

1 **Mitigating *Mazuku* Hazards: Implementation and Effectiveness of Local Dry-Gas**
2 **Degassing Measures in the Goma Area (Virunga Volcanic Province)**

3 Blaise Mafuko-Nyandwi*

4 Ecole Supérieure de Volcanologie, de Gestion des Risques et des Catastrophes, Université de Goma
5 (Campus du Lac, Rue Eugène Serufuli 43, Quartier Katindo, Goma, North Kivu province, Congo)

6

7 *Corresponding authors: BMN, blaise.mafuko.nyandwi@unigom.ac.cd or tbmafuko@gmail.com

8

9 **Keyword:** Volcanic risk, risk mitigation, carbon dioxide, Nyiragongo

10 **1. Abstract**

11 Mitigation of carbon dioxide diffuse degassing hazards remains underexplored in comparison to
12 other volcanic hazards such as eruptions, despite their persistent and deadly impacts on
13 communities living in active volcanic regions. This study uses a mixed-methods approach—
14 combining quantitative surveys and qualitative interviews—to assess household perceptions of
15 the implementation and effectiveness of risk mitigation measures against *mazuku*, a locally
16 known hazard caused by emissions of carbon dioxide in the western part of Goma, Virunga
17 Volcanic Province. Data were collected across three sampling zones, capturing demographic
18 characteristics, eruption risk experiences, and perceptions regarding the implementation of
19 mazuku risk mitigation measures.

20 Findings reveal three locally recognised categories of mitigation measures: (1) emission-limiting
21 measures, such as blocking gas with waste materials; (2) adaptive measures, such as house
22 ventilation or living on upper floors; and (3) awareness measures based on orally transmitted
23 local knowledge such as avoiding *mazuku* zone early morning. Financial resources, gender and
24 prior risk experience—often linked to length of residence—emerged as significant positive
25 determinants of both motivation and perceived efficacy for the first two categories. Perceptions
26 of awareness measures showed no significant variation across zones even between demographic
27 profile groups. Spatial patterns in perceived implementation and perceived efficacy appear to
28 reflect collective community mitigation implementation rather than based on individual risk
29 mitigation assessment, with some measures perceived as effective despite limited physical
30 evidence of reduced gas concentration.

31 The study supports the importance of co-creating mitigation strategies with local communities,
 32 adapting interventions to socio-economic realities and avoiding the importation of external
 33 mitigation measures that may lack contextual relevance. It also calls for complementary research
 34 measuring the actual effectiveness of these measures through physical monitoring of *mazuku*
 35 concentrations. These insights, grounded in a Global South context characterised by rapid
 36 uncontrolled urbanisation, offer a valuable perspective for the development of inclusive and
 37 effective strategies of carbon dioxide diffuse degassing risk management strategies.

38 **2. Introduction**

39 Volcanic hazards are the surface manifestations of Earth's internal activity. They can be short-
 40 lived, such as eruptions, or long-term, like carbon dioxide (CO₂) diffuse degassing and
 41 hydrothermal activities (Loughlin et al., 2015). Despite the dangers posed by these hazards,
 42 numerous societies have settled near active volcanoes (Brown & Jenkins, 2017), including in
 43 areas with intense CO₂ diffuse degassing, such as the western part of the Goma region (Eastern
 44 DRC, Virunga Volcanic Province). Exposition to CO₂ diffuse degassing represents a significant
 45 threat to human health and safety (Edmonds et al., 2017; Hansell & Oppenheimer, 2004). The
 46 CO₂, an odourless and colourless gas, acts as an inert asphyxiant and displace oxygen in the air
 47 down to dangerously low levels. Lethal concentrations—exceeding 10 vol.%—cause rapid loss
 48 of consciousness, asphyxiation, and death of human and nonhuman beings~~humans and other~~
 49 ~~fauna~~ (Viveiros & Silva, 2024).

50 The short-term exposure limit for CO₂ is set at 3 vol%, while the permissible limit for an 8-hour
 51 exposure is 0.5 vol% (Hansell & Oppenheimer, 2004). When these thresholds are exceeded,
 52 specific symptoms may appear depending on the concentration level and duration of exposure.
 53 These include accelerated breathing and increased heart rate, followed by dyspnoea and
 54 headaches, and in more severe cases sweating, dizziness, ringing in the ears, vertigo, vomiting,
 55 and muscular weakness (Viveiros et al., 2016). Viveiros et al. (2024) note that although CO₂
 56 diffuse degassing is often considered a neglected natural hazard, it has caused the deaths of more
 57 than 2,000 people over the past decades. Considering the potential impact of CO₂ on human
 58 health and its silent infiltration into buildings in diffuse degassing areas, studies on their
 59 mitigation measures are crucial to inform disaster risk mitigation programs.

60 This paper examines the Goma area in eastern Democratic Republic of the Congo (DRC),
61 located within the Virunga Volcanic Province. Locally in Goma, Mazuku the term *mazuku* is
62 derived from Swahili and translates as “evil wind” or “evil wind that spreads and kills during the
63 night”. isIt is used to refer both to the diffused CO₂-rich gas and the areas where it is emitted.
64 The hazardous gas accumulates in low-lying depressions where they become concentrated due to
65 their heavier-than-air nature (Wauthier et al., 2018). CO₂ concentrations in Mazuku can largely
66 exceed the minimum exposure limits for humans or fauna, reaching high concentration ranging
67 from 45 to 80 vol%, with diurnal–nocturnal fluctuations of up to 80% (Balagizi et al., 2018a).
68 The rapid growth of Goma as several cities in the Global South(Quesada-Román, 2022), driven
69 by intense migration due mostly to recurring armed conflicts in the region and professional
70 opportunities seeking (Pech et al., 2018; Pech & Lakes, 2017), has extended the city to the west
71 part highly concentrated in *mazuku*, exposing a large population.

72 However, previous *mazuku* related studies in the region have focused primarily on hazard
73 assessments, including its formation, vent locations, and the geographical distribution of its
74 concentrations (M. M. Kasereka et al., 2017; Smets et al., 2010; Wauthier et al., 2018), or
75 evaluating the changes in its magnitude following a volcanic eruption (Vaselli et al., 2003). To
76 date, *mazuku* mitigation measures are poorly studied. In addition, it has been observed in the
77 region that while awareness campaigns encourage people to avoid high-risk areas by installing
78 warning panels that call people to avoid settling in *mazuku*, these signs are frequently removed.
79 Residents continue to stay or others to come and settle in known hazardous zones and
80 subsequently they develop their own local mitigation strategies.

81 In this perspective, this study seeks to examine household representatives’ perceptions regarding
82 the implementation of local mazuku mitigation measures, focusing on their perceived efficacy,
83 associated costs, extent of implementation, and motivations for adoption. In this perspective, this
84 study aims at assessing the household implementation of local mazuku mitigation measures by
85 Goma population, with a focus on their perceived efficacy, cost implications, level of
86 implementation, and the individual motivation behind their adoption. To achieve this, the
87 research employs a mixed-methods approach. Qualitative data were collected through 32
88 interviews and three focus group discussions, identifying, describing, and categorizing 12
89 principal local mitigation measures. Additionally, a large-scale survey of over 500 households

90 was conducted to evaluate quantitatively public perceptions regarding the implementation of
 91 these measures.

92 This study provides a new perspective on volcanic disaster risk management, highlighting that in
 93 a context of scarcity of risk information and mitigation strategies, exposed population developed
 94 their own mitigation measures. This makes individual mitigation an imperative if there are no
 95 other options for where to live. It means, for instance, when the necessity of settling in volcanic
 96 areas with high concentrations of mazuku outweighs the risks of living in regions around Goma
 97 affected by armed conflict, the local population seeks to work out practical strategies to mitigate
 98 the mazuku hazard and therefore resettle or remain in these high-risk zones. Consequently,
 99 hazard mitigation strategies that incorporate local practices prove more effective than those
 100 imported from outside (Lutete Landu et al., 2023).

101 After this introduction, this article provides a detailed overview of mazuku within the human,
 102 geological, and geographical context of the Goma region. After this introduction, this article
 103 provides a detailed overview of Mazuku in the volcanic context of Goma region. Then it presents
 104 the used methodology and the results followed by a discussion both on the challenges and
 105 successes in implementing local mazuku mitigation measures. The paper concludes with key
 106 insights and recommendations to strengthen volcanic risk mitigation measures among local
 107 communities, drawing on evidence from this case study of Goma.

108 **3. Goma region: human, geological and geographical setting**

109 Goma is located in eastern DR Congo on the northern shore of Lake Kivu (~1,460 m a.s.l.), at
 110 the international border with Rwanda (Gisenyi), within the Virunga Volcanic Province (VVP) of
 111 the western branch of the East African Rift System (Smets, 2016; Vlassenroot & Büscher, 2011).
 112 The city is built entirely on the active lava field of Mount Nyiragongo (3,470 m a.s.l.), situated
 113 about 18 km north of Goma inside Virunga National Park (Fig1). Nyiragongo is a rift-controlled
 114 stratovolcano with a summit crater of about 1.2 km width and a semi-persistent lava lake
 115 (Barrière et al., 2022). Fractures and eruptive fissures on its southern flank strongly control lava
 116 pathways (Kervyn et al., 2024). Historical flank eruptions (1977, 2002 and 2021) produced
 117 highly fluid lava flows directed towards Goma and the Lake Kivu basin (Kervyn et al., 2024;
 118 Smets, 2016). In addition to lava flows, the region is exposed to other volcanic hazards. These

119 include persistent SO₂-rich plumes that can degrade air quality and promote acid deposition
120 (Smets et al., 2017), diffuse CO₂ degassing (Smets et al., 2010), and recurrent seismicity (Subira
121 Muhindo, 2024) and ground deformation linked to magma intrusions along rift structures
122 (Geirsson et al., 2017; Smittarello et al., 2022). Furthermore, lake Kivu contains large amounts
123 of dissolved carbon dioxide (CO₂) and methane (CH₄), which represent a potential limnic gas-
124 release hazard in case of lake destabilisation (Hirslund & Morkel, 2020).

125 Despite its exposure to multiple natural hazards, Goma is a rapidly expanding border city whose
126 urban development has been strongly shaped by ongoing conflict, the presence of the
127 humanitarian sector, and cross-border trade—including natural-resource economics (Pech et al.,
128 2018; Vlassenroot & Büscher, 2009). Populations repeatedly seek refuge mostly from insecurity
129 affecting surrounding areas of eastern DRC. These dynamics have contributed to intense and
130 largely informal urbanisation: between 2002 and 2020, the city's population doubled from
131 around half a million to more than one million inhabitants, increasing settlement density and
132 demand for housing and services (Adalbert et al., 2021). At the same time, the city's physical
133 expansion is strongly constrained by Lake Kivu to the south, Virunga National Park to the
134 northwest and the Rwanda border to the east, forcing growth northwards towards Nyiragongo's
135 flanks and recent lava fields even in mazuku-affected area (Fig.1),

136 The Mazuku-affected area under study, which is now inhabited, was unoccupied three decades
137 ago (Pech et al., 2018). At that time, the region was covered by an open woodland typical of the
138 area. According to testimonies gathered from local elders, people used to cross it at dusk to reach
139 the lake Kivu for fishing, or early in the morning when returning with their catch. It also served
140 as a hunting ground for Gambian rats and as pastureland for livestock before it was settled.
141 These activities mostly took place in the evening or early morning when the mazuku
142 concentration is high. Therefore, many people, as well as livestock, lost their lives asphyxiated,
143 which was then regarded as an evil wind—one that had neither a smell nor a visible form
144 (Vaselli et al., 2003). Today, the area is inhabited by new residents and Internally Displaced
145 Persons (IDP) with a more urban lifestyle than the earlier inhabitants and the term was kept.

