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Abstract. High Latitude (HL) landscape fires are an important source of greenhouse gases and aerosols, with growing 9 

significance under rapid anthropogenic climate change-induced warming. Current fire emission inventories are mostly 10 

‘bottom-up’ in nature; combining, or relying on linear regressions between, satellite remote sensing data and process-based 11 

model outputs. However, these methods rely on uncertainties surrounding fuel load and combustion completeness. Here, we 12 

adapt the ‘top-down’ Fire Radiative Energy Emission (FREM) approach for HL fires (HLFREM), linking Fire Radiative 13 

Energy (FRE) directly to emissions via coefficients derived solely from satellite observations. We derive biome-specific 14 

emission coefficients by combining Fire Radiative Power (FRP) from GFAS v1.4 with TROPOMI Total Column Carbon 15 

Monoxide plume observations, for the HL’s four most fire-prone biomes; Deciduous and Evergreen Needleleaf Forests, 16 

Grasslands, and Shrublands. By applying these coefficients to daily GFAS v1.2 FRE totals (2003-2024), we estimate CO and 17 

total carbon emissions across the HL using HLFREM. HLFREM-derived CO emissions generally agree with other widely 18 

used inventories (GFAS v1.2, FEERv1.0-GFASv1.2, and GFEDv4.1s) in forested biomes, with annual average differences of 19 

-32% to -43% for Deciduous Needleleaf Forests, and -28% to -43% for Evergreen Needleleaf forests. For Shrublands and 20 

Grassland biomes, HLFREM estimates are 31-43%  and 61-80% lower respectively. Total carbon emissions, using Emission 21 

Factors, were found to show consistent patterns with CO across all biomes. Our results represent the first HL fire emissions 22 

dataset based only on satellite data of a major carbon containing gas (CO) emitted by fires and the rate of fire radiative energy 23 

release. 24 

1. Introduction 25 

Landscape fire is Earth’s largest natural disturbance agent, burning, according to the latest satellite-derived datasets, an 26 

average of approximately 5.5% of Earth’s land surface annually (Chen et al., 2023). These landscape fires greatly affect 27 

ecology, land carbon stores, atmospheric composition, air quality, and human health. The true magnitude of these effects may 28 

even be higher than currently estimated, due to satellite-based burned area mapping often missing many of the highly-numerous 29 

smaller burns that together make up a significant fraction of total global burned area (Ramo et al., 2021), even when adjusted 30 

for some of this low bias (Chen et al., 2023). 31 

Satellite data indicates that vegetation fires are extensive across every vegetated continent apart from Antarctica, including 32 

even High Latitude (HL, ≥ 60°N) areas (Jones et al., 2022) up to 75°N (Masrur et al., 2018).  Such HL burns include so-called 33 

‘Arctic-fires’ (i.e. fires taking place at latitudes above 66°N) which are of increasing interest, in part because evidence suggests 34 

an increase in both their frequency and magnitude; potentially driven by the rapid warming of Earth’s climate occurring in 35 
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more northerly regions (McCarty et al., 2021). These Arctic-fires, for example those in Siberia in 2020 and 2021 (Kharuk et 36 

al., 2021; Liu et al., 2022) can be seen as an extension of the wider northern (i.e. Boreal) regions’ fire activity (McCarty et al., 37 

2021), which is itself apparently increasing (Masrur et al., 2018).  This is most commonly attributed to lengthening of the ‘fire 38 

season’, the period of the year when vegetation, litter and/or organic soils are sufficiently warm and dry for significant 39 

landscape fires to ignite and spread. 40 

Frequent lightning, and the extensive uninterrupted fuel (primarily forest) cover, promotes fire in many HL areas; with 41 

certain tree species having evolved to include fire as part of their reproductive cycle (Hodges et al., 2021; Hutto, 2008). Such 42 

adaptations and their regionally varying occurrence in HL regions are apparently behind many of the spatial differences seen 43 

in certain remotely sensed fire signatures (Rogers et al., 2015; Wooster and Zhang, 2004). Because many of the forests of the 44 

HL regions ultimately require fire to thrive, wildfires are often left to burn without intervention if they pose little-to-no threat 45 

to humans or property. However, there is a concern that the massive stores of ground carbon contained in the underlying peat 46 

and organic soils of northern regions, some of which have remained frozen for millennia, may also be becoming more 47 

accessible to fire (Davidson and Janssens, 2006; Turetsky et al., 2002). Burning of these carbon stores results in net greenhouse 48 

gases (GHGs) emissions that are unreplaced by photosynthetic carbon reassimilation (i.e. vegetation regrowth) on the decades-49 

to-century time-scales typical of forest recovery (Friedlingstein et al., 2021). Quantifying HL fire activity and any trends in its 50 

nature is therefore valuable for understanding fires contribution to net atmospheric greenhouse gas concentrations (Mekonnen 51 

et al., 2022), as well as for issues such as air quality (Warneke et al., 2023). 52 

Calculating the amount of land carbon (i.e. live vegetation, litter and, organic soil) consumed by fire, including in HL fires, 53 

as well as emissions of Carbon Monoxide (CO) and other GHGs, reactive gases, and aerosols, typically involves a so-called 54 

“bottom-up” calculation (Crutzen and Andreae, 1990), with the most modern implementations combining modelling and 55 

satellite-derived datasets (Ichoku and Ellison, 2014; Kaiser et al., 2012; van der Werf et al., 2010, 2017). The most common 56 

implementation, the Global Fire Emission Database (GFED, (Randerson et al., 2017)), is driven by satellite-derived measures 57 

of burned area, but is still classed as an ‘indirect’ approach since it relies heavily on mathematical models and/or in-situ 58 

assessments for the fuel load and combustion completeness parameters that remain subject to significant uncertainty at any 59 

particular location (Reid et al., 2009). An alternative satellite-based ‘direct’ approach relies on Fire Radiative Power (FRP) 60 

measures rather than burned area, with FRP representing the radiant energy released per unit time by the combustion process. 61 

These FRP data can be time-integrated to estimate the Fire Radiative Energy (FRE) released by the burn, which then links to 62 

total fuel consumption (Roberts et al., 2005; Wooster et al., 2005, 2015). FRP-based approaches avoid the need for assumed 63 

or modelled fuel load and combustion completeness terms (Kasischke and Penner, 2004), but are not always fully independent 64 

of the burned area-based methods since the necessary ‘FRP-to-fuel consumption’ conversion coefficients are themselves often 65 

derived from correlations and regressions made between FRE datasets and the outputs of the more indirect burned area-based 66 

approach; such as with the Global Fire Assimilation System (GFAS, (Kaiser et al., 2012)). Alternatively, such conversion 67 

coefficients have been based on limited numbers of direct comparisons between FRE and fuel consumption, but in mostly 68 

small-scale or laboratory burns which may not accurately represent the dynamics of real landscape scale fires, nor the full 69 
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characteristics of the FRP measurements made from Earth orbit (Freeborn et al., 2008; Nguyen and Wooster, 2020; Wooster 70 

et al., 2005). 71 

More recently, even more direct “top-down” FRP-based emissions assessment methodologies have emerged; now relating 72 

smoke emissions directly to the observed FRP of landscape fires. Their uniqueness is that, in order to reduce the 73 

aforementioned issues and embedded assumptions that arise when using satellite-derived FRE totals with ‘FRP-to-fuel 74 

consumption’ conversion coefficients, these new approaches use direct satellite-based measurements of fire emissions and 75 

