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Abstract. High Latitude (HL) landscape fires are an important source of greenhouse gases and aerosols, with growing
significance under rapid anthropogenic climate change-induced warming. Current fire emission inventories are mostly
‘bottom-up’ in nature; combining, or relying on linear regressions between, satellite remote sensing data and process-based
model outputs. However, these methods rely on uncertainties surrounding fuel load and combustion completeness. Here, we
adapt the ‘top-down’ Fire Radiative Energy Emission (FREM) approach for HL fires (HLFREM), linking Fire Radiative
Energy (FRE) directly to emissions via coefficients derived solely from satellite observations. We derive biome-specific
emission coefficients by combining Fire Radiative Power (FRP) from GFAS v1.4 with TROPOMI Total Column Carbon
Monoxide plume observations, for the HL’s four most fire-prone biomes; Deciduous and Evergreen Needleleaf Forests,
Grasslands, and Shrublands. By applying these coefficients to daily GFAS v1.2 FRE totals (2003-2024), we estimate CO and
total carbon emissions across the HL using HLFREM. HLFREM-derived CO emissions generally agree with other widely
used inventories (GFAS v1.2, FEERv1.0-GFASv1.2, and GFEDv4.15s) in forested biomes, with annual average differences of
-32% to -43% for Deciduous Needleleaf Forests, and -28% to -43% for Evergreen Needleleaf forests. For Shrublands and
Grassland biomes, HLFREM estimates are 31-43% and 61-80% lower respectively. Total carbon emissions, using Emission
Factors, were found to show consistent patterns with CO across all biomes. Our results represent the first HL fire emissions
dataset based only on satellite data of a major carbon containing gas (CO) emitted by fires and the rate of fire radiative energy
release.

1. Introduction

Landscape fire is Earth’s largest natural disturbance agent, burning, according to the latest satellite-derived datasets, an
average of approximately 5.5% of Earth’s land surface annually (Chen et al., 2023). These landscape fires greatly affect
ecology, land carbon stores, atmospheric composition, air quality, and human health. The true magnitude of these effects may
even be higher than currently estimated, due to satellite-based burned area mapping often missing many of the highly-numerous
smaller burns that together make up a significant fraction of total global burned area (Ramo et al., 2021), even when adjusted
for some of this low bias (Chen et al., 2023).

Satellite data indicates that vegetation fires are extensive across every vegetated continent apart from Antarctica, including
even High Latitude (HL, > 60°N) areas (Jones et al., 2022) up to 75°N (Masrur et al., 2018). Such HL burns include so-called
‘Arctic-fires’ (i.e. fires taking place at latitudes above 66°N) which are of increasing interest, in part because evidence suggests

an increase in both their frequency and magnitude; potentially driven by the rapid warming of Earth’s climate occurring in
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more northerly regions (McCarty et al., 2021). These Arctic-fires, for example those in Siberia in 2020 and 2021 (Kharuk et
al., 2021; Liu et al., 2022) can be seen as an extension of the wider northern (i.e. Boreal) regions’ fire activity (McCarty et al.,
2021), which is itself apparently increasing (Masrur et al., 2018). This is most commonly attributed to lengthening of the ‘fire
season’, the period of the year when vegetation, litter and/or organic soils are sufficiently warm and dry for significant
landscape fires to ignite and spread.

Frequent lightning, and the extensive uninterrupted fuel (primarily forest) cover, promotes fire in many HL areas; with
certain tree species having evolved to include fire as part of their reproductive cycle (Hodges et al., 2021; Hutto, 2008). Such
adaptations and their regionally varying occurrence in HL regions are apparently behind many of the spatial differences seen
in certain remotely sensed fire signatures (Rogers et al., 2015; Wooster and Zhang, 2004). Because many of the forests of the
HL regions ultimately require fire to thrive, wildfires are often left to burn without intervention if they pose little-to-no threat
to humans or property. However, there is a concern that the massive stores of ground carbon contained in the underlying peat
and organic soils of northern regions, some of which have remained frozen for millennia, may also be becoming more
accessible to fire (Davidson and Janssens, 2006; Turetsky et al., 2002). Burning of these carbon stores results in net greenhouse
gases (GHGs) emissions that are unreplaced by photosynthetic carbon reassimilation (i.e. vegetation regrowth) on the decades-
to-century time-scales typical of forest recovery (Friedlingstein et al., 2021). Quantifying HL fire activity and any trends in its
nature is therefore valuable for understanding fires contribution to net atmospheric greenhouse gas concentrations (Mekonnen
et al., 2022), as well as for issues such as air quality (Warneke et al., 2023).

Calculating the amount of land carbon (i.e. live vegetation, litter and, organic soil) consumed by fire, including in HL fires,
as well as emissions of Carbon Monoxide (CO) and other GHGs, reactive gases, and aerosols, typically involves a so-called
“bottom-up” calculation (Crutzen and Andreae, 1990), with the most modern implementations combining modelling and
satellite-derived datasets (Ichoku and Ellison, 2014; Kaiser et al., 2012; van der Werf et al., 2010, 2017). The most common
implementation, the Global Fire Emission Database (GFED, (Randerson et al., 2017)), is driven by satellite-derived measures
of burned area, but is still classed as an ‘indirect’ approach since it relies heavily on mathematical models and/or in-situ
assessments for the fuel load and combustion completeness parameters that remain subject to significant uncertainty at any
particular location (Reid et al., 2009). An alternative satellite-based ‘direct” approach relies on Fire Radiative Power (FRP)
measures rather than burned area, with FRP representing the radiant energy released per unit time by the combustion process.
These FRP data can be time-integrated to estimate the Fire Radiative Energy (FRE) released by the burn, which then links to
total fuel consumption (Roberts et al., 2005; Wooster et al., 2005, 2015). FRP-based approaches avoid the need for assumed
or modelled fuel load and combustion completeness terms (Kasischke and Penner, 2004), but are not always fully independent
of the burned area-based methods since the necessary ‘FRP-to-fuel consumption’ conversion coefficients are themselves often
derived from correlations and regressions made between FRE datasets and the outputs of the more indirect burned area-based
approach; such as with the Global Fire Assimilation System (GFAS, (Kaiser et al., 2012)). Alternatively, such conversion
coefficients have been based on limited numbers of direct comparisons between FRE and fuel consumption, but in mostly

small-scale or laboratory burns which may not accurately represent the dynamics of real landscape scale fires, nor the full
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characteristics of the FRP measurements made from Earth orbit (Freeborn et al., 2008; Nguyen and Wooster, 2020; Wooster
et al., 2005).