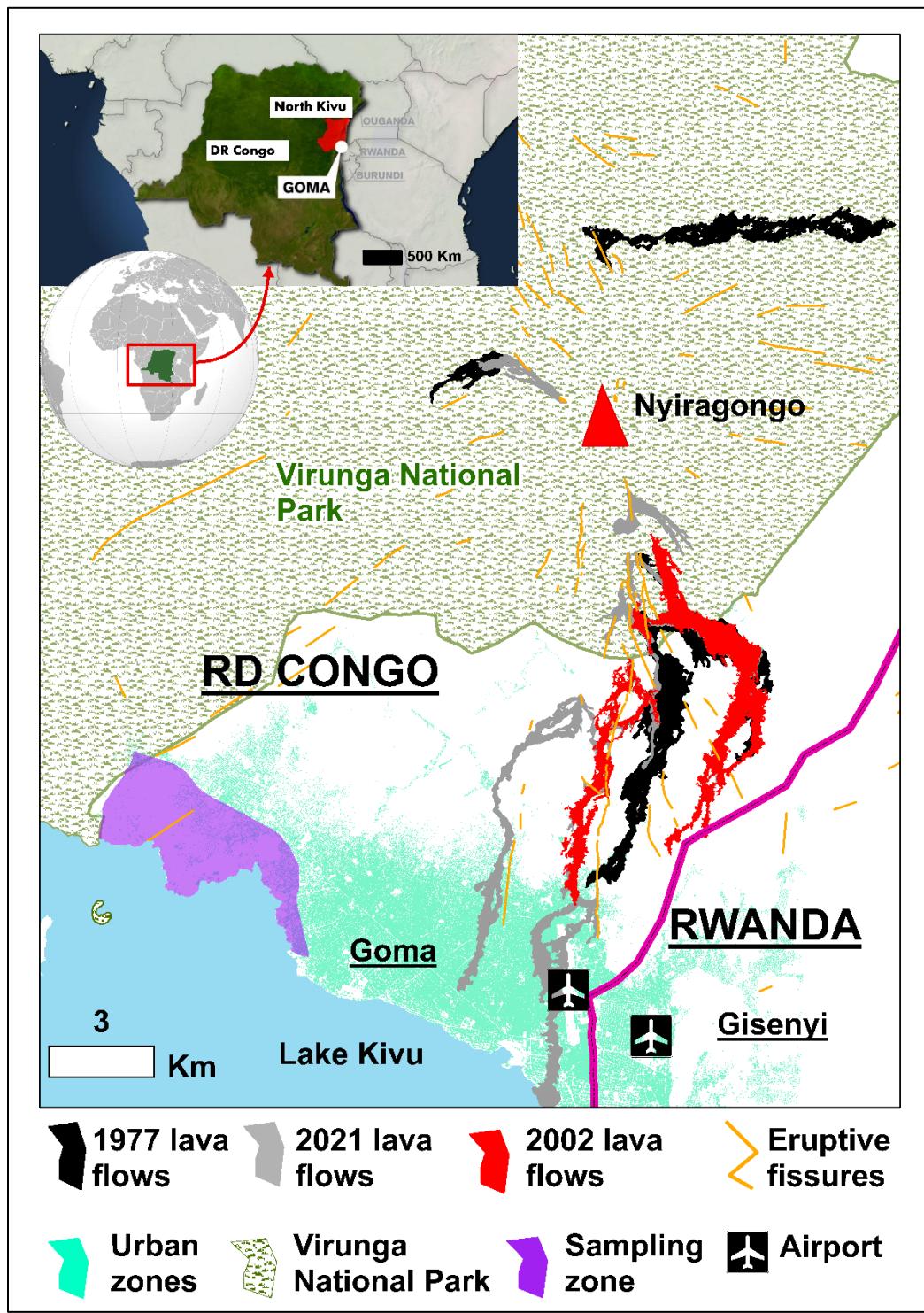


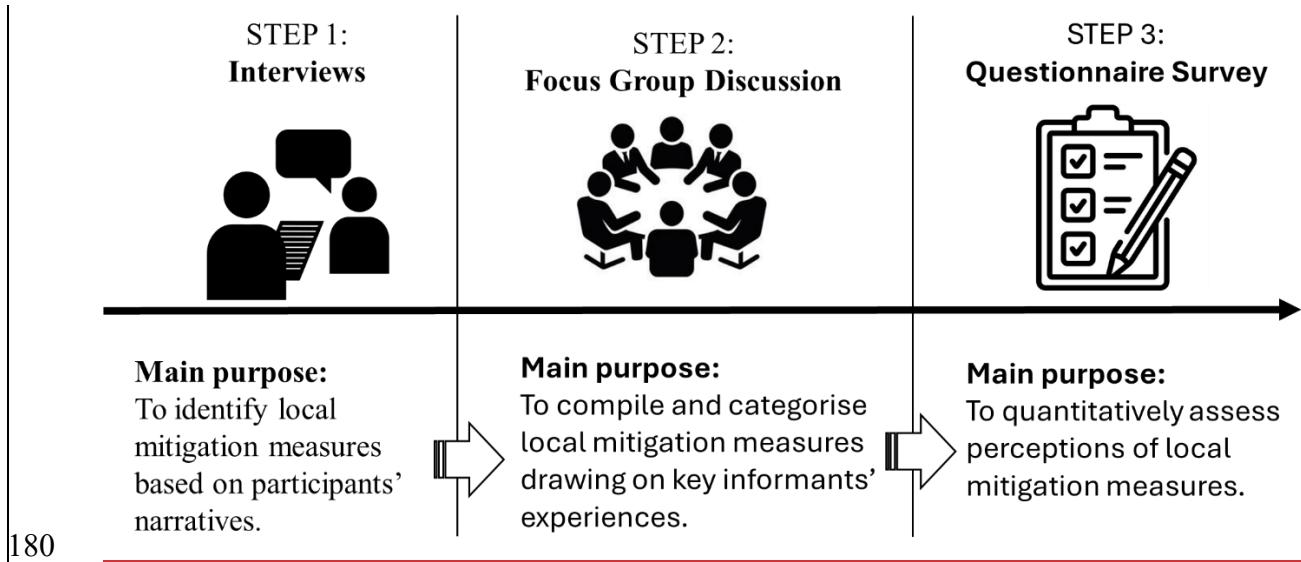
Figure 1: Study area of the mazuku zone within the Nyiragongo lava flows (Goma, eastern DR Congo). The map shows the extent of the 1977, 2002 and 2021 lava flows, eruptive fissures, urban areas, and the sampling zone investigated in this study. Part of shapefiles credit: GeoRiskA, (<https://georiska.africamuseum.be/>)

147 Mazuku¹⁴ denotes depressions into which dense CO₂—heavier than air—emanates and
 148 accumulates (Fig.2). Such phenomena also occur in other volcanic areas around the globe,
 149 including Mammoth Mountain (USA), Royat (France), and the Siena Graben (Italy); however,
 150 they differ in terms of both gas origin mechanisms and patterns of human occupancy (Edmonds et
 151 al., 2017; Hansell & Oppenheimer, 2004). Despite their long-standing recognition, the formation
 152 mechanisms of these gases remain poorly understood and widely debated (Williams-Jones &
 153 Rymer, 2015).

154

Figure 2: Picture of warning panel. The Mazuku emission zone is outlined with red dotted lines, and in the middle stands a warning panel located within an IDP camp. The inscriptions on the warning panel are in French, with a Swahili translation, reading: “High-risk zone. Beware of gas. Watch over and prevent children from playing near gas areas.” Nearby, we can also observe (a) public latrines with uncemented septic pits, and (b) small tent shelters occupied by the IDPs (Photo credit Blaise Mafuko).

155


156 In the Virunga Volcanic Province (VPP)¹⁵ they are common in the vicinity of Goma—
 157 particularly between Lake Kivu and the west part of lava flow fields of Nyiragongo and
 158 Nyamuragira (Smets et al., 2010). Wauthier et al., (2018) explain that these occur where a deep
 159 magmatic CO₂ source connects to the surface via a network of fractures, and where
 160 topographical depressions enable the gas to settle. The expansion of Goma has led to the
 161 occupation of lakeshore areas in the west of the city, along Lake Kivu (Büscher & Vlassenroot,

162 2010; Pech et al., 2018), where these mazuku are highly concentrated. The official mitigation
163 strategy involves mapping gas-emission zones and installing warning panels. Nonetheless, these
164 mazuku continue to cause fatalities over extended periods, and livestock asphyxiation remains a
165 frequent occurrence.

166 **3.4. Methodology**

167 **4.1. Data collection**

168 This study adopted a sequential mixed-methods design integrating qualitative and quantitative
169 approaches (Fig. 3). We first conducted semi-structured interviews in neighbourhoods previously
170 identified by the Goma Volcanological Observatory (GVO) as mazuku emission zones to
171 document local experiences and identify existing mitigation measures. We then organised three
172 focus group discussions (with community representatives, street leaders, and manual septic-pit
173 diggers) to validate, clarify, and categorise the measures and refine contextual understanding of
174 their implementation. Finally, insights from these qualitative steps informed the construction of a
175 questionnaire survey, which was administered at scale to quantitatively assess household
176 perceptions of the identified measures, particularly regarding perceived effectiveness, costs,
177 levels of implementation, and motivations for adoption. In this study, street leaders refer to
178 locally recognised neighbourhood-level representatives who coordinate 10 households and
179 facilitate communication between residents and local authorities.

181

182 Figure 3: Sequential mixed-methods design showing the intersections between qualitative interviews, focus group discussions, and the questionnaire survey used to identify, validate, categorise, and quantitatively assess local mazuku mitigation measures. Icons credit: Shutterstock (<https://www.shutterstock.com/>).

183

184 Our methodological approach for this study was mixed methods, combining both qualitative and quantitative techniques. We began with 32 interviews conducted in areas previously identified by the Goma Volcanological Observatory as emission zones for mazuku gases. These interviews enabled us to identify 12 potential mitigation measures. Next, we organised three focus groups: one with community representatives, another with local street leaders, and a third with local manual septic pit diggers. These discussions allowed us not only to describe and categorise the 12 measures into three distinct groups, but also to delineate the study area into three zones based on their historical patterns of occupation (Fig. 1). With the insights gained from our qualitative methods, we subsequently conducted a large scale survey to capture public perceptions regarding the implementation of these 12 mitigation measures.

192 **4.1.1. The interviews**

193 The interviews were conducted between 1 October and 10 October 2024. We interviewed 32 individuals—17 women and 15 men—focusing exclusively on adult household heads. 194 Participants were selected at random, with an aim of interviewing three people per main street: 195 one at the beginning, one in the middle, and one at the end. The entire area identified by the 196

197 Goma Volcanological Observatory as a high-risk mazuku zone was covered. Verbal consent was
198 obtained from all participants prior to the interviews. The interviews were structured and
199 addressed the following themes: (1) the respondent's experience of volcanic risk in Goma; (2)
200 their knowledge of the existence and formation of mazuku; (3) indicators used to identify areas
201 with high mazuku concentrations; (4) impacts recorded as a result of mazuku exposure; and (5)
202 mitigation measures against mazuku-related risks.

203 **4.1.2. Focus groups**

204 In addition to the interviews, we organised three focus group discussions (FGD) towards the end
205 of October 2024. The FGDs covered the same themes as the interviews but adopted a debate-
206 based approach among participants to identify the spatial and daily temporal variations in the
207 occurrence of mazuku. The first FGD brought together 10 participants, including 5
208 IDPs~~internally displaced persons (IDPs)~~ and local residents. The aim was to capture differences
209 in perception between the various social groups living in the same area. The second FGD
210 comprised 8 men who manually dig septic pits. They work in the area extracting stones for sale
211 as well as digging toilet septic pits. They are familiar with the history of land occupation and are
212 well aware of the areas with high gas concentrations, although without any scientific assessment
213 of the levels. This discussion enabled the oral history of the area's occupation to be
214 reconstructed.

215 Finally, we brought together 9 street leaders to discuss the same themes, with a stronger focus on
216 local mechanisms for managing this risk. The FGDs concluded with a walk-through in the area
217 for observations involving 4 street leaders, 3 diggers, and 3 community members who were
218 available. This exercise allowed us to distinguish 3 types of land occupation according to the
219 nature of the houses and the period of settlement (Fig.041): a highly urbanised area occupied by
220 high-income residents; a transitional area undergoing urbanisation with sporadic permanent
221 constructions; and a rural area mainly inhabited by indigenous populations and IDPs.

