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Abstract 

India is a country with high sulfur dioxide (SO2) emissions mainly resulting from the large number of coal-fired thermal power 

plants. SO2 column observations from the Sentinel-5P Tropospheric Monitoring Instrument (TROPOMI) satellite instrument, 

in combination with inverse modelling techniques can be used to derive observation-based SO2 emission estimates. The flux-15 

divergence emission estimation method is sensitive to point source emissions and is well-suited for estimating SO2 emissions 

in India. However, the flux-divergence method combined with satellite observations spreads out the calculated emissions to 

grid cells in the neighborhood of the point source. This spreading effect weakens the signal of point sources at their exact 

location, making it harder to quantify the exact emissions. In this paper, we describe a deconvolution algorithm to reverse the 

spreading and sharpen the emission signals. Our deconvolution algorithm ensures mass conservation of the emissions. We 20 

apply the deconvolution algorithm on gridded SO2 emissions at a high spatial resolution of 0.025° × 0.025° (2.5km × 2.5km) 

derived from TROPOMI observations with a typical mean footprint size of 6 km. After the deconvolution, the effective spatial 

resolution of emissions is enhanced to match the grid cell resolutions. The point source emissions significantly increase at their 

exact locations and emissions in the neighbor grid cells become lower. In our inventory, about 80% of coal-based power plants 

with a capacity above 100 MW are detected at the correct location, while the remaining 20% fall below the noise level. The 25 

detected power plants account for 99% of India’s total coal-based power generation. We also identify 7 previously unreported 

SO2 point sources, including coal-based thermal power plants, cement plants, copper industry, and crude oil facility. This 

deconvolution algorithm improves emission detection and can also be used for other pollutants emitted by point sources to 

enhance the accuracy of emission inventories. 

1 Introduction 30 

SO2 is a reactive gas-phase pollutant in the atmosphere. It can react with hydroxyl radicals to form sulfuric acid (H2SO4). It 

can also dissolve in cloud droplets to form sulfate (SO42-) after reacting with hydrogen peroxide and ozone (Steinfeld, 1998). 

Atmospheric SO2 and particulate SO42- negatively affect human health and the ecosystem. Exposure to SO2 increases the rate 

of respiratory illness (Orellano et al., 2021; Tomić-Spirić et al., 2021). And the sulfuric acid rain acidifies the soil and water 

ecosystem and also damages buildings (Singh and Agrawal, 2007; Bhargava and Bhargava, 2013). Moreover, SO42- particles 35 

promotes cloud formation by increasing cloud condensation nuclei, which affects regional and global climate system (Arnold, 

2006; Feldman et al., 2012). Atmospheric SO2 sources includes natural sources, such as volcanic eruptions and passive 

degassing (Eisinger and Burrows, 1998; Oppenheimer et al., 2011) as well as anthropogenic sources, such as coal-based 

powerplants, metal smelting and refining, and other coal-combustion activities (Klimont et al., 2013; Serbula et al., 2014; 
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Kuttippurath et al., 2022; Kang et al., 2019). In rapidly developing countries like India, the growth of anthropogenic SO2 40 

emissions is closely related to thermal power generation (Chakraborty et al., 2008; Nazari et al., 2010; Yadav and Prakash, 

2014). Over the past two decades, India’s thermal power capacity has been continuously increasing from 7.4 × 104 MW to 2.4 

× 105 MW (Patel, 2024).	Since 2016, India has emitted most anthropogenic SO2 in the world (Li et al., 2017a; Li et al., 2017b) 

, mainly from power plants. Despite this, the country still faces power shortages (Chan and Delina, 2023). In 2022, there was 

an estimated gap of 8,657 MW between power generation and peak demand (Central Electricity Authority, 2023). The Global 45 

Energy Monitor recently reported a record high in new coal plant requests in India (GEM, 2025). SO2 emissions are expected 

to keep rising, because India continues to rely heavily on coal to meet its increasing energy demands driven by population 

growth and economic development (Kuttippurath et al., 2022). The often used bottom-up SO2 emission inventory Emissions 

Database for Global Atmospheric Research version 8 (EDGARv8), has been updated to 2022 (Crippa et al., 2024). Its method 

first estimate emissions at the subnational level and then allocates the emissions to known point sources, which cannot fully 50 

capture the emergence of new point sources and rapid changes in emissions. A high-resolution, up-to-date SO2 emission 

inventory is crucial for tracking changes of SO2 emissions and identifying new sources across the country. 