More recently, even more direct “top-down” FRP-based emissions assessment methodologies have emerged; now relating
smoke emissions directly to the observed FRP of landscape fires. Their uniqueness is that, in order to reduce the
aforementioned issues and embedded assumptions that arise when using satellite-derived FRE totals with ‘FRP-to-fuel
consumption’ conversion coefficients, these new approaches use direct satellite-based measurements of fire emissions and
FRP, via a set of “matchup fires’, to generate a set of landscape-fire ‘emissions coefficients’ that can be used to generate smoke
emissions estimates directly from all other FRP observations of the area. One of the most recent such approaches, termed the
Fire Radiative Energy Emissions (FREM) method (Mota and Wooster, 2018; Nguyen and Wooster, 2020), derives these
emissions coefficients directly from geostationary satellite FRE estimates and matching smoke plume Earth observation data
(Fisher et al., 2020; Mota and Wooster, 2018; Nguyen and Wooster, 2020). Emissions coefficients derived in this way are
appropriate to real landscape fires of all sizes, minimally reliant on any assumptions, and appropriate to apply to further satellite
FRE data to convert them into smoke emissions estimates (Nguyen et al., 2023). Thus far, the FREM approach has relied on
geostationary satellites to provide the high imaging frequency FRP data with which to accurately estimate FRE via temporal
integration. Observations made by equatorial orbit geostationary satellites are, however, of mostly poor quality at high
latitudes. However, whilst FRP-to-FRE calculations based on polar orbiting satellite data can be challenging at lower latitude

fires due to the limited temporal sampling of FRP provided (Mota and Wooster, 2018), at higher latitudes orbital convergence

generally provides far more polar-orbiting based estimates of FRP per day (Fig. 1).

Average Number of Daily Overpasses by MODIS instrumentation over 16 days

Zonal Mean

180°W 1357w 0" a5 o 45°E 0°E 1357 180°E 5 10 15 20 25 a0
Lverage Daily Overpasses

15
Average Daily Overpasses

Figure 1: (a) Mean number of daily overpasses at any Earth location made by MODIS on AQUA and TERRA, and (b) zonal mean
number of daily overpasses. Daily averages based on 16 days of data taken between 11/08/24 00:00 UTC and 27/08/24 00:00 UTC,
gridded to a regular 0.5° x 0.5° grid. At latitudes where HL fires occur (60° - 75°N), there is a latitudinal observation frequency
dependence that provides on average between 8 and 18 daily satellite observations from these two systems alone. Each cloud-free
observation provides an FRP measure, and which can be used to estimate FRE via temporal integration.

Here we aim to take advantage of the higher latitude, higher temporal resolution sampling of FRP to develop a HL version
of the current FREM approach of Nguyen et al., (2023); generating for the first time a dataset of HL fire carbon and trace gas

emissions completely independent of satellite-derived burned area measures and/or of the FRP-to-fuel consumption conversion
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coefficients influenced by them. These conversion coefficients are also not derived from small-scale experiments, but from
Earth observation data of the landscape fires themselves. We compare our fire emissions assessments to those of existing state-
of-the-art burned area and FRP based approaches, and assess the characteristics and benefits of our approach with respect to
these alternatives. In Sect. 2, we provide the background to the FREM approach. In Sect. 3, we describe its adaptation for HL
fires (hereby referring to the method as HLFREM) and using satellite derived polar orbiter FRP data and plume-integrated
Total Column Carbon Monoxide (TCCO) observations we derive biome (b) specific emission coefficients for Carbon
Monoxide (ECE,) and Carbon (ECY), as well as total CO and carbon emissions via their use with FRP time-series data. In
Sect. 4, we calculate the total CO and Carbon emissions, using ECZ, and ECE, and compare them to the fire emissions

estimates present in other widely used inventories, before closing with a Summary and Conclusion in Sect. 5.

2. FREM Background

As detailed in the review of Wooster et al., (2021), both geostationary satellites (Wooster et al., 2015; Xu et al., 2010, 2017,
2021) and polar-orbiting satellites (Giglio et al., 2016; Schroeder et al., 2014; Wooster et al., 2012; Xu et al., 2020) offer the
capability to observe and quantify wildfire activity using Active Fire (AF) approaches involving FRP retrievals. Well-known
inventories using these methods include the Fire Inventory from NCAR (FINN, Wiedinmyer et al., (2011)), the Fire Energetic
and Emission Research (FEER) approach (Ichoku and Ellison, 2014)), the Quick Emission Dataset (QFED, Darmenov and da
Silva, (2015)), and GFAS (Kaiser et al., 2012). The most recently developed FREM method (Nguyen et al., 2023) directly
links satellite-derived FRP data to a fires CO emission rate via a set ECZ, derived from a ‘matchup fire’ subset of satellite-
derived FRP and CO observations. Specifically, estimates of ECZ, are calculated using FRE and plume-integrated Total
Column Carbon Monoxide (TCCO) data collected at a subset of “‘matchup fires’ where both datasets are ‘well-observed’ (e.g.
no gaps in the FRP record, and a clear fire emissions CO plume is seen). Once derived, application of ECZ, to the FRP
observations at all the regions fires enables the regions fire-related CO emission rates to be calculated without the need for any
other information (Reid et al., 2009). Hence the approach is extremely direct, and with the emissions coefficients derived from
the same types of satellite FRP data that they will ultimately be applied to, and thus which are impacted by the same factors
such as overstory impacts on FRP measures and minimum FRP detection limits (Nguyen and Wooster, 2020).