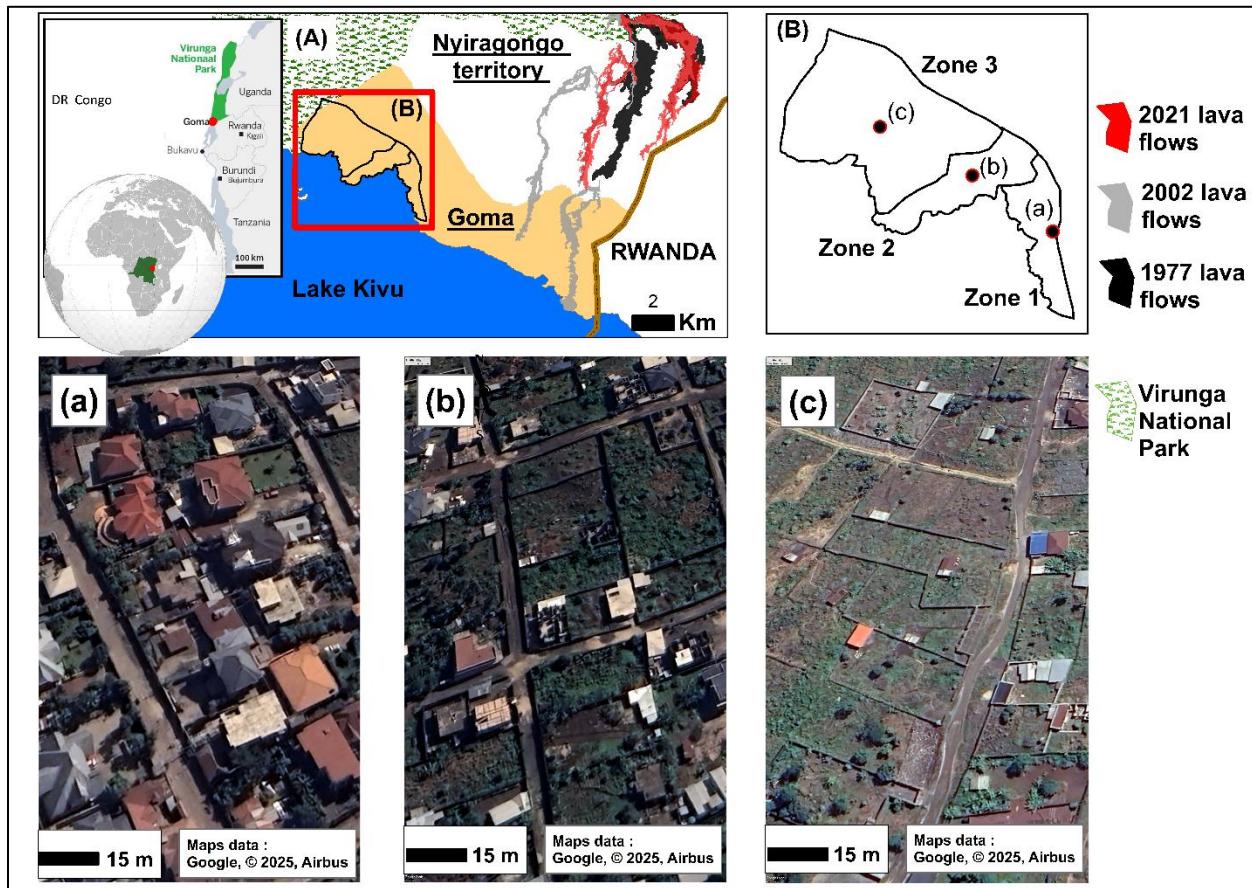


Figure 44: **Maps of the Study Area:** Map (A) shows the location of the city of Goma, and the lava flows from the last three eruptions of Nyiragongo. Map (B) indicates the three sampling zones and the pattern of housing structures, derived from Google Earth.

224

225 4.1.3. Questionnaire survey

226 The data gathered from qualitative evaluations enabled us to describe and classify 12 risk
 227 mitigation measures (Mafuko Nyandwi, 2025). Subsequently, we conducted a large-scale
 228 survey—carried out by trained enumerators—to assess population perception regarding the
 229 implementation of these measures.

230 The questionnaire focused on:

231 1. **Demographic profile:** including participants' age, gender, experience with risk, household
 232 size, monthly household income, number of rooms in the house, duration of residence, and
 233 residential status.

234 2. **Perceptions of measure implementation:** covering respondents' individual motivation to
 235 implement each mazuku mitigation measure over the next six months; the perceived
 236 efficacy of each measure in reducing risk across within their neighbourhood; the perceived
 237 cost of implementation; and finally, how they perceived the current level of
 238 implementation of each measure within their neighbourhood.

239 The sample size was determined based on the population of the Goma targeted neighbourhoods
 240 (Kyeshero and Lac Verts). With an estimated population of approximately 100,000—according
 241 to data collected from the respective neighbourhoods offices during our survey—our sample of
 242 573 individuals at a 95 % confidence level far exceeded the minimum required for statistical
 243 representativeness (Morgan, 1970).

244 We randomly distributed around 600 sampling points over a Landsat image from Google Earth,
 245 across the identified high-risk mazuku zone, maintaining an approximately equidistant spacing of
 246 40 m between points. Enumerators were instructed to survey the household closest to each
 247 sampling point, following a previous developed protocol (Mafuko Nyandwi, Kervyn,
 248 Habiyaremye, et al., 2023). We targeted only adult household heads as respondents.

249 **4.2. Data analysis**

250 The qualitative data were analysed using content analysis to list all mazuku mitigation measures,
 251 followed by thematic analysis to identify recurring patterns and key themes related to their
 252 implementation and categorisation. We then employed descriptive statistics to characterise the
 253 measures by evaluating the proportion of the population at each level of perception. Cronbach's
 254 alpha was used to measure internal consistency across the three categories of mitigation
 255 measures, enabling us to aggregate motivation and perceived efficacy within each group.
 256 Aggregation was performed using the mean when the coefficient of variation (CV) was less than
 257 25 %, and the median when the CV was 25 % or higher — the CV, being the ratio of standard
 258 deviation to the mean, provides a standardised measure of variability.

259 Non-parametric tests were applied to assess how motivation for implementation varied across
 260 demographic variables. Statistically significant variations were represented on boxplots. Pairwise
 261 Spearman's rank-order correlations were calculated to evaluate the strength and direction of
 262 monotonic relationships between ranked variables—motivation, perceived efficacy, and

263 perceived cost—and the results were visualised using bar charts that display the correlation
264 coefficient for each pair. Finally, chi-square tests were conducted to evaluate spatial variations in
265 aggregated efficacy and the level of implementation of each measure across the three sampling
266 zones.

267 **4.5. Results**

268 **5.1. Demographic profile of participants**

269 Our survey targeted only adult household heads (Table 1). The majority of these heads were
270 under 45 years of age (77.31%), with the majority of respondents being women (61.78%).
271 Households are large. Over 80% have between 4 and 10 members. Despite this large household
272 size, the average monthly income per household remains very low, with 58.12% of households
273 living on around USD 150 per month and 28.97% on an income of between USD 151 and USD
274 300. This situation is even more pronounced in zone 3, where almost all households (91.5%) live
275 on less than USD 150 per month. Zone 3 is more unusual in that it is home to more displaced
276 people from the wars than the other zones. Zone 1, which is located further east, i.e. on the city
277 centre side, has the lowest proportion of war-displaced people (8.9%). Generally speaking, the
278 western part of Goma that we surveyed had a high rate of new arrivals. 62.13% had lived there
279 for less than 5 years and 22.16% for between 6 and 11 years.

280

281 Table 1: Demographic characteristics of respondents

Age (years)	18-30	31-45	46-55	56-65	Over 65
Zone 1	46 (24%)	93 (48.4%)	40 (20.8%)	8 (4.2%)	5 (2.6%)
Zone 2	39 (20.3%)	109 (56.8%)	33 (17.2%)	9 (4.7%)	2 (1%)
Zonz 3	82 (43.4%)	74 (39.2%)	18 (9.5%)	11 (5.8%)	4 (2.1%)
Total per age group	167 (29.14%)	276 (48.17%)	91 (15.88%)	28 (4.89%)	11 (1.92%)
Income (USD)	0-151	151-300	301-450	451-600	Over 600
Zone 1	60 (31.2%)	73 (38%)	38 (19.8%)	17 (8.9%)	4 (2.1%)
Zone 2	100 (52.1%)	79 (41.1%)	11 (5.7%)	2 (1%)	0 (0%)
Zonz 3	173 (91.5%)	14 (7.4%)	2 (1.1%)	0 (0%)	0 (0%)
Total per income range	333 (58.12%)	166 (28.97%)	51 (8.90%)	19 (3.32%)	4 (0.70%)
Household size (persons)	1-3	4-6	7-10	11-13	Over 15
Zone 1	17 (8.9%)	63 (32.8%)	97 (50.5%)	12 (6.2%)	3 (1.6%)
Zone 2	17 (8.9%)	106 (55.2%)	64 (33.3%)	5 (2.6%)	0 (0%)
Zonz 3	17 (9%)	74 (39.2%)	88 (46.6%)	10 (5.3%)	0 (0%)
Total per size range	51 (8.90%)	243 (42.41%)	249 (43.46%)	27 (4.71%)	3 (0.52%)
Eruption experience	No	2021	2002	2002&2021	1977 2002&2021
Zone 1	20 (10.4%)	81 (42.2%)	2 (1%)	85 (44.3%)	4 (2.1%)
Zone 2	45 (23.4%)	52 (27.1%)	7 (3.6%)	80 (41.7%)	8 (4.2%)
Zonz 3	85 (45%)	65 (34.4%)	0 (0%)	38 (20.1%)	1 (0.5%)
Total per experience group	150 (26.18%)	198 (34.55%)	9 (1.57%)	203 (35.43%)	13 (2.27%)
Duration of residence	0 to 5 yrs	6 to 11 yrs	12 to 16 yrs	17 to 21 yrs	26 yrs and more
Zone 1	108 (56.2%)	47 (24.5%)	20 (10.4%)	11 (5.7%)	6 (3.1%)
Zone 2	115 (59.9%)	51 (26.6%)	20 (10.4%)	2 (1%)	4 (2.1%)
Zonz 3	133 (70.4%)	29 (15.3%)	11 (5.8%)	4 (2.1%)	12 (6.3%)
Total per duration	356 (62.13%)	127 (22.16%)	51 (8.90%)	17 (2.97%)	22 (3.48%)
Residence status	IDP	Inhabitant			
Zone 1	17 (8.9%)	175 (91.1%)			
Zone 2	64 (33.3%)	128 (66.7%)			
Zonz 3	84 (44.4%)	105 (55.6%)			
Total per status	165 (28.80%)	408 (71.20)			
Gender	Female	Male			
Zone 1	132 (68.8%)	60 (31.2%)			
Zone 2	81 (42.2%)	111 (57.8%)			
Zonz 3	141 (74.6%)	48 (25.4%)			
Total per gender group	354 (61.78%)	219 (38.22%)			

282

283 **5.2. Description of mitigation measures**284 Through the analysis of interview discourse, we identified 12 key local strategies for mazuku
285 risk mitigation. Additionally, follow-up focus group discussions, held in a participatory manner,

286 enabled the classification of these measures into three categories based on whether they aim to
 287 prevent mazuku, reduce its impact, or inform the population of its occurrences.

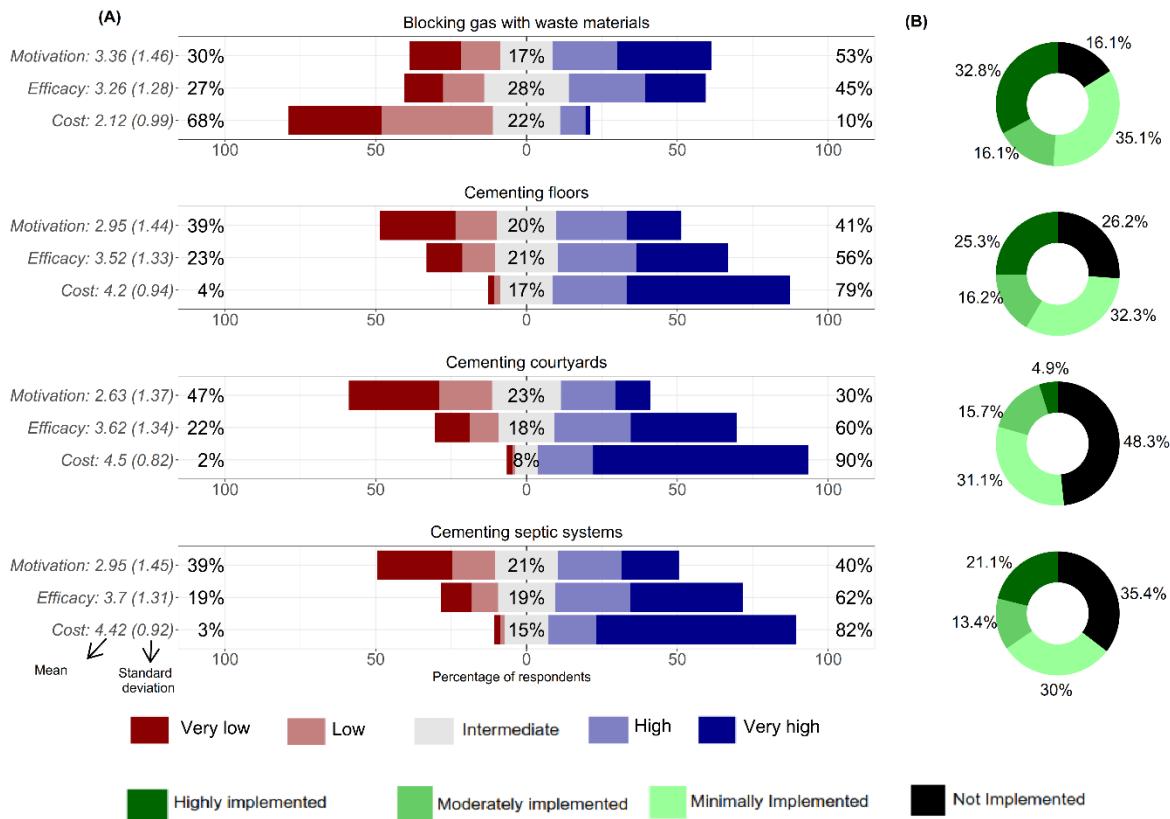
288 For preventing mazuku emission, on the one hand, local residents explained that they use
 289 household waste mixed with mud to cover areas emitting mazuku [\(measure 1\)](#), hoping to reduce
 290 gas emission. On the other hand, households with sufficient financial means tend to cement all
 291 potential emission points within their plots with concrete, such as house floors [\(measure 2\)](#),
 292 courtyards [\(measure 3\)](#), and septic systems [\(measure 4\)](#).