FRP, via a set of ‘matchup fires’, to generate a set of landscape-fire ‘emissions coefficients’ that can be used to generate smoke 76 

emissions estimates directly from all other FRP observations of the area. One of the most recent such approaches, termed the 77 

Fire Radiative Energy Emissions (FREM) method (Mota and Wooster, 2018; Nguyen and Wooster, 2020), derives these 78 

emissions coefficients directly from geostationary satellite FRE estimates and matching smoke plume Earth observation data 79 

(Fisher et al., 2020; Mota and Wooster, 2018; Nguyen and Wooster, 2020). Emissions coefficients derived in this way are 80 

appropriate to real landscape fires of all sizes, minimally reliant on any assumptions, and appropriate to apply to further satellite 81 

FRE data to convert them into smoke emissions estimates (Nguyen et al., 2023). Thus far, the FREM approach has relied on 82 

geostationary satellites to provide the high imaging frequency FRP data with which to accurately estimate FRE via temporal 83 

integration. Observations made by equatorial orbit geostationary satellites are, however, of mostly poor quality at high 84 

latitudes.  However, whilst FRP-to-FRE calculations based on polar orbiting satellite data can be challenging at lower latitude 85 

fires due to the limited temporal sampling of FRP provided (Mota and Wooster, 2018), at higher latitudes orbital convergence 86 

generally provides far more polar-orbiting based estimates of FRP per day (Fig. 1). 87 

 88 

Figure 1: (a) Mean number of daily overpasses at any Earth location made by MODIS on AQUA and TERRA, and (b) zonal mean 89 
number of daily overpasses. Daily averages based on 16 days of data taken between 11/08/24 00:00 UTC and 27/08/24 00:00 UTC, 90 
gridded to a regular 0.5° x 0.5° grid. At latitudes where HL fires occur (60° - 75°N), there is a latitudinal observation frequency 91 
dependence that provides on average between 8 and 18 daily satellite observations from these two systems alone. Each cloud-free 92 
observation provides an FRP measure, and which can be used to estimate FRE via temporal integration. 93 

Here we aim to take advantage of the higher latitude, higher temporal resolution sampling of FRP to develop a HL version 94 

of the current FREM approach of Nguyen et al., (2023); generating for the first time a dataset of HL fire carbon and trace gas 95 

emissions completely independent of satellite-derived burned area measures and/or of the FRP-to-fuel consumption conversion 96 
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coefficients influenced by them. These conversion coefficients are also not derived from small-scale experiments, but from 97 

Earth observation data of the landscape fires themselves. We compare our fire emissions assessments to those of existing state-98 

of-the-art burned area and FRP based approaches, and assess the characteristics and benefits of our approach with respect to 99 

these alternatives. In Sect. 2, we provide the background to the FREM approach. In Sect. 3, we describe its adaptation for HL 100 

fires (hereby referring to the method as HLFREM) and using satellite derived polar orbiter FRP data and plume-integrated 101 

Total Column Carbon Monoxide (TCCO) observations we derive biome (b) specific emission coefficients for Carbon 102 

Monoxide (𝐸𝐶𝐶𝑂
𝑏 ) and Carbon (𝐸𝐶𝐶

𝑏), as well as total CO and carbon emissions via their use with FRP time-series data. In 103 

Sect. 4, we calculate the total CO and Carbon emissions, using 𝐸𝐶𝐶𝑂
𝑏  and 𝐸𝐶𝐶

𝑏 , and compare them to the fire emissions 104 

estimates present in other widely used inventories, before closing with a Summary and Conclusion in Sect. 5. 105 

2. FREM Background 106 

As detailed in the review of Wooster et al., (2021), both geostationary satellites (Wooster et al., 2015; Xu et al., 2010, 2017, 107 

2021) and polar-orbiting satellites (Giglio et al., 2016; Schroeder et al., 2014; Wooster et al., 2012; Xu et al., 2020) offer the 108 

capability to observe and quantify wildfire activity using Active Fire (AF) approaches involving FRP retrievals. Well-known 109 

inventories using these methods include the Fire Inventory from NCAR (FINN, Wiedinmyer et al., (2011)), the Fire Energetic 110 

and Emission Research (FEER) approach (Ichoku and Ellison, 2014)), the Quick Emission Dataset (QFED, Darmenov and da 111 

Silva, (2015)), and GFAS (Kaiser et al., 2012). The most recently developed FREM method (Nguyen et al., 2023) directly 112 

links satellite-derived FRP data to a fires CO emission rate via a set 𝐸𝐶𝐶𝑂
𝑏  derived from a ‘matchup fire’ subset of satellite-113 

derived FRP and CO observations. Specifically, estimates of 𝐸𝐶𝐶𝑂
𝑏  are calculated using FRE and plume-integrated Total 114 

Column Carbon Monoxide (TCCO) data collected at a subset of ‘matchup fires’ where both datasets are ‘well-observed’ (e.g. 115 

no gaps in the FRP record, and a clear fire emissions CO plume is seen). Once derived, application of 𝐸𝐶𝐶𝑂
𝑏  to the FRP 116 

observations at all the regions fires enables the regions fire-related CO emission rates to be calculated without the need for any 117 

other information (Reid et al., 2009).  Hence the approach is extremely direct, and with the emissions coefficients derived from 118 

the same types of satellite FRP data that they will ultimately be applied to, and thus which are impacted by the same factors 119 

such as overstory impacts on FRP measures and minimum FRP detection limits (Nguyen and Wooster, 2020). 120 

Each FREM iteration thus far has relied on geostationary FRP data, due to its frequent 10-to-30 min imaging frequency 121 

enabling easy derivation of FRE (Wooster et al., 2021). Rather than CO however, the first FREM (v1) iteration focused on 122 

deriving aerosol optical depth (AOD) related total particulate matter (TPM) emissions from FRP observations (Mota and 123 

Wooster, 2018), an approach then enhanced by Nguyen and Wooster, (2020) and Fisher et al., (2020) through the use of 124 

improved AOD datasets. FREMv2 (Nguyen et al., 2023) replaced use of AOD data with trace gas column amounts of CO 125 

(from the S5P satellites TROPOMI instrument), directly estimating fluxes of CO rather than TPM. CO is the second largest 126 

fire-emitted compound after CO2 (Akagi et al., 2011) and CO emissions factors are significantly less variable than those of 127 
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TPM (Andreae, 2019). This makes any subsequent estimation of total fuel consumption using the FREM approach more 128 

appropriately conducted using CO pathway rather than one based on TPM fire emissions data. 129 