Each FREM iteration thus far has relied on geostationary FRP data, due to its frequent 10-to-30 min imaging frequency
enabling easy derivation of FRE (Wooster et al., 2021). Rather than CO however, the first FREM (v1) iteration focused on
deriving aerosol optical depth (AOD) related total particulate matter (TPM) emissions from FRP observations (Mota and
Wooster, 2018), an approach then enhanced by Nguyen and Wooster, (2020) and Fisher et al., (2020) through the use of
improved AOD datasets. FREMv2 (Nguyen et al., 2023) replaced use of AOD data with trace gas column amounts of CO
(from the S5P satellites TROPOMI instrument), directly estimating fluxes of CO rather than TPM. CO is the second largest

fire-emitted compound after CO, (Akagi et al., 2011) and CO emissions factors are significantly less variable than those of



128
129

130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

https://doi.org/10.5194/egusphere-2025-4486
Preprint. Discussion started: 29 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

TPM (Andreae, 2019). This makes any subsequent estimation of total fuel consumption using the FREM approach more

appropriately conducted using CO pathway rather than one based on TPM fire emissions data.

3. High Latitude FREM Adaptation

The polar-orbiting based HLFREM framework developed herein builds on the geostationary FREM methods by identifying
a set of matchup fires for which both the total amount of CO contained in the fire plume is assessed, as well as the total amount
of FRE released over the time it took the plume to form. Using these polar-orbiting matchups, a set of ECZ, are generated
using ordinary least squares (OLS) linear best fits to the co-incident FRE and CO data of all matchup fires in that biome. These
ECE, can then be multiplied by the regionally complete FRP time-series, including potentially hundreds of thousands more
fires than are included in the matchup datasets, generating a spatially and temporally comprehensive set of biomass burning
CO emissions covering all fires. Dividing these CO emissions by the standard biome-specific Emissions Factors (EFs, (Akagi
et al., 2011; Andreae, 2019)) provides estimates of dry biomass consumption and also of total carbon (assuming biomass is
50% x 5% carbon), or via use of EF ratios of any trace gas to CO also estimates of other trace gas emissions totals (Nguyen et
al., 2023; Nguyen and Wooster, 2020).

The regionally comprehensive FRP time-series used herein is the Global Fire Assimilation System (GFAS v1.2) FRP dataset
described in (Kaiser et al., 2012), generated as part of the Copernicus Atmospheric Monitoring Service (CAMS:
https://atmosphere.copernicus.eu/) and widely used (e.g. Di Giuseppe et al., 2018; Inness et al., 2019; Popovicheva et al., 2022)
The GFAS v1.2 record is based on per-pixel FRP retrievals contained within the Terra/Aqua MOD14/MDY 14 active fire
products (Giglio et al., 2016), using these to generate daily mean cloud-adjusted FRP data gridded at 0.1° back to almost the
start of the MODIS mission (Kaiser et al., 2012).

However, whilst the GFAS v1.2 FRP data dating back to 2003 are considered a suitably long FRP time-series for generating
a long-term CO emissions record, they are less well suited to the initial generation of the ECZ, coefficients linking FRP to rate
of CO emissions since they provide only daily average FRP values. Specifically, the daily average FRP data contained in
GFAS v1.2 cannot be used to estimate the amount of FRE emitted by a fire from the night-time FRP minimum up until the
early afternoon TROPOMI overpass, since only daily average FRP is provided, and yet this sub-daily FRE value is required
at the set of matchup fires to generate the initial ECZ, emissions coefficients. For this reason, these coefficients were instead
derived using the alternative GFAS v1.4 implementation (Kaiser et al., 2024), which applies the fire diurnal cycle model of
(Andela et al., 2015) to the 0.1° gridded MODIS FRP used to generate GFAS v1.2 but now to obtain hourly gridded FRP
estimates. At the location of each matchup fire, these hourly FRP data can then be integrated over the required time period
from the night-time fire minimum up until the S5P (TROPOMI) satellite overpass time to generate the FRE released. Though
GFAS v1.4 goes back only to 2019, this is perfectly sufficient for deriving the ECZ, coefficients.

The full selection process for the fire matchups to which this procedure is applied is described in Sect. 3.2; and at each fire

the relevant FRE was calculated as described in Sect. 3.3 using as the temporal integration period the time between the early

5



160
161
162
163
164
165
166

167

168
169
170
171
172
173
174
175

https://doi.org/10.5194/egusphere-2025-4486
Preprint. Discussion started: 29 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

morning fire activity minimum and the S-NPP VIIRS overpass made almost simultaneously to that of SSP (Sect. 3.4). Once
sufficient matchup fires existed for each fire biome covered (see Sect. 3.5), we generated ECZ, for these biomes as detailed in
Sect. 3.6. These emission coefficients were then multiplied by the full GFAS v1.2 FRP record (Jan 2003 — Dec 2024, Sect.
4.1), to generate a HLFREM CO emission timeseries. Additionally, via the application of the appropriate EFs, it was also
possible to generate a HLFREM Carbon emission timeseries using GFAS v1.2 (Sect 4.2). For both the CO and Carbon emission
timeseries, the HLFREM emissions will be compared to pre-existing emission databases; namely FEER, GFAS v1.2, and

GFED v4.1s.

3.1. Region of Interest Selection

HL fire is seasonal in nature, dominantly present in the Northern Hemispheric Summer months (June, July, August, Fig.
2a). Four HL ROIs and matching time periods were used from within this period to generate the set of matchup fire, and each
of the ROI extractions focused on a period when fire activity was maximised in that ROI, as shown in Figs. 2b and 2c, and
detailed in Table 1. Landcover data, natively at 300 m grid resolution, taken from the ESA Climate Change Initiative (ESA -
CCI) 2018 land cover map (ESA, 2017) was used to classify biomes within the ROI’s, based on 11 ‘fire-biome’ classes
aggregated from the original 37 landcovers (Table A1), as shown in Fig. 2b. The two ROIs in Boreal Asia (HL-BOAS-20 and
HL-BOAS-21) were dominated by the Deciduous Needleleaf Forest fire biome, whereas those in Boreal North America (HL-
BONA-19 and HL-BONA-23) were dominated by Evergreen Needleleaf Forest fire biome.
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177  Figure 2: HL fire information. (a) Mean monthly FRE (2003 — 2024) for HL fires (= 60°N) in the regions used by the Global Fire
178 Emissions Database (GFED; (Randerson et al., 2017), BONA: Boreal North America, EURO: Europe, BOAS: Boreal Asia), as derived
179  from GFAS v1.2. (b) ROI and aggregated fire biome map, as derived from the CCI Land Cover 2018 map (ESA, 2017) and with
180 biome aggregation detailed in Table A1. (c) The four ROIs used in this study within which the 833 fire-matchup (shown as crosses)
181  were identified.

