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Abstract. This review synthesizes current methods for acquiring and processing Earth observation (EO) data relevant to 

Arctic sea ice melt ponds (MPs), pools of meltwater that form on the ice surface during the polar summer. By reducing 

albedo, MPs amplify the ice–albedo feedback and alter the sea ice energy budget, exerting a strong influence on the Arctic 

climate system. Robust observational records are therefore essential for improving sea ice prediction in a rapidly changing 

and highly sensitive polar environment. Despite this importance, melt pond parameterizations remain underdeveloped in 15 

many sea ice models. Advancing these parameterizations, through refinement of existing schemes and integration of novel 

approaches, is a critical priority for better constraining sea ice evolution and its role in the climate system. 

Here we review the main EO methods used in MP studies, including active and passive optical sensors (multispectral and 

LiDAR) and microwave instruments (synthetic aperture radar, radiometers, and scatterometers). We also summarize melt 

pond signatures across the electromagnetic spectrum, outlining the strengths and limitations of each sensor. Complementary 20 

in situ observations from field campaigns, together with key processing techniques, are discussed, alongside a synthesis of 

available MP datasets from satellite missions and ground-based campaigns. Persistent EO data gaps, such as cloud cover, 

limited temporal sampling, and spatial constraints that lead to underrepresentation of different Arctic regions and ice types, 

remain a major challenge, highlighting the need for future missions with improved resolution, coverage, and spectral 

capacity. 25 

By compiling and critically assessing these datasets and methods, and identifying current knowledge gaps, this paper 

provides the most comprehensive review of melt pond observations currently available. It is designed to support refinement 

of parameterizations and the development of multi-modal modelling approaches, crucial for addressing observational gaps 

and ultimately advancing the understanding and prediction of Arctic change. 

 30 
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1. Introduction 

The Arctic is one of the most vulnerable components of the Earth system to climate change, warming nearly four times faster 

than the globe since 1979 (Rantanen et al., 2022). The observed amplified warming, has far-reaching consequences (Previdi, 35 

et al., 2021; Shu et al., 2022) which correlates with a decline in Arctic sea ice volume, thickness and extent since the 

beginning of the satellite record (Stroeve et al., 2012a; Stroeve and Notz, 2018). By reflecting away a substantial part of the 

incoming solar radiation, sea ice acts as a regulator of the Earth’s temperature. However, in the past decades not only the 

Arctic sea ice has reached record September minima, it is also thinning (Giles et al., 2008) with ice moving towards a regime 

where multi-year ice (MYI) is being replaced by first-year ice (FYI) (Sumata et al., 2023). Melt ponds (MPs) are among the 40 

most distinctive features of this rapidly evolving Arctic sea ice surface: these are pools of meltwater that form on the sea ice 

surface (Figure 1) from the snow and sea ice melting in Spring and Summer, as well as from rainfall accumulation during the 

melt season. Melt ponds can cover up to 50% of the Arctic sea ice surface with peaks of 80% of cover on flat first year ice 

(Flocco et al., 2015), wherein they play an extremely large role in thermodynamic sea ice process and hence playing a 

pivotal role in the Arctic energy budget (Fetterer and Untersteiner, 1998; Curry et al., 1995; Eicken et al., 2004). 45 

 

 

Figure 1. (Left): Aerial photograph showing melt ponds on the surface of Arctic sea ice. Credits: Eric Fraim/NASA Operation 

IceBridge, July 25, 2017; (Right) Satellite image of Copernicus Sentinel-2 True colour of Arctic sea ice melt ponds (illustrating the 

large variability of pond color), leads and open ocean. Acquired on 17th June 2024 in the Northeastern coast of Greenland.  50 

 

The colour of melt ponds varies from light bluish to dark as it can be seen in Figure 1, largely depending on depth of the 

pond, type of ice (Buckley et al., 2020) and the properties of underlying ice (Lu et al., 2018) resulting in a considerable range 

of the value of melt pond albedo. It can vary from 0.2 over dark melt ponds to 0.4 for light melt ponds whereas the typical 

values for melting ice range between 0.6-0.7 (Perovich et al., 2002). Because of their low albedo, compared to snow and bare 55 

ice, melt ponds contribute to a positive ice-albedo feedback (Polashenski et al., 2012) leading to further melting. Pistone et 

al. (2014) found that the albedo change resulting from sea ice loss was equivalent to 25% of the direct forcing from CO2 

during the same period. 
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Numerous studies confirm that, the Arctic melt season is lengthening (Perovich et al., 2008; Markus et al., 2009; Rösel and 

Kaleschke, 2012; Pistone et al., 2014, Stroeve et al., 2014), suggesting an increase of the impact that the presence of melt 60 

ponds have in earlier months of the melting season. This is linked also to a shift in the Arctic sea ice spring predictability 

barrier, which imposes limits on regional forecasts initialised prior to spring (Bushuk et al., 2020). Several other studies, 

though, link melt pond state even to pre-melt season (Fuchs et al., 2025). In fact, melt ponds have a potential to predict the 

observed sea ice September minimum (Petty et al., 2017, Schröder et al. 2014), and it has been shown that the presence of, or 

improved parametrisations of melt ponds in Global Circulation Models (GCMs) can improve physical modelling of sea ice 65 

(Holland et al. 2012, Schröder et al., 2014; Liu et al., 2015), suggesting that melt ponds may provide a route through the 

Spring predictability barrier. 

Notable uncertainty still remains: Driscoll et al. (2024a) showed how models demonstrate a substantial sensitivity to 

uncertain melt pond parameters. Simulated sea ice thickness over the Arctic ocean can vary by as much as a meter after only 

a decade of simulation by altering the melt pond parameters in a sea ice model alone, while Polashenski et al. (2012) showed 70 

that different melt pond schemes only partially capture the evolution of the observed pond coverage. It has also been 

suggested that discrepancies between the rates of sea ice decline presented in IPCC reports are due to fundamental missing 

processes in sea ice models such as those related to melting and melt pond evolution (Stroeve et al., 2007; Stroeve et al., 

2012b; Bianco et al., 2024). 

Numerous field campaigns (notably SHEBA and MOSAiC), have provided invaluable observations that 75 

significantly  increased our insight and understanding of melt pond evolution, but single field campaigns still suffer from 

being local, and within a specific year, therefore being affected by the meteorological conditions of that time. Such 

campaigns, whilst offering high quality data are not necessarily representative of pan-Arctic evolution, and struggle to 

capture longer term trends in sea ice. Remote sensing data can provide consistent, spatially extensive observations of melt 

pond evolution across the entire Arctic basin, overcoming the spatial limitations of in situ campaigns. Satellite data such as 80 

MODIS, Sentinel-2, and ICESat-2 have been used to derive melt pond fraction, albedo variability, and surface topography at 

high spatial and temporal resolutions. These datasets allow for the tracking of melt pond onset, expansion, and decay over 

multiple years, offering insights into interannual variability and long-term trends. Furthermore, the integration of remote 

sensing observations into data assimilation frameworks and machine learning models holds promise for improving seasonal 

forecasts of sea ice extent and advancing our understanding of the role of melt ponds in modulating the Arctic surface energy 85 

budget. 

A sound representation incorporating all available data sources could potentially avoid timing errors that can affect presently 

available parametrisations, break sea ice Spring predictability barriers, and provide sound predictions for the future of sea ice 

loss.  Spatial and temporal gaps in data highlight a potential need for multi-modal approaches - ones that integrate a variety 

of diverse data sources - to improve the robustness of model physics and parametrisations, whilst furthering understanding of 90 

sea ice predictability. The increasing importance of these processes in a changing Arctic makes the case for a deeper 

understanding of melt ponds, including their observation, and inclusion of their parameterization in global climate models. 
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The objective of this literature review is to provide a systematic overview of Arctic melt ponds studies using Earth 

observation data. Specifically, this review aims to: (1) present a fundamental overview of melt pond observation techniques 

(2) outline different strengths and limitations of various remote sensing techniques, including airborne, spaceborne, optical, 95 

radar, and microwave approaches, for sensing melt ponds across different ice types; (3) review the key findings from Earth 

observation studies; (4) discuss the methodological advances and challenges in processing remote sensing data, including 

algorithm development, data fusion, resolution, and accuracy limitations; and finally, to (5) identify knowledge gaps and 

research opportunities. 

This literature review is primarily intended for the physical modelling and Earth observation communities and further 100 

supports data-driven research. It also provides a useful reference for climate scientists, operational forecasting centres, and 

policy stakeholders engaged in improving the understanding and prediction of Arctic melt pond processes, while 

highlighting existing gaps in EO data and methods that warrant further attention. 

2. Melt pond optical properties and seasonal evolution 

The presence of melt ponds significantly alters the optical properties of sea ice, primarily by reducing surface albedo and 105 

enhancing solar energy absorption and accelerating ice melt (Polashenski et al., 2012; Pistone et al., 2014). Observational 

studies have shown that pond-covered ice can experience melt rates two to three times greater than adjacent bare ice surfaces 

(Fetterer and Untersteiner, 1998). This enhanced absorption reinforces the ice–albedo feedback, making surface albedo one 

of the most influential parameters in governing the evolution of Arctic sea ice and the regional energy budget (Dickinson et 

al., 1983; Qu et al., 2015). Figure 2 illustrates the spectral dependence of albedo for various sea ice surface conditions, 110 

highlighting the pronounced reduction in reflectivity associated with melt pond development. 

 

Figure 2: Spectral albedo of different surfaces. Adapted from Light et al. (2022) 
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Bare ice (light orange curve in Figure 2) has a substantial surface scattering layer, providing a stable high reflectance varying 

between 0.75-0.8 in the blue-green region of the spectrum (at 450-500 nm) (Perovich et al., 2002). This highly scattering 115 

surface forms on melting, drained sea ice during spring and summer and its scattering properties change as melt progresses 

(Smith et al., 2022). The increase in snow grain size (which occurs with rising liquid water content in snow) is responsible 

for reducing the surface’s overall reflectivity (Warren, 1982, 2019).  