293 *“We use household waste mixed with mud to cover the mazuku areas, hoping to reduce the
 294 emissions, especially when the mazuku is located in a public area ... These zones are already
 295 known to us, so we organise regularly community works to prevent or reduce the mazuku
 296 emissions.”*

297 (Elderly man, street leader, 16 years living in a mazuku zone)

298 *“Some houses have uncemented floors, so mazuku emissions can occur in bedrooms or living
 299 rooms... When households have the financial means, they cement all potential emission sources
 300 like septic tanks or backyards. But for public spaces, we mostly use household waste.”*

301 (27-year-old woman, born, raised, and now married in the same mazuku area)


302 When it is not possible to prevent the emission of mazuku, local communities have developed
 303 adaptive strategies and/or convey local knowledge—passed down orally from generation to
 304 generation and also between long-time residents to newcomers—to help avoid high-risk areas
 305 within neighbourhoods or in public areas.

306 To cope with high concentrations of mazuku within their homes, residents elevate beds [\(measure](#)
 307 [1\)](#), live on upper floors when available [\(measure 2\)](#), or improve ventilation by enlarging
 308 windows and keeping them open during the day or sometimes at night [\(measure 3\)](#). In cold
 309 conditions, certain households reported heating courtyards or indoor areas to facilitate the
 310 dispersion of mazuku [\(measure 4\)](#). In addition, to keep the wider community informed about
 311 mazuku occurrences, residents raise awareness about avoiding known mazuku zones. [They are](#)
 312 [encouraged to work together with officials from the volcanic observatory and civil protection to](#)
 313 [install warning signs and follow their instructions \(measure 1\). Furthermore, based on](#)

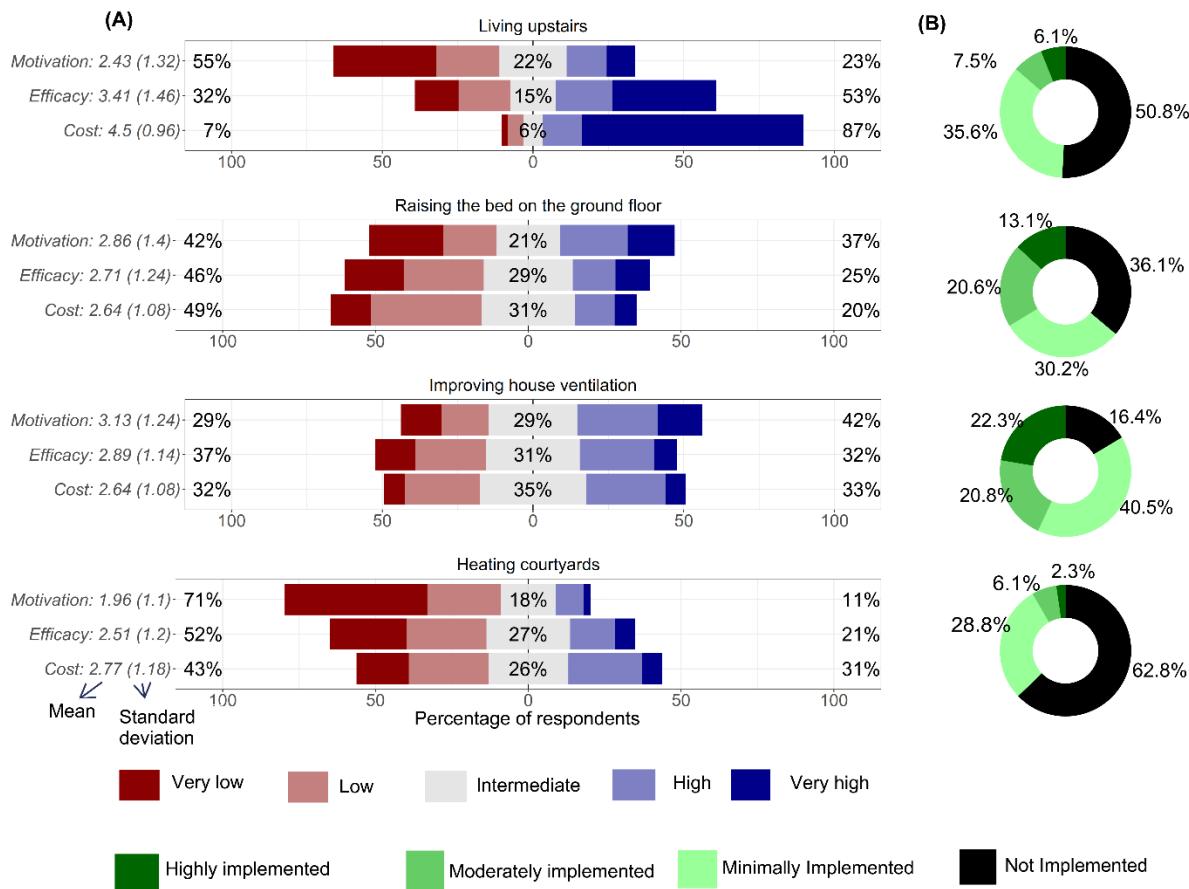
314 experience, it is best to avoid mazuku particularly in the early morning (measure 2) or after
315 rainfall (measure 3). For those raising livestock or poultry, it is recommended that animals be
316 kept in very well-ventilated areas (measure 4). Descriptive statistics further characterise these
317 measures by examining individual perceived motivation, response efficacy, associated costs, and
318 levels of implementation.

319 **5.2.1. Level of perception of bBlocking gas emission measures**

320 Measures aimed at blocking *mazuku* emissions that require greater financial resources—such as
321 cementing different parts of the household environment—were evaluated similarly by the
322 population (Fig.52). The majority perceive these measures as costly, although nearly all agree
323 that they are effective or very effective. Their perceived high cost may explain the mixed views
324 when it comes to households to evaluate their motivation for their implementation. Among this
325 group of measures, the highest proportion (53%) of respondents reporting a high or very high
326 motivation to implement relates to the use of household waste—a measure which, as expected, is
327 perceived by the majority (68%) as having low or very low cost and perceived to be largely
328 implemented in the zone

329

Figure 52: (A) Level of perceptions of different indicators for blocking gas mitigation measure. The percentages on the left indicate the proportion who perceived this likelihood as low or very low, while the middle percentages represent those with a moderate perception of likelihood. (B) The level of implementation


330

331 5.2.2. Adaptive mitigation measures

332 Opinions are divided when it comes to evaluating the motivation, perceived efficacy, and even
 333 the cost associated with measures such as raising the bed level or improving house ventilation
 334 (Fig.63). Yet, among these adaptation strategies, these two are the most widely implemented in
 335 the region. The least implemented are heating the courtyard or living upstairs. An elder from the
 336 neighbourhood offers insight into why:

337 “*We burn dry grass or sometimes cardboard boxes from nearby shops—especially when the cold*
 338 *persists for over 24 hours—to help evaporate the mazuku. Living upstairs is certainly better, but*
 339 *not everyone can afford it. My neighbour, who has an upper-floor dwelling, told me that all the*

340 bedrooms are upstairs to avoid being caught unawares at night by a high mazuku concentration.
 341 On particularly cold days, he said that his family decide outright not to stay on the ground floor
 342 at all."

343

Figure 63: (A) Level of perceptions of different indicators for adaptative mitigation measure (B) The level of perceived implementation within the neighbourhood

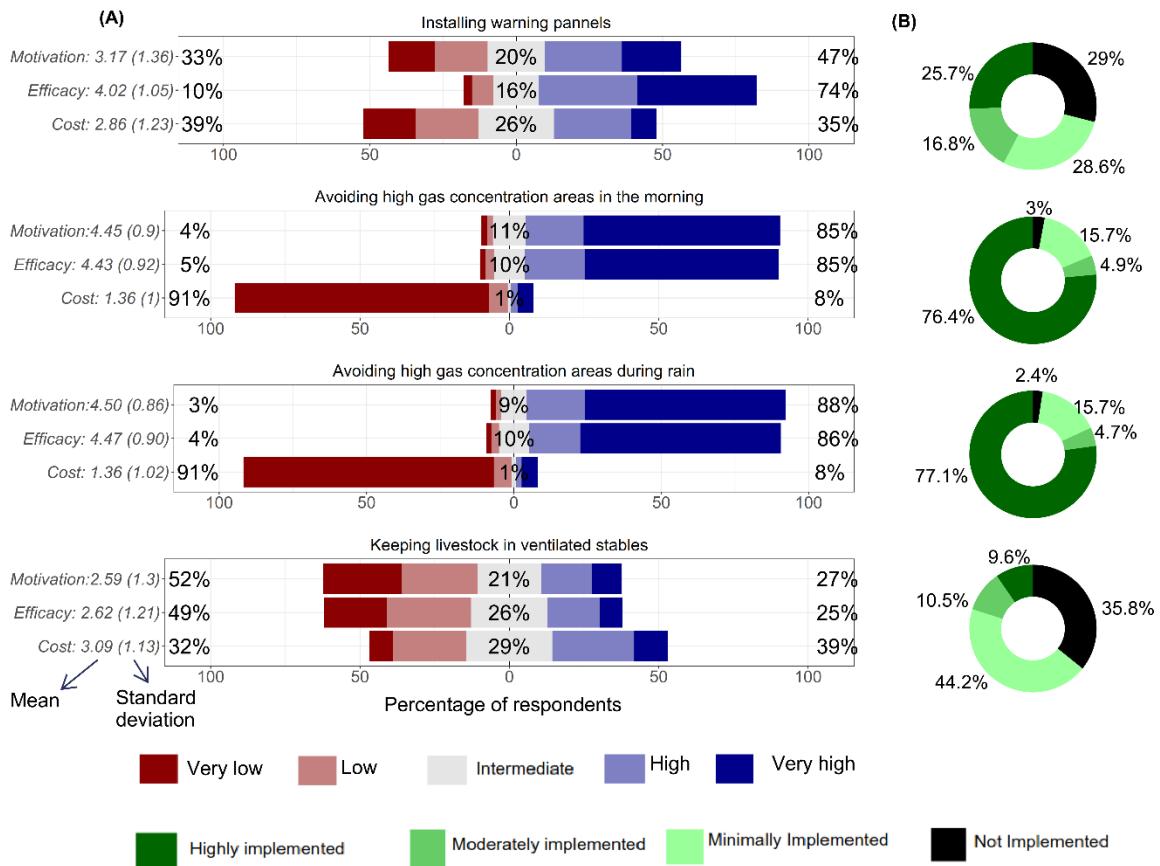
344

345 5.2.3. Community based awareness measures

346 Knowing which areas have high concentrations of mazuku—so as to avoid them in the early
 347 morning, during rain, or simply when temperatures drop during the day—is among the most
 348 widely implemented measures (Fig. 74). Approximately 85 % of the population report that these
 349 two measures are effective and they are motivated to implement them. As might be expected,

350 nearly everyone surveyed—around 90 %—perceive their implementation cost to be very low,
 351 which may explain why they are so frequently adopted.

352 *Mazuku incidents tend to be more concentrated in the evening or early morning, and when the*
 353 *temperature is low especially during the rainy seasons. You cannot see the mazuku or detect any*
 354 *odour, but sometimes, on a path, you suddenly feel suffocated as though someone were pressing*
 355 *on your chest, and you cannot breathe. At that moment you must act quickly and leave the area*
 356 *while you still have strength....*


357 *Just after the dry season — at the beginning of September when children return to school — the*
 358 *first critical period begins and lasts until December. It is followed by a second critical period*
 359 *during the second rainy season, from February to May every year. These periods are*
 360 *particularly hazardous because they coincide with the school term, when children have to leave*
 361 *home early for classes.*

362 *In this context, we do our best to inform our children, newcomers or everyone in the*
 363 *neighbourhood, about the locations of these mazuku zones: we encourage them to identify them*
 364 *and to stay well away from them, especially when it is cold.*

365 *(A mother of 4 children at primary school, 13 years of residence in the area)*

366 A significant proportion of respondents (75 %) believe that installing panels is effective in
 367 reducing the risk of mazuku exposure; however, opinions remain divided when it comes to
 368 motivation to implement or the cost of installation. Similarly, views are mixed regarding the
 369 measure of keeping livestock or poultry in well-ventilated spaces.