182 Table 1: Acronyms and Geographic bounding boxes of ROIs, as shown in Fig. 2c.
ROI Full Name ROI Acronym Bounding Box
High Latitude Boreal North America 2019 HL-BONA-19 ?8;5\1 V\_/ 7-01061;1‘; W
High Latitude Boreal Asia 2020 HL-BOAS-20 ?8;5\1 E_-715 ; ST:I ,E
High Latitude Boreal Asia 2021 HL-BOAS-21 ?8;5\1 E_-7?40 (}j ,E
High Latitude Boreal North America 2023 HL-BONA-23 60°N-70°N,

100° W - 140° W

183 3.2. Data Used and Plume Identification

184 Within each of the four ROIs shown in Figs. 2b and 2c, the potential cloud-free matchup fires were manually identified and

185 examined via visual inspection of multispectral and AF Products detailed in Table 2, based on the following criteria:
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186 e Clear smoke emission visible in the VIIRS true colour (Red: M05, Green: M04, Blue: M03) imagery, and without
187 apparent mixing with other nearby smoke plumes.
188 e  Clear visual indication of a developed smoke plume, spread by the wind, in the same VIIRS true colour imagery.
189 e  Clear identification of a region of shortwave infrared thermal emission (hereby referred to as the “burning area”)
190 resulting from active combustion, as seen in a VIIRS false colour (Red: M11, Green: 102, Blue: 101) imagery.
191 e AF Pixels present within the “burning area” as deduced from the VIIRS VNP14 and MODIS MOD14/MYD14 AF
192 Products.
193 Table 2: Satellite data products used during the manual inspection and digitization of matchup fire polygons.

Parameter Satellite Product Code Resolution (nadir)

VIIRS Moderate Resolution L1B Calibrated Radiances S-NPP VNP02MOD 750 m x 750 m

VIIRS Moderate Resolution L1B Terrain Corrected Geolocation ~ S-NPP VNP0O3MOD 750 m x 750 m

VIIRS Imagery Resolution L1B Calibrated Radiances S-NPP VNPO2IMG 375mx 375 m

VIIRS Imagery Resolution L1B Terrain Corrected Geolocation ~ S-NPP VNPO3IMG 375mx375m

VIIRS Thermal Anomalies/Fires S-NPP VNP14v002 750 m x 750 m

MODIS Thermal Anomalies and Fire TERRA MOD14v001 1.0 kmx 1.0 km

MODIS Thermal Anomalies and Fire AQUA MYD14v001 1.0 kmx 1.0 km

VIIRS Enterprise Processing System Aerosol Optical Depth S-NPP AOD EPS 750 m x 750 m

TROPOMI Level 2 Total Column Carbon Monoxide Sentinel-5P L2 _CoO 7.0 km x 3.5 km
194

195 Each potential matchup fire then had its smoke plume and associated burning area extent digitized and examined; based on
196 manual interpretation of the VIIRS multispectral imagery, matching VIIRS AF and Aerosol optical depth (AOD) products
197 (NOAA, 2020), and TROPOMI TCCO products, as shown in Fig. 3.
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Figure 3: Example of a matchup fire imaged in Siberia (62.39° N, 167.49° E) on 28/07/2020 at 01:42 UTC (13:42 PETT). The digitised
outline of the plume (cyan) and burning area (red) are shown superimposed on (a) RGB (M05-M04-M03) imagery via S-NPP
(VIIRS), (b) AOD (processed via EPS) from S-NPP (VIIRS), (c¢) Sentinel-5P TCCO data, (d) False Colour Composites (M11-102-
101) via S-NPP (VIIRS), (e) VIIRS Active Fire Product (VNP14) from S-NPP (VIIRS). Green: Non burning vegetation. Yellow:
Active Fire Hotspot, Blue: Water, White: Cloud, Black: No Data. (f) Geographic location and extent of the plots shown (red).

3.3. Fire Radiative Energy Estimation

To calculate the FRE for each matchup fire, each digitised burning area polygon was converted to a binary mask and used to
extract the FRP time-series from the hourly-timestep FRP record held within GFAS v1.4 (see example in Fig. 4). HL orbital
convergence ensured the calculation was based on significantly more polar-orbiting observations than would be the case at
lower latitudes (Fig. 1), and, following (Nguyen et al., 2023), the FRP integration took place from the 06:00 hrs local time fire
activity minima (Fig. A1) up until the time of the almost simultaneous early afternoon S5P and Suomi S-NPP overpasses.
Mean FRP record length for all matchup fires was 7.3 hrs (minimum 4 and maximum 11 hours), with the variation due to the
orbital convergence (Fig. 1) and this results in the match-up fires being observed by Sentinel-5P up to three times per day from

different ascending overpasses.
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Figure 4: Example of the hourly FRP time-series from GFAS v1.4, used to generate an FRE measure for a single matchup fire (i.e.
the match-up fire in Fig. 3, as shown above). The hourly FRP timeseries data were generated from the set of individual FRP
observations provided by MODIS on AQUA and TERRA, using the diurnal cycle model of Andela et al., (2015). Additionally, the
VIIRS observations on S-NPP used for fire-matchup identification are also shown. Times of the individual satellite overpasses, as
well as of the S5P overpass time used to provide the TCCO data for this fire-matchup, are indicated.

3.4. Excess CO Estimation

For each fire-matchup, the smoke plume polygon with a surrounding buffer of one pixel was also used to generate a binary
mask employed to extract the relevant SSP TROPOMI TCCO data within the plume, along with a measure of the ambient
background TCCO ( TCCOgg, taken as the minimum TCCO within the buffered mask). Total excess plume CO (COgy) was
then calculated for each fire-matchup, as the sum of all COgy from each S5P pixel associated with each fire-matchup, using
Eq. (1).

COy, = Z(choM — TCCOgg) . A. Mo 1)

where TCCOy; is the TCCO within the buffered binary mask (units: mol m2), TCCOgg is the ambient background TCCO
(units: mol m?), A is the S5P pixel size (units: m?) calculated from the geographic coordinates of the pixel corners, and Mco

the molecular weight of CO (units: g mol').