Satellite instruments can monitor atmospheric SO2 in the thermal infrared (IR) and ultraviolet (UV) band of spectrum (Krueger 

et al., 2000; Eisinger and Burrows, 1998; Krueger, 1983; Bovensmann et al., 1999; Callies et al., 2000; Levelt et al., 2006; 

Veefkind et al., 2012; Taylor et al., 2018; Tournigand et al., 2020; Theys et al., 2021), enabling the estimation of SO2 emissions 55 

through top-down methods. Two main inversion approaches, inverse modeling and mass balance methods, are commonly used 

to calculate SO2 emissions from satellite observations. Inverse modeling methods estimate emissions of short-live gases like 

SO2 by applying a correction to the bottom-up emissions, so that the simulated results align well with observations (Brasseur 

and Jacob, 2017). These methods depend on prior information to constrain and optimize the estimated emissions, and they are 

affected by uncertainties in transport models (Brasseur and Jacob, 2017; Qu et al., 2019; Wang et al., 2020). The dependency 60 

on prior information limits the ability of inverse modeling to detect new or unknown sources. In contrast, mass-balance 

methods, such as the plume fitting and flux-divergence methods, require less prior information, mainly using satellite SO2 

measurements and wind field data. In the plume fitting method, the total SO2 amount near an individual source is derived from 

the fitting plume function of SO2 measured density. Emissions are then calculated by integrating the SO2 amount and adding 

the estimated sink term, which is based on a constant decay rate derived from the plume function (Fioletov et al., 2011; Fioletov 65 

et al., 2013; Fioletov et al., 2015; Fioletov et al., 2016). However, using a fixed decay rate can affect the accuracy of the sink 

estimation, especially for gases like SO2 that have variable lifetimes (Krol et al., 2024; Chen et al., 2025). And the emissions 

calculated from the plume fitting method are not mapped on a regular grid. The flux-divergence method calculates emissions 

by adding the divergence and sink terms (Beirle et al., 2019). It has been used to estimate emissions of NOx (Beirle et al., 

2021; Cifuentes et al., 2025), CH4 (Liu et al., 2021), CO2 (Hakkarainen et al., 2022), and SO2 (Chen et al., 2025). Compared 70 

to inverse modeling, this method is more time and computational efficient, especially for generating emissions over large 

areas. Compared to the plume fitting method, the divergence method can generate gridded emissions. In theory, the divergence 

method works well for detecting and quantifying point source emissions. This is because steep concentration gradients at point 

sources produce clear divergence and emission signals (Beirle et al., 2019). In practical implementations, the calculation of 

the gridded divergence, which involves concentration differences between neighboring grid cells, will cause the emissions to 75 

spread, since the discretization of gridded concentrations during the calculation causes the divergence to be distributed not 

only at the point source locations but also over the surrounding grid cells (Chen et al., 2025). Additionally, the finite resolution 

of the satellite measurements will limit the capability to distinguish nearby point sources. Since satellite measurements are 

used in divergence calculations, their spatial resolution largely determines the finest possible resolution for the resulting 

gridded divergence terms. Reducing this spreading can improve both the accuracy and resolution of the emission inventory 80 

calculated using the divergence method. 
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In this study, we combine the divergence method and a deconvolution algorithm to update the gridded Indian SO2 emission 

inventory into an effective high spatial resolution of 0.025° ´ 0.025° (approximately 2.5 km ´ 2.5 km) using daily SO2 

observations from the Tropospheric Monitoring Instrument (TROPOMI) instrument (Veefkind et al., 2012; Theys et al., 2017). 

We use the same method as Chen et al. (2025) to estimate Indian SO2 emissions, calculated from the sum of the SO2 divergence 85 

and sink term. Since our grid resolution is finer than the TROPOMI pixel size, the point source emissions tend to be spread 

out over multiple grid cells in the resulting inventory. In this paper we describe a deconvolution algorithm to remove this 

spreading, allowing the emissions to better reflect the true locations and strengths of sources. India is a good test case for this 

new approach due to its large amount of SO2 emissions and a large number of point sources. In Section 2, we list the datasets 

used in this study. In Section 3 we explain the methodology, including how emission spreading occurs and how our 90 

deconvolution algorithm works. In Section 4 we present the validation of our method using model results and show the 

improved SO2 emission results for India. Finally, we conclude with a discussion of the limitations and potential applications 

of our algorithm in section 5.  