Besides colour and albedo, melt ponds also exhibit substantial spatial and temporal variability in terms of shape, and depths, 

and often form interconnected networks that evolve dynamically throughout the melt season (Fetterer and Untersteiner, 120 

1998; Eicken et al., 2002). This morphological and radiometric complexity presents considerable challenges for their 

detection, classification, and parameterization in both remote sensing applications and climate models (Tschudi et al., 2008; 

Rösel et al., 2012). Accurate representation of melt pond characteristics is critical for improving simulations of the surface 

energy balance and for better constraining ice–albedo feedback mechanisms within coupled sea ice–climate models 

(Schröder et al., 2014; Liu et al., 2015).  125 

The shape, colour, connectivity and distribution of melt ponds are primarily influenced by two main factors: meltwater 

balance and ice surface features. Meltwater inflows and outflows on the sea ice surface depend on multiple variables such as 

melt rate, precipitation, snow cover, pond catchment size area, sea ice type, and salinity (Eicken et al., 2004; Perovich et al., 

2009; Polashenski et al., 2012; Kim et al., 2018). Meltwater moves vertically through percolation via connected pore 

structure in the ice (see Fig.3b, side view) or horizontally across the surface via cracks and brine drainage channels (see 130 

Fig.3-a-b-c, nadir view.). Melt ponds, forming above sea level, create hydrostatic pressure that drives fresh meltwater 

downward through porous sea ice, flushing out salt. Some of this meltwater refreezes within the ice, reducing porosity and 

limiting drainage (Polashenski et al., 2012).  

Melt ponds begin forming in late May and cover large portions of the sea ice by mid-June. They deepen and expand through 

July, beginning to refreeze by late August or early September (Fetterer and Untersteiner, 1998, Rösel and Kaleschke, 2012). 135 

Figure 3 illustrates the seasonal cycle following four stages: (a) melt onset, (b) drainage, (c) melt evolution, and (d) freeze-

up. During onset, meltwater accumulates in depressions and cracks, lowering albedo to ~0.6, and further to ~0.3 as ponds 

form. In the drainage phase, increasing permeability allows percolation and drainage via macroscopic flaws, slightly raising 

albedo to ~0.5. Meltwater also spreads horizontally, interconnecting ponds. This interconnection follows predictable scaling 

patterns, with pond fractal dimension increasing around a critical area of 100 m², as smaller ponds coalesce to form large 140 

connected regions with boundaries resembling space-filling curves for ponds larger than 1000 m² (Hohenegger et al., 2012). 

This third stage marks the seasonal peak in pond coverage, with mature ponds showing albedo below 0.3 (Polashenski et al., 

2012). Refreezing begins in the final stage but can occur intermittently throughout the season, forming ice lids that halt 

inflow and reduce albedo effects which sometimes is masked further by snowfall (Grenfell and Perovich, 2004; Flocco et al., 

2015; Anhaus et al., 2021). 145 
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Figure 3: Main characteristics of the 4 stages of melt pond evolution: a) Melt onset and widespread ponding, (b) Drainage, 

percolation and interconnection of melt ponds, (c) Melt pond continue to evolve and area covered increases to the maximum and 

(d) Freeze up 

The influence of ice types and associated surface features, becomes especially apparent within this seasonal context, as they 150 

govern where and how ponds form and evolve. Melt ponds form more rapidly on flatter FYI surfaces, where water spreads 

freely and may melt through the ice by season’s end (Fetterer and Untersteiner, 1998). On MYI, more complex topography is 

shaped by snow dunes and past melt patterns, trapping water in defined pools, inhibiting lateral spread and forming drainage 

channels (Eicken et al., 2004; Wright et al., 2020; Buckley et al., 2020). FYI also contains more brine and fewer air bubbles 

than MYI, enhancing absorption and melt due to reduced scattering (Scott and Feltham, 2010). In addition to seasonal and 155 

long-term trends, melt ponds also show diurnal thermal variability influenced by cloud cover. This variability decreases once 

ponds are ice-covered or snow-lidded. 

3. Earth observation methods for melt pond detection and monitoring 

A wide range of Earth observation (EO) techniques are currently employed to detect and monitor MPs. This section provides 

an overview of spaceborne and in situ/field campaign observational approaches. Particular emphasis is placed on the 160 

parameters retrieved and the signatures of melt ponds across the electromagnetic spectrum (EM), focusing both on the 

optical and microwave regions, for active and passive systems (Section 3.1), followed by considerations on associated 

limitations. In section 3.2, in situ and field campaigns comprising ship-based and airborne surveys are discussed. Section 3.3 

addressed data processing techniques to derive MP-related information from EO data, with a focus on recent advances in 

algorithm development and multi-sensor integration.  165 
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3.1. Spaceborne observations - melt ponds signatures across the electromagnetic spectrum 

The logistical and financial challenges of in situ campaigns in remote Arctic regions make Earth observation, particularly the 

ones from space, a valuable tool for monitoring sea ice. EO sensors operating across the electromagnetic spectrum can 170 

retrieve diverse physical parameters related to melt pond presence and properties. Figure 4 illustrates the two primary 

spectral domain systems: the optical and microwave regions used for the EO of melt ponds. It summarises the type of 

parameters retrieved (relative to different ways that active and passive systems interact with matter), the ‘signature’ of MP  

within each range of parameters, along with main applications and examples of corresponding main satellite missions. 

 175 

 

 

Figure 4: Overview melt pond signatures and parameters detected across different Earth observation (EO) 

 

 180 
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3.1.1. Optical sensors: passive (multispectral) and active (LiDAR) systems 

Passive optical systems 

Spaceborne optical monitoring of melt ponds began in the 1970s (Grenfell and Maykut, 1977), and has since been widely 

used for its ability to capture reflected sunlight across multiple wavelengths. Passive optical systems, exploit the spectral 

characteristics of melt ponds by measuring surface reflectance, typically across the visible (VIS, ~0.4–0.7 μm), near-infrared 185 

(NIR, ~0.75–1 μm) and shortwave infrared (SWIR, ~1 to 3 µm) regions of the EM (see Fig. 4). Melt ponds exhibit low 

reflectance in the NIR and SWIR due to strong absorption by water in these wavelengths, in contrast to the higher 

reflectance of surrounding sea ice. Conversely, in the blue-green region of the VIS portion, melt ponds exhibit high 

reflectance (Malinka et al., 2018). This spectral signature and accentuated differences in certain bands enables effective 

distinction of melt ponds from surrounding ice and snow, through spectral indices and classification algorithms (see Section 190 

3.3 and Appendix A for methodological approaches). Key applications of passive optical data are melt pond classification, 

monitoring and retrievals of melt pond fractions (MPF). These applications are influenced by the resolution, which can span 

from coarse/medium (250 m to 1 km), to high (10 - 60) and very high resolution (0.3-10 m). 

Coarse-resolution instrument, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Aqua/Terra 

satellites have been used for large-scale monitoring of melt ponds, thanks to their frequent temporal coverage and extensive 195 

historical record (Tschudi et al., 2008; Rösel et al., 2012; Rösel and Kaleschke, 2012; Ding et al., 2020) as well as the 

Medium Resolution Imaging Spectrometer (MERIS) aboard ENVISAT (Zege et al., 2015; Istomina et al., 2015, 2025). 

Higher resolutions, such as the Enhanced Thematic Mapper Plus (ETM+) aboard Landsat7 (Markus et al., 2003; Rösel and 

Kaleschke, 2011; Qin et al., 2021) have been effectively employed to detect and monitor Arctic melt ponds. Data from the 

Ocean and Land Colour Instrument (OLCI) on Sentinel-3 (Niehaus et al., 2024), and the Multispectral Instrument (MSI) on 200 

Sentinel-2 with visible and near-infrared bands, have been increasingly employed for high-accuracy melt pond fractions 

retrievals (Wang et al., 2020; Niehaus et al., 2022), and more recently bathymetric studies (Xiong and Li, 2025). For very 

high-resolution imagery, from the DigitalGlobe’s WorldView (WV) constellation has enabled detailed local analyses of melt 

pond properties and classification (Wright and Polashenski, 2018), providing finer spatial insights, complementing the 

broader-scale insights provided by coarser-resolution data. 205 

Despite their advantages, optical methods face intrinsic challenges and limitations:  

• Illumination dependency: A key fundamental operational constraint is the requirement of sunlight to function, 

rendering optical sensors ineffective during dark periods. Likewise, the persistent presence of cloud cover 

significantly limits their operational utility in the Arctic’s predominantly overcast conditions (Comiso and Kwok, 

1996; Fetterer et al., 2008). Moreover, atmospheric scattering and absorption, from aerosols, haze and low solar 210 

elevation angles in the Arctic can distort top-of-the-atmosphere (TOA) reflectance causing degradation of image 

quality, altering spectral signatures (as noted by Zege et al. (2015)), further limiting data quality and availability. 
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Data unavailability contributes to temporal coverage limitations, limiting understanding of pond evolution and 

drainage events that occur within hours during melt season. 

• Resolution-Coverage Trade-offs: Melt ponds can range from one to hundreds meters in diameter (Perovich et al., 215 

2002), making resolution critical. However, optical sensors face fundamental trade-offs between resolution and 

swath/coverage. Medium/Coarser systems cannot resolve smaller ponds or narrow features (5-10 m wide), causing 

significant underestimation. Another limitation comes with the mixed pixel complexity, when trying to accurately 

determine coverage of different surface types within coarser-resolution sensor footprints. MODIS and MERIS offer 

wider coverage (>1000 km swath) allowing for daily pan-Arctic coverage but much coarser resolution (250-1000 220 

m), with MODIS L1B showing striping artefacts that bias retrievals (Lee et al., 2020). Moreover, Landsat-7 which 

has higher resolution (30 m resolution, 185 km swath), has proven to not be well-suited for melt pond mapping 

(Markus et al., 2003). Additionally, for high resolution systems, for instance Sentinel-2 (10 m resolution for the 

visible and near-infrared NIR bands), despite its considerably higher resolution it also still suffers from mixed 

pixels (Buckley et al., 2023) and limited Arctic coverage (up to 82.8°) and coastal waters within 20 km of the shore. 225 

Similarly, higher-resolution commercial platforms like DigitalGlobe and Pléiades are limited in polar coverage (to 

82°N) and availability, requiring license for data access. In order  to understand the importance of EO resolution on 

the MPF retrieval, Buckley et al. (2023) found 18% melt pond fraction difference between Sentinel-2 (7.6%) and 

WorldView (25.5%) for identical areas, with biases up to 20%.  