3.5. Fire Biome Estimation

All MODIS and S-NPP AF pixels within the fires burning area polygon and timed during the FRP temporal integration
period had their fire-biome determined using the aggregated biome data shown in Fig. 2b. For a single fire if > 50% of the AF
pixels were from a single fire-biome then that was set as the fires “dominant” fire-biome. Fires having no such dominant class

were discarded, as their derived emission coefficients could not be properly allocated to a fire-biome.

3.6. Biome Specific Emission Coefficient Generation

In total, 833 individual matchup fires were initially identified, with 125 of those being discarded as having no dominant
fire-biome. Of the 708 fires remaining, 468 were located in Deciduous Needleleaf Forest (DecNeedle), 186 in Evergreen

Needleleaf Forests (EGNeedle), 26 in Grassland, 22 in Shrubland, and six in a fire-biome described as ‘Sparce’. The locations

10
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238 of the matchup fires for the four most well-sampled fire-biomes identified (DecNeedle, EGNeedle, Grassland, and Shrubland)
239  are mapped in Fig. 2¢c. Analysis of the mean annual FRE totals from GFAS v1.2 (Fig. 5, Table 3) shows that these four biomes
240 are responsible for the vast majority (~93%) of the total FRE generated by HL fires.
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242  Figure 5: Mean annual HL FRE (a) totals (PJ), and (b) contribution (%) of each of the four most well sampled biomes identified as
243  part of the fire-matchups database, as well as from additional biomes, taken from GFAS v1.2 (2003-2024).

244  Table 3: Mean Annual FRE totals (PJ) and contribution (%) for each of the four most well sampled biomes, compared to all other

245 HL biomes, calculated using GFAS v1.2, between 2003 and 2024.

HL Biome Mean Annual Standard Mean annual FRE ~ Standard
FRE Total (PJ) Deviation (PJ) Contribution (%) Deviation (%)

All 205.4 115.5 100 0.0
DecNeedle 100.2 106.9 43.0 24.7
EGNeedle 67.8 59.9 34.2 19.1
Grassland 17.9 12.4 11.6 8.4
Shrubland 6.7 6.0 42 4.1
All other biomes 12.8 9.9 7.0 33

246 Following Nguyen et al., (2023), the FRE and Excess CO data of each fire-biomes matchup fires were used to derive a set
247  of ECZ, emissions coefficients via zero-intercept OLS linear regression (Fig. 6); with results reported in Table 4. As detailed
248  in Nguyen and Wooster, (2020), “FEER-equivalent” ECZ,, values are also reported therein, calculated from the grid cell (not

249 biome) based FRP-based total particulate matter (TPM) emissions coefficients (ECZp,,) reported in Ichoku and Ellison,
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(2014) (available at www.feer.gsfc.basa.gov/data/emissions/) and the relevant biomes TPM-to-CO EF ratios (Nguyen and
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Figure 6: HLFREM biome-specific CO emission coefficients (EC’ ’C’o, in g MJ!) derived from the set of matchup fires for (a) Deciduous
Needleleaf Forests, (b) Evergreen Needleleaf Forests, (¢) Grasslands, and (d) Shrubland fire-biomes. Each datapoint represents a
single matchup fire that had its plume total Excess CO and total released FRE assessed for a matching time-period, and the E C’Eo
value for the fire-biome is derived from the slope of the OLS linear best fit (solid black line) to these data. Colour of the scatter
points denotes the ROI containing the fire (see Fig. 2¢). Error bars denote the standard deviation of FRP values and the uncertainty
in the SSP TCCO produce respectively, as calculated following (Nguyen et al., 2023). The shaded area indicates the uncertainty on
the slope of the linear best fit, taken to be the uncertainty on the derived ECZ, value.

Table 4: Emissions coefficients for CO (EC Ic’o) as derived in Fig. 6, along with FEER-equivalent values for comparison and those
for carbon (EC?) calculated using EC2, and EFs from (Andreae and Merlet, 2001) and (Akagi et al., 2011) - labelled -AM, and -AG
respectively, in Sect. 4.2.

HLFREM Biome Sentinel-5P FEER-equivalent Sentinel-5P FEER-equivalent Sentinel-5P
TCCO-derived ECE, [gMI] TCCO-derived ECE_ 4 [gMI] TCCO-derived
ECEo [gMJ'] ECE_am [gMT] ECZ_ 56 [gMI]
DecNeedle 122.88 198.3 553.84 893.7 449.90
EGNeedle 121.30 169.5 546.71 764.1 444.12
Grassland 69.02 198.3 311.08 893.7 252.71
Shrubland 105.20 151.7 4742 683.8 385.17
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4. Emission Inventory Comparisons

4.1. High Latitude Carbon Monoxide Emission Timeseries

EGUsphere\

To generate a long-term CO emissions timeseries for the HL biomes, we applied the derived ECZ, emissions coefficients to

the GFAS v1.2 FRP data available from the current time back to almost the start of the MODIS record (2003). The resulting

monthly and annual CO emissions timeseries are shown in Fig. 7. Also shown are the FEER-equivalent CO timeseries, the CO

emissions that come as part of the GFAS v1.2 dataset derived from the FRP values as per Kaiser et al., (2012), and the GFED

v4.1s CO emissions (2003 — 2023). The mean annual CO emissions for the four biomes using HLFREM, FEER, GFAS v1.2,

and GFED v4.1 can be found in Table 5, and note that of these four datasets, the same MODIS FRP data drive the emissions
estimates in HLFREM, GFAS v1.2 and FEER, whilst GFED v4.1s uses primarily MODIS burned area data (Giglio et al.,

2013). However, also note that the conversion coefficients linking daily mean FRP to biomass burned in GFED v1.2 as a prior

step to its CO emissions estimation were generated using linear regression against burned biomass estimates of an earlier

version of GFED (Kaiser et al., 2012). HLFREM removes this link by directly relating the daily FRP measures to CO fluxes

via the conversion coefficients derived from FRP and Sentinel-5P CO data at the matchup fires.

