulation duration: How long were the simulations run? The manuscript doesn't
specify the total simulation period or spin-up time. For compound flood modeling, the
synchronization of multiple drivers is critical. Eilander et al. (2023) found surge peaked 3-5
days before discharge for TC Idai, producing limited compound interaction. Does this
framework capture such timing effects?

Yes, we do capture timing effects, see Fig. S13b-c. The total simulation period was mentioned in line
91 “(9 to 25 March 2019)”) but has been made more explicit in the revised version of the manuscript
“(simulated for 9 to 25 March 2019)” (L93). We refer to the next response for comments on the spin-
up time.

e Boundary condition consistency: How are the multiple drivers synchronized temporally
across model domains? The wflow warm-up (365 days) is mentioned, but what about SFINCS,
D-Flow FM initialization? Are antecedent soil moisture conditions consistent between
scenarios? How is infiltration handled in SFINCS relative to wflow?

The D-Flow FM model has an initialization spin-up adjusted to the models’ inherent timescale, which
is 3 days. For SFINCS, the model starts 5 days before TC Idai hits the case study area, i.e. 5 days before
the effect of the TC becomes visible in the flood model forcing (including discharge, precipitation or
coastal surge). During this period no flooding occurs, and can therefore be considered spin-up time. All
this information can be found in the model building scripts, but is too detailed to be added in the
manuscript.

The antecedent soil moisture conditions are kept constant between scenarios, which is in line with our
storyline experiment. Within wflow, the available water for infiltration is taken as throughfall and
stemflow (and snow runoff and glacier melt, if applicable). The actual infiltration depends on the
vertical saturated conductivity and the soil moisture capacity. As SFINCS does not have a soil
component, for the infiltration the simpler Curve Number method is used, where a fraction of the
precipitation is assumed to be infiltrated. Curve Number values vary spatially based on land use, taken
from the global dataset by Jaafar and Ahmad (2019).

e Validation metrics: The validation should report separate performance metrics for: coastal
zones (surge-dominated), fluvial zones (discharge-dominated) and compound zones (driver
interaction). This would strengthen confidence that the model captures the different flooding
mechanisms appropriately.

We like the suggestion of the reviewer but argue it is beyond the scope of this paper. Additional runs
would be necessary to define these separate zones. Moreover, with the considerable uncertainty in the
satellite products, we argue that providing zone-specific hit rates will not provide a lot of new
information to the notion that the lack of consistence between these satellite products do challenge any
verification, which is already reported.



o Meteorological forcing quality: ERAS underestimates TC intensity (appropriately addressed
by Holland parametric winds), but the manuscript should clarify: Was the TC parametric wind
model used throughout the entire modeling chain? If so, how do biases propagate? The Holland
model performs well when fitted to observations or additional empirical relationships, but "out
of the box" applications can have significant errors and miss asymmetric TC shapes. The 0.75
TC radius merging also needs explanation—how sensitive are results to this choice?

We used a parametric tropical cyclone model to generate wind and pressure fields for both D-Flow FM
and SFINCS to ensure consistent forcing, particularly important for coastal areas. This was done
according to the Holland model (Holland, 2008), fitted to TC Idai parameters from the IBTrACS
database. The wind and pressure fields were thus defined over a large area around the TC track,
extending well beyond the R34 radius of the TC (area of extreme winds), using the 'spiderweb'
schematization, commonly applied for tropical cyclone modelling in D-Flow FM (Deltares, 2026, pp.
234-235). To ensure realistic meteorological conditions outside of the TC area of influence (e.g. during
model spin up, before the TC enters the model domain), the parametric fields were merged with ERAS
reanalysis data at 0.75 of the 'spiderweb' forcing field radius (merge fraction parameter). This, however,
does not affect the coastal surge generation in our area of interest, because the TC track passes directly
through the case study region and surge is generated by winds well within the 0.75 of the TC forcing
field radius. Because the 0.75 merge fraction does not influence the coastal water levels (and hence the
attribution results), we removed it from the manuscript (L178-179); this technical detail remains
documented in the published scripts.

3. Wave Setup and Coastal Process Assumption

e The assumption that wave setup remains constant across counterfactual scenarios is
scientifically invalid and potentially introduces substantial error since wave setup scales with
wave breaking intensity. A 10% wind reduction would generate lower wave heights, producing
correspondingly lower setup—potentially 15-20% reduction if setup scales as Hs?.