• Reflectance signature and Spectral Ambiguity:  Melt ponds and open water/leads can be indistinguishable due to 230 

overlapping spectral properties (Lee et al., 2020), contributing further to misclassification challenges, for instance, 

fresh snow increases NIR reflectance, mimicking melting ice signatures. This can cause considerable MPF 

underestimations (Istomina et al., 2025). On the other hand, early-stage freeze ponds resemble liquid ponds 

spectrally, leading to MPF overestimations (Xiong and Ren, 2023). 

 235 

Active optical systems 

Light Detection and Ranging (LiDAR) technology commonly operates at wavelengths ranging between 905 nm and 1550 

nm in commercial systems, while scientific applications, including satellite and airborne LiDAR, often use 1064 nm (short-

wave infrared, SWIR) and 532 nm (green light) (see Fig. 4), tailored for atmospheric and bathymetric applications, 

respectively. In LiDAR, laser pulses composed of photons are emitted at these wavelengths. By measuring the round-trip 240 

time and return intensity of these photons, LiDAR enables the determination of surface elevation and reflectance. More 

recently, active optical sensors have enabled measurements of sea ice topography and pond depths, by analysing the time 

delay and intensity of returned laser pulses reflected from the ice and water surfaces. Green laser wavelength penetrates clear 

water, enabling measurements of shallow waterbody depths (Szafarczyk and Toś, 2023). The Advanced Topographic Laser 

Altimeter System (ATLAS), aboard the NASA’s ICESat-2 satellite, operating at 532 nm, has been used to map sea ice 245 

topography and detect melt pond presence and their depths (Farrell et al., 2020; Tilling et al., 2020; Buckley et al., 2023; 
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Herzfeld el al. 2023), however, as of now, no operational ICESat-2 data product automatically includes pond depth 

measurements. 

The main limitations of LiDAR consist in laser penetration and consequent ability for depth determination. Laser penetration 

through melt pond water is limited by absorption and scattering effects, particularly in turbid or deeper ponds. Moreover, 250 

height retrievals suffer from insufficient signal photons, leading to reduced measurement accuracy. The highly reflective 

nature of MP surfaces causes detector saturation, leading to non recorded photons. 

3.1.2. Microwave sensors: Active (radars) and passive (radiometers) systems 

The wavelengths of microwave sensors (Fig. 4), are not affected by atmospheric particles operating independently of lighting 

and weather conditions, contributing to their demonstrated capabilities of detecting melt ponds in the Arctic sea ice (Scharien 255 

et al., 2014; Marshall et al., 2019).  

 

Active microwave systems  

Of the four active microwave sensor types: Synthetic Aperture Radar (SAR), scatterometers, altimeters, and weather radars, 

this section focuses on SAR and scatterometers, given their relevance to melt pond studies. Despite the wide range of 260 

frequencies covered by SAR systems (see Fig. 4), SAR-based melt pond studies primarily rely on three frequency bands: C-

band (~5.4 GHz, ~5.6 cm), X-band (~9.6 GHz, ~3.1 cm) and L-band (~1.3 GHz, ~23.5 cm). During the melting season, the 

liquid water in snow increases its dielectric constant (ε*) enhancing the absorption of microwave energy, reducing 

microwave returns (also due to the specular nature), creating the characteristic low backscatter (σ◦) signature of melt ponds. 

However, this signature is very complex as it is highly dependent on the intercombination of key radar parameters such as 265 

frequency (band), incidence angle and polarization, and the surface roughness and dielectric properties of melt ponds (and 

their surroundings) (Scharien et al., 2014a; Han et al., 2016; Li et al., 2017).  

Data retrieved by missions using C-band, such as Sentinel-1 and RADARSAT-2, are the most commonly used, due to their 

balance between spatial resolution (5-40 and 3-100m, respectively and depending on the acquisition mode), penetration 

depth and sensitivity to surface roughness. Comparatively, X-band SAR systems like TerraSAR-X (9.65 GHz, 3.1 cm), 270 

provide higher spatial resolution (0.25-40 m), are more sensitive to fine-scale surface features (Fig. 5), making them suitable 

for melt pond boundary detection, or early melt detections (Kern et al., 2010; Fors et al., 2017). L-band missions like ALOS-

2, though less frequently used, allows greater penetration through wet snow due to their longer wavelengths, proving 

valuable for melt onset and drainage stages (Mahmud et al., 2020; Tavri et al., 2023). 

Polarization is a critical parameter to consider on melt pond signatures detection. SAR systems have evolved from single- to 275 

quad-polarization (Scharien et al., 2010), enabling the use of co-polarization ratios (co-pol, VV/HH for instance) to reduce 

geometric effects and emphasize scattering mechanisms (Woodhouse, 2015). Co-pol ratios effectively indicate liquid melt 

pond fractions on FYI, even under wind-roughened conditions (Scharien et al., 2012), while cross-pol ratios, less affected by 

incidence angle, are sensitive to volume scattering and useful for ice classification (Johansson et al., 2017). Cross-pol also 
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aids in distinguishing FYI from MYI during pond drainage and detecting freeze events due to snow cover contrast (Scharien 280 

et al., 2012). Incidence angle also has a significant impact on melt pond signatures: as it increases, the backscatter intensity 

generally decreases, however, the optimal incidence angle for melt pond retrievals depends on a number of factors, such as 

frequency band used (Fors et al., 2017). 

While SAR systems could, in principle, overcome some of the optical-related limitations, offering all-weather, day-and-night 

imaging capabilities, it remains a non-trivial task to retrieve melt pond fractions at broad spatial scales using radar-based 285 

methods (Huang et al., 2016). To date, no comprehensive SAR-based MPF product exists with a reliability comparable to 

that of optical aerial or satellite observations (see Tables 2 and 4). The challenge is particularly pronounced for rough or 

more complex ice surfaces such as MYI, as correlations between radar signatures and MPFs has been mostly studied for 

smooth landsfast FYI ( Mäkynen et al., 2014; Scharien et al., 2014; Tanaka et al., 2016; Li et al., 2017). In fact, most studies 

using SAR had limitations in retrieving melt ponds since the σ◦, polarisation ratios, or frequencies were insufficient to 290 

discriminate melt ponds from sea ice and open ocean water, leading to cases of under- or overestimations (Li et al., 2017). 

Even with present-day high-resolution SAR sensors (e.g., TerraSAR-X, COSMO-SkyMed, RADARSAT-2, Sentinel-1), 

which can achieve spatial resolutions between 1 m and 10 m, large-scale melt pond mapping remains limited. Key 

challenges include surface roughness, speckle noise, and radar parameters, as outlined below: 

• Polarization limitation and polarimetic features: Early SAR studies relied on single-polarization (single-pol, VV or 295 

HH) backscatter, which is primarily sensitive to surface roughness. As a result, smooth melt 

ponds                       under calm conditions were poorly distinguishable (Yackel and Barber, 2000; Kim et al., 2013; 

Mäkynen et al., 2014). Co-pol ratios (VV/HH for example) showed promise for melt ponds on FYI, exploiting 

dielectric property contrasts (Fors et al., 2017; Scharien et al., 2012, 2014). However, systematic overestimations 

occur because melt ponds share similar polarimetric characteristics with open ocean water (Li et al., 2017). Multi-300 

pol SAR data can enhance discrimination, but dual co-pol data have substantially smaller swath widths, reducing 

suitability for regional monitoring. 

• Incidence angle dependencies: Radar backscatter changes with the incidence angle, meaning that the same pond 

may have different signatures at different acquisition geometry. X-band optimal performance occurs at 29-40° 

incidence angles (Fors et al., 2017), while TerraSAR-X dual-pol performs best at 20-30° for MYI monitoring (Han 305 

et al., 2016). At C-band, melt pond backscatter is weak at lower angles (20-25°) but has a marked increase at ~30° 

due to specular reflection (Yackel and Barber, 2000). It should be emphasized, however, that the optimal incidence 

angle for melt pond detection likely depends on a combination of factors, including ice type and condition, as well 

as the imaging system’s specifications. For this reason, constructing large-scale SAR mosaics remains a challenge 

due incidence angle variability (Howell et al., 2020). 310 

• Environmental sensitivities: ice type, wind conditions and seasonality: Wind-induced surface roughness 

significantly limits X-band systems compared to C-band, particularly above 5 m/s. Optimal retrieval occurs at 

intermediate wind speeds (~6.3 m/s for X-band), resulting in narrow operational windows (Fors et al., 2017; 
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Scharien et al., 2014). Under calm conditions (<3 m/s), melt ponds yield specular scattering, producing lower 

backscatter (Yackel and Barber, 2000; Scharien et al., 2010, 2012; Fors et al., 2017). Melt pond signatures also vary 315 

seasonally due to changing pond depths and ice evolution. Overall, C-band performs best during melt onset, early 

melt stages and peak conditions, while L-band provides improved separability during post-drainage due to deeper 

penetration and sensitivity to volumetric scattering (Tavri et al., 2023). During refreezing, particularly in FYI, C-

band backscatter increases due to rough surface scattering and volume scattering from desalinated upper ice cover 

(Scharien et al., 2012). It should be noted that most studies focus on FYI, but melt ponds on MYI exhibit different 320 

physical and microwave scattering characteristics, requiring further examination of polarimetric SAR retrievals for 

MYI (Han et al., 2016).  

 

Figure 5: Radar scattering mechanism. Different interactions of microwave radar with different sea ice types and melt pond under 

different wind conditions 325 

While SAR provides high spatial resolution imagery, scatterometers, generally operating in C-band and Ku-band (~12-18 

GHz), analyze backscatter from multiple viewing angles. This makes them valuable for large-scale sea ice monitoring due to 

their frequent temporal coverage, albeit at a coarser spatial resolution than SAR (on the order of kilometers). Scatterometers 

are particularly sensitive to water content of the surface. Differently to SAR, Ku-band scatterometers have been mostly used 

to infer the timing and extent of Arctic melt onset. As the amount of liquid water in the snow cover increases, the wet snow 330 

leads to a significant decrease in radar backscatter (Forster et al., 2001). 