3. High Latitude FREM Adaptation 130 

The polar-orbiting based HLFREM framework developed herein builds on the geostationary FREM methods by identifying 131 

a set of matchup fires for which both the total amount of CO contained in the fire plume is assessed, as well as the total amount 132 

of FRE released over the time it took the plume to form. Using these polar-orbiting matchups, a set of 𝐸𝐶𝐶𝑂
𝑏  are generated 133 

using ordinary least squares (OLS) linear best fits to the co-incident FRE and CO data of all matchup fires in that biome. These 134 

𝐸𝐶𝐶𝑂
𝑏  can then be multiplied by the regionally complete FRP time-series, including potentially hundreds of thousands more 135 

fires than are included in the matchup datasets, generating a spatially and temporally comprehensive set of biomass burning 136 

CO emissions covering all fires. Dividing these CO emissions by the standard biome-specific Emissions Factors (EFs, (Akagi 137 

et al., 2011; Andreae, 2019)) provides estimates of dry biomass consumption and also of total carbon (assuming biomass is 138 

50%  5% carbon), or via use of EF ratios of any trace gas to CO also estimates of other trace gas emissions totals (Nguyen et 139 

al., 2023; Nguyen and Wooster, 2020). 140 

The regionally comprehensive FRP time-series used herein is the Global Fire Assimilation System (GFAS v1.2) FRP dataset 141 

described in (Kaiser et al., 2012), generated as part of the Copernicus Atmospheric Monitoring Service (CAMS: 142 

https://atmosphere.copernicus.eu/) and widely used (e.g. Di Giuseppe et al., 2018; Inness et al., 2019; Popovicheva et al., 2022) 143 

The GFAS v1.2 record is based on per-pixel FRP retrievals contained within the Terra/Aqua MOD14/MDY14 active fire 144 

products (Giglio et al., 2016), using these to generate daily mean cloud-adjusted FRP data gridded at 0.1° back to almost the 145 

start of the MODIS mission (Kaiser et al., 2012). 146 

However, whilst the GFAS v1.2 FRP data dating back to 2003 are considered a suitably long FRP time-series for generating 147 

a long-term CO emissions record, they are less well suited to the initial generation of the 𝐸𝐶𝐶𝑂
𝑏  coefficients linking FRP to rate 148 

of CO emissions since they provide only daily average FRP values. Specifically, the daily average FRP data contained in 149 

GFAS v1.2 cannot be used to estimate the amount of FRE emitted by a fire from the night-time FRP minimum up until the 150 

early afternoon TROPOMI overpass, since only daily average FRP is provided, and yet this sub-daily FRE value is required 151 

at the set of matchup fires to generate the initial 𝐸𝐶𝐶𝑂
𝑏  emissions coefficients. For this reason, these coefficients were instead  152 

derived using the alternative GFAS v1.4 implementation (Kaiser et al., 2024), which applies the fire diurnal cycle model of 153 

(Andela et al., 2015) to the 0.1° gridded MODIS FRP used to generate GFAS v1.2 but now to obtain hourly gridded FRP 154 

estimates. At the location of each matchup fire, these hourly FRP data can then be integrated over the required time period 155 

from the night-time fire minimum up until the S5P (TROPOMI) satellite overpass time to generate the FRE released. Though 156 

GFAS v1.4 goes back only to 2019, this is perfectly sufficient for deriving the 𝐸𝐶𝐶𝑂
𝑏  coefficients.  157 

The full selection process for the fire matchups to which this procedure is applied is described in Sect. 3.2; and at each fire 158 

the relevant FRE was calculated as described in Sect. 3.3 using as the temporal integration period the time between the early 159 
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morning fire activity minimum and the S-NPP VIIRS overpass made almost simultaneously to that of S5P (Sect. 3.4). Once 160 

sufficient matchup fires existed for each fire biome covered (see Sect. 3.5), we generated 𝐸𝐶𝐶𝑂
𝑏  for these biomes as detailed in 161 

Sect. 3.6. These emission coefficients were then multiplied by the full GFAS v1.2 FRP record (Jan 2003 – Dec 2024, Sect. 162 

4.1), to generate a HLFREM CO emission timeseries. Additionally, via the application of the appropriate EFs, it was also 163 

possible to generate a HLFREM Carbon emission timeseries using GFAS v1.2 (Sect 4.2). For both the CO and Carbon emission 164 

timeseries, the HLFREM emissions will be compared to pre-existing emission databases; namely FEER, GFAS v1.2, and 165 

GFED v4.1s. 166 

 3.1. Region of Interest Selection 167 

HL fire is seasonal in nature, dominantly present in the Northern Hemispheric Summer months (June, July, August, Fig. 168 

2a). Four HL ROIs and matching time periods were used from within this period to generate the set of matchup fire, and each 169 

of the ROI extractions focused on a period when fire activity was maximised in that ROI, as shown in Figs. 2b and 2c, and 170 

detailed in Table 1. Landcover data, natively at 300 m grid resolution, taken from the ESA Climate Change Initiative (ESA-171 

CCI) 2018 land cover map (ESA, 2017) was used to classify biomes within the ROI’s, based on 11 ‘fire-biome’ classes 172 

aggregated from the original 37 landcovers (Table A1), as shown in Fig. 2b. The two ROIs in Boreal Asia (HL-BOAS-20 and 173 

HL-BOAS-21) were dominated by the Deciduous Needleleaf Forest fire biome, whereas those in Boreal North America (HL-174 

BONA-19 and HL-BONA-23) were dominated by Evergreen Needleleaf Forest fire biome. 175 
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 176 

Figure 2: HL fire information. (a) Mean monthly FRE (2003 – 2024) for HL fires (≥ 60°N) in the regions used by the Global Fire 177 
Emissions Database (GFED; (Randerson et al., 2017), BONA: Boreal North America, EURO: Europe, BOAS: Boreal Asia), as derived 178 
from GFAS v1.2. (b) ROI and aggregated fire biome map, as derived from the CCI Land Cover 2018 map (ESA, 2017) and with 179 
biome aggregation detailed in Table A1. (c) The four ROIs used in this study within which the 833 fire-matchup (shown as crosses) 180 
were identified. 181 

Table 1: Acronyms and Geographic bounding boxes of ROIs, as shown in Fig. 2c. 182 