Table 5: Mean annual (2003-2023) CO emissions for the inventory-biome pairs. Uncertainty values are the standard error of the

mean.
Inventory DecNeedle EGNeedle Grassland Shrubland
HLFREM 7.83+1.92 Tg 5.00+1.03 Tg 0.81+0.13 Tg 0.46+0.10 Tg
FEER 12.64+3.10 Tg 6.99+143Tg 233+037Tg 0.67+0.15Tg
GFAS v1.2 11.48 £2.66 Tg 7.18+1.39 Tg 4.03+0.80 Tg 0.80+0.16 Tg
GFED v4.1s 13.63+4.07 Tg 8.74+2.23Tg 2.12+032Tg 0.68+0.16 Tg
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Figure 7: Timeseries of Monthly (a,c,e,g) and Annual (b,d,f,h) HL Wildfire emissions of CO for (a,b) DecNeedle, (c,d) EGNeedle,
(e,f) Grassland, and (g,h) Shrubland biomes, calculated using the E C’L’-o from HLFREM (blue) and FEER (orange) as detailed in
Table 4 using daily FRE totals generated by GFAS v1.2. GFAS v1.2 (green) and GFED v4.1s (red) CO emissions for the same biomes
are shown in green. OLS regression analysis can be found in Fig. A2.

It can be seen from Fig. 7 that the temporal patterns of HLFREM CO emissions across all biomes are consistent with those
from the other three inventories, with the temporal patterns being more pronounced in the two forested and Shrubland biomes.
The peaks also match independent reports of fire activity, for example with the DecNeedle biome showing CO peaks in both
2020 and 2021 consistent with the high fire activity reported across HL Russia (dominated by DecNeedle) in these years
(Kharuk et al., 2021; Ponomarev et al., 2021). Similarly, the CO increase in 2023 in the EGNeedle biome is consistent with
reported high fire activity across HL North America (Byrne et al., 2024; Dodd et al., 2018). It is clear from Fig. 7 and Table 5
that the CO emissions from HLFREM across the two forested biomes are consistently smaller than those of the other
inventories (DecNeedle: 38%, 32%, and 43% smaller than FEER, GFAS v1.2, and GFED v4.1s respectively, EGNeedle: 28%,
30% and 43% smaller than FEER, GFAS v1.2, and GFED v4.1s respectively). The HLFREM CO emissions for Shrublands
are also smaller by the same magnitude (31%, 43%, and 33% smaller than FEER, GFAS v1.2, and GFED v4.1s respectively).
For Grasslands, however, the HLFREM CO emissions are significantly smaller (65%, 80%, and 62% smaller than FEER,
GFAS v1.2, and GFED v4.1s respectively), though the grassland ECZ, emission coefficient (Fig. 6¢) has a smaller r2 value,
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potentially making them more uncertain. Additionally, there appear to be some unusual patterns in the Grassland biome; the
CO emissions from GFAS v1.2 exhibit a peak in June and July 2015 and July 2021, peaks not seen in the HLFREM- nor
FEER-derived versions. On investigation, these peaks are due to an above-average number of grassland fires occurring in
regions defined within GFAS as having peat (Kaiser et al., 2012), as opposed to extratropical forests with organic soils (EFOS).
The presence of peat dramatically increases the conversion factor linking FRP to dry matter combustion in the GFAS system
via the linear regression performed against GFED biomass burned estimates (Kaiser et al., 2012). Therefore, in the GFAS
v1.2 CO emissions dataset, the same FRE values for grassland fires in these ‘PEAT’ regions results in significantly more CO
than identical FRE fires in the EFOS regions. The HLFREM and FEER-equivalent inventories do not make this distinction,
and so their CO timeseries do not show such elevated CO emissions peaks related to differing Grassland fire locations. Figure
8 shows the fractional dominant fire type as denoted by GFAS v1.2 and GFED v3.1 for the four HL biomes used in this study.
The Grassland biome has a larger fraction of PEAT (11.7%), compared to the other three biomes (DecNeedle: 2.8%,
EGNeedle: 1.6%, Shrubland: 3.1%). Nevertheless, since that CO emissions from fires in Grassland only represent ~12% of

the multi-biome total FRE (Table 3) the overall impact of this difference is limited on the total CO emissions values.
SA SAOS AG AGOS TF PEAT EF EFOS

- )
1o HL DecNeedle HL EGNeedle HL Grassland HL Shrubland
094 (b) 4 (c) 4 (d) 1(e)
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Figure 8: GFAS v1.2 land cover classes, based on dominant fire type in GFED v3.1 and organic soils and peat maps, taken from
(Kaiser et al., 2012). (a) Land cover classes map, for Savannah (SA), Savannah with organic soils (SAOS), Agriculture (AG),
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Agriculture with organic soils (AGOS), Tropical Forest (TF), Peat (PEAT), Extratropical Forest (EF), and Extratropical Forests
with organic soils (EFOS). 60°N is denoted with a red line. (b-e) Fractional land cover for (b) HL DecNeedle, (¢) HL EGNeedle, (d)
HL Grassland, and (e) HL Shrubland.

In terms of spatial patterns, Fig. 9 maps the annual total GFAS v1.2 FRE values for the HL-BONA-2023 and HL-BOAS-
2021 ROIs, detailed in Table 1, from which the HLFREM ECZ, were derived from. The elevated annual FRE totals (Figs. 9a
and 9b) align with CO emissions across all four inventories (Figs. 9c-h), whose spatial pattern is very similar, and corresponded

to the extreme wildfire activity reported in these years and regions (Byrne et al., 2024; Kharuk et al., 2021).
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Figure 9: Annual FRE totals from GFAS v1.2 (a, b) and CO emissions (c-j) for the HL-BONA-23 (a, c, e, h, i) and HL-BOAS-21 (b,
d, f, h, j) ROIs from the HLFREM (¢, d), FEER-equivalent (e, f), GFAS v1.2 (g, h), and GFED v4.1s (i, j), respectively. Grey areas
denote regions that do not fall under one of the four HLFREM biomes.
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4.2. High Latitude Carbon Emission Timeseries