Three examples of scatterometers instruments used for the detection of melt onset are the SeaWinds sensor onboard the 

QuikSCAT satellite which operated in Ku-band (13.6 GHz), discontinued in 2009 (Howell et al., 2005), and the ISRO 

ScatSat-1 (13.5 GHz) (Geldsetzer et al., 2023), discontinued more recently, in 2021. The Advanced Scatterometer (ASCAT), 

operating in the C-band (5.3 GHz) aboard multiple satellite missions (MetOp-A, MetOp-B), has also been used in melt onset 335 

detections, extending the records from QuickSCAT despite operating at a different frequency band (Mortin et al., 2014). C-

band and Ku-band show different sensitivities to melt due to their varying depth penetration depths. Ku-band shows a 

significantly stronger sensitivity towards melt onset due to its shallow penetration as scattering dominates above the snow-

ice interface (Ulaby et al., 1984). For this reason ASCAT’s C-band melt signature differs from that of Ku-band: backscatter 
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values drop as the first appearance of wet snow and melt ponds, fluctuate during melt season and summer, remaining low 340 

during summer, and gradually increase during winter. Also conversely to Ku-band, C-band backscatters tend to be stronger 

and less variable. Regarding scatterometers main limitations: 

• Multiparameter dependency: Scatterometers show the same nature of limitations described for SAR systems, 

showing complex responses varying with ice type, polarization ratio used and wind-induced roughness (Geldsetzer 

et al., 2023).  345 

• Footprint contamination issues: Additionally, scatterometer data can be significantly affected by noise from land or 

MYI contamination, especially in smooth FYI regions, due to its wide antenna footprint and beam orientation 

(Maknun et al., 2024). 

 

Passive microwave systems 350 

Passive microwave radiometers measure brightness temperature, which is the intensity of upward-traveling microwave 

radiation across multiple frequencies typically ranging from 6.9 to 89.0 GHz. Key instruments include the Advanced 

Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and its successor Advanced Microwave Scanning 

Radiometer 2 (AMSR-2) aboard NASA's Aqua and JAXA’s Global Change Observation Mission 1st-Water (GCOM-W1) 

satellites, respectively. These sensors have been used to derive melt pond fractions through gradient ratios and through 355 

brightness temperature measurements at  6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz (Tanaka et al., 2016; Tanaka and 

Scharien, 2022). A key radiometer is the Special sensor microwave imager (SSM/I), onboard the United States Air Force 

Defense Meteorological Satellite Program (DMSP). It operates at four frequency intervals centred at 19.35, 22.235, 37.0 and 

85.5 GHz allowing for melt onset detection (Marshall et al., 2019).  

The SMMR–SSM/I microwave sensors are very sensitive to emissivity changes caused by the presence of small amounts of 360 

liquid water in the snowpack and on the sea ice surface (Comiso and Kwok, 1996). The fundamental principle exploits the 

significant emissivity difference between water and ice in microwave frequencies. Water's much higher microwave 

emissivity causes brightness temperatures to increase substantially when liquid water appears in snow or forms melt ponds 

(Mote et al., 1993), enabling detection of even small liquid water amounts. Daily brightness temperature variations serve as 

reliable indicators for Arctic melt and freeze onset dates. The 19 GHz horizontal polarization frequency is preferred for melt 365 

detection as it shows the lowest brightness temperature for dry firn, enhancing temperature contrast from liquid water 

emergence (Liu et al., 2006). While other factors such as air temperature, water content, snow grain size and internal ice 

layers, also influence daily brightness temperature, surface liquid water presence is the dominant driver of daily variation 

(Tedesco, 2007).  

Like active microwave systems, radiometers face fundamental shortcoming related to microwave scattering, emission 370 

signatures and spatial resolutions constraints: 

• Radiometric ambiguity of water features: Melt pond brightness-temperature signals resemble open ocean water, 

making them indistinguishable from open water. Moreover, at microwave frequencies of ≥6 GHz, melt ponds 
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(freshwater) and open ocean (saltwater) also exhibit similar brightness temperature  (Gogineni et al., 1992). , 

leading them to be misclassified as open leads or cracks. 375 

• Low penetration Depth: At frequencies of 19, 37, and 89 GHz, microwave radiation penetrates only ~1 mm into 

liquid water, preventing sensors from distinguishing sea water from melt ponds on ice (Ulaby et al., 1986), being 

the cause of introducing uncertainties in sea ice concentration retrievals (Cavalieri et al., 199; Comiso and Kwok, 

1996). This limitation restricts passive microwave remote sensing to areas with high sea ice concentration (>95%), 

where open water influence can be neglected (Tanaka et al., 2016).  380 

• Coarse resolution: Passive microwave sensors generally have coarse spatial resolution, limiting their ability to 

detect small melt ponds and fine-scale features. When ponds are smaller than sensor resolution, the resulting signal 

becomes a mix of sea ice and leads (Comiso and Kwok, 1996). The varying sea ice microwave signature, distinct 

emission signatures of dry versus wet snow/ice, and varying water surface roughness make MPF retrieval overall 

challenging across the microwave sensors (Xiong and Ren, 2023). 385 

                                                          

3.2. In situ and field/campaign observations 

While spaceborne observations are powerful tools for monitoring melt ponds, in situ ice observations complement them by 

providing information that is difficult or impossible to obtain remotely, such as very high spatial resolution images or depth 

measurements. Table 1 provides a summary of various field campaigns, which although not focused solely on melt ponds, 390 

have nonetheless contributed to the acquisition of in situ melt pond data. It is worth noting that some instruments used in 

airborne and ship-based observations share similar sensor characteristics with those used in spaceborne platforms. For this 

reason, due to their similar nature, such instruments are not discussed separately here, having been covered in the previous 

section.  

We have classified these campaigns depending on their duration: there are three main types of observational campaigns: 1) 395 

year-long ice-drifting expeditions; 2) shorter cruises or icebreaker-based campaigns, typically lasting a few weeks and often 

combining ship-based observations with helicopter or drone deployments; and 3) airborne surveys conducted from aircraft. 

Airborne platforms normally include aerial photography (using digital cameras) (Perovich et al., 2002) or microwave sensors 

(Kim et al., 2013; Han et al., 2016) onboard of drones, helicopters or unpiloted aerial vehicles (UAVs) (Tschudi et al., 2008; 

Fetterer et al., 2008).  400 

 

 

 

 

 405 
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Table 1: Campaign summary table 

Campaign Type Duration Location Primary focus MP-specific data acquisition Data Access 

MOSAiC  

 

 

Year-long 

Ice Drifting-

Base  

Sep 2019 - 

Oct 2020 

(1 year) 

Central 

Arctic 

Ocean 

Coupled Arctic 

climate system 

processes 

Hyperspectral, bathymetry & 

biogeochemical measurements 

https://mosaic-

expedition.org/mosai

c-data/ 

SHEBA Oct 1997 - 

Oct 1998 

(1 year) 

~570 km NE 

of Prudhoe 

Bay, Alaska 

Surface heat 

budget & ice-

albedo feedback 

processes 

Basic broadband albedo and 

coverage measurements 

https://www.eol.ucar.

edu/field_projects/sh

eba 

ICE212 

(NPI) 

 

 

Week(s)-

long 

Icebreaker 

cruise-Based 

 

  

Jul 26 - 

Aug 3, 2012 

(8 days) 

North of 

Svalbard 

(82.3°N) 

In situ albedo measurements and aerial imagery n.a. 

HOTRAX Aug 5 - 

Sep 30, 

2005 

(66 days) 

Central 

Arctic 

Ocean and 

North of 

Svalbard  

Physical 

properties of the 

polar ice pack 

Pond depths and aerial 

photography 

https://www.ncei.noa

a.gov/access/paleo-

search/study/14169 

Operation 

IceBridge 

 

 

Airborne 

surveys 

(multi 

-instrument)  

2009-2021 

(13 years) 

Arctic, 

Antarctic, 

Alaska 

Ice sheet and sea 

ice monitoring 

via remote 

sensing 

Aerial imagery and altimetry of 

melt features 

https://nsidc.org/data/

icebridge/data 

THINICE August 2022 Svalbard Arctic Cyclone–

Cloud–Ice 

Interactions 

n.a. https://ralithinice.aeri

s-data.fr/# 

 410 

3.2.1. Ship-based drifting campaigns 

MOSAiC 

From September 2019 to July 2020, the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) 

(Fig. 7) stands as the largest Arctic research expedition in history (Shupe et al., 2021). Led by the Alfred Wegener Institute, 

the German research icebreaker RV Polarstern was deliberately frozen into the Arctic sea ice to drift across the central Arctic 415 

Ocean for an entire year, including the polar winter. The central observatory consisted of many fixed installations on RV 

Polarstern itself, as well as a wide array of sampling and measurements: flux stations, meteorological sensors, oceanographic 

profilers, biogeochemical sensors and GPS position-tracking bows, allowing for comprehensive measurements of conditions 

across scales of 10-100 km in the coupled atmosphere-ice-ocean system (Rabe et al., 2024), with contributions to melt pond 

distribution (Neckel et al., 2023; Sperzel et al., 2023) and spatiotemporal studies (Webster et al., 2022b).  420 
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Figure 6: The Polarstern ship amongst melting ice and melt ponds whilst part of the MOSAiC campaign. Image credits: Steffen 

Graupner/AWI/MOSAiC 

SHEBA 

About 22 years earlier, conducted from October 1997 to October 1998, the Surface Heat Budget of the Arctic Ocean 425 

(SHEBA) was a comprehensive field experiment aimed at investigating the interactions among the atmosphere, sea ice, and 

ocean in the Arctic . The Canadian icebreaker Des Groseilliers was intentionally embedded within the Arctic ice pack, 

approximately 570 km northeast of Prudhoe Bay, Alaska, serving as a drifting research station. Over this yearly period 

researchers were able to track an icepack and take direct observations of the sea ice evolution over a full melt season (Uttal 

et al., 2002). SHEBA also utilized a diverse array of instruments and platforms, including aircraft, meteorological towers, 430 

surface radiometers, oceanographic and meteorological instruments housed in structures on the ice, helicopters and buoys. 

Both SHEBA and MOSAiC extensive observations over approximately a year, substantially aided the improvement and 

refining of melt pond parametrisations, and advanced our understanding of the Arctic in general (Wang et al., 2024). Data 

collected in these campaigns have also been used in numerous melt ponds studies as validation data (see Appendix C).  