ROI Full Name ROI Acronym Bounding Box 

High Latitude Boreal North America 2019 HL-BONA-19 
60° N - 70° N, 

105° W - 165° W 

High Latitude Boreal Asia 2020 HL-BOAS-20 
60° N - 75° N, 

100° E - 175° E 

High Latitude Boreal Asia 2021 HL-BOAS-21 
60° N - 70° N, 

100° E - 140° E 

High Latitude Boreal North America 2023 HL-BONA-23 
60° N - 70° N, 

100° W - 140° W 

3.2. Data Used and Plume Identification 183 

Within each of the four ROIs shown in Figs. 2b and 2c, the potential cloud-free matchup fires were manually identified and 184 

examined via visual inspection of multispectral and AF Products detailed in Table 2, based on the following criteria: 185 
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• Clear smoke emission visible in the VIIRS true colour (Red: M05, Green: M04, Blue: M03) imagery, and without 186 

apparent mixing with other nearby smoke plumes. 187 

• Clear visual indication of a developed smoke plume, spread by the wind, in the same VIIRS true colour imagery. 188 

• Clear identification of a region of shortwave infrared thermal emission (hereby referred to as the “burning area”) 189 

resulting from active combustion, as seen in a VIIRS false colour (Red: M11, Green: I02, Blue: I01) imagery. 190 

• AF Pixels present within the “burning area” as deduced from the VIIRS VNP14 and MODIS MOD14/MYD14 AF 191 

Products. 192 

Table 2: Satellite data products used during the manual inspection and digitization of matchup fire polygons. 193 

Parameter Satellite Product Code Resolution (nadir) 

VIIRS Moderate Resolution L1B Calibrated Radiances S-NPP VNP02MOD 750 m x 750 m 

VIIRS Moderate Resolution L1B Terrain Corrected Geolocation S-NPP VNP03MOD 750 m x 750 m 

VIIRS Imagery Resolution L1B Calibrated Radiances S-NPP VNP02IMG 375 m x 375 m 

VIIRS Imagery Resolution L1B Terrain Corrected Geolocation S-NPP VNP03IMG 375 m x 375 m 

VIIRS Thermal Anomalies/Fires S-NPP VNP14v002 750 m x 750 m 

MODIS Thermal Anomalies and Fire TERRA MOD14v001 1.0 km x 1.0 km 

MODIS Thermal Anomalies and Fire AQUA MYD14v001 1.0 km x 1.0 km 

VIIRS Enterprise Processing System Aerosol Optical Depth S-NPP AOD EPS 750 m x 750 m 

TROPOMI Level 2 Total Column Carbon Monoxide Sentinel-5P L2__CO____ 7.0 km x 3.5 km 

 194 

Each potential matchup fire then had its smoke plume and associated burning area extent digitized and examined; based on 195 

manual interpretation of the VIIRS multispectral imagery, matching VIIRS AF and Aerosol optical depth (AOD) products 196 

(NOAA, 2020), and TROPOMI TCCO products, as shown in Fig. 3. 197 
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 198 

Figure 3: Example of a matchup fire imaged in Siberia (62.39° N, 167.49° E) on 28/07/2020 at 01:42 UTC (13:42 PETT). The digitised 199 
outline of the plume (cyan) and burning area (red) are shown superimposed on (a) RGB (M05-M04-M03) imagery via S-NPP 200 
(VIIRS), (b) AOD (processed via EPS) from S-NPP (VIIRS), (c) Sentinel-5P TCCO data, (d) False Colour Composites (M11-I02-201 
I01) via S-NPP (VIIRS), (e) VIIRS Active Fire Product (VNP14) from S-NPP (VIIRS). Green: Non burning vegetation. Yellow: 202 
Active Fire Hotspot, Blue: Water, White: Cloud, Black: No Data. (f) Geographic location and extent of the plots shown (red). 203 

3.3. Fire Radiative Energy Estimation 204 

To calculate the FRE for each matchup fire, each digitised burning area polygon was converted to a binary mask and used to 205 

extract the FRP time-series from the hourly-timestep FRP record held within GFAS v1.4 (see example in Fig. 4). HL orbital 206 

convergence ensured the calculation was based on significantly more polar-orbiting observations than would be the case at 207 

lower latitudes (Fig. 1), and, following (Nguyen et al., 2023), the FRP integration took place from the 06:00 hrs local time fire 208 

activity minima (Fig. A1) up until the time of the almost simultaneous early afternoon S5P and Suomi S-NPP overpasses. 209 

Mean FRP record length for all matchup fires was 7.3 hrs (minimum 4 and maximum 11 hours), with the variation due to the 210 

orbital convergence (Fig. 1) and this results in the match-up fires being observed by Sentinel-5P up to three times per day from 211 

different ascending overpasses. 212 
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 213 

Figure 4: Example of the hourly FRP time-series from GFAS v1.4, used to generate an FRE measure for a single matchup fire (i.e. 214 
the match-up fire in Fig. 3, as shown above). The hourly FRP timeseries data were generated from the set of individual FRP 215 
observations provided by MODIS on AQUA and TERRA, using the diurnal cycle model of Andela et al., (2015). Additionally, the 216 
VIIRS observations on S-NPP used for fire-matchup identification are also shown. Times of the individual satellite overpasses, as 217 
well as of the S5P overpass time used to provide the TCCO data for this fire-matchup, are indicated. 218 

3.4. Excess CO Estimation 219 

For each fire-matchup, the smoke plume polygon with a surrounding buffer of one pixel was also used to generate a binary 220 

mask employed to extract the relevant S5P TROPOMI TCCO data within the plume, along with a measure of the ambient 221 

background TCCO ( 𝑇𝐶𝐶𝑂𝐵𝐺 , taken as the minimum TCCO within the buffered mask). Total excess plume CO (𝐶𝑂𝐸𝑋) was 222 

then calculated for each fire-matchup, as the sum of all 𝐶𝑂𝐸𝑋 from each S5P pixel associated with each fire-matchup, using 223 

Eq. (1). 224 

𝐂𝐎𝐄𝐱 = ∑(𝐓𝐂𝐂𝐎𝐌 − 𝐓𝐂𝐂𝐎𝐁𝐆) . 𝐀. 𝐌𝐂𝐎 (1) 225 

where TCCOM is the TCCO within the buffered binary mask (units: mol m-2), TCCOBG is the ambient background TCCO 226 

(units: mol m-2), A is the S5P pixel size (units: m2) calculated from the geographic coordinates of the pixel corners, and MCO 227 

the molecular weight of CO (units: g mol-1). 228 

3.5. Fire Biome Estimation 229 

All MODIS and S-NPP AF pixels within the fires burning area polygon and timed during the FRP temporal integration 230 

period had their fire-biome determined using the aggregated biome data shown in Fig. 2b. For a single fire if ≥ 50% of the AF 231 

pixels were from a single fire-biome then that was set as the fires “dominant” fire-biome. Fires having no such dominant class 232 

were discarded, as their derived emission coefficients could not be properly allocated to a fire-biome. 233 

3.6. Biome Specific Emission Coefficient Generation 234 

In total, 833 individual matchup fires were initially identified, with 125 of those being discarded as having no dominant 235 

fire-biome. Of the 708 fires remaining, 468 were located in Deciduous Needleleaf Forest (DecNeedle), 186 in Evergreen 236 