Following the approach of (Mota and Wooster, 2018; Nguyen et al., 2023; Nguyen and Wooster, 2020), emissions estimates
of total carbon, as well as any other GHG or trace gas, can be derived from the CO emissions provided by the HLFREM
approach, simply via use of standard ratios of the relevant gaseous emission factors. Numerous different summarised EF
inventories exist, with for example GFAS v1.2 using (Andreae and Merlet, 2001) and GFEDv4.1s using (Akagi et al., 2011).
HL wildfire emissions of Carbon, for example, can be calculated using its biome-specific emission coefficient (EC2), derived

using the EF ratio between Carbon and CO, and the HLFREM CO emission coefficient (ECZ,), via Eq. (2):

F¢
Feo

ECE = —CECk, ©)

Where the emission coefficients have units: g MJ™! and the emission factors units: g kg™'. EFg, values are taken from the

aforementioned emission inventories, and EFZ being calculated using Eq. (3):

, 12 1212
EFC = EEFCOZ +%EFCO +EEFCH4 (3)

Where EF?, ECg,,, EC{y, and EC{y, are the biome specific wildfire EFs for burnt carbon, CO,, CO, and CHa respectively,
assuming these make up more than 95% of burnt carbon emitted in gaseous form (Akagi et al., 2011) and that by comparison
carbon in aerosols is negligible by mass (Akagi et al., 2011; Andreae and Merlet, 2001). Multiplying these carbon emissions
by a factor of two then provides an estimate of the amount of biomass burned.

Similar to Fig. 7, Fig. 10 shows our multi-inventory Carbon emissions calculated across the four most dominant HL fire
affected biomes. As GFAS v1.2 uses EFs from Andreae and Merlet, (2001), we calculated EC2 for both HLFREM and FEER
using these same EFs, as shown in Table 4. However, as GFED v4.1s uses EFs from (Akagi et al., 2011), we also calculated
ECE for HLFREM using these same EFs, also shown in Table 4. The HLFREM and FEER EC? were applied to the GFAS
v1.2 daily FRE totals, and, similar to Table 5, mean annual HL Wildfire Carbon emissions totals were calculated, and are
shown in Table 6.

The HLFREM carbon emission timeseries exhibits a very similar behaviour as the CO emission timeseries from which it
was derived; with a strong temporal similarity with the carbon emissions of the other inventories. The difference between the
HLFREM carbon emissions and the other inventories for the two forested biomes (DecNeedle: 38%, 30%, and 42% smaller
than FEER, GFAS v1.2, and GFED v4.1s respectively, EGNeedle: 28%, 30% and 42% smaller than FEER, GFAS v1.2, and
GFED v4.1s respectively) and the Shrubland biomes (31%, 41%, and 32% smaller than FEER, GFAS v1.2, and GFED v4.1s
respectively), are very similar to those of the CO emissions, differing by < 2% from these. The HLFREM carbon emission
timeseries from Grassland also exhibits a similar behaviour to those of the Grassland HLFREM CO emission timeseries (65%,
74%, and 61% smaller than FEER, GFAS v1.2, and GFED v4.1s respectively); in that the emission estimations are significantly
smaller than those from the other inventories, although the difference from GFAS v1.2 (6%) is larger than those from the other

two inventories (2%).
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Figure 10: Timeseries of HL Wildfire Emissions of Carbon for (a, b) Deciduous Needleleaf Forest, (¢, d) Evergreen Needleleaf Forest,
(e, ) Grasslands, and (g, h) Shrublands biomes, for (a, c, e, g0 FEER, GFAS v1.2, and HLFREM (using EFs from (Andreae and
Merlet, 2001)), and (b, d, f, h) GFEDv4.1s and HIFREM (using EFs from (Akagi et al., 2011)). Regression analysis on the timeseries
can be found in Fig. A3.

Table 6: Mean annual (2003-2023) C emissions for the inventory-biome pairs. HLFREMam details the mean annual HL. Carbon
emissions, using EC’C’_AM, whilst HLFREM g details the mean annual HL Carbon emission using EC’C’_AG. HLFREM and FEER HL
Carbon emissions are generated using GFAS v1.2 FRE totals. Uncertainty values are the standard error of the mean.

Inventory DecNeedle EGNeedle Grassland Shrubland

HLFREMaum 3529+8.67Tg 22.53+4.62Tg 3.65+0.57Tg 2.08+0.47 Tg
HLFREMag 28.67+7.04 Tg 18.30£3.76 Tg 296 +047 Tg 1.69+£0.38 Tg
FEER 56.95+13.99 Tg 31.49+6.46 Tg 1048 £ 1.65 Tg 3.00+0.67 Tg
GFAS v1.2 50.72+12.04 Tg 32.14+6.38 Tg 14.02+2.49 Tg 352+0.74 Tg
GFED v4.1s 49.60 £ 14.82 Tg 31.40+7.96 Tg 757+1.13 Tg 247+0.57 Tg
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5. Summary and Conclusions

Taking advantage of the increased number of polar orbiting satellite overpasses nearer the poles, we have extended the Fire
Radiative Energy Emissions (FREM) approach to direct “top down” fire emissions estimation to High Latitudes (HL) fires,
and to polar-orbiting FRP datasets. Previously the approach was limited to use on low-to-mid latitude geostationary FRP data
(Nguyen et al., 2023). This highly direct approach to estimating fire emissions uses only satellite observations of fire radiative
power and CO, removing the need for assuming the amount of biomass per unit area, pre-fire fuel loads and combustion
completeness, or correlations between FRE and burned biomass developed in the laboratory, in small scale fires, or elsewhere.
Negating the requirements for these parameters removes a key source of uncertainty associated with other emissions estimation
techniques (Kasischke and Penner, 2004; Reid et al., 2009; Wooster et al., 2015), and provides a means of converting the FRE
data from the Global Fire Assimilation system (GFAS) into fire emissions without use of factors derived via linear regressions
against the GFED burned biomass totals, as is used currently within GFAS (Kaiser et al., 2012).

Via a set of 708 matchup fires across four regions of interest in the HL region above 60°N, we used SSP TROPMI Total
Column Carbon Monoxide (TCCO) data to calculate total plume CO and total FRE up to the time of the S5P overpass from
GFAS v1.4. From these data a set of biome specific CO emission coefficients (ECZ,) were generated using the approach of
(Nguyen et al., 2023) that can then be used to convert further FRP data of fires in the four dominant HL biomes (Deciduous
Needleleaf Forests, Evergreen Needleleaf Forests, Grasslands, and Shrublands) to emission rates of CO. Application of these
emissions coefficients to the daily FRE totals from GFAS v1.2 enabled us to produce new CO emissions inventory for these
four biomes in the HL region, unreliant on any additional parameters or datasets.