370

371

Figure 74: (A) Level of perceptions of different indicators for Community based awareness measures, (B) The level of perceived implementation within the neighbourhood

372

373 5.2. Factors of the motivation for implementing mitigation measures

374 Only the aggregated indicators for motivation to implement preventive mazuku emission
 375 measures and adaptive strategies showed statistically significant variation across demographic
 376 groups (Appendix 1). No significant differences were found in overall motivation levels based on
 377 local awareness measures. Financial conditions—specifically household monthly income and the
 378 number of rooms in a dwelling—were positively associated with motivation to implement both
 379 types of measures (Fig.8).

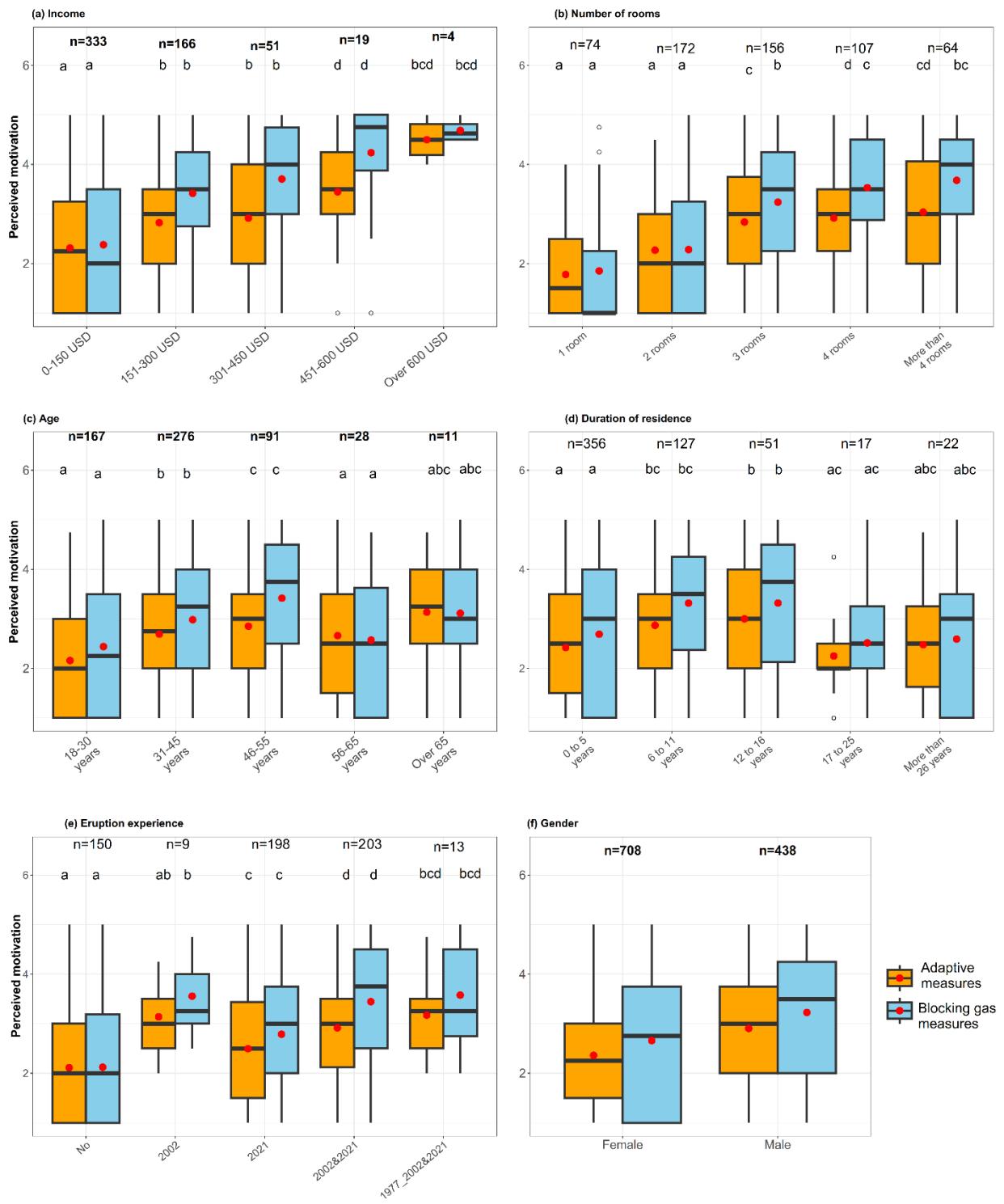


Figure 85: The level of perceptions of the aggregated indicator according to significant determining factors. Perceptions are expressed on a numerical scale from 1 (very low) to 5 (very high). In each boxplot, the horizontal bold line represents the median, the red dot indicates the mean, and the small circles represent outliers. The letter on top on boxplots represents the post-hoc test results between groups of the same aggregate indicator not between the same group between two indicators.

381

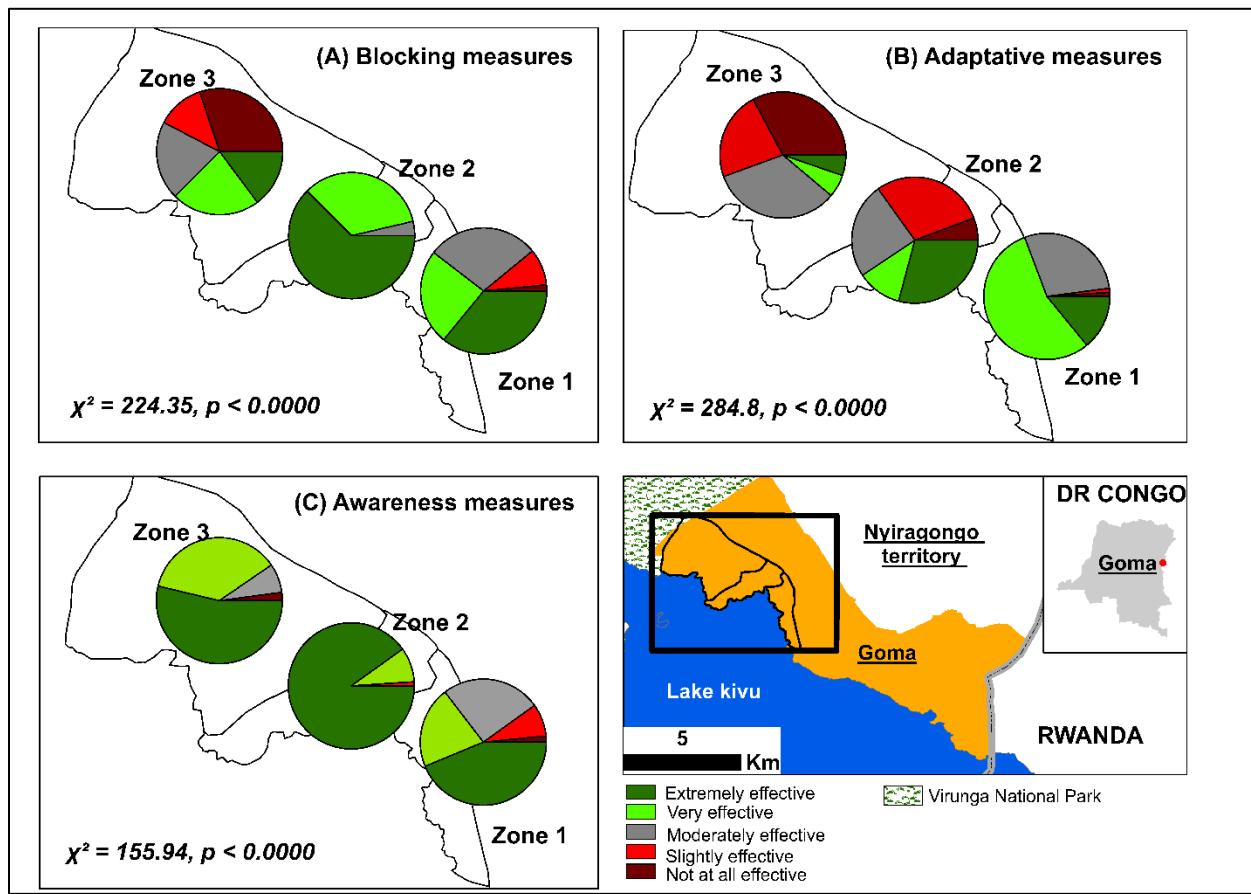
382 Motivation levels for both preventive and adaptive measure increased with age and length of
 383 residence, but only up to a certain point. Beyond approximately 46 years of age, or after more
 384 than 17 years living in the area, motivation declined and then plateaued. Men exhibited higher
 385 motivation to implement these measures than women. Furthermore, individuals who had not
 386 previously experienced volcanic risk showed lower implementation willingness; however, their
 387 willingness increased with the number of personal experiences of Nyiragongo eruption risk.

388 **5.3. Correlations**

389 Pairwise Spearman's rank-order correlations indicate that perceived efficacy is a stronger driver
 390 of motivation than cost perceptions, although cost can either reinforce or hinder motivation
 391 depending on the type of measure. Figure 96.A shows that most measures have a strong and
 392 statistically significant positive correlation between efficacy and motivation, particularly for
 393 measures such as blocking gas with waste materials or raising beds to adapt to gas emissions.
 394 This suggests that higher perceived effectiveness is consistently associated with a stronger
 395 willingness to implement these measures. However, there is no relationship between motivation
 396 and perceived efficacy for the measure of installing warning panels, which may be due to the fact
 397 that this intervention depends on disaster risk authorities rather than the community.

398 Figure 96.B also shows that there are mostly positive, though generally weak, relationships
 399 between perceived efficacy and cost. Notably, for the awareness measures of avoiding high gas
 400 areas in the early morning or after rainfall, there is no association between perceived efficacy and
 401 cost. Figure 96.C reveals a more mixed pattern between cost and motivation: while certain
 402 adaptive and awareness measures (Measures 5, 6, 7, and 12) display a significant positive
 403 association, some blocking measures (e.g., Measure 2) are negatively correlated, indicating that
 404 higher perceived costs may discourage willingness to implement those interventions.

405


Figure 96: Pairwise Spearman's rank-order correlations. *** p value<0.001, ** pvalue<0.01 and * p value<0.1.

406

407 5.4. Spatial variation

408 The figure 107 presents the variation in the population's perceptions of efficacy across the
 409 sampling zones. It shows that aggregated efficacy is perceived very differently across the three
 410 sampling zones, with statistically significant differences. Zone 2 hosts a large proportion of the
 411 population who consider both awareness measures and measures limiting mazuku emissions to
 412 be effective or even very effective. In contrast, Zone 3 is home to the majority of people who
 413 regard emission-limiting or adaptation measures as ineffective. When grouping together those
 414 who perceive the measures as effective and those who consider them very effective, we find
 415 almost the same proportion of the population in Zone 3 regardless of the type of measure.

416

417

Figure 107: Spatial variation of perceived efficacy across different sampling zones

418 We also assessed the variation in the perceived level of implementation for each measure within
 419 each sampling zone (Annex B). It is evident that measures requiring substantial resources,
 420 regardless of their category, are perceived as not implemented by a large proportion of the
 421 population in Zone 3 (over 65% to 85%). This is the case, for example, for heating or cementing
 422 courtyards, living on upper floors or raising bed heights. In contrast, for the measure involving
 423 the use of waste materials to limit mazuku emissions, only 24% of the population in Zone 3
 424 perceive it as not implemented. Awareness measures, such as identifying mazuku-prone areas for
 425 avoiding them during cold periods (in the morning or after rainfall), are the most widely
 426 perceived as implemented across all three zones, although the proportions of the population in
 427 their perception category vary by zone.