Needleleaf Forests (EGNeedle), 26 in Grassland, 22 in Shrubland, and six in a fire-biome described as ‘Sparce’. The locations 237 
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of the matchup fires for the four most well-sampled fire-biomes identified (DecNeedle, EGNeedle, Grassland, and Shrubland) 238 

are mapped in Fig. 2c. Analysis of the mean annual FRE totals from GFAS v1.2 (Fig. 5, Table 3) shows that these four biomes 239 

are responsible for the vast majority (~93%) of the total FRE generated by HL fires. 240 

 241 

Figure 5: Mean annual HL FRE (a) totals (PJ), and (b) contribution (%) of each of the four most well sampled biomes identified as 242 
part of the fire-matchups database, as well as from additional biomes, taken from GFAS v1.2 (2003-2024). 243 

Table 3: Mean Annual FRE totals (PJ) and contribution (%) for each of the four most well sampled biomes, compared to all other 244 
HL biomes, calculated using GFAS v1.2, between 2003 and 2024. 245 

HL Biome Mean Annual 

FRE Total (PJ) 

Standard 

Deviation (PJ) 

Mean annual FRE 

Contribution (%) 

Standard 

Deviation (%) 

All 205.4 115.5 100 0.0 

DecNeedle 100.2 106.9 43.0 24.7 

EGNeedle 67.8 59.9 34.2 19.1 

Grassland 17.9 12.4 11.6 8.4 

Shrubland 6.7 6.0 4.2 4.1 

All other biomes 12.8 9.9 7.0 3.3 

Following Nguyen et al., (2023), the FRE and Excess CO data of each fire-biomes matchup fires were used to derive a set 246 

of 𝐸𝐶𝐶𝑂
𝑏  emissions coefficients via zero-intercept OLS linear regression (Fig. 6); with results reported in Table 4. As detailed 247 

in Nguyen and Wooster, (2020), “FEER-equivalent” 𝐸𝐶𝐶𝑂
𝑏  values are also reported therein, calculated from the grid cell (not 248 

biome) based FRP-based total particulate matter (TPM) emissions coefficients (𝐸𝐶𝑇𝑃𝑀
𝑏 ) reported in Ichoku and Ellison, 249 
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(2014)  (available at www.feer.gsfc.basa.gov/data/emissions/) and the relevant biomes TPM-to-CO EF ratios (Nguyen and 250 

Wooster, 2020).  251 

Figure 6: HLFREM biome-specific CO emission coefficients (𝑬𝑪𝑪𝑶
𝒃 , in g MJ-1) derived from the set of matchup fires for (a) Deciduous 252 

Needleleaf Forests, (b) Evergreen Needleleaf Forests, (c) Grasslands, and (d) Shrubland fire-biomes. Each datapoint represents a 253 

single matchup fire that had its plume total Excess CO and total released FRE assessed for a matching time-period, and the 𝑬𝑪𝑪𝑶
𝒃  254 

value for the fire-biome is derived from the slope of the OLS linear best fit (solid black line) to these data. Colour of the scatter 255 
points denotes the ROI containing the fire (see Fig. 2c). Error bars denote the standard deviation of FRP values and the uncertainty 256 
in the S5P TCCO produce respectively, as calculated following (Nguyen et al., 2023). The shaded area indicates the uncertainty on 257 

the slope of the linear best fit, taken to be the uncertainty on the derived 𝑬𝑪𝑪𝑶
𝒃  value. 258 

Table 4: Emissions coefficients for CO (𝑬𝑪𝑪𝑶
𝒃 ) as derived in Fig. 6, along with FEER-equivalent values for comparison and those 259 

for carbon (𝑬𝑪𝑪
𝒃) calculated using 𝑬𝑪𝑪𝑶

𝒃  and EFs from (Andreae and Merlet, 2001) and (Akagi et al., 2011) - labelled -AM, and -AG 260 
respectively, in Sect. 4.2. 261 

HLFREM Biome Sentinel-5P 

TCCO-derived 

𝐸𝐶𝐶𝑂
𝑏  [g MJ-1] 

FEER-equivalent 

𝐸𝐶𝐶𝑂
𝑏  [g MJ-1]  

Sentinel-5P 

TCCO-derived 

𝐸𝐶𝐶−𝐴𝑀
𝑏  [g MJ-1] 

FEER-equivalent 

𝐸𝐶𝐶−𝐴𝑀
𝑏  [g MJ-1] 

Sentinel-5P 

TCCO-derived 

𝐸𝐶𝐶−𝐴𝐺
𝑏  [g MJ-1] 

DecNeedle 122.88 198.3 553.84 893.7 449.90 

EGNeedle 121.30 169.5 546.71 764.1 444.12 

Grassland 69.02 198.3 311.08 893.7 252.71 

Shrubland 105.20 151.7 474.2 683.8 385.17 
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4. Emission Inventory Comparisons 262 

4.1. High Latitude Carbon Monoxide Emission Timeseries 263 

To generate a long-term CO emissions timeseries for the HL biomes, we applied the derived 𝐸𝐶𝐶𝑂
𝑏  emissions coefficients to 264 

the GFAS v1.2 FRP data available from the current time back to almost the start of the MODIS record (2003). The resulting 265 

monthly and annual CO emissions timeseries are shown in Fig. 7. Also shown are the FEER-equivalent CO timeseries, the CO 266 

emissions that come as part of the GFAS v1.2 dataset derived from the FRP values as per Kaiser et al., (2012), and the GFED 267 

v4.1s CO emissions (2003 – 2023). The mean annual CO emissions for the four biomes using HLFREM, FEER, GFAS v1.2, 268 

and GFED v4.1 can be found in Table 5, and note that of these four datasets, the same MODIS FRP data drive the emissions 269 

estimates in HLFREM, GFAS v1.2 and FEER, whilst GFED v4.1s uses primarily MODIS burned area data (Giglio et al., 270 

2013). However, also note that the conversion coefficients linking daily mean FRP to biomass burned in GFED v1.2 as a prior 271 

step to its CO emissions estimation were generated using linear regression against burned biomass estimates of an earlier 272 

version of GFED (Kaiser et al., 2012). HLFREM removes this link by directly relating the daily FRP measures to CO fluxes 273 

via the conversion coefficients derived from FRP and Sentinel-5P CO data at the matchup fires.  274 

 275 

Table 5: Mean annual (2003-2023) CO emissions for the inventory-biome pairs. Uncertainty values are the standard error of the 276 
mean. 277 

Inventory DecNeedle EGNeedle Grassland Shrubland 

HLFREM 7.83 ± 1.92 Tg 5.00 ± 1.03 Tg 0.81 ± 0.13 Tg 0.46 ± 0.10 Tg 

FEER 12.64 ± 3.10 Tg 6.99 ± 1.43 Tg 2.33 ± 0.37 Tg 0.67 ± 0.15 Tg 

GFAS v1.2 11.48 ± 2.66 Tg 7.18 ± 1.39 Tg 4.03 ± 0.80 Tg 0.80 ± 0.16 Tg 

GFED v4.1s 13.63 ± 4.07 Tg 8.74 ± 2.23 Tg 2.12 ± 0.32 Tg 0.68 ± 0.16 Tg 
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 278 