3.2.2. Cruise icebreaker-based campaigns 435 

ICE212 (NPI) 

The ICE212 (NPI) campaign consisted of an 8-day ice drifting flow experiment on R/V Lance experiment carried out by the 

Norwegian Polar Institute in the Arctic north of Svalbard at 82.3◦N from 26 July to 3 August 2012. The study collected in 

situ albedo measurements and aerial imagery. The in situ albedo measurements were representative of the four main surface 

types: bare ice, dark melt ponds, bright melt ponds and open water. Images were acquired by a helicopter-borne camera 440 

system during ice survey flights covering about 28 km2 (Divine et al., 2015). 
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HOTRAX 

The Healy Oden Trans-Arctic Expedition (HOTRAX), during the 5 August to 30 September 2005 conducted a 

comprehensive survey of the physical properties of the polar ice pack. The research program encompassed four main 445 

categories of snow and ice characterization: transit observations, ice station measurements, helicopter survey flights, and 

autonomous ice mass balance buoy deployments. Notably, pond fractions were substantial early in the expedition at the 

southern ice pack boundary.  Researchers documented melt pond coverage alongside sediment-laden and biologically rich 

ice areas. The expedition included 28 ice stations where teams measured snow depth, ice thickness, and pond depths, 

creating a comprehensive dataset of Arctic ice conditions. The helicopter photographic survey flights were conducted 1-3 450 

times per week using a digital camera (Nikon D70), and allowed to detect smaller-scale features such as leads, ridges and 

melt ponds that satellite imagery could not resolve (Perovich et al., 2009). HOTRAX generated melt pond fraction datasets 

that have been used validation dataset for multiple studies focused on MPF retrievals (Peng, et al., 2022; Ding et al.,2020, 

Tanaka et al., 2016; Istomina et al., 2015) - see Appendix B. More details of these datasets are addressed later in section 

4.1.2 which is dedicated to observational datasets. 455 

3.2.3. Airborne surveys 

OPERATION ICEBRIDGE 

NASA's Operation IceBridge (OIB) was a 13-year (2009-2021) airborne mission dedicated to survey land and sea ice across 

the Arctic, Antarctic and Alaska. In the summers of 2016 and 2017, the NASA Operation IceBridge (OIB), obtained (to that 

date), the most widespread airborne survey of summer sea ice conditions, using multiple aircraft throughout the years 460 

(MacGregor et al., 2021). The NASA 524 HU-25C Guardian aircraft carried multiple instruments on board (radar, laser 

altimeter and a digital camera), and covered both MYI and FYI in the Beaufort Sea (in 2016) and MYI in the Lincoln Sea 

and central Arctic Ocean (in 2017). Although data from this campaign was used to retrieve melt pond fraction (MPF) 

(Wright and Polashenski; 2018; Buckley et al., 2020), it has also been widely used as an independent validation dataset in 

the development of MPF retrieval algorithms (Wang et al., 2020; Xiong and Li, 2025), as is later described in Table 2, in 465 

section 4. 
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Figure 7:A large pool of meltwater over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. 

Credits: NASA/Operation IceBridge 

THINICE 470 

The field campaign THINICE was based in Svalbard in August 2022. Its intent was to provide unique observations of 

summertime Arctic cyclones and the associated tropospheric and sea ice conditions (Rivière et al., 2024). Arctic cyclones are 

known to cause rapid sea ice loss. Cavallo et al. (2025) investigated the variability in changes in sea ice extent for a period of 

less than 18 days and their association to Arctic cyclones as well as to tropopause polar vortices. They discover the increased 

importance of understanding Arctic cyclones for sea ice depletion - accordingly observations in these conditions could be 475 

useful for understanding sea ice impacts also. Two research aircraft were deployed, the ATR42-SAFIRE equipped with 

radar-lidar remote sensing instrumentation and the BAS Twin Otter. The THINICE campaign was not extensively intended 

to be a melt pond observational campaign, but nonetheless it collected high-resolution and accurate melt pond data during its 

operations under unique conditions. It may therefore reveal insights into melt ponds in previously unobserved/poorly 

observed conditions that are essential to determining the future of sea ice loss. As such, the THINICE campaign can be 480 

considered a valuable addition to melt pond datasets for improving physical and machine learning models, not only because 

melt ponds are clearly identifiable through the high quality observations, but also due to the unique conditions in which these 

observations were taken. These observations are already being used to determine parametrisation settings in models.  

To date there is no dedicated platform to access all campaign and melt pond-related observational datasets, however, 

regarding specifically shipborne Arctic sea ice observation data, there is a program debuted in the summer of 2012 that 485 

supports the collection of data from multiple campaigns. IceWatch is coordinated by the Norwegian Meteorological Institute, 

the University of Alaska Fairbanks, the International Arctic Research Center and the Geographic Information Network of 

Alaska, and through a web-based application name ASSIST, it assists in the collection and archiving  of sea ice observations 
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recorded during research cruises in the Northern Hemisphere and can be accessed at https://climate-cryosphere.org/ice-

watch-assist/. 490 

3.3. Post-processing techniques for melt pond observations applications 

Processed melt pond data, derived from satellite or in situ campaigns, typically serves two main applications: (1) the 

generation of melt pond classifications that categorize pixels into surface types such as ice, melt pond, or open ocean for 

surface mapping and temporal change monitoring; and (2) for the retrievals of melt pond fractions (MPFs). MPF retrievals, 

defined as either the fraction of ponded ice or as the fraction of melt ponds within a satellite scene, are particularly relevant 495 

for sea ice evolution studies, general circulation models (Flocco and Feltham, 2007; Polashenski et al., 2012), and seasonal 

sea ice extent forecasting (Flocco et al., 2012; Schröder et al., 2014; Howell et al., 2020; Ding et al., 2020; Feng et al., 2021). 

Over time, different methods have been developed to generate melt pond classifications and retrieve MPF from data 

acquisitions. Figure 8 illustrates the main families of technical approaches, that include techniques that are sensor-specific or 

sensor independent and methods used when combining different data types. Appendix A provides a more detailed 500 

description of each technique. Early approaches for optical data, comprise fundamental statistical techniques, including pixel 

intensity and histogram analysis of specific bands for MP pixel classification (Webster et al., 2015; Huang et al., 2016, 

Buckley et al., 2023). More advanced approaches adopted in later studies, enabled MPFs retrievals through two main 

techniques. First, spectral unmixing methods that decompose mixed optical pixels into endmembers representing different 

surface types (Kern et al., 2016; Yackel et al., 2018; Xiong and Ren, 2023). Second, physically-based algorithms such as 505 

Melt Pond Detector 1 and 2, and LinearPolar (see Appendix A) use radiative transfer and bidirectional reflectance 

distribution function (BRDF) models (Niehaus et al., 2024; Istomina et al., 2025; Niehaus et al., 2022; Qin et al., 2021). 

These optical-domain methods inherently rely on reflectance signatures for their effectiveness. Microwave data processing 

employs distinct methodologies, that geophysical inversions, conversion of backscatter to MPF and empirical relationship 

between co-polarization and compact polarization (Yackel and Barber, 2020; Scharien et al., 2014; Li et al., 2017). Though 510 

these approaches are largely sensor-specific until the development of multi-sensor integration techniques. 
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Figure 8: Summary of the main family of approaches for both optical, microwave and combination of input data. 

 

Since 2014, MPFs retrieval based on multiple sensors have been possible, using correlation and regression approaches 515 

(Mäkynen et al., 2014; Tanaka et al., 2016; Fors et al., 2017; Scharien et al., 2017; Ramjan et al., 2018; Howell et al., 2020; 

Tanaka and Scharien, 2022). These fusion methods link microwaves to optical-based MPF and are fusion-suited since they 

are essentially empirical mappings that can integrate information from multiple sensors. Likewise, machine learning methods 

span across both sensor types: traditional techniques such as supervised classifiers, clustering, decision trees and random 

forests have been predominantly applied for melt pond classifications both for optical data (Fetterer et al., 2008; Sankelo et 520 

al., 2010; Renner et al., 2013; Miao et al., 2015; Divine et al., 2015; Wright and Polashenski, 2018) but also microwave data 

(Kern et al., 2010; Han et al., 2016; Ramjan et al., 2018). Deep learning methods, while not inherently sensor-specific, have 

proliferated significantly after 2020, with multiple ANN architectures (ensemble-based deep neural networks (DNN), multi-

neural networks, stacked autoencoders) being used essentially for MPFs retrievals based on optical acquisitions (Rösel et al., 

2012; Ding et al., 2020; Lee et al., 2020; Lee and Stroeve, 2021; Feng et al., 2021; Peng et al., 2022). A wide variety of 525 

approaches may indicate that the field has not yet convergent on a widely accepted approach or optimal method, suggesting 

that different techniques are better suited to specific data types, or that optimal solutions are still being developed. 
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4. Melt pond observations: available dataset and lead studies 

4.1. Melt ponds and melt pond fraction generated datasets 

This section provides a comprehensive overview of available melt pond observational datasets and melt pond fraction (MPF) 530 

products derived from satellite imagery, aerial photography, and ship-based observations. We present two distinct categories 

of Arctic melt ponds datasets, which differ in spatial coverage (pan-Arctic versus regional), spatial resolution (kilometer 

versus meter scale), and the nature of the data (satellite-based continuous monitoring versus campaign-specific programs): 

(1) Pan-Arctic MPF datasets which offer continuous, multi-year coverage at coarser resolutions (see Table 2 in section 

4.1.1), and (2) high resolution regional MP and MPF products that provide finer resolution but spatially limited observations 535 

from a combination of field campaigns and targeted remote sensing efforts (see Appendix B). The second category of 

datasets, which include melt pond imagery, melt pond classification maps and MPF products at meter-scale resolution, are 

typically confined to specific Arctic regions and time periods. By examining both tables 2 and 4, we highlight their 

complementary nature and respective strengths. 