For similar reasons as given before, we consider this element beyond the scope of our study. Including
a counterfactual dynamical wave scenario would require setting up and validating an additional model
(deep-wave model forced by the counterfactual TC parametric wind model), as a simple assumption on
the fractional effect of change in wind speed on wave height would not cover this uncertainty properly.
However, we agree with the reviewer that including a counterfactual wave scenarios would be very
interesting, and could cause additional impacts that can be potentially attributed to climate change.
Therefore, we encourage future studies to include a counterfactual for this driver to our framework, as
mentioned in L401 of the manuscript. We have also removed the word “all” from TC flood drivers in
L&7.

e Also, the SnapWave approach over transects is problematic since wave conditions aren't
properly downscaled (ERAS offshore waves are coarse), transects are poorly connected to
actual water levels, and local nearshore processes (refraction, shoaling, breaking) may be
inadequately represented in a transect approach

Apologies for the unclear description of our wave modelling approach. In our study, SnapWave is not
used as a stand-alone transect model, nor are offshore ERAS wave conditions directly imposed at the
coastline. Instead, we employ a fully 2D flow—wave coupling through SFINCS—SnapWave to calculate
wave-induced setup (Fig. 2 in manuscript), in which SnapWave is explicitly used to downscale offshore



ERAS wave forcing and resolve local nearshore wave processes, including refraction, shoaling, and
depth-limited breaking.

The coupled SFINCS—SnapWave simulations produce a wave-induced water level component, which
is calculated as the difference between simulations with and without SnapWave, resulting in the targeted
wave setup component. For practicality and to maintain computational consistency within our existing
hydrodynamic modelling framework, the wave setup timeseries is subsequently extracted along
coastline perpendicular transects and superimposed onto the nearest tide—surge water levels at Delft3D-
FM output points (see S1.4). We have revised L145-150:

“We combine the tide and surge with dynamically modelled wave setup, calculated from a coupled
SFINCS-SnapWave simulation. The 2D SFINCS-SnapWave model has a spatially-varying grid with a
resolution of 400 m offshore to 50 m at the coast, covering an area of 5400 km’ (yellow domain in Fig.
2). The D-Flow FM output is generated around the 5-meter depth contour within the SFINCS domain
at a 10-minute temporal resolution (Fig. S1). The wave setup output is also generated at a 10-minutes
temporal resolution and saved at coastal transects”

e | strongly recommend: (1) fully integrate SnapWave 2D within SFINCS for dynamic wave-
surge coupling in both scenarios, OR (2) remove the wave coupling component entirely,
acknowledge this as a limitation, and note it may introduce ~10 to 20% uncertainty in coastal
flood depths. The current approach undermines the compound flooding framework's credibility.

While fully acknowledging that the current approach could be further improved, dynamically
accounting for the wave contribution in a globally applicable approach is already a large advancement
over current globally applicable approaches that tend to reply on simplistic parametric estimates or
empirical estimates (Hinkel et al., 2021). SnapWave is very recently developed software (Roelvink et
al., 2025), and at the time of our framework development, fully integrating SnapWave within SFINCS
combined with all compound flood drivers was technically not yet possible (L78-81 in Supplement).
We argue that having a better estimate of our factual scenario by including wave setup from SFINCS-
SnapWave still adds value as it provides higher confidence in the simulated flooding and therefore in
the attribution assessment. For this reason, we have chosen a hybrid approach by including a credible
application to assess the contribution of waves on the event, without a full integration of the climate
change impact on this contribution.

4. Flood Damage Modeling

e Depth-damage curve validation: The continental curves from Huizinga et al. (2017) assume
European-style construction. Snel et al. (2019) showed Ethiopian traditional buildings
experience 100% damage at 2m depth versus Sm for concrete structures. Mozambique's post-
Idai assessments reported 111,163 completely destroyed houses, but no published studies
validate these damage functions against actual losses. I recommend: 1) comparing aggregate
model damage against reported sector-specific losses, 2) conducting sensitivity analyses with
alternative damage curves for informal/traditional construction and 3) discussing this as a major
uncertainty source.

We agree with the reviewer that these simplified depth-damage curves are uncertain but would like to
stress that we work with the best available global data and state-of-the-art methods, allowing global
applicability of our framework in data-scarce contexts. In response to this and the other comments, we
have made our assumption explicit in L225-226, and made it more explicit that these damage curves
are a major source of uncertainty in L411 of the discussion. Comparing our damage estimates with
sector specific losses is too detailed for the scope of our study.



L225-226: “The attributable change is conditional on the considered counterfactual flood drivers, and
on the assumptions made in the model schematizations and input datasets. ”

5. Missing Elements: Uncertainty Quantification

This is the review's most critical concern. Every component carries substantial uncertainty:
- Counterfactual parameter choices (rainfall: +2-3%, wind: £5%, SLR: £5cm)

- Meteorological forcing (ERAS5 vs. parametric TC model inconsistencies)

- Hydrological model calibration

- Missing river bathymetry (bankfull approximation)

- Wave setup assumptions

- Exposure data completeness

- Damage function transferability

These uncertainties compound multiplicatively, not additively. The total framework uncertainty is
substantial.

The manuscript MUST include:

1. Uncertainty quantification at each modeling step
2. Formal uncertainty propagation through the attribution framework
3. Comprehensive sensitivity analysis on key assumptions

4. Probabilistic framing of attribution statements with confidence intervals

Recent attribution papers explicitly report uncertainty ranges. Does climate change contribute 5-15%
or 25-35% to damages? Without uncertainty bounds, readers cannot properly interpret the "31% damage
attributable to climate change" conclusion.