2 Datasets 

2.1 Satellite observations and wind field datasets 95 

The flux is derived by multiplying TROPOMI measured SO2 vertical column density (VCD) gradients with the horizonal 2D 

wind field. The divergence of this flux is related to the emissions. We estimate emissions using the TROPOMI COBRA 

(Covariance-Based Retrieval Algorithm) SO2 product with a spatial resolution of (3.5 km ´ 5.5 km at nadir). The COBRA 

retrievals can detect small anthropogenic sources with emissions of 8.0 Gg year-1(Theys et al., 2021). Specifically, we calculate 

the SO2 divergence for the period December 2018 to November 2023. To ensure good data quality, we exclude pixels with a 100 

QA value below 0.5 or a surface height above 3 km. (https://data-portal.s5p-pal.com/product-docs/SO2cbr/S5P-BIRA-PRF-

SO2CBR_1.0.pdf, last access: 31 July, 2025). Daily wind fields are taken from the daily operational 12h forecasts of the 

European Centre for Medium-range Weather Forecasts (ECMWF) at 0.25° × 0.25° resolution 

(https://www.ecmwf.int/en/forecasts, last access: 31 July, 2025) and interpolated at the mid-point of the Planetary Boundary 

Layer (PBL). Although the divergence is calculated for each day, we average it over each season to generate a relatively low-105 

noise SO2 emission inventory.  

2.2 Copernicus Atmospheric Monitoring Service (CAMS) datasets 

The monthly mean OH climatology is derived from the 5-year averaged from November 2018 to December 2023 using CAMS 

(Copernicus Atmospheric Monitoring Service) global forecast data (https://ads.atmosphere.copernicus.eu, last access: 9 

September, 2025) for chemical lifetime calculation. The forecast dataset is based on ECMWF’s Integrated Forecast System 110 

(IFS), which assimilates and models the concentrations of more than 50 chemical species (such as SO2 and OH), seven aerosol 

types, and various meteorological factors, all at a resolution of 0.4° ´ 0.4°. We derive the monthly mean OH climatology for 

the time period before the TROPOMI overpass time (13:30PM local time) by averaging monthly OH concentration at 6:00AM 

UTC (11:30AM local time) within the PBL between 2018 to 2023, excluding days with extreme weather events, such as large-

scale precipitation. The dry deposition lifetime is calculated by assuming a constant dry deposition velocity of 0.4 cm s-1 in 115 

the atmosphere. Except for OH concentration, the SO2 VCD within PBL and the wind field data in the mid-PBL layer from 

CAMS datasets are used for the method validation in Section 4.1. 
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2.3 SO2 point source inventories for India  

We use two datasets to validate the accuracy of the location of our detected SO2 point sources. The first resource is from the 

global power plants database maintained by World Resources Institute, which is available at https://github.com/wri/global-120 

power-plant-database (last access: 31 July, 2025). This database includes in total 255 coal-based thermal power plants in India. 

They are used for comparison with our detected point sources. The second resource is the global catalog of large SO2 point 

sources from the Multi-Satellite Air Quality Sulfur Dioxide (SO2) database, Long-Term L4 Global V2 (referred to as 

MSAQSO2L4) (Fioletov et al., 2023). This catalog is based on SO2 slant column density (SCD) data from two sources: the 

operational version 2 OMI and OMPS Principal Component Analysis (PCA) retrieval algorithm (Li et al., 2020), and the 125 

TROPOMI Covariance-Based Retrieval Algorithm (COBRA) (Theys et al., 2021). Their emission estimates are derived using 

an exponentially modified plume fitting model. In total, the catalog identifies 92 SO2 point sources in India.  

3 Methodologies 

3.1 Spreading effect (Chen et al., 2025) of SO2 divergence calculation on different spatial scales 

Since the data used for the divergence calculation, TROPOMI SO2 measurements and 2D wind fields, are gridded rather than 130 

continuous, we calculate the SO2 divergence using the second-order central difference method. The total divergence is a 

superposition of components in both the x and y directions; for simplicity, we present the calculation along the x direction only. 