428

429 **5.6. Discussions**430 **6.1. Passive Risk Acceptance: Motivation and Efficacy Constrained by Limited Living**
431 **Options and resources scarcity**

432 By 2019, one billion people were already living within 100 km of active volcanoes, with the
 433 density of human activities continuing to increase (Brown et al., 2015; Freire et al., 2019). In
 434 CO₂ diffused degassing zones not restricted as parks or reserves (Williams-Jones & Rymer,
 435 2015), people may choose to reside in areas with CO₂ high-concentrations (Edmonds et al.,
 436 2017; Hansell & Oppenheimer, 2004a, 2004b), as in the present case study. This may reflect a
 437 risk acceptance. However, our findings indicate a more specific form of *passive* risk
 438 acceptance (Wachinger et al., 2013b, 2018). Indeed, people are well aware of the risk posed by
 439 mazuku and claim to know where they are located, yet many still choose to live close to, or even
 440 on them. This could suggest that they have no other options left. Indeed, in Goma—a city
 441 already extremely densely populated (Pech et al., 2018; Pech & Lakes, 2017)—people often
 442 settle in these risky areas because, despite the volcanic hazards, Goma is perceived as safer than
 443 the conflict-affected surrounding regions (Mafuko Nyandwi, Kervyn, Habiyaremye, et al., 2023;
 444 Mafuko Nyandwi, Kervyn, Muhashy Habiyaremye, et al., 2023). Therefore, people have
 445 developed local mitigation measures to compensate for the insufficiency of the official advice to
 446 simply leave avoiding the area, as indicated on warning panels.

447 Wachinger et al. (2013a) describe this as the risk-mitigation paradox—a situation in which
 448 people consciously choose to live exposed to hazards, and the choices of mitigation measures
 449 being controlled by resource availability. In such contexts, most participants report being
 450 motivated to identify high-concentration areas in order to avoid them during critical times, such
 451 as early mornings or after rainfall, when mazuku concentration is high. Being less resource-
 452 intensive, awareness-based measures were widely considered effective by the majority,
 453 particularly among low-income households, who also felt these measures had been largely
 454 implemented. -ThereforeIn addition, mazuku are perceived as a daily threat that can be controlled
— through preventive measures, awareness of high-risk zones and times of day, or by adapting
the environment (for example improved ventilation) to reduce its magnitude. It suggests that
living in a zone prone to mazuku gives rise to a widespread, yet often unrecognised, acceptance
of risk. Inhabitants develop everyday routines and coping practices in response to repeated

459 exposure (Walshe et al., 2023), and over time these behaviours become internalised and
 460 incorporated into the community's habitus—defined by (Bourdieu, 1990) as the set of structured
 461 dispositions through which individuals perceive the hazardous environment and act in it. In
 462 effect, what begins as a mitigation strategy gradually solidifies into a socialised readiness to 'live
 463 with' the hazard rather than to challenge or transform it. (Vergara-Pinto & Marín, 2023; Walshe
 464 et al., 2023). This suggests that mazuku becomes embedded in the routines of everyday life,
 465 gradually normalised, and that the mitigation practices sustaining a perceived sense of "safe
 466 exposure" are reproduced through habit rather than being critically questioned or scrutinised.

467 However, (Paton, 2008) caution that if people overestimate the effectiveness of some mitigation
 468 measures or their ability to respond to a hazard, they may be less inclined to recognise the need
 469 for additional mitigation measures and less receptive to new awareness-raising initiatives. This is
 470 evident here: residents are less motivated to comply with mazuku warning panels at all times of a
 471 day because they believe they already know the "critical periods" (early mornings and after
 472 rainfall). Yet, in this region, it has already bbeen demonstrated that concentration levels can
 473 change suddenly following abrupt magmatic activities or volcanic events or due to diurnal–
 474 nocturnal fluctuations (Balagizi et al., 2018b; M. Kasereka, 2017; Smets et al., 2010). Therefore,
 475 locally contextualised awareness initiatives that build upon people's risk experiences,
 476 knowledge, and available resources may prove more effective. Therefore, locally contextualised
 477 awareness initiatives based on people risk experiences and knowledge are needed (Mafuko-
 478 Nyandwi et al., 2024).

479 6.2. The Influence of Risk Experience on Mazuku Mitigation

480 The literature indicates that risk experience influences the perceptions of people living in hazard-
 481 prone areas, whether in terms of risk perception or views on the implementation of mitigation
 482 measures (Mafuko Nyandwi, Kervyn, Habiyaremye, et al., 2023; Sattler et al., 2000; Townshend
 483 et al., 2015). In this perspective, our results show that the number of times an individual has
 484 experienced the risk of a volcanic eruption positively influences both the motivation to
 485 implement, and the perceived effectiveness of local mazuku mitigation measures. Moreover,
 486 there is evidence of spatial variation in perceptions of efficacy of mitigation measures, despite no
 487 comprehensive knowledge of how mazuku concentrations vary across different zones. Instead,

488 variation in perception aligns more closely with historical patterns of land occupation and
 489 settlements.

490 This suggests that these patterns are more reflective of community-level perceptions and shared
 491 risk experiences than of an objective individual evaluation of risk mitigation (Becker et al.,
 492 2017). Before, the 2021 Nyiragongo eruption, we have observed already a spatial
 493 homogenisation in people's perception of volcanic risk across different neighbourhoods of Goma
 494 between old residents and newcomers (Mafuko Nyandwi, Kervyn, Habiyaremye, et al., 2023).
 495 This was partly because a long time had passed since the last eruption, and partly because
 496 Nyiragongo is an “open volcano” with a persistent reddish gas plume at its summit (Barrière et
 497 al., 2022), serving over the years as a continual reminder of the volcanic threat. Meanwhile, the
 498 mazuku hazard is silent, permanent, colourless and odourless (Smets et al., 2010). ~~In~~
 499 ~~contrast~~Thus, spatial homogeneity in how people perceive the implementation of *mazuku*
 500 mitigation measures appears to depend heavily on demographic factors, especially monthly
 501 income, which segregate populations into different settlement zones. Interviews in the affected
 502 area have already revealed three distinct settlement zones: high-income zone, transitional zone
 503 with middle-income households, and low-income household zone with high proportion of IDPs.

504 The spatial homogenisation of risk perception is had been also documented in others context. In
 505 an editorial review, (Gaillard & Dibben, 2008) demonstrated that the spatial dimension of risk
 506 perception is closely linked to the memory of past events or previous experiences of fatalities in
 507 a given area. This collective memory can shape entire communities residing in hazardous areas,
 508 fostering a strong attachment to their environment—as observed among populations in the
 509 Southern Andes that have experienced seven eruptions in less than a century. (Vergara-Pinto &
 510 Marín, 2023; Walshe et al., 2023). This means that it is not individual experience that matters
 511 most, but rather the shared history of a community, in which the impacts of past fatalities remain
 512 visible (such as the skeletons of animals asphyxiated by mazuku) or are passed down orally from
 513 generation to generation, or from long-term residents to newcomers, or even from a neighbour to
 514 another one (Gaillard & Dibben, 2008). Moreover, within the same zone, households tend to
 515 implement only those measures that are affordable for them. This is the case with cementing
 516 house yards or septic pits, which are widely perceived implemented in Zone 1, where high-

517 income households live. Thus, the effective implementation of mitigation measures requires
 518 empowering local communities through a co-creation approach.

519 **6.3. The Need for Co-Creation with Local Communities and Empowering Them**

520 In a systematic review, (Viveiros & Silva, 2024) discuss both the environmental and health
 521 impacts of volcanic gases and highlight that mitigation strategies vary significantly between
 522 volcanic regions. In our study, we also identified mitigation measures that are specific to the
 523 Goma context, such as heating fires in courtyards to foster the dispersion of mazuku or using
 524 waste materials to block its emission. This highlights the importance of co-creating knowledge
 525 and mitigation measures with local communities (Pardo et al., 2015), rather than importing
 526 solutions that may not be suited to the local context (Bird et al., 2011). Therefore, understanding
 527 the incentives that drive these communities to mitigate mazuku-related risks is essential for
 528 effective risk management (Barclay et al., 2008, 2015).

529 In this perspective, our findings support (Barclay et al. (2008), who noted that in many cases the
 530 risk is well known to the exposed population, yet they may fail to act due to competing life
 531 pressures such as resource constraints, rather than a lack of knowledge. We observed that both
 532 the perceived efficacy of risk mitigation measures and their perceived level of implementation
 533 vary across zones not because of differences in mazuku concentrations but because of resource
 534 limitations. People report being motivated to adopt a mitigation measure if they perceive it as
 535 effective and if it is affordable. In other words, even when a measure could be effective—such as
 536 cementing courtyards or septic pits—motivation to implement it declines sharply if resources are
 537 lacking and, paradoxically, our results indicate that the measure is then judged less effective.
 538 Therefore, mitigation measures that ~~address the needs~~ align with capacity of specific social
 539 groups are likely to be more effective than collective, one-size-fits-all solutions, like the
 540 installation of warning panels that are now the only official mitigation measures implemented in
 541 Goma. Achieving this requires researchers, decision-makers, and all other stakeholders involved
 542 in risk management to learn from local communities practices and collaborate with them in
 543 designing mitigation strategies that are locally contextualised.

544 **6.7. Limitations**

545 This study did not assess the actual physical effectiveness of the 12 risk mitigation measures.
546 Furthermore, data collection did not evaluate whether households had already been directly
547 affected by Mazuku, given that the main impact—loss of human life—could raise ethical
548 sensitivities. In addition, we did not assess whether households had individually implemented a
549 given measure but rather enquired about the level of implementation within the neighbourhood
550 as a whole. This approach was taken because, as highlighted during the interviews, the
551 implementation of such measures was considered more as a collective matter at community
552 level, since the sources of CO₂ emissions were dispersed across different locations.

553 **7.8. Conclusion**

554 This study employed a mixed-methods approach, combining qualitative and quantitative
555 techniques, to assess perceptions of the implementation of risk mitigation measures related to
556 emissions of magmatic dry gases—primarily carbon dioxide—locally known in the study area as
557 mazuku. Research of this kind is essential, given that the number of people living in active
558 volcanic zones has continued to rise over the centuries, and that cases of human fatalities and
559 livestock asphyxiation are regularly recorded in such areas.

560 The study identified three categories of risk mitigation measures implemented in the western part
561 of Goma, within the Virunga volcanic province: (1) measures aimed at limiting mazuku
562 emissions; (2) adaptive measures to reduce exposure to mazuku; and (3) awareness-related
563 measures based on local knowledge, transmitted orally from generation to generation or from
564 long-term residents to newcomers. Financial resources, along with risk experience—often linked
565 to length of residence—were found to positively influence both motivation and the perceived
566 effectiveness of the first two categories of measures. Perceptions of awareness-related measures
567 showed no significant variations. Moreover, the study highlights spatial variation in both the
568 level of implementation and the perceived effectiveness of these measures, not necessarily based
569 on individual evaluation but rather on community-level knowledge of the local environment.

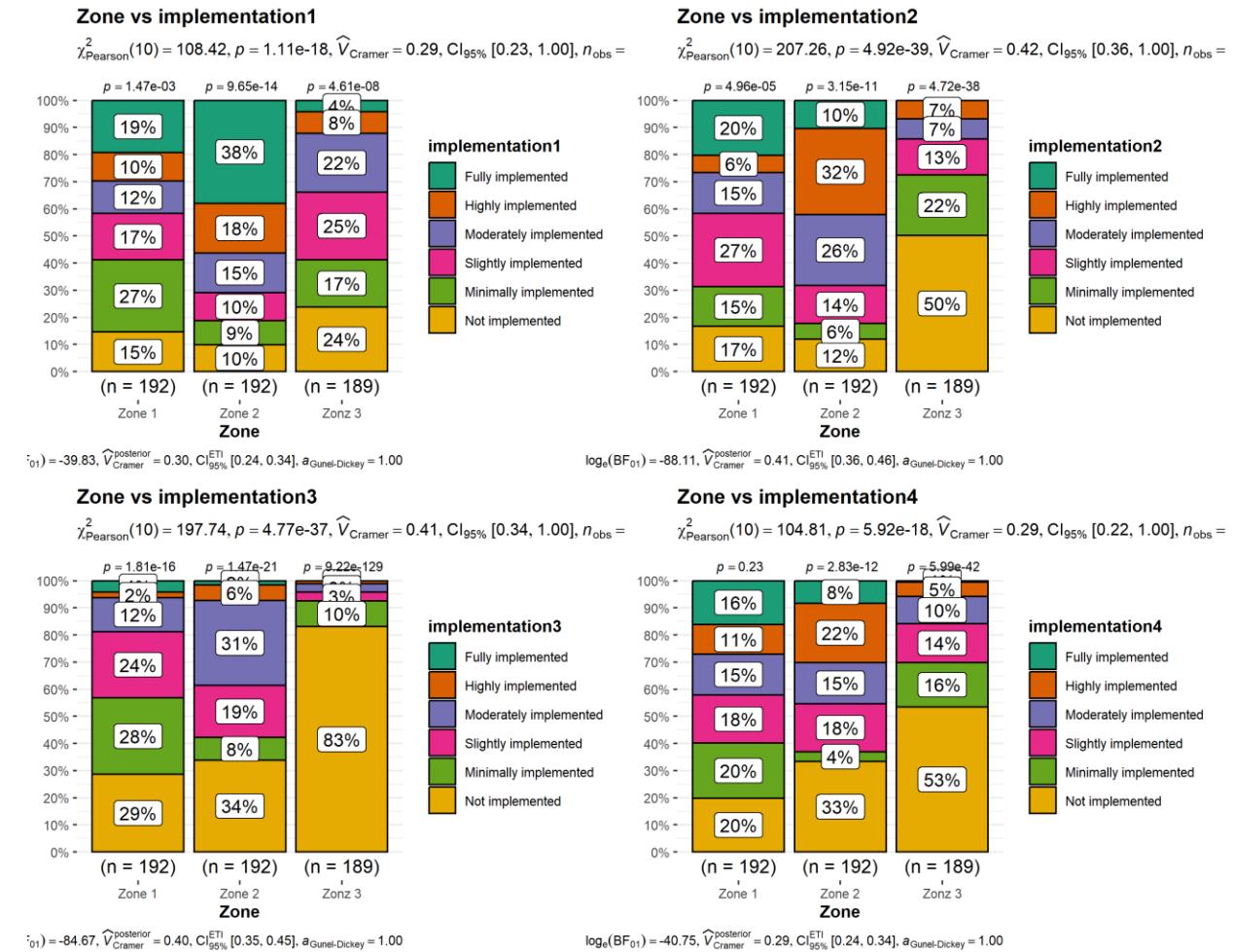
570 This study offers novel insights into the implementation of risk mitigation practices addressing
571 volcanic gas emissions in active volcanic zones—such as heating courtyards or blocking gas
572 with household waste—examined through a Global South perspective characterised by rapid and
573 largely uncontrolled urbanisation. This research contributes new insights into the implementation