As mentioned in the general response section and individual response to the reviewers comments, we
have improved the manuscript as follows:

e Refined the scope of our study in L77-79, L87-90

e C(larified uncertainties and assumptions made within the scope of our study (L225-226).

e Throughout the manuscript improved the wording of our attribution assessment as being
conditional, and using plausible climate trends for the constructions of counterfactual
scenarios.

e Include climate trend uncertainty propagated in our counterfactual scenarios through the
whole modelling chain for a low, middle and high scenario, and presenting our results as a
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range of plausible values for the conditional attribution statement (Table 1 and 2 in the
revised manuscript).

e Additional wflow hydrological model validation using GloFAS discharge data (Section
S1.3)

e Additional SLR analysis and comparison with PSMSL data for the closest tide gauge (this
rebuttal document).

As a result, these clarifications and additional experiments have helped to improve the interpretability
of our results for the reader, leading to changes throughout the manuscript and in the abstract (L8-23).

Minor Comments

Exposure and Vulnerability Treatment (1.285-290)

The manuscript states that exposure/vulnerability is held constant, but this critical assumption deserves
more prominent discussion. The counterfactual answers: "What would 2019's exposed population
experience under a pre-industrial climate?" not "What would the pre-industrial population experience?"
This is correct for physical attribution, but should be explicitly stated in Section 2.3.2 rather than buried
in the discussion.

We have explicitly included references to our assumptions on constant exposure and vulnerability
between scenarios as part of Section 2.3.2 (L192-193) “We assume no change of non-flood drivers, such
as exposure and vulnerability, in the counterfactual scenarios”, per suggestion of the reviewer. We
would like to take this opportunity to share that we are working on extending the framework to include
a counterfactual exposure scenario in an upcoming paper.

Supplementary Figure S2 (Return Period Analysis)

The disconnection around 1-2 years is striking and unexplained. How was the fit performed? Was this
a standard GEV/Gumbel distribution? The discontinuity suggests potential issues with the extreme
value analysis or the underlying wflow discharge distribution. Please add a methods subsection
describing the EVA approach and discuss this feature.

The extreme value analysis was done using the pyextremes Python package (Bocharov, 2023) that relies
on standard, well-known fitting approaches to define extremes events (i.e. block maxima or peaks-over-
threshold methods) and to estimate distribution parameters. Here, we selected yearly maxima from the
time series and then fitted a GEV distribution, in accordance with the extreme value theorem that the
GEV distribution is the limit distribution of independent and identically distributed block maxima
samples (here, yearly maxima). In cases where the shape parameter is 0, this resulted in a Gumbel
distribution. The selection between Gumbel or GEV was based on the Akaike Information Criteria
(AIC) goodness-of-fit metric. The discontinuity observed is the result of a few years being less extreme
than others and is mainly the result of the limited length (30 years) of the time series. As suggested by
the reviewer, we have added more details on the EVA approach in section S1.2.

Line 175 (Holland Model Implementation)

"linearly fading the data at 0.75 fraction of the TC radius" - Why 0.75? This appears arbitrary and could
significantly affect results. Show sensitivity or cite precedent. Also, how is the TC eye resolved in terms
of rainfall distribution? The Holland wind model has asymmetric components—were these included?

The 0.75 merge fraction is explained in an earlier response. For asymmetry in the Holland wind model,
the TC asymmetry between different quadrants was defined using Schwerdt et al. (1979), as common
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https://georgebv.github.io/pyextremes/

in literature (e.g., Leijnse et al., 2021). While more advanced tropical cyclone wind models exist, data
availability is often a limiting factor, and in our view, this makes application on a global and operational
context infeasible. Considering the validation of the model, which is reported in section 3.2, S1.3 and
S1.5, we consider our approach valid for the scope of our study.

Recommendations

Despite the substantial revisions required, this manuscript represents important and novel work. The
technical execution is sophisticated, the application to Mozambique addresses a critical gap, and the
compound flooding attribution framework is genuinely innovative. With careful attention to the major

comments—particularly uncertainty quantification, counterfactual justification, and wave setup
treatment—this can become a strong contribution to NHESS and the broader attribution literature.

Priority actions:

1. Add comprehensive uncertainty analysis (Monte Carlo or ensemble approaches)
2. Revise or remove the wave setup coupling

3. Strengthen counterfactual justifications with sensitivity analyses

4. Improve damage model validation against reported losses

The open-source, globally-applicable framework you've developed has significant potential for
advancing attribution science in vulnerable, data-poor regions. I look forward to seeing the revised
manuscript.

We would again like to sincerely thank the reviewer for their time to provide the detailed and elaborate
comments on our manuscript. We believe these have strengthened our work significantly. Please refer
to our earlier response to individual comments and the general response for the actions we have taken
to include the reviewers suggestions.
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