Specifically, the SO2 divergence of grid cell i in the x direction can be calculated as follows:  

𝐷!(#) =
%!(#$%)&%!(#'%)

'∆!
           (1) 

𝐹!(#)*) = 𝑤!(#)*) · 𝑉(#)*)           (2) 135 

𝐹!(#&*) = 𝑤!(#&*) · 𝑉(#&*)           (3) 

 𝐷!(#) is the divergence in grid cell i calculated along the x direction. 𝐹!(#) denotes the flux of SO2 in grid cell i along the x 

direction. Ñx is the resolution of the grid-scale. 𝑤!(#) represents the wind in grid cell i along x direction. 𝑉# is SO2 VCD in grid 

cell i. The total divergence for each grid cell equals the sum of the divergence along x and y directions.  

There is a discretization in this divergence calculation leading to the spreading of the calculated point source emissions. 140 

Specifically, Eq. (1) can be rewritten as: 

𝐷!(#) =
*
'
'(	%!(#$%)&%!(#)	)

∆!
+ (	%!(#)&%!(#'%)	)

,!
)         (4) 

This can further be expressed as: 

𝐷!(#) =
*
'
[𝐷-.(#) +𝐷/.(#)],          (5) 

where 𝐷-.(#) and 𝐷/.(#) denotes the divergence at the right and left edges of grid cell i, respectively. Hence, the divergence of 145 

each grid cell can be viewed as a linear interpolation of the divergence in its surrounding regions. This causes the spreading 

of point source emissions. 

We use Eq. (1) to calculate gridded SO2 divergence at different spatial resolutions to determine the optimal resolution for 

emissions, which minimize both spreading effect and the noise level. The target spatial resolutions from coarse to fine are 0.1° 

× 0.1°, 0.05° × 0.05°, 0.025° × 0.025°, and 0.01° × 0.01°. Table 1 shows the six investigated divergence calculations using the 150 

mentioned resolutions and two calculation strategies. Either the divergence is first calculated on the TROPOMI pixels and 

then interpolated to the target resolution (option 1) or the SO2 VCD is first interpolated to the target resolution, and then the 

divergence is calculated (option 2). The SO2 emission results of these six cases are shown in Fig. 1.  

 

 155 
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Table 1. SO2 emissions on different spatial scales 

Case name 

Method 

(1. Divergence calculation on TROPOMI pixels, 

2. Divergence calculation on regular grid cells) 

Spatial resolution 

0.1°_Regular Grid 2 0.1° × 0.1° 

0.05°_Regular Grid 2 0.05° × 0.05° 

0.025°_Regular Grid 2 0.025° × 0.025° 

0.025°_TROPOMI Pixel 1 0.025° × 0.025° 

0.01°_Regular Grid 2 0.01° × 0.01° 

0.01°_TROPOMI Pixel 1 0.01° × 0.01° 

 

 
Figure 1. Annual mean SO2 emissions during December 2022 to November 2023 on different spatial resolutions in a region of India 

with strong emission sources. The cases are shown for a) 0.1°_Regular Grid, b) 0.05°_Regular Grid, c) 0.025°_Regular Grid, d) 160 
0.01°_Regular Grid, e) 0.025°_TROPOMI Pixel, and f) 0.01°_TROPOMI Pixel. 
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In Fig. 1a-d, the SO2 divergence is calculated directly on regular grids in the target resolutions. In Fig. 1a-c, as the grid 

resolution becomes finer, the SO2 emission map shows more details, indicating the emission resolution also becomes finer. 

The higher grid resolution can reduce the spreading effect caused by the linear interpolation of divergence calculation and thus 165 

improve the emission resolution, while the noise level increases due to the finer resolution. However, when the grid resolution 

becomes finer than the TROPOMI pixel size, i.e. the grid resolution changes from 0.025° × 0.025° to 0.01° × 0.01° as shown 

in Fig.1c and d, the improvement on emission resolution becomes minimal and the noise levels are still increasing. In this case, 

the TROPOMI pixel size becomes the limiting factor, and further increasing the grid resolution does not improve the effective 

emission resolution but increase the noise. When the resolution matches the resolution of Fig. 1c (0.025° × 0.025°) and d (0.01° 170 

× 0.01°), while the divergence is first calculated on the TROPOMI pixel as shown in Fig. 1e and f, the noise levels are 

efficiently reduced. The effective emission resolution between Fig. 1e and 1f are comparable, indicating that increasing the 

grid resolution no longer improves the effective emission resolution in this case. Nonetheless, some spreading of point-source 

emissions always remains, constrained either by the grid or the TROPOMI pixel size. In the next section, we will introduce a 

method to further improve the emission resolution on any given grid cell resolution. Fig. 1e and 1f have less noise compared 175 

to Fig. 1c and 1d, making it easier to distinguish point sources from the noise. Since the emission resolution in Fig. 1e (0.025°) 

and Fig. 1f (0.01°) are similar, we will use the SO2 emissions from Fig. 1e (0.025°) as the baseline in the following sections. 