4.1.1. Pan-Arctic satellite-based data melt pond fraction datasets 540 

While numerous melt pond-related datasets exist, only a few provide pan-Arctic coverage and multi-year continuity essential 

for large-scale studies. Table 2 presents an overview of these pan-Arctic MPF datasets, which in this article are identified by 

their sensor name and lead author (their alternative names used in other studies are provided in parentheses). The table 

summarizes key characteristics, highlighting the sensor used, temporal span, coverage area, spatial and temporal resolutions, 

data format, access information, and references. The evolution of pan-Arctic MPF datasets reflect advancing sensor 545 

technology and algorithm development. Among the pioneering efforts, the MODIS-RÖSEL MPF, developed at Hamburg 

University, established baseline coverage that spans from 2000 to 2011 (Rösel et al., 2012; Rösel et al., 2015). Concurrently, 

the MERIS-ZEGE MPF dataset (version V1.7) covers a similar time span, and was produced at University of Bremen, 

represents an improved iteration of earlier versions (Zege et al., 2015; Istomina et al., 2015). Building on this foundation, the 

same team of authors subsequently released OLCI-ISTOMINA MPF (version 1.7), which extends seasonal coverage to 550 

include May through September (plus the first week of October for 2021). This dataset uses the same retrieval algorithm as 

the one used to generate MERIS-ZEGE MPF. The authors have recently developed an updated version of the algorithm by 

adapting the MPD2 algorithm (see Appendix A) to OLCI sensor, effectively extending the MERIS-based MPF (2002-2011) 

with recent data (2017 to present) (Istomina et al., 2025). Complementing these efforts, several MODIS-based products offer 

extended temporal coverage. The MODIS-DING MPF dataset spans from 2000 to 2019, covering each year from May to 555 

September (Ding et al., 2020). Likewise, the MODIS-LEE MPF dataset, covers nearly the same period (although with one 

year longer) from June 2000 to August 2020, with a slighter wider coverage (regarding latitude) and a higher resolution 

compared to all MPF datasets mentioned so far (Lee and Stroeve, 2021). Additionally, MODIS-PENG MPF covers a similar 

time span, but is available in a different data format compared to the other datasets.  

https://doi.org/10.5194/egusphere-2025-4480
Preprint. Discussion started: 9 October 2025
c© Author(s) 2025. CC BY 4.0 License.



22 

 

Table 2: Open pan-Arctic multi-year melt pond fraction (MPF) datasets 

Dataset 

Name 

MODIS- 

RÖSEL MPF 

(UH-MPF) 

MERIS- 

ZEGE MPF 

(MERIS MPF 

1.7 or UB-

MPF) 

OLCI- 

ISTOMINA 

MPF (UB-

OLCI) 

OLCI- 

NIEHAUS 

(MPD2 

MPF) 

MODIS- 

DING MPF 

(BNU-MPF) 

MODIS- 

LEE 

MPF 

MODIS- 

PENG MPF 

(NENU-MPF) 

Sensor MODIS MERIS OLCI OLCI MODIS MODIS MODIS 

Format NetCDF NetCDF NetCDF NetCDF, jpg NetCDF NetCDF .img 

Time 

span 

2000 - 2011 2002-2011 2017-2023 2017-2023 2000 - 2019 2000-2020 2000-2020 

Coverage Lat .> 60° Lat .> 60° Lat .> 60° Lat .> 60° Lat .> 60° Lat .> 57.8° Lat .> 60° 

Spatial 

res. 

12.5 km 12.5 km 12.5 km 12.5 km 12.5 km 1 km < 10 km 12.5 km 

Temp. 

res. 

Weekly Daily Daily Daily, 

Weekly 

Weekly Daily, Weekly, 

Monthly 

Daily 

Data 

access 
https://www.cen

.uni-

hamburg.de/en/i

cdc/data/cryosp

here/arctic-

meltponds.html#

beschreibung 

https://data.seaic

e.uni-

bremen.de/meris

/mecosi/  

https://data.s

eaice.uni-

bremen.de/o

lci/  

https://data.s

eaice.uni-

bremen.de/

MeltPonds-

Albedo/MP

D2/  

https://doi.pan

gaea.de/10.15

94/PANGAE

A.933280 

https://ramadda.da

ta.bas.ac.uk/reposi

tory/entry/show?e

ntryid=b91ea195-

fd3d-4171-bae4-

198c46575c16 

https://ieee-

dataport.org/do

cuments/nenu-

mpf#files 

Reference Rösel  

et al. (2012);  

Rösel 

 et al. (2015) 

Zege  

et al. (2015);  

Istomina et al. 

(2015, 2025) 

Istomina  

et al. (2025) 

Niehaus  

et al. (2024) 

Ding et al. 

(2021); 

Ding et al. 

(2020) 

Lee et al. (2020); 

Lee and Stroeve, 

(2021) 

Peng et al. 

(2022) 

  560 

These pan-Arctic datasets share common challenges related to their spatio-temporal continuity, partly due to cloud 

obscuration that creates data gaps. Despite these limitations, important distinctions exist in their accuracy and temporal 

coverage capabilities. MERIS-ZEGE MPF, was considered to have the highest estimation accuracy because it was derived 

using a physical-based model (Istomina et al., 2015; Zege et al., 2015). However, its short temporal span (2002-2011), 

makes it unsuitable for long-term trends analysis and the study of MPF evolution. In contrast the MODIS-based MPFs and 565 

the recent dataset by Istomina et al. (2025), which bridges MERIS and OLCI, provides nearly two decades of observations 

better suited for studying MPF evolution and trends.  
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Two comprehensive intercomparison studies have evaluated some of these datasets' relative performance and consistency. 

Lee et al. (2024) compared MODIS-RÖSEL, MERIS-ZEGE and MODIS-LEE datasets (after standardizing them to 8-day 

composite and re-gridding). They also validated the three datasets against WorldView imagery and Landsat5-images 570 

classified following Wright and Polashenski (2018) methodology. The comparison revealed consistent spatial patterns 

among these datasets during early melt-season, with best agreement observed in June and July. However, dataset agreement 

deteriorated as the melt season progressed. Systematic differences emerged: MODIS-RÖSEL consistently reported the 

lowest MPFs values, while MODIS-LEE presented the highest. A reason for the considerably higher MPFs of MODIS-LEE, 

particularly during June, likely result from its reliance on normalized band ratios between the and near-infrared bands, which 575 

given its sensitivity to liquid water, could have led to wet snow, thin ice and leads to be wrongly classified as melt ponds. 

Despite this limitation, MODIS-LEE demonstrated the strongest correlation with high-resolution validation imagery and 

other melt-related variables, possibly due to its superior spatial resolution. Notably, another relevant conclusion was that 

none of the datasets exhibited significant MPF trends during 2002 to 2011 (except in July and August, but with no 

statistically significant), despite overall Arctic warming and earlier melt onset. Additionally, peak-season (July) monthly 580 

mean melt pond fractions remained below 35% across all datasets, in contrast with earlier studies (Perovich et al., 2002). 

A separate intercomparison by Ding et al. (2020) examined MODIS-DING, MODIS-RÖSEL and OLCI-ISTOMINA MPF 

datasets for 2003–2011. All products demonstrated good agreement in MPF evolution throughout the melting season, though 

with distinct temporal characteristics. MODIS-DING and MODIS-RÖSEL showed slower June increases compared to 

OLCI-ISTOMINA, which peaked in early July, while MODIS products peaked approximately two weeks later. During late-585 

season melt, MODIS-RÖSEL maintained elevated MPF values longer, with MODIS-DING showing intermediate behavior. 

Validation against observation evidence suggested MODIS-DING achieved the best overall agreement throughout the 

complete melt season. 

4.1.2. High resolution regional melt pond and melt pond fraction products 

High spatial resolution products have been increasingly available in the past 20 years. Campaign-based efforts have 590 

generated several high resolution regional datasets that are of invaluable support for moderate-resolutions acquisitions and 

pan-Arctic studies, serving as relevant validation references as well as a standalone monitoring system.  Their limited 

regional coverage is a known trade-off for their high spatial resolution.  

Appendix B, presents high resolution data that have been collected from several Arctic expeditions and research programs. It 

includes information on the development and source of data acquisition. High spatial resolution products have significantly 595 

contributed to sea ice studies and serve as independent validation resources (Peng et al., 2022), and as  valuable training data 

for machine learning algorithms (Ding et al., 2020). 

We have listed twelve available dataset adding information on their sources and related literature, time range, spatial 

coverage and resolution, datatype, availability of data (and possible URL), and visual example of the data described. Given 
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the heterogeneity of the datasets listed, we have also added a description of the data gathering/retrieval process for each 600 

dataset. We here give a general description of Appendix B and refer the reader to the full table in Appendix. 

The datasets WV2, MEDEA, NSIDC and PANGEA are based on high resolution satellites, and are irregularly spaced in 

time. The remaining datasets are based on aerial photography - helicopter or drone-borne imagery from field campaigns 

described earlier in section 3.2.1 (e.g. HOTRAX and NPI) and in situ ship-based photographs (e.g. IceWatch datasets). 

These data are available in various formats (GeoTIFF, PNG, JPEG, CSV) and have a limited geographical coverage. Some 605 

are one-time or limited-duration collections as their generation are linked to in situ campaigns. Worthy of mention are also 

the DLUT data (Huang et al., 2016; Lu et al., 2010) from helicopter collections, and the ship-based datasets JOIS (Tanaka et 

al., 2016) and PRIC-Lei (Lei et al., 2017). These dataset have been used in several studies, and although not available online, 

they are provided upon request.  

High-resolution optical sensors Sentinel-2 (Niehaus et al., 2023) or WorldView (Wright and Polashenski, 2018) provide 610 

superior MPF retrievals with meter-scale accuracy. The SAR-based MPF retrievals (Han et al., 2016; Howell et al., 2020) 

also face coverage limitations and encounter fundamental challenges in distinguishing melt ponds from open water due to 

similar backscatter characteristics. Passive microwave-based MPF retrievals, using AMSR-E and AMSR-2 (Tanaka et al., 

2016; Tanaka and Scharien 2022) on the other hand suffer from coarse spatial resolution and limited penetration in wet 

conditions, making them less reliable over mixed or melting surfaces. 615 

4.2. Key studies on Earth observations of melt ponds: a comprehensive collection 

This section provides an overview of over forty research studies dedicated to Earth observations of melt ponds, highlighting 

their main objectives and methodological approach, areas of interest (AOIs), time period covered as well as data collected 

and their usage. Appendix C summarizes these aspects to offer a comprehensive reference for state-of-the-art Earth 

observations of melt ponds, providing a perspective that helps to identify trends in melt pond research, particularly regarding 620 

their role in sea ice-related studies and advancements in remote sensing. We distinguish between validation (Va) datasets, 

used to assess study performance through accuracy or RSME metrics, and comparison (Co) datasets, employed when 

performing visual comparison of results.  