Figure 7: Timeseries of Monthly (a,c,e,g) and Annual (b,d,f,h) HL Wildfire emissions of CO for (a,b) DecNeedle, (c,d) EGNeedle, 279 

(e,f) Grassland, and (g,h) Shrubland biomes, calculated using the 𝑬𝑪𝑪𝑶
𝒃  from HLFREM (blue) and FEER (orange) as detailed in 280 

Table 4 using daily FRE totals generated by GFAS v1.2. GFAS v1.2 (green) and GFED v4.1s (red) CO emissions for the same biomes 281 
are shown in green. OLS regression analysis can be found in Fig. A2. 282 

It can be seen from Fig. 7 that the temporal patterns of HLFREM CO emissions across all biomes are consistent with those 283 

from the other three inventories, with the temporal patterns being more pronounced in the two forested and Shrubland biomes. 284 

The peaks also match independent reports of fire activity, for example with the DecNeedle biome showing CO peaks in both 285 

2020 and 2021 consistent with the high fire activity reported across HL Russia (dominated by DecNeedle) in these years 286 

(Kharuk et al., 2021; Ponomarev et al., 2021). Similarly, the CO increase in 2023 in the EGNeedle biome is consistent with 287 

reported high fire activity across HL North America (Byrne et al., 2024; Dodd et al., 2018). It is clear from Fig. 7 and Table 5 288 

that the CO emissions from HLFREM across the two forested biomes are consistently smaller than those of the other 289 

inventories (DecNeedle: 38%, 32%, and 43% smaller than FEER, GFAS v1.2, and GFED v4.1s respectively, EGNeedle: 28%, 290 

30% and 43% smaller than FEER, GFAS v1.2, and GFED v4.1s respectively). The HLFREM CO emissions for Shrublands 291 

are also smaller by the same magnitude (31%, 43%, and 33% smaller than FEER, GFAS v1.2, and GFED v4.1s respectively). 292 

For Grasslands, however, the HLFREM CO emissions are significantly smaller (65%, 80%, and 62% smaller than FEER, 293 

GFAS v1.2, and GFED v4.1s respectively), though the grassland 𝐸𝐶𝐶𝑂
𝑏  emission coefficient (Fig. 6c) has a smaller r2 value, 294 
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potentially making them more uncertain. Additionally, there appear to be some unusual patterns in the Grassland biome; the 295 

CO emissions from GFAS v1.2 exhibit a peak in June and July 2015 and July 2021, peaks not seen in the HLFREM- nor 296 

FEER-derived versions. On investigation, these peaks are due to an above-average number of grassland fires occurring in 297 

regions defined within GFAS as having peat (Kaiser et al., 2012), as opposed to extratropical forests with organic soils (EFOS). 298 

The presence of peat dramatically increases the conversion factor linking FRP to dry matter combustion in the GFAS system 299 

via the linear regression performed against GFED biomass burned estimates (Kaiser et al., 2012).  Therefore, in the GFAS 300 

v1.2 CO emissions dataset, the same FRE values for grassland fires in these ‘PEAT’ regions results in significantly more CO 301 

than identical FRE fires in the EFOS regions. The HLFREM and FEER-equivalent inventories do not make this distinction, 302 

and so their CO timeseries do not show such elevated CO emissions peaks related to differing Grassland fire locations. Figure 303 

8 shows the fractional dominant fire type as denoted by GFAS v1.2 and GFED v3.1 for the four HL biomes used in this study. 304 

The Grassland biome has a larger fraction of PEAT (11.7%), compared to the other three biomes (DecNeedle: 2.8%, 305 

EGNeedle: 1.6%, Shrubland: 3.1%). Nevertheless, since that CO emissions from fires in Grassland only represent 12% of 306 

the multi-biome total FRE (Table 3) the overall impact of this difference is limited on the total CO emissions values. 307 

 308 

Figure 8: GFAS v1.2 land cover classes, based on dominant fire type in GFED v3.1 and organic soils and peat maps, taken from 309 
(Kaiser et al., 2012). (a) Land cover classes map, for Savannah (SA), Savannah with organic soils (SAOS), Agriculture (AG), 310 
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Agriculture with organic soils (AGOS), Tropical Forest (TF), Peat (PEAT), Extratropical Forest (EF), and Extratropical Forests 311 
with organic soils (EFOS). 60°N is denoted with a red line. (b-e) Fractional land cover for (b) HL DecNeedle, (c) HL EGNeedle, (d) 312 
HL Grassland, and (e) HL Shrubland. 313 

In terms of spatial patterns, Fig. 9 maps the annual total GFAS v1.2 FRE values for the HL-BONA-2023 and HL-BOAS-314 

2021 ROIs, detailed in Table 1, from which the HLFREM 𝐸𝐶𝐶𝑂
𝑏  were derived from. The elevated annual FRE totals (Figs. 9a 315 

and 9b) align with CO emissions across all four inventories (Figs. 9c-h), whose spatial pattern is very similar, and corresponded 316 

to the extreme wildfire activity reported in these years and regions (Byrne et al., 2024; Kharuk et al., 2021). 317 

 318 

Figure 9: Annual FRE totals from GFAS v1.2 (a, b) and CO emissions (c-j) for the HL-BONA-23 (a, c, e, h, i) and HL-BOAS-21 (b, 319 
d, f, h, j) ROIs from the HLFREM (c, d), FEER-equivalent (e, f), GFAS v1.2 (g, h), and GFED v4.1s (i, j), respectively. Grey areas 320 
denote regions that do not fall under one of the four HLFREM biomes.  321 
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4.2. High Latitude Carbon Emission Timeseries 322 

Following the approach of (Mota and Wooster, 2018; Nguyen et al., 2023; Nguyen and Wooster, 2020), emissions estimates 323 

of total carbon, as well as any other GHG or trace gas, can be derived from the CO emissions provided by the HLFREM 324 

approach, simply via use of standard ratios of the relevant gaseous emission factors. Numerous different summarised EF 325 

inventories exist, with for example GFAS v1.2 using (Andreae and Merlet, 2001) and GFEDv4.1s using (Akagi et al., 2011). 326 

HL wildfire emissions of Carbon, for example, can be calculated using its biome-specific emission coefficient (𝐸𝐶𝐶
𝑏),  derived 327 

using the EF ratio between Carbon and CO, and the HLFREM CO emission coefficient (𝐸𝐶𝐶𝑂
𝑏 ), via Eq. (2): 328 