The effective resolution will be analyzed in Section 3.2.2.  

3.2 Development of a sharpening algorithm 

3.2.1  Deconvolution algorithm 180 

Since the spreading of emissions always takes place, we explore a deconvolution method to further improve the emission 

resolution. We can use a spreading kernel B to describe how the original emission map X spreads to form the blurred emission 

map Y as expressed in the following equation: 

𝒀 = 𝑩 ∗ (𝑿 + 𝜀),            (6) 

where e represents the noise in the original SO2 emission map X. Now, we use the spreading kernel to calculate the sharpening 185 

kernel. When requiring local mass balance, the sharpening kernel A used to reconstruct each point source emissions can be 

expressed by: 

𝑨 = 𝑰 + (𝑰 − 𝑩)	𝑏00&*,             (7) 

where 𝑏00 is the central element of the kernel B, and I is the identity function. We cannot apply this sharpening kernel to the 

whole map Y because this would also sharpen spread emissions and increase the noise. Therefore, we define the following 190 

“local” sharpening kernel 𝑨1 

𝑨′ = 9𝑨																𝑎𝑡		(𝑖, 𝑗)𝑰											𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒	,           (8) 

In each iteration n, we select the location (i, j) with the highest remaining emission in emission map 𝑌2&*, which has not been 

selected in previous iterations. The updated emission map is then computed as: 

𝒀𝒏 = 𝒀𝒏&𝟏× 𝑨1            (9) 195 

Note that in typical deconvolution method, the sharpening kernel is applied to the entire region at once. However, in our 

approach, sharpening in this way causes the point source emissions to add more noise as shown in Fig. 2a. We therefore use 

Eq. 9 to sharpen locations stepwise by using the local sharpening kernel of Eq. 8 for locations in a descending order of emission 

strength (from high to low), minimizing the risk of applying sharpening to regions dominated by the spread emissions or noise. 

There is total mass balance in each local area where deconvolution is applied. 200 
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Figure 2. SO2 emissions of a zoom-in region in India. a) SO2 emissions after the typical deconvolution. b) SO2 emissions after 

customized deconvolution (sharpening applied in descending order of emission) 

 205 

The iterations process stops when the highest unsharpened value 𝒀𝒏&𝟏(𝒊,𝒋) is below the noise level in Y. This means we only 

sharpen emissions above the noise level. This approach helps focusing on real point source emissions. If values below the 

noise level are sharpened, it will amplify the noise, making it harder to distinguish real point source from the sharpened noise. 

Figure 3 compares the results of sharpening emissions above zero and above noise level. In Fig. 3a, where all above zero grids 

are sharpened, the noise is also amplified.  210 

 

 
Figure 3. SO2 emissions of a zoom-in region in India. a) SO2 emissions sharpened down to all non-zero values. b) SO2 emissions 

sharpened only above the noise level. 
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3.2.2 Determination of the spreading kernel 215 

The spreading kernel B is used to understand and quantify how point source emissions spread to its surrounding areas. Ideally, 

the SO2 emission signal appears only at the point source location. Emissions in the grid cells adjacent to the source location 

can be considered as spread emissions. Figure 4 shows the variation of SO2 emissions with distance from the point source 

locations for all emission cases in Table 1. To obtain a spreading kernel which represents the overall spreading pattern of point 

source emissions, we fit the emission variation around the large and isolated point sources in India using a Gaussian-shaped 220 

function. Figure 4a shows the SO2 emissions and the corresponding Gaussian-shaped fitting functions varies with distance in 

kilometers (x axis). From Fig. 4a, we draw similar conclusions to those from Fig. 1: as the spatial resolution becomes finer, 

the emission resolution improves. But when the grid resolution becomes finer than the TROPOMI pixels, the improvement in 

emission resolution becomes marginal. This is because the TROPOMI pixel, rather than the divergence method, becomes the 

dominating factor in spreading point source emissions. The TROPOMI pixel represents the finest spatial resolution achievable 225 

for emission resolution. Figure 4b also shows the SO2 emission variation with the distance from the point source location, 

where distance is expressed in grid cells (x axis). This is to know the spreading pattern in grid-cell scale to define the gridded 

deconvolution sharpening kernel, which then can be applied to sharpen gridded SO2 emissions. Since we decide to derive the 