This overview provides key findings and results of each research article, including description of melt pond and MPF 

products and corresponding performance achieved; usage of campaign-based and multi-sensor observational records, as well 625 

as satellite-derived pan-Arctic products.  

By compiling this extensive table, we have been able to extrapolate information and trends such as research trends, the 

evolution of methodological approaches, validation methods, changes of sampling location and summary of findings. 

This section summarizes for brevity and refer the reader to the full table content in Appendix C. 

 630 
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• Research Trends: The classification of melt ponds and melt pond fraction retrievals has been a central focus of 

Earth observation-based research with studies consistently working to improve accuracy and reduce uncertainty. 

The seasonal evolution of melt ponds, along with melt pond onset followed by their characterization in relation to 

sea ice type, has also been an increasingly important focus of melt ponds studies. 635 

• Methodological Evolution: The studies leveraged a variety of remote sensing technologies across multiple 

platforms, enabling refined estimation accuracy ultimately tracking seasonal and spatial variations. There has been a 

clear methodological evolution, from early thresholding and 3-4 class classification schemes (e.g. ice, ponds, open 

water). Similarly, sensor technology used has evolved significantly:  

o Earlier studies (2000-2015) established fundamental methods using optical sensors (MODIS, MERIS) 640 

with basic thresholding and class classification schemes. Studies like Fetterer et al., (2008) and  Rösel et al. 

(2012) pioneered pan-Arctic MPF retrieval methods.  

o Mid-period studies (2015-2019) expanded to multi-sensor approaches incorporating SAR and microwave 

technologies. Advanced algorithms emerged, with studies like Han et al. (2006) and Scharien et al. (2017) 

exploring radar-based MPF detection, while classification schemes evolved to include other surface 645 

subtypes (dark/bright ponds, submerged ice).  

o Recent work (2019-now) emphasizes AI techniques, multi-sensor fusion and continuous long-term 

datasets. Studies by Niehaus et al.(2022), Xiong and Li (2025) demonstrated physical retrieval with 

improved accuracy and extended temporal coverage.  

• Validation and Performance Metrics: Campaign datasets using airborne imagery (e.g. Canon EOS, UAVs, 650 

helicopter surveys) provide standard validation, with studies achieving accuracies ranging from 85-96% for MP 

classifications (Wright and Polashenski, 2018; Lee et al., 2020) and RMSE values of 0.05-0.18 for MPF retrievals 

(Peng et al., 2020; Lee et al., 2020). There is also a noticeable improvement on more recent studies regarding 

validation practices, which have become increasingly rigorous with multiple ground-truth datasets and cross-

comparison between different MPF products as demonstrated in comprehensive intercomparison by Lee et al. 655 

(2024) and Ding et al. (2020). 

• Geographic and Ice Type Focus: The literature shows concentrated research in accessible and relevant Arctic 

regions: Canadian Arctic Archipelago (15 studies), Beaufort/Chukchi Seas (12 studies), and Svalbard/Fram Strait (8 

studies). Studies increasingly distinguish between first-year ice (FYI) and multi-year ice (MYI), with some 

documenting how the ongoing MYI-to-FYI transition might result in increased pond formation given FYI’s 660 

smoother and flatter topography which facilitates wider pond spreading (Polashenski et al., 2012; Rösel and 

Kaleschke, 2012; Malinka et al., 2018) presenting wider and shallower features comparatively to MYI (Eicken et 

al., 2004; Polashenski et al., 2012).  

 

 665 
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• Findings :  

o Seasonal Evolution: Multiple studies show consistent seasonal patterns, with melt pond fractions 

presenting low values in May, increasing substantially in June and peaking in July. To be noted that some 

studies also noted a decay occurring half month later than previously reported (Ding et al., 2020), with 

greater interannual variability during decay phases.  670 

o Long-term changes: The pan-Arctic multi-annual MPF datasets, allowed to reveal complex temporal 

trends. While some studies found negative trend (2000-2011) linked to declining sea ice extent (Rösel and 

Kaleschke, 2012), despite MYI decline, more recent analyses show moderate increases (+0.75% per 

decade, Istomina et al. (2025)) with pronounced regional variability (-10% to +20% per decade). Feng et 

al. (2021) documented earlier melt onset and extended melting periods driving these changes. 675 

o Spatial Patterns:  Studies reveal both consistent large-scale patterns but evolving regional dynamics. 

MYI-dominated regions, such as north of Greenland and Central Arctic Ocean, consistently show lower 

MPF values, while seasonal ice zones exhibit higher fractions. However, significant spatial shifts are 

occurring. Kara and Laptev seas are showing positive trends (Xiong and Ren, 2023), replacing earlier 

patterns seen on the Beaufort and Chukchi Seas (Ding et al., 2019; Istomina et al., 2025). This 680 

redistribution reflects earlier melt onset, FYI expansion in previously MYI-dominated regions, and shifting 

pond formation regimes across Arctic basins.  

o Contradictory findings: Despite the broad consensus linking ice type to MPF, contradictory findings have 

emerged that challenge this relationship. Perovich and Polashenski (2012) found no significant MPF trend 

between 2000–2011, despite substantial decreases in MYI. Their research suggested that local ice 685 

deformation and snow distribution were more influential factors than ice age in determining pond 

formation. This conclusion was further supported by Webster et al. (2015), who demonstrated that snow 

depth distribution and ice topography were more critical factors in melt pond formation than ice type 

alone. While Peng et al. (2022) reported long-term MPF declines which were attributed to declining sea ice 

extent, more recent studies (covering the 2000-2019 melting seasons May-August) documented significant 690 

upward trends in both overall MPF and specifically in multi-year ice MPF (Xiong and Ren, 2023; 

Istomina, 2025). These changes appear to be linked to earlier melt onset and extended melting periods, a 

trend noted by multiple researchers (Perovich et al., 2008; Markus et al., 2009; Rösel and Kaleschke, 2012; 

Pistone et al., 2014). SHEBA campaign data (Perovich et al., 2003) have revealed a constant linear 

relationship between pond fraction and pond depth, however more recent studies studies, have shown no 695 

relationship between pond depth and fraction (Polashenski et al., 2020, Webster et al., 2022a and Buckley 

et al., 2023). 
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5. Discussions 

5.1. Considerations on knowledge gaps 

Several critical limitations continue to hinder the comprehensive understanding and monitoring of melt ponds, despite the 700 

large interest in their dynamics. Knowledge of melt pond characteristics has traditionally been derived from observations 

conducted over land-fast ice (Yackel and Barber, 2000; Perovich et al., 2002; Eicken et al., 2004; Polashenski et al., 2012), 

primarily due to the relative ease of access and the feasibility of repeat in situ measurements using ships or aircraft. Although 

several campaign-based datasets have extended coverage into parts of the Arctic Ocean, these efforts often lack spatial and 

temporal consistency, constrained by the significant logistical challenges associated with Arctic fieldwork. This has 705 

introduced a systematic observational bias, as remote and logistically inaccessible regions, characterized by different sea ice 

regimes, remain under-sampled due to the high costs and inherent risks involved in accessing them. 

Addressing the knowledge gaps in melt pond observation requires a detailed examination of three interconnected challenges: 

(1) limited spatial coverage in remote and under-observed regions, particularly the central and high Arctic, which contributes 

to observational biases related to ice type, as multi-year ice (MYI) remains substantially underrepresented compared to first-710 

year ice (FYI), complicating comparative analyses; (2) temporal limitations, such as restricted seasonal sampling and 

infrequent satellite revisit times, which restrict continuous monitoring; (3) methodological challenges in data collection 

which result in scarcity of high-quality, labelled datasets that hampers the effectiveness of machine learning approaches and 

(4) sensor-based constraints. Each of these areas present important opportunities to advance melt pond research through 

enhanced observation strategies and improved data integration: 715 

(1) Under-observed regions and ice type bias: Coverage gaps are particularly problematic in the central Arctic 

Ocean, where data assimilation techniques are required to integrate satellite observations, ground observations, and 

numerical models. Most in situ observations remain confined to accessible coastal areas of lands-fast ice, leaving 

the remote central Arctic ocean very under-sampled. As an example, the MOSAiC expedition revealed regional 

representativeness issues: along the central transect, average summer pond coverage was ~14%, compared to ~20% 720 

at the ice edge, highlighting the limitations of point-based observations for capturing broader spatial variability 

(Webster et al., 2022b). A particular example is the  Canadian Arctic Archipelago (CAA). The CCA region 

exemplifies both the progress and limitations in melt pond research. Although several studies have addressed melt 

ponds on FYI in this region (Yackel and Barber, 2000; Scharien and Yackel, 2005), melt ponds over both MYI and 

FYI remain under-investigated, despite recent efforts (Scharien et al., 2007; Wright and Polashenski, 2018; Buckley 725 

et al., 2020; Li et al., 2020). Tracking ponds on FYI in the CAA presents additional technical challenges, as 

missions like Copernicus Sentinel-2 are constrained to within 20 km of the coast which is a major limitation, given 

that FYI often retreats offshore along western Canada and Alaska. Overall, high-resolution and campaign-based 

studies are concentrated in a few regions, such as the CAA/North Greenland (Buckley et al.,2023; Howell et al., 

2020; Geldsetzer et al., 2023), North Svalbard/Nansen Basin (Renner et al., 2013; Mäkynen et al., 2014; Divine et 730 
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al., 2015; Fors et al., 2017) and the Beaufort/Chukchi Seas (Tschudi et al,. 2008; Kern et al., 2010; Webster et al., 

2015; Han et al., 2016). These campaigns, often limited to specific regions and years, leave large portions of the 

Arctic basin under-sampled. 