574 ~~of risk mitigation measures against volcanic gas emissions in active volcanic zones, from a~~
575 ~~Global South perspective.~~ It reinforces the call, made by other scholars, for the co-creation of
576 mitigation strategies with local communities, rather than the imposition of externally derived
577 solutions that may not be effective in the local context. Future research could complement these
578 findings by assessing the actual effectiveness of such mitigation measures through physical
579 measurements of mazuku concentrations—not only in public spaces but also within buildings—
580 and by further examining local risk perception. Moreover, volcano monitoring programmes in
581 Goma and the surrounding areas should diversify their focus to include systematic monitoring of
582 mazuku and recognise it as a significant public risk requiring sustained attention., as well as by
583 further examining local risk perception.

584 Appendices

585 Appendix A

586 Table A1: Results of test of variations of motivations according to demographic
587 characteristics


588

1. Blocking gas measures			
Variable	Test	Statistic	P_Value
Gender	Wilcoxon	29341	0.0000
Age	Kruskal-Wallis	36.26726631	0.0000
Income	Kruskal-Wallis	117.044502	0.0000
Household size	Kruskal-Wallis	1.642291024	0.8012
Room number	Kruskal-Wallis	130.0287962	0.0000
Eruption experience	Kruskal-Wallis	86.4399316	0.0000
Residence duration	Kruskal-Wallis	28.48813659	0.0000
2. Adaptative mitigation measures			
Variable	Test	Statistic	P_Value
Age	Wilcoxon	28238	0.00000
Income	Kruskal-Wallis	33.48868	0.00000
Household size	Kruskal-Wallis	49.02454	0.00000
Room number	Kruskal-Wallis	2.09096	0.71903
Eruption experience	Kruskal-Wallis	76.40373	0.00000
Residence duration	Kruskal-Wallis	51.00693	0.00000
3. Community based awareness measures			
Variable	Test	Statistic	P_Value
Age	Wilcoxon	35057.5	0.063461708
Income	Kruskal-Wallis	1.733625	0.78460089
Household size	Kruskal-Wallis	14.45435	0.059776304
Room number	Kruskal-Wallis	1.374521	0.848611036
Eruption experience	Kruskal-Wallis	8.608284	0.071672068
Residence duration	Kruskal-Wallis	3.911153	0.418163549

589

590
591

Appendix B: The spatial variations of level of implementation per sampling zones

592

Figure B1: Variation of level of implementation of blocking gas measures

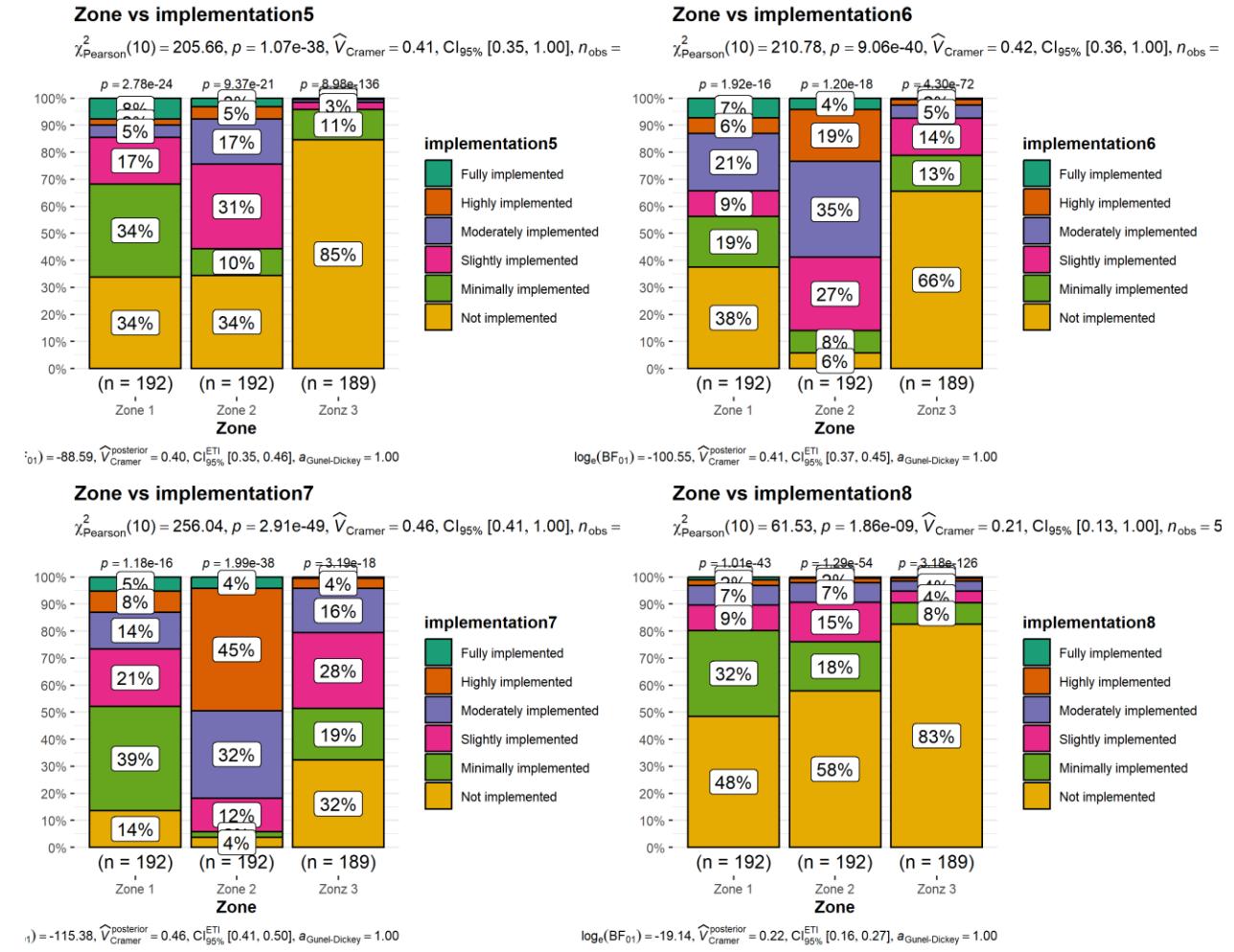


Figure B2: Variation of level of implementation of adaptive mitigation measures

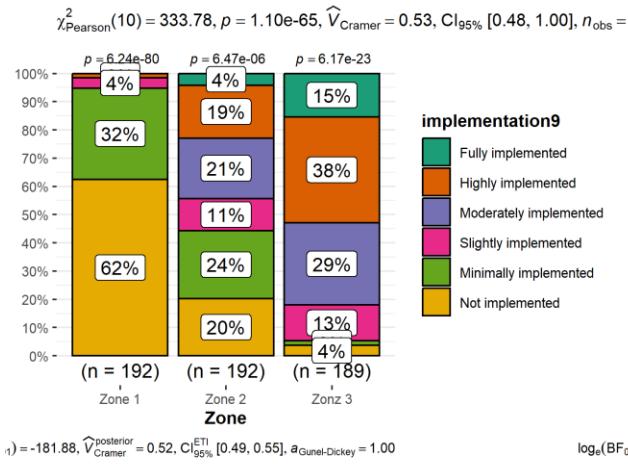
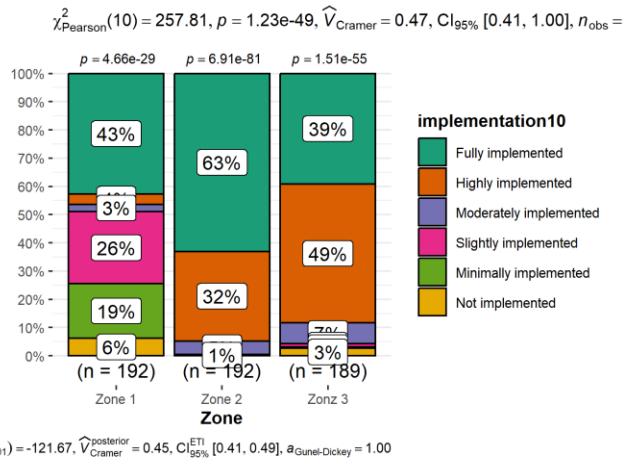
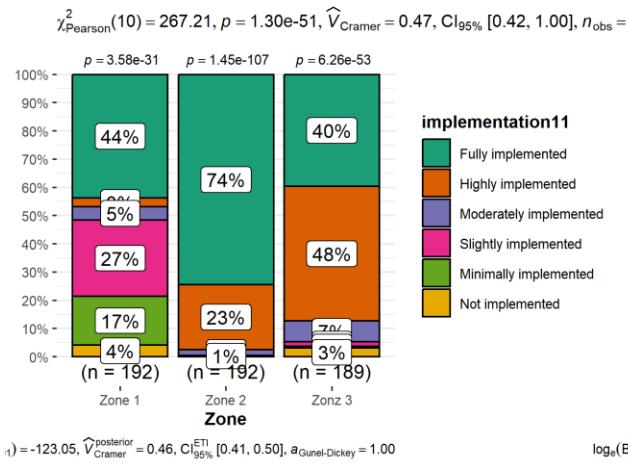
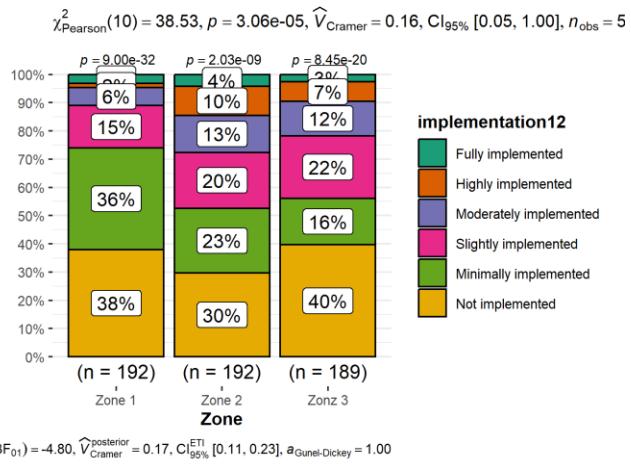




Zone vs implementation9**Zone vs implementation10****Zone vs implementation11****Zone vs implementation12**

Figure B3: Variation of level of implementation of community based mitigation measures 595

596 **Acknowledgement:**

597 Research discussed in this publication has been supported by the Global Development Network
598 (GDN) and L'Agence Française de Développement (AFD). The views expressed in this article
599 are not necessarily those of GDN or AFD.

600 The author gratefully acknowledges the invaluable work of the enumerators who collected the
601 field data for this study, as well as the dedicated support of the University of Goma team
602 involved in the GDN project.

603 **Data availability**

604 The raw and processed data and research design as well as questionnaire design (in French) are
605 available on request from the corresponding author.

606 **Ethical statement**

607 The survey questionnaire and protocol were approved by the academic office of the University of
608 Goma and local authorities at the municipality and neighbourhood levels in Goma. Verbal
609 informed consent was obtained from the survey participants for their anonymized information to
610 be published in this article.