SO2 emissions based on TROPOMI pixels and regrided to 0.025° afterwards, we derive the spreading pattern from the 

corresponded Gaussian-shaped function (red dots in Fig. 4b). The SO2 emissions of point sources approaches zero at 230 

approximately 4 grid cells (around 11.25 km) away from the point sources. Therefore, we define the spreading region for each 

point source as a 9 × 9 grid cells (around 22.5 km × 22.5 km) centered on the source location. Note that Fig. 4 is based on one 

year of data, from December 2022 to November 2023, to show the spreading pattern of emission at different resolutions. The 

final spreading kernel is derived from a 5-year average (from December 2018 to November 2023) of SO2 emissions of 0.025° 

TROPOMI pixel case. The derived kernel B is a Gaussian-shaped function with a sigma of 1.83 grid cells. (See details in 235 

Section S1 in supplementary file)  

 

 
Figure 4. Variation of normalized SO2 emissions with distance from the point source location, and the corresponding Gaussian-

shaped fitting functions. The SO2 emissions are averaged within December 2022 to November 2023. The emission distributions of 240 
62 large and isolated point sources are used for fitting. The black point at (0,1) represents the location of the point source. The 

spreading of SO2 emissions is fitted for the six cases in Table 1.  
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4 Results and discussions. 

Previous studies have shown the effectiveness of the divergence method in estimating emissions. We expect a further 

improvement combining the divergence method with our deconvolution algorithm. To evaluate the performance of the 245 

combined approach, we implement it within a closed-loop validation process. Specifically, we apply the divergence method 

together with the deconvolution algorithm to derive SO2 emissions based on simulation results from the CAMS model, 

including SO2 column densities, OH concentrations and IFS model-output wind fields. Since the input emission used to drive 

the CAMS model is known, we can assess the accuracy of our method by comparing the derived top-down emissions with the 

original model input. Figure 5 shows the comparison between the model input SO2 emissions and the top-down emissions. 250 

There is a noticeable difference in distribution between the model input emissions in Fig. 5a and the emissions derived only 

from the classic divergence method (CDM) in Fig. 5b. The latter emission map appears more dispersed, with the point source 

emissions spreading into adjacent grid cells. This spreading effect also leads to a lower emission peak at the point source 

location, for example, the maximum value is lower in Fig. 5b than in Fig 5a. In contrast, the model input emissions in Fig. 5a 

are more concentrated, showing a higher value directly at the point source. To reduce this discrepancy, we sharpen Fig. 5b 255 

with a model-based 5×5 sharpening kernel. The size and the shape of this kernel are derived from the spreading pattern (Fig. 

S2) of “blurry” emissions (Fig. 5b) using Eq. 7. The emissions after sharpening in Fig. 5c prove that the deconvolution 

algorithm effectively improves the emission estimates. The total emissions shown in Fig. 5b and 5c are the same and 

comparable to 5a. Additionally, Fig. 6 compares the SO2 emission amount of point sources across three different inventories. 

As shown in Fig. 6a, a clear underestimation is shown for SO2 emissions derived only with the divergence method. But the 260 

underestimation is efficiently reduced after applying the sharpening as seen in Fig. 6b. It is important to note that the CAMS 

model resolution is relatively coarse (0.4° × 0.4°). At this resolution, some individual emissions are not well recovered in Fig. 

6b, because the spreading regions of the 5×5 kernels can overlap with nearby point sources. Applying this combined approach 

to real measurements with finer spatial resolution will lead to a better performance, which will be shown in the following 

results. 265 

 
Figure 5. SO2 emissions distribution averaged within December 2019 and November 2020. a) CAMS emission inventory. b) SO2 

emissions calculated through classic divergence method (CDM). c) divergence method after sharpening using a 5 × 5 kernel.  

 

https://doi.org/10.5194/egusphere-2025-4490
Preprint. Discussion started: 24 September 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

270 
Figure 6. Comparison of SO2 point source emissions between model input inventory (CAMS-GLOB-ANT v4.2, x axis) and model-

based top-down estimate (y axis). The largest 50 point source emissions in CAMS-GLOB-ANT v4.2 are used in this comparison. a) 

y axis represents the top-down emissions derived from classic divergence method (CDM). b) y axis represents the top-down emissions 

from CDM sharpened by the 5 × 5 kernel. Since the top-down emission signal may be spatially shifted, the sum of emissions from 

two grid cells is used for comparison: one corresponding to the point source location and the other to the grid cell with the maximum 275 
emissions in the surrounding area. 