𝐸𝐶𝐶
𝑏 =

𝐸𝐹𝐶
𝑏

𝐸𝐹𝐶𝑂
𝑏

𝐸𝐶𝐶𝑂
𝑏 (2) 329 

Where the emission coefficients have units: g MJ-1 and the emission factors units: g kg-1. 𝐸𝐹𝐶𝑂
𝑏  values are taken from the 330 

aforementioned emission inventories, and 𝐸𝐹𝐶
𝑏 being calculated using Eq. (3): 331 

𝐸𝐹𝐶
𝑏 =  

12

44
𝐸𝐹𝐶𝑂2

𝑏 +
12

28
𝐸𝐹𝐶𝑂

𝑏 +
12

16
𝐸𝐹𝐶𝐻4

𝑏 (3) 332 

Where 𝐸𝐹𝐶
𝑏, 𝐸𝐶𝐶𝑂2

𝑏 , 𝐸𝐶𝐶𝑂
𝑏 , and 𝐸𝐶𝐶𝐻4

𝑏  are the biome specific wildfire EFs for burnt carbon, CO2, CO, and CH4 respectively, 333 

assuming these make up more than 95% of burnt carbon emitted in gaseous form (Akagi et al., 2011) and that by comparison 334 

carbon in aerosols is negligible by mass (Akagi et al., 2011; Andreae and Merlet, 2001). Multiplying these carbon emissions 335 

by a factor of two then provides an estimate of the amount of biomass burned. 336 

Similar to Fig. 7, Fig. 10 shows our multi-inventory Carbon emissions calculated across the four most dominant HL fire 337 

affected biomes. As GFAS v1.2 uses EFs from Andreae and Merlet, (2001), we calculated 𝐸𝐶𝐶
𝑏 for both HLFREM and FEER 338 

using these same EFs, as shown in Table 4. However, as GFED v4.1s uses EFs from (Akagi et al., 2011), we also calculated 339 

𝐸𝐶𝐶
𝑏 for HLFREM using these same EFs, also shown in Table 4.  The HLFREM and FEER 𝐸𝐶𝐶

𝑏 were applied to the GFAS 340 

v1.2 daily FRE totals, and, similar to Table 5, mean annual HL Wildfire Carbon emissions totals were calculated, and are 341 

shown in Table 6.  342 

The HLFREM carbon emission timeseries exhibits a very similar behaviour as the CO emission timeseries from which it 343 

was derived; with a strong temporal similarity with the carbon emissions of the other inventories. The difference between the 344 

HLFREM carbon emissions and the other inventories for the two forested biomes (DecNeedle: 38%, 30%, and 42% smaller 345 

than FEER, GFAS v1.2, and GFED v4.1s respectively, EGNeedle: 28%, 30% and 42% smaller than FEER, GFAS v1.2, and 346 

GFED v4.1s respectively) and the Shrubland biomes (31%, 41%, and 32% smaller than FEER, GFAS v1.2, and GFED v4.1s 347 

respectively), are very similar to those of the CO emissions, differing by ≤ 2% from these. The HLFREM carbon emission 348 

timeseries from Grassland also exhibits a similar behaviour to those of the Grassland HLFREM CO emission timeseries (65%, 349 

74%, and 61% smaller than FEER, GFAS v1.2, and GFED v4.1s respectively); in that the emission estimations are significantly 350 

smaller than those from the other inventories, although the difference from GFAS v1.2 (6%) is larger than those from the other 351 

two inventories (2%).  352 
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 353 

Figure 10: Timeseries of HL Wildfire Emissions of Carbon for (a, b) Deciduous Needleleaf Forest, (c, d) Evergreen Needleleaf Forest, 354 
(e, f) Grasslands, and (g, h) Shrublands biomes, for (a, c, e, g) FEER, GFAS v1.2, and HLFREM (using EFs from (Andreae and 355 
Merlet, 2001)), and (b, d, f, h) GFEDv4.1s and HlFREM (using EFs from (Akagi et al., 2011)). Regression analysis on the timeseries 356 
can be found in Fig. A3. 357 

Table 6: Mean annual (2003-2023) C emissions for the inventory-biome pairs. HLFREMAM details the mean annual HL Carbon 358 

emissions, using 𝑬𝑪𝑪−𝑨𝑴
𝒃 , whilst HLFREMAG details the mean annual HL Carbon emission using 𝑬𝑪𝑪−𝑨𝑮

𝒃 . HLFREM and FEER HL 359 
Carbon emissions are generated using GFAS v1.2 FRE totals. Uncertainty values are the standard error of the mean. 360 

Inventory DecNeedle EGNeedle Grassland Shrubland 

HLFREMAM 35.29 ± 8.67 Tg 22.53 ± 4.62 Tg 3.65 ± 0.57 Tg 2.08 ± 0.47 Tg 

HLFREMAG 28.67 ± 7.04 Tg 18.30 ± 3.76 Tg 2.96 ± 0.47 Tg 1.69 ± 0.38 Tg 

FEER 56.95 ± 13.99 Tg 31.49 ± 6.46 Tg 10.48 ± 1.65 Tg 3.00 ± 0.67 Tg 

GFAS v1.2 50.72 ± 12.04 Tg 32.14 ± 6.38 Tg 14.02 ± 2.49 Tg 3.52 ± 0.74 Tg 

GFED v4.1s 49.60 ± 14.82 Tg 31.40 ± 7.96 Tg 7.57 ± 1.13 Tg 2.47 ± 0.57 Tg 

 361 
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5. Summary and Conclusions 362 

Taking advantage of the increased number of polar orbiting satellite overpasses nearer the poles, we have extended the Fire 363 

Radiative Energy Emissions (FREM) approach to direct “top down” fire emissions estimation to High Latitudes (HL) fires, 364 

and to polar-orbiting FRP datasets. Previously the approach was limited to use on low-to-mid latitude geostationary FRP data 365 

(Nguyen et al., 2023).  This highly direct approach to estimating fire emissions uses only satellite observations of fire radiative 366 

power and CO, removing the need for assuming the amount of biomass per unit area, pre-fire fuel loads and combustion 367 

completeness, or correlations between FRE and burned biomass developed in the laboratory, in small scale fires, or elsewhere. 368 

Negating the requirements for these parameters removes a key source of uncertainty associated with other emissions estimation 369 

techniques (Kasischke and Penner, 2004; Reid et al., 2009; Wooster et al., 2015), and provides a means of converting the FRE 370 

data from the Global Fire Assimilation system (GFAS) into fire emissions without use of factors derived via linear regressions 371 

against the GFED burned biomass totals, as is used currently within GFAS (Kaiser et al., 2012). 372 

Via a set of 708 matchup fires across four regions of interest in the HL region above 60°N, we used S5P TROPMI Total 373 

Column Carbon Monoxide (TCCO) data to calculate total plume CO and total FRE up to the time of the S5P overpass from 374 

GFAS v1.4. From these data a set of biome specific CO emission coefficients (𝐸𝐶𝐶𝑂
𝑏 ) were generated using the approach of 375 