611 **Competing interests**

612 The author declares no conflict of interest

613 **References**

614 Balagizi, C. M., Kies, A., Kasereka, M. M., Tedesco, D., Yalire, M. M., & McCausland, W. A.
615 (2018a). Natural hazards in Goma and the surrounding villages, East African Rift System.
616 *Natural Hazards*, 93(1), 31–66. <https://doi.org/10.1007/s11069-018-3288-x>

617 Balagizi, C. M., Kies, A., Kasereka, M. M., Tedesco, D., Yalire, M. M., & McCausland, W. A.
618 (2018b). Natural hazards in Goma and the surrounding villages, East African Rift System.
619 *Natural Hazards*, 93(1), 31–66. <https://doi.org/10.1007/s11069-018-3288-x>

620 Barclay, J., Haynes, K., Houghton, B., & Johnston, D. (2015). Social Processes and Volcanic
 621 Risk Reduction. In *The Encyclopedia of Volcanoes* (Second Edi). Dr Jenni Barclay,
 622 Copyright © 2015. <https://doi.org/10.1016/b978-0-12-385938-9.00069-9>

623 Barclay, J., Haynes, K., Mitchell, T., Solana, C., Teeuw, R., Darnell, A., Crosweller, H. S., Cole,
 624 Pyle, D., Lowe, C., Fearnley, C., & Kelman, I. (2008). Framing volcanic risk
 625 communication within disaster risk reduction: Finding ways for the social and physical
 626 sciences to work together. *Geological Society Special Publication*, 305, 163–177.
 627 <https://doi.org/10.1144/SP305.14>

628 Barrière, J., d'Oreye, N., Smets, B., Oth, A., Delhaye, L., Subira, J., Mashagiro, N., Derauw, D.,
 629 Smittarello, D., & Syavulisembo, A. M. (2022). Intra-crater eruption dynamics at
 630 Nyiragongo (DR Congo), 2002–2021. *Journal of Geophysical Research: Solid Earth*,
 631 127(4), e2021JB023858.

632 Bird, D. K., Gísladóttir, G., & Dominey-Howes, D. (2011). Different communities, different
 633 perspectives: Issues affecting residents' response to a volcanic eruption in southern Iceland.
 634 *Bulletin of Volcanology*, 73(9), 1209–1227. <https://doi.org/10.1007/s00445-011-0464-1>

635 Bourdieu, P. (1990). *The logic of practice*. Stanford university press.

636 Brown, S. . K., & Jenkins, S. F. (2017). Global distribution of volcanic threat. *Global Volcanic
 637 Hazards and Risk*, 2015, 359–369.

638 Brown, S. K., Auker, M. R., & Sparks, R. S. J. (2015). Populations around holocene volcanoes
 639 and development of a population exposure index. *Global Volcanic Hazards and Risk*, 2015,
 640 223–232. <https://doi.org/10.1017/CBO9781316276273.006>

641 Büscher, K., & Vlassenroot, K. (2010). Humanitarian presence and urban development: New
 642 opportunities and contrasts in Goma, DRC. *Disasters*, 34(SUPPL. 2), 256–273.
 643 <https://doi.org/10.1111/j.1467-7717.2010.01157.x>

644 Edmonds, M., Grattan, J., & Michnowicz, S. (2017). Volcanic gases: silent killers. In *Observing
 645 the volcano world: volcano crisis communication* (pp. 65–83). Springer.

646 Freire, S., Florczyk, A. J., Pesaresi, M., & Sliuzas, R. (2019). An improved global analysis of
 647 population distribution in proximity to active volcanoes, 1975–2015. *ISPRS International*
 648 *Journal of Geo-Information*, 8(8), 341.

649 Gaillard, J. C., & Dibben, C. J. L. (2008). Volcanic risk perception and beyond. *Journal of*
 650 *Volcanology and Geothermal Research*, 172(3–4), 163–169.
 651 <https://doi.org/10.1016/j.jvolgeores.2007.12.015>

652 Hansell, A., & Oppenheimer, C. (2004). Health Hazards from Volcanic Gases: A Systematic
 653 Literature Review. *Archives of Environmental Health*, 59(12), 628–639.
 654 <https://doi.org/10.1080/00039890409602947>

655 Kasereka, M. M., Yalire, M. M., Minani, A. S., Samba, C. V, Bisusa, A. K., & Kamate, E. K.
 656 (2017). Les risques liés aux mazuku dans la région de Goma , République démocratique du
 657 Congo (rift est-africain. *Journal of Water Environnement Sciences*, 1, 164–174.

658 Loughlin, S. C., Vye-Brown, C., Sparks, R. S. J., Brown, S. K., Barclay, J., Calder, E., Cottrell,
 659 E., Jolly, G., Komorowski, J. C., Mandeville, C., Newhall, C., Palma, J., Potter, S., &
 660 Valentine, G. (2015). An introduction to global volcanic hazard and risk. In *Global*
 661 *Volcanic Hazards and Risk* (Issue 2015). <https://doi.org/10.1017/CBO9781316276273.003>

662 Lutete Landu, E., Ilombe Mawe, G., Makanzu Imwangana, F., Bielders, C., Dewitte, O., Poesen,
 663 J., Hubert, A., & Vanmaercke, M. (2023). Effectiveness of measures aiming to stabilize
 664 urban gullies in tropical cities: Results from field surveys across D.R. Congo. *International*
 665 *Soil and Water Conservation Research*, 11(1), 14–29.
 666 <https://doi.org/https://doi.org/10.1016/j.iswcr.2022.10.003>

667 Mafuko Nyandwi, B. (2025). *Data on perception of the implementation and effectiveness of local*
 668 *dry-gas degassing measures in the Goma area (East DRC)* . Zenodo.
 669 <https://doi.org/10.5281/zenodo.17628103>

670 Mafuko Nyandwi, B., Kervyn, M., Habiyaremye, F. M., Kervyn, F., & Michellier, C. (2023).
 671 Differences in volcanic risk perception among Goma's population before the Nyiragongo
 672 eruption of May 2021, Virunga volcanic province (DR Congo). *Natural Hazards and Earth*
 673 *System Sciences*, 23(2), 933–953. <https://doi.org/10.5194/nhess-23-933-2023>

674 Mafuko Nyandwi, B., Kervyn, M., Muhashy Habiyaremye, F., Kervyn, F., & Michellier, C.
 675 (2023). To go or not to go when the lava flow is coming? Understanding evacuation
 676 decisions of Goma inhabitants during the 2021 Nyiragongo eruption crisis. In *Journal of*
 677 *Volcanology and Geothermal Research* (Vol. 444).
 678 <https://doi.org/10.1016/j.jvolgeores.2023.107947>

679 Mafuko-Nyandwi, B., Kervyn, M., Habiyaremye, F. M., Vanwing, T., Kervyn, F., Jacquet, W.,
 680 Mitengezo, V., & Michellier, C. (2024). Building a prepared community to volcanic risk in
 681 the global south: Assessment of awareness raising tools for high school students in Goma,
 682 (East DR Congo). *Progress in Disaster Science*, 24, 100370.
 683 <https://doi.org/https://doi.org/10.1016/j.pdisas.2024.100370>

684 Morgan, K. (1970). Sample size determination using Krejcie and Morgan table. *Kenya Projects*
 685 *Organization (KENPRO)*, 38(1970), 607–610.

686 Pardo, N., Wilson, H., Procter, J. N., Lattughi, E., & Black, T. (2015). Bridging Māori
 687 indigenous knowledge and western geosciences to reduce social vulnerability in active
 688 volcanic regions. *Journal of Applied Volcanology*, 4(1), 5. <https://doi.org/10.1186/s13617-014-0019-1>

690 Paton, D. (2008). Risk communication and natural hazard mitigation: How trust influences its
 691 effectiveness. *International Journal of Global Environmental Issues*, 8(1–2), 2–16.
 692 <https://doi.org/10.1504/IJGENVI.2008.017256>

693 Pech, L., Büscher, K., & Lakes, T. (2018). Intraurban development in a city under protracted
 694 armed conflict: Patterns and actors in Goma, DR Congo. *Political Geography*, 66(August),
 695 98–112. <https://doi.org/10.1016/j.polgeo.2018.08.006>

696 Pech, L., & Lakes, T. (2017). The impact of armed conflict and forced migration on urban
 697 expansion in Goma: Introduction to a simple method of satellite-imagery analysis as a
 698 complement to field research. *Applied Geography*, 88, 161–173.
 699 <https://doi.org/10.1016/j.apgeog.2017.07.008>

700 Quesada-Román, A. (2022). Disaster risk assessment of informal settlements in the Global
 701 South. *Sustainability*, 14(16), 10261.

702 Sattler, D. N., Kaiser, C. F., & Hittner, J. B. (2000). Disaster preparedness: Relationships among
703 prior experience, personal characteristics, and distress. *Journal of Applied Social
704 Psychology*, 30(7), 1396–1420. <https://doi.org/10.1111/j.1559-1816.2000.tb02527.x>

705 Smets, B., Tedesco, D., Kervyn, F., Kies, A., Vaselli, O., & Yalire, M. M. (2010). Dry gas vents
706 (“mazuku”) in Goma region (North-Kivu, Democratic Republic of Congo): Formation and
707 risk assessment. *Journal of African Earth Sciences*, 58(5), 787–798.
708 <https://doi.org/10.1016/j.jafrearsci.2010.04.008>

709 Townshend, I., Awosoga, O., Kulig, J., & Fan, H. Y. (2015). Social cohesion and resilience
710 across communities that have experienced a disaster. *Natural Hazards*, 76(2), 913–938.
711 <https://doi.org/10.1007/s11069-014-1526-4>

712 Vaselli, O., Capaccioni, B., Tedesco, D., Tassi, F., & Yalire, M. (2003). The “evil winds”
713 (mazukus) at Nyiragongo Volcano (Democratic Republic of Congo). *Acta Vulcanologica*,
714 *Journal of the National Volcanic Group of Italy*, 14–15, 123–128.

715 Vergara-Pinto, F., & Marín, A. (2023). Stratigraphy of volcanic memory: Sociocultural
716 dimensions of volcanic risk in the Southern Andes, Chile. *Journal of Contingencies and
717 Crisis Management*, 31(4), 1018–1033. <https://doi.org/10.1111/1468-5973.12474>

718 Viveiros, F., Gaspar, J. L., Ferreira, T., & Silva, C. (2016). Hazardous indoor CO₂
719 concentrations in volcanic environments. *Environmental Pollution*, 214, 776–786.

720 Viveiros, F., & Silva, C. (2024). Hazardous volcanic CO₂ diffuse degassing areas—A systematic
721 review on environmental impacts, health, and mitigation strategies. *Iscience*, 27(10).

722 Vlassenroot, K., & Büscher, K. (2009). The City as Frontier: Urban Development and Identity
723 Processes in Goma. *Crisis*, 1797(61), 1–7.

724 Wachinger, G., Keilholz, P., & O'Brian, C. (2018). The Difficult Path from Perception to
725 Precautionary Action—Participatory Modeling as a Practical Tool to Overcome the Risk
726 Perception Paradox in Flood Preparedness. *International Journal of Disaster Risk Science*,
727 9(4), 472–485. <https://doi.org/10.1007/s13753-018-0203-8>

728 Wachinger, G., Renn, O., Begg, C., & Kuhlicke, C. (2013a). *The Risk Perception Paradox —*
729 *Implications for Governance and Communication of Natural Hazards*. 33(6).
730 <https://doi.org/10.1111/j.1539-6924.2012.01942.x>

731 Wachinger, G., Renn, O., Begg, C., & Kuhlicke, C. (2013b). The risk perception paradox—
732 implications for governance and communication of natural hazards. *Risk Analysis*, 33(6),
733 1049–1065. <https://doi.org/10.1111/j.1539-6924.2012.01942.x>

734 Walshe, R., Morin, J., Donovan, A., Vergara-Pinto, F., & Smith, C. (2023). Contrasting
735 memories and imaginaries of Lonquimay volcano, Chile. *International Journal of Disaster
736 Risk Reduction*, 97, 104003. <https://doi.org/https://doi.org/10.1016/j.ijdrr.2023.104003>

737 Wauthier, C., Smets, B., Hooper, A., Kervyn, F., & D’Oreye, N. (2018). Identification of
738 subsiding areas undergoing significant magmatic carbon dioxide degassing, along the
739 northern shore of Lake Kivu, East African Rift. *Journal of Volcanology and Geothermal
740 Research*, 363, 40–49. <https://doi.org/https://doi.org/10.1016/j.jvolgeores.2018.08.018>

741 Williams-Jones, G., & Rymer, H. (2015). Hazards of volcanic gases. In *The encyclopedia of
742 volcanoes* (pp. 985–992). Elsevier.

743