 

After the model-based evaluation, we apply the deconvolution algorithm to satellite-based top-down SO2 emissions at a 

resolution of 0.025° ´ 0.025°. At this high resolution, the emission signals of point sources are not easily visible on the large 

map over India. To better illustrate the improvement, we select the 79 SO2 point sources from SO2 catalog MSAQSO2L4 and 280 

check their emission distribution at surrounding areas (9 ´ 9 grid cell areas) before and after sharpening. The locations are 

shown in Table S1. We average the emission distributions centered on these 79 point sources for each surrounding grid cell, 

with the results shown in Fig. S2. In Fig S2a, we see that the actual emission distribution before sharpening closely follows a 

2D Gaussian pattern. This supports the Gaussian-shaped spreading pattern derived earlier from Fig. 4b. Figure S2b shows the 

distribution after sharpening, where the emission spread is removed and the point source emissions are enhanced by up to 20 285 

times compared to the unsharpened case, while ensuring mass conservation. The emission signal becomes more concentrated 

into a single grid cell, effectively increasing the emission resolution to match the grid cell resolution. In addition to this 

averaged analysis, we also check the emission distribution of several individual point sources. In Fig. 7 four examples are 

given to show the effect of the sharpening in individual cases, the left figure shows the original distribution and the right figure 

after sharpening for an area of 9 ´ 9 grid cells. In Fig. 7a, the emissions of two sources are mixed before sharpening, but they 290 

are clearly separated in Fig. 7b. In Fig. 7c–f, a strong signal appears at the main source location, with smaller sources also 

visible, reflecting that power-station chimneys are not concentrated in a single location. In Fig. 7g and 7h, the point source 

emissions are much lower than in the previous examples, the emission distribution before sharpening shows less the 

characteristics of a Gaussian shape, making it more difficult to identify. However, after applying the sharpening algorithm the 

emission source is clearly identified and quantified. 295 
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Figure 7. SO2 emission distribution centered on a SO2 point source within a 9 × 9 grid cell area. The left column represents the SO2 

emission before sharpening and the right column represents the emission after sharpening. a) and b): Vindhyachal Super Thermal 

Power Station (24.090°N, 82.675°E), with Renusagar Power Station (24.182°N, 82.793°E) located in the top-right corner of this 9 × 

9 grid cell area. c) and d): The expansion of Neyveli Power station (11.555°N, 79.444°E). e) and f): Vedanta Aluminum Captive 300 
Power Plant (21.788°N, 84.055°E). g) and h): Sri Damodaram Sanjeeraiah Thermal Power Station (14.829°N, 80.126°E).  
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The improved emission resolution makes it easier to precisely locate the SO2 point sources in the top-down emission inventory. 

To evaluate the location accuracy of the SO2 point sources in our emission inventory, we compare the detected locations with 

the actual locations of 79 known point sources as shown in Fig. 8. The locations of the selected point sources are shown in 305 

Table S1. Among them, 56 point sources are detected within the same grid cell as their actual location, and 20 point sources 

are detected in the grid cells directly adjacent to the actual locations. If we consider the smallest TROPOMI pixel size (3.5 km 

× 5.5 km at nadir) as the minimum resolution for detecting point sources, then 76 out of 79 point sources (approximately 96%) 

are successfully located within this range using emissions derived from TROPOMI measurements. The remaining 3 point 

sources are detected two grid cells away from their actual locations, which is the result of the influence from nearby sources, 310 

e.g. other closely located point sources or large urban areas, may cause the peak VCD and resulting emissions shift away from 

the point source location.  

 

 
Figure 8. Distance between the actual and our detected locations of large Indian SO2 point sources. The grid resolution of the 315 
emissions is 0.025° × 0.025° (approximately 2.5 km × 2.5 km per grid cell). Blue dots below 2.5 km: Detected and actual locations 

fall within the same grid cell. Green dots between 2.5 km and 5.0 km: Detected locations are in grid cells directly adjacent to the 

actual locations. Red dots above 5.0 km: Detected locations are in grid cells that are one grid cell further away from the actual 

locations. Gray shadow below 5.5 km: Detected and actual locations fall within the same TROPOMI pixel (3.5 km × 5.5 km at nadir). 