The CO emissions derived from this new approach were compared to three other widely used fire emission inventories,
those produced and outputted by GFAS v1.2 itself, those from FEERv1.0-GFASv1.2 (calculated using GFAS FRE and a
FEER-equivalent ECZ,; (Nguyen et al., 2023)), and those from GFED v4.1s. Total carbon emissions estimates were also
calculated based on emission factor ratios between CO and Carbon. The HLFREM CO and Carbon emissions timeseries and
CO spatial patterns derived using the HLFREM approach were found to be in good temporal and spatial agreement with the
FEER-equivalent, GFAS v1.2, and GFED v4.1s inventories, particularly for the two forested biomes and shrublands, producing
relatively similar but generally smaller emissions totals. Mean annual HLFREM CO and carbon emission totals were found to
be 28-43% smaller than totals produced by FEER, GFAS v1.2, and GFAS v4.1s for the two forested biomes and Shrubland
biomes. HLFREM CO and carbon emission totals from Grassland were also in good temporal and spatial agreement with the
other inventories, although the emissions were significantly lower (61-80%) than those from other inventories; and whilst this
could be correct, it is also possibly a result of the relatively small number of fire-matchups found during the generation of the
HLFREM ECghesstand and perhaps a low bias. Compounding this, the largest difference (GFAS v1.2, 80% lower CO
emissions, 74% lower carbon emissions) was found over the Grassland biomes, which in certain of the other databases has
some consideration of peat burning included that is not accounted for in the HLFREM methodology. On the other hand, if the

matchup fires included areas having peat burning, the impact of this would already be in the derived emissions coefficients/
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Future developments in advancing the HLFREM approach will include consideration of this organic soil burning, as well
as expansion of both the biomes covered and the number of fire matchups in each. Our aim is to develop a long-term and
geographically continuous HL fire emissions dataset that does not rely on parameters taken from modelling, from correlations
between inventories, or from conversion coefficients taken from laboratory or small-scale fire experiments when converting
the satellite observations into emissions estimates. Instead, the FREM approach uses information extracted from the satellite
data itself to generate the necessary conversion coefficients, an approach that we feel has great potential to expand further as

both active fire and trace gas remotely sensed datasets continue to advance.

Appendix A

Table Al: Aggregated CCI landcover classes (taken from ESA 2017) assigned to each HLFREM biome.

HLFREM Biome Full Biome Name Assigned CCI Class Codes
(>60°N)
Managed Managed 10, 11, 12, 20, 30, 40
EGBroad Evergreen Broadleaf Forests 50, 160, 170
DecBroad Deciduous Broadleaf Forests 60, 61, 62,90
EGNeedle Evergreen Needleleaf Forests 70,71, 72
DecNeedle Deciduous Needleleaf Forests 80, 81, 82
Grassland Grassland 100, 110, 130, 180, 190
Shrubland Shrubland 120, 121, 122
Sparce Sparce 140, 150, 151, 152, 153
Bare Bare 200, 201, 202
Snow/Ice Snow and Ice 220
Local Time
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Figure Al: Median (blue) and mean (orange) hourly FRP of all plumes identified in the HLFREM study, during the day before

observation (negative hours relative to local midnight) and day of observation (positive hours relative to local midnight) from the

hourly FRP dataset. Local midnight and 06:00 local time is shown with the black and red line, respectively.
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Figure A2: OLS Regression analysis of the Annual HL. CO Emissions, comparing the HLFREM emissions (calculated using GFAS
v1.2 FRE totals) with (a-d) FEER, (e-h) GFAS v1.2, and (i-1) for Deciduous Needleleaf Forests (a,e,i), Evergreen Needleleaf Forests
(b,£,j), Grassland (c,g,k), and Shrubland (d,h,l) biomes. OLS regression and associated errors are shown on each plot (displayed as
the solid line and shading respectively), with the R? value being shown in the brackets. A 1:1 line (dashed line) is also shown.
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Figure A3: OLS Regression analysis of the Annual HL. C Emissions, comparing the HLFREM emissions (calculated using GFAS
v1.2 FRE totals) with (a-d) FEER, (e-h) GFAS v1.2, and (i-1) for Deciduous Needleleaf Forests (a,e,i), Evergreen Needleleaf Forests
(b,£,j), Grassland (c,g,k), and Shrubland (d,h,l) biomes. As the HLFREM C Emissions have been calculated via EF ratios with respect
to Carbon Monoxide, different EF ratios have been used to compare FEER and GFAS v1.2 (using EFs from (Andreae and Merlet,
2001), referred to as HLFREMawm), and GFEDv4.1s (using EFs from (Akagi et al., 2011), referred to as HLFREMac). OLS regression
and associated errors are shown on each plot (displayed as the solid line and shading respectively), with the R? value being shown in
the brackets. A 1:1 line (dashed line) is also shown.

7. Code Availability

Code is available upon request to William Maslanka (william.maslanka@kcl.ac.uk).

8. Data Availability

Sentinel-5P products are distributed freely by the Copernicus Data Space Ecosystem (https://dataspace.copernicus.eu/, last
accessed 19 March 2025), as is the VIIRS and MODIS AF and Multispectral Products by the LAADS DAAC
(https://ladsweb.modaps.eosdis.nasa.gov/, last accessed 19 March 2025), and the VIIRS AOD EPS product on the NOAA
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Comprehensive Large Array-Data Stewardship System (CLASS, https://www.aev.class.noaa.gov/, last accessed 19 March
2025). GFAS vl1.2 data is distributed freely through the ECMWF  Atmosphere Data  Store
(https://ads.atmosphere.copernicus.eu/, last accessed 19 March 2025). GFAS v1.4 data used in this study is available upon
request. GFED v4.1s data is distributed freely from the GFED web portal (https://www.globalfiredata.org/, last accessed 19
March 2025). FEER data is distributed freely on the Fire Energetics and Emission Research website
(https://feer.gsfc.nasa.gov/index.php, last accessed on 19 March 2025).
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