(Nguyen et al., 2023) that can then be used to convert further FRP data of fires in the four dominant HL biomes (Deciduous 376 

Needleleaf Forests, Evergreen Needleleaf Forests, Grasslands, and Shrublands) to emission rates of CO. Application of these 377 

emissions coefficients to the daily FRE totals from GFAS v1.2 enabled us to produce new CO emissions inventory for these 378 

four biomes in the HL region, unreliant on any additional parameters or datasets. 379 

The CO emissions derived from this new approach were compared to three other widely used fire emission inventories, 380 

those produced and outputted by GFAS v1.2 itself, those from FEERv1.0-GFASv1.2 (calculated using GFAS FRE and a 381 

FEER-equivalent 𝐸𝐶𝐶𝑂
𝑏 ; (Nguyen et al., 2023)), and those from GFED v4.1s. Total carbon emissions estimates were also 382 

calculated based on emission factor ratios between CO and Carbon. The HLFREM CO and Carbon emissions timeseries and 383 

CO spatial patterns derived using the HLFREM approach were found to be in good temporal and spatial agreement with the 384 

FEER-equivalent, GFAS v1.2, and GFED v4.1s inventories, particularly for the two forested biomes and shrublands, producing 385 

relatively similar but generally smaller emissions totals. Mean annual HLFREM CO and carbon emission totals were found to 386 

be 28-43% smaller than totals produced by FEER, GFAS v1.2, and GFAS v4.1s for the two forested biomes and Shrubland 387 

biomes. HLFREM CO and carbon emission totals from Grassland were also in good temporal and spatial agreement with the 388 

other inventories, although the emissions were significantly lower (61-80%) than those from other inventories; and whilst this 389 

could be correct, it is also possibly a result of the relatively small number of fire-matchups found during the generation of the 390 

HLFREM 𝐸𝐶𝐶𝑂
𝐺𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑  and perhaps a low bias. Compounding this, the largest difference (GFAS v1.2, 80% lower CO 391 

emissions, 74% lower carbon emissions) was found over the Grassland biomes, which in certain of the other databases has 392 

some consideration of peat burning included that is not accounted for in the HLFREM methodology. On the other hand, if the 393 

matchup fires included areas having peat burning, the impact of this would already be in the derived emissions coefficients/ 394 
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Future developments in advancing the HLFREM approach will include consideration of this organic soil burning, as well 395 

as expansion of both the biomes covered and the number of fire matchups in each. Our aim is to develop a long-term and 396 

geographically continuous HL fire emissions dataset that does not rely on parameters taken from modelling, from correlations 397 

between inventories, or from conversion coefficients taken from laboratory or small-scale fire experiments when converting 398 

the satellite observations into emissions estimates. Instead, the FREM approach uses information extracted from the satellite 399 

data itself to generate the necessary conversion coefficients, an approach that we feel has great potential to expand further as 400 

both active fire and trace gas remotely sensed datasets continue to advance. 401 

Appendix A 402 

Table A1: Aggregated CCI landcover classes (taken from ESA 2017) assigned to each HLFREM biome. 403 

HLFREM Biome 

(≥60°N) 

Full Biome Name Assigned CCI Class Codes 

Managed Managed 10, 11, 12, 20, 30, 40 

EGBroad Evergreen Broadleaf Forests 50, 160, 170 

DecBroad Deciduous Broadleaf Forests 60, 61, 62, 90 

EGNeedle Evergreen Needleleaf Forests 70, 71, 72 

DecNeedle Deciduous Needleleaf Forests 80, 81, 82 

Grassland Grassland 100, 110, 130, 180, 190 

Shrubland Shrubland 120, 121, 122 

Sparce Sparce 140, 150, 151, 152, 153 

Bare Bare 200, 201, 202 

Snow/Ice Snow and Ice 220 

404 
Figure A1: Median (blue) and mean (orange) hourly FRP of all plumes identified in the HLFREM study, during the day before 405 
observation (negative hours relative to local midnight) and day of observation (positive hours relative to local midnight) from the 406 
hourly FRP dataset. Local midnight and 06:00 local time is shown with the black and red line, respectively. 407 
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408 
Figure A2: OLS Regression analysis of the Annual HL CO Emissions, comparing the HLFREM emissions (calculated using GFAS 409 
v1.2 FRE totals) with (a-d) FEER, (e-h) GFAS v1.2, and (i-l) for Deciduous Needleleaf Forests (a,e,i), Evergreen Needleleaf Forests 410 
(b,f,j), Grassland (c,g,k), and Shrubland (d,h,l) biomes. OLS regression and associated errors are shown on each plot (displayed as 411 
the solid line and shading respectively), with the R2 value being shown in the brackets. A 1:1 line (dashed line) is also shown. 412 
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413 
Figure A3: OLS Regression analysis of the Annual HL C Emissions, comparing the HLFREM emissions (calculated using GFAS 414 
v1.2 FRE totals) with (a-d) FEER, (e-h) GFAS v1.2, and (i-l) for Deciduous Needleleaf Forests (a,e,i), Evergreen Needleleaf Forests 415 
(b,f,j), Grassland (c,g,k), and Shrubland (d,h,l) biomes. As the HLFREM C Emissions have been calculated via EF ratios with respect 416 
to Carbon Monoxide, different EF ratios have been used to compare FEER and GFAS v1.2 (using EFs from (Andreae and Merlet, 417 
2001), referred to as HLFREMAM), and GFEDv4.1s (using EFs from (Akagi et al., 2011), referred to as HLFREMAG). OLS regression 418 
and associated errors are shown on each plot (displayed as the solid line and shading respectively), with the R2 value being shown in 419 
the brackets. A 1:1 line (dashed line) is also shown. 420 

7. Code Availability 421 

Code is available upon request to William Maslanka (william.maslanka@kcl.ac.uk). 422 

8. Data Availability 423 

Sentinel-5P products are distributed freely by the Copernicus Data Space Ecosystem (https://dataspace.copernicus.eu/, last 424 

accessed 19 March 2025), as is the VIIRS and MODIS AF and Multispectral Products by the LAADS DAAC 425 

(https://ladsweb.modaps.eosdis.nasa.gov/, last accessed 19 March 2025), and the VIIRS AOD EPS product on the NOAA 426 
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Comprehensive Large Array-Data Stewardship System (CLASS, https://www.aev.class.noaa.gov/, last accessed 19 March 427 

2025). GFAS v1.2 data is distributed freely through the ECMWF Atmosphere Data Store 428 

(https://ads.atmosphere.copernicus.eu/, last accessed 19 March 2025). GFAS v1.4 data used in this study is available upon 429 

request. GFED v4.1s data is distributed freely from the GFED web portal (https://www.globalfiredata.org/, last accessed 19 430 

March 2025). FEER data is distributed freely on the Fire Energetics and Emission Research website 431 

(https://feer.gsfc.nasa.gov/index.php, last accessed on 19 March 2025). 432 
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