 320 

Since the point source emission signals have been enhanced, we expect more emission signals to be visible on our satellite-

based emission map. Coal-based power plants are the largest sector for SO2 emissions in India. To assess our results, we 

compare the emission signals detected in this study with the actual locations of all coal-based power plants across the country. 

These plants have capacities ranging from 10 MW to 4760 MW annually. Given the high resolution of our emission data and 

the fact that emission peaks may not align exactly with plant locations, we consider a power plant “detected” if there is any 325 

emission signal above 3.4 Gg year-1 within 6 km (the average TROPOMI footprint size) of the plant (See more information of 

noise level in Fig. S3). The results summarized in Table 2 shows that approximately 80% of power plants with capacities 
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larger than 100 MW per year are successfully detected, while the emissions of the remaining 20% of power plants are lower 

than the noise level. These detected plants represent 99% of India’s total coal-based power generation. For large power plants 

with annual capacities above 1000 MW, contributing 77% of the total generation, the detection rate reaches 95%. The higher 330 

the output, the more coal is burned, making emissions more likely to be detected. 

 
Table 2. Comparison between the India coal-combustion thermal power plants and point source emission signal in this study 

Power Generation Amount of power plants 
Amount of detected power 

plants 
Detection rate 

>= 1500 MW 38 38 100% 

>= 1000 MW 94 89 95% 

>= 500 MW 147 123 84% 

>= 200 MW 176 141 80% 

>= 100 MW 186 147 79% 

All 255 156 61% 

 

We also find some new SO2 point sources based on our satellite-based SO2 emission map. These emissions are not included 335 

in the Indian power plant database and also are not identified by other top-down SO2 catalogs. These new point sources include 

not only coal-based power plants but also cement factories, a crude oil production facility, and copper industry. Table 3 shows 

a list of these newly detected point sources and their locations.  

 
Table 3. Newly detected SO2 point sources in India 340 

Number State Position Name 

1 

GUJARAT 

（23.498°N, 68.578°E） Adani Cements plants 

2 （21.560°N, 72.923°E） 
Ankleshwar CTF ONGC 

(Gasoline industry) 

3 （21.704°N, 72.542°E） Birla Copper industry 

4 （22.317°N, 69.845°E） Sez Pcg Reliance Refinery 

5 MADHYA PRADESH (22.064°N, 75.859°E) NTPC Power plant 

6 MAHARASHTRA (17.558°N, 75.981°E) NTPC Power plant 

7 ODISHA （20.891°N, 84.989°E） 
JSPL Angul Captive Power 

Plant 

 

5 Conclusion 

In this study, we developed a deconvolution algorithm to improve the resolution of SO2 emissions estimated using the flux-

divergence method and TROPOMI satellite data. Before applying the algorithm, emissions from point sources tend to spread, 
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making it difficult to detect smaller sources or distinguish closely located sources. After applying the deconvolution, the 345 

emission signals become sharper and more concentrated at their true locations. On average, emissions at point source locations 

increase by up to 20 times compared to before the sharpening at a resolution of 0.025° × 0.025°. This sharpening helps to 

separate emissions from nearby sources. To validate the results, we compared our results with the locations of 79 SO2 sources 

in India identified by Fioletov et al. (2023). We find that 96% of the detected sources fall within the same TROPOMI pixel as 

their real locations. We detected about 80% of all coal power plants with power generation larger than 100 MW per year, 350 

which account for 99% of India’s total coal-based electricity generation. With the improved signal, we also identified 7 new 

point sources not previously reported. These include coal power plants, copper and cement industries, and a crude oil facility. 

However, there are some limitations. If a point source is located near the edge or corner of a grid cell, the signal may be shifted 

to an adjacent grid cell. So, to estimate actual emissions, we still recommend summing emissions over a small area around the 

point source. Although this algorithm is developed for SO2, it can also be applied to other pollutants emitted by point sources 355 

like NOx. It helps sharpen emission signals on existing grid cells and is a useful step toward building accurate emission 

inventories. 
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website https://distributions.aeronomie.be (Theys, 2024b). The daily operational 12h forecast wind field data are available at 
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Earth Sciences (GES) Data and Information Services Center (DISC) website 

https://doi.org/10.5067/MEASURES/SO2/DATA406 (Fioletov, 2022). Indian power plant locations from the global power 
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