(2) Temporal and Seasonal data gaps: Airborne campaigns have demonstrated the potential to extract melt pond 

parameters from imagery, but most remain also temporally constrained. Many are limited to single-season studies 735 

(Miao et al., 2015) or narrow multi-year analyses (Tschudi et al., 2001; Perovich, 2002), offering only temporal 

snapshots rather than continuous monitoring. The temporal and seasonal data gap adds another layer of limitation, 

as it limits the ability to capture melt pond evolution processes. As a result, the ability to capture key transition 

phases in MP evolution, such as melt onset or the winter–spring transition, remains limited (Li et al., 2020). One 

example is the NSIDC MP dataset (listed in Appendix B), only 101 out of 1056 acquired images were suitable for 740 

pond statistics, and these were unevenly distributed across time (Fetterer et al., 2008). Finally, optical-based 

satellite systems face persistent challenges during the melt season due to cloud cover and low illumination, further 

reducing usable data during critical periods. 

(3) Metrics and validation: Even in regions and periods with relatively good coverage, key physical metrics such as 

melt pond depth and volume remain sparsely measured and validated (Fuchs et al., 2024; Xiong and Li, 2025).  In 745 

fact, differences in melt ponds over different sea ice types, in terms of depths, sizes but also evolution throughout 

the melting season are still a source of ambiguity. Further research is needed to generalise conclusions and 

parameters across ice types and sensor modalities. While dedicated in situ and airborne measurements could 

significantly improve our understanding of melting sea ice surfaces and complex pond bottom structures (Buckley 

et al., 2023), such studies would be most effective when collected beneath coincident satellite orbits. However, 750 

while satellite observations offer broader spatial coverage compared to in situ or airborne campaigns, they still 

suffer from limitations in resolution, revisit frequency, and retrieval accuracy, leaving room for improvement. As a 

result, there is a significant shortage of high-quality data in this area of research, especially considering the 

considerable demand for training datasets for data-hungry deep learning models (Sun et al., 2022). For 

example,  MYI in particular is under-represented in high-resolution pond mapping, with most datasets being 755 

optimized for FYI or mixed ice types (Istomina et al., 2015; Tilling et al., 2020; Geldsetzer et al., 2023).  

(4) Sensor-based constraints: Despite their potential, microwave and SAR-based melt pond retrieval methods still 

lag behind in situ methods, partly due to sea ice heterogeneity and suboptimal radar parameter settings (e.g., 

frequency, incidence angles and polarisation). Current research limitations stem from the narrow focus of existing 

studies, as efforts have been made towards single polarisation HH and mostly focused on RADARSAT over FYI 760 

regions (Scharien et al., 2017; Li et al., 2017; Ramjan et al., 2018; Howell et al., 2020). This approach has left 

significant gaps in understanding SAR behaviour across different ice types and sensor configurations. 
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5.2. Critical role of melt ponds in future cryospheric research  

Improved understanding of melt ponds has the potential to significantly advance cryospheric research. Key areas of interest 

include: (1) the role of melt pond fraction in enhancing sea ice extent (SIE) predictions; (2) its influence on sea ice 765 

concentration (SIC) retrievals; and (3) the discrepancies between observed and modelled pond evolution. Persistent 

challenges in melt pond parameterisation further limit the accuracy of current sea ice models. These issues highlight the 

critical need for more comprehensive observational datasets and refined modelling approaches. The identified gaps inform 

priority areas for future research, which are outlined in the concluding section. 

5.2.1. Melt pond fraction and its role in sea ice extent predictions 770 

Improved understanding of MPF and melt season duration is critical for advancing predictions of sea ice extent and assessing 

the Arctic's radiative balance. Arctic summer sea ice has declined markedly, with a record minimum in 2012 (Stroeve et al., 

2012a), exceeding prior projections. Given the importance of summer SIE for both climate feedback and increasing Arctic 

activity, more accurate seasonal forecasting is urgently needed (Eicken et al., 2013). 

Several studies have demonstrated the predictive potential of MPF. Schröder et al. (2014) found that spring MPF, 775 

particularly in May, strongly correlates with September SIE, driven by an albedo-melt feedback. In contrast, Liu et al. (2015) 

concluded that MPF integrated over early to mid-summer offers greater predictive skill and suggested other factors, such as 

melt onset and surface temperatures, may also influence model performance. Both studies underscore discrepancies between 

modelled and observed MPF, highlighting the need for better integration of satellite data into models. Howell et al. (2020), 

examined peak MPF in the Canadian Arctic Archipelago (CAA) and reported clearer predictive signals than pan-Arctic 780 

studies, likely due to the CAA’s more stable ice regime. Feng et al. (2021) extended the analysis spatially and temporally, 

identifying strong correlations between early summer MPF and September SIE anomalies across the Beaufort, Chukchi, 

Eastern Siberian seas, and the CAA. MPF anomalies were also linked to atmospheric patterns, such as negative Arctic 

Oscillation phases, and even to distant climate effects, including winter temperatures in northern China. 

Collectively, these findings emphasize the importance of both the time and spatial scale of MPF in sea ice forecasting. 785 

Despite evidence linking May–July MPF to September ice conditions, this relationship remains underexplored. Future 

research should prioritize the integration of satellite observations and model outputs, with a focus on understanding 

interactions between MPF evolution, atmospheric forcing, and sea ice thermodynamics. These efforts are essential for 

developing more accurate, physically based forecasting tools in a rapidly changing Arctic. 

5.2.2. Impact of melt ponds on sea ice concentration retrievals 790 

Sea ice concentration is a critical parameter for monitoring long-term changes in the Arctic and is extensively assimilated 

into numerical models. This widespread use is largely enabled by the continuous passive microwave satellite record since 

1978, which offers the significant advantage of providing consistent observations regardless of cloud cover or darkness 
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during the polar night. Instruments such as AMSR-E and SSMIS capitalize on these capabilities to deliver near-daily SIC 

data essential for climate monitoring and modeling. However, during the melt season, the presence of melt ponds 795 

significantly degrades SIC retrievals derived from satellite brightness temperatures. Melt ponds lower surface emissivity, 

causing algorithms to interpret pond-covered ice as open water, leading to systematic underestimation of SIC (Cavalieri et 

al., 1990; Comiso and Kwok, 1996). Additional uncertainties arise from changes in snow and ice surface properties. These 

limitations highlight the need to account for melt pond influence in SIC products, particularly during summer, to improve the 

accuracy of sea ice monitoring and data assimilation. 800 

As an example, Kern et al. (2016) found that when MPF reaches 40%, SIC is underestimated by 14–26%, depending on the 

algorithm used, while underestimation is negligible when MPF is around 20%. The same study also concluded that no single 

algorithm consistently outperforms others, but those more sensitive to melt ponds could be optimized more effectively, as 

the influence of unknown snow and sea ice surface property variations is less pronounced. Kern et al. (2020) compared 10 

passive microwave satellite derived SIC products against MODIS and ship measurements, finding significant discrepancies 805 

linked to melt pond effects, which reveal major challenges in accurately retrieving SIC during melt seasons. This emphasizes 

the unknown contribution of melt pond signature within ice. Zhao et al. (2021) evaluated three SIC products against ship-

based and MODIS observations from 60 Arctic cruises (2006–2020), and found a strong relationship between MPF and SIC 

underestimation: at 50% MPF, SIC was underestimated by 7–20%. Furthermore, this study also showed that applying MPF-

based correction significantly reduced SIC bias. Collectively, these studies strongly support the need for improved 810 

characterization of melt pond signatures, specifically, their influence on brightness temperature and SIC retrieval algorithms, 

and for their explicit inclusion in the retrieval process, to improve the accuracy of satellite-derived SIC, an ongoing and well-

recognized challenge in remote sensing of Arctic sea ice. 

5.2.3. Use of observational data in refining melt pond representations in models  

Melt pond behavior is a known source of uncertainty in sea ice models (e.g. Flocco et al., 2012; Holland et al., 2012; 815 

Webster et al., 2015). Our understanding of melt pond evolution remains limited, and current climate models lack the 

resolution to capture such small-scale features. Long-term, pan-Arctic, high-resolution observations would be invaluable in 

constraining model parameters across diverse conditions. Key observations for melt pond studies have been identified from 

both modelling and observational perspectives. For instance, Ebert and Curry (1993) implicitly represented melt ponds via a 

temperature-based albedo scheme, while more recent results emphasize the benefits of explicit melt pond representation. 820 

Highlighting this, Diamond et al. (2024) found that in ‘near-future’ simulations, implicit schemes never produced ice-free 

summers, whereas explicit schemes led to ice-free conditions 35% of the time, associated with Arctic air temperature 

increases of 5–8°C. This temperature difference is solely due to the choice of scheme. Driscoll et al. (2024a) further 

demonstrated that sea ice predictions are highly sensitive to melt pond parameter values, as also noted by Flocco and 

Feltham (2007). While future developments may reduce differences between schemes, a divergence is also possible, 825 

underscoring the need for accurate parameterisation informed by detailed observations and potentially multi-modal methods. 
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Diamond et al. (2024) do not develop their own scheme but apply an existing one to assess impact. These results build on 

years of development and testing of melt pond models, including physical schemes (Taylor and Feltham, 2004; Lüthje et al., 

2006; Flocco and Feltham, 2007; Skyllingstad et al., 2007; Hunke et al., 2013; Wang et al., 2024) and data-driven 

approaches (Driscoll et al., 2024a,b). Observations have been essential to their development. 830 

The 1997 - 1998 SHEBA campaign was central in refining parameters like pond fraction, depth, albedo, and drainage in 

most subsequent studies. MODIS data validated pond coverage and climatology in Flocco et al. (2012). Aerial imagery from 

Eicken et al. (2004) and in situ albedo measurements (e.g. Yackel et al., (2000) and Hanesiak et al., (2001)) have been used 

to evaluate schemes like Flocco and Feltham (2007) and Scott and Feltham (2010). A full review is beyond scope, but the 

role of field campaigns and diverse data sources is clear. Despite the physically based foundation of these schemes, 835 

uncertainties remain, partly due to sparse observations. Sterlin et al. (2020) noted disagreement in melt pond fraction trends, 

raising concerns about model sensitivity to surface forcing. Differences in how melt ponds are distributed across ice 

thickness categories further affect sea ice evolution. Using MOSAiC data, Webster et al. (2022b) demonstrated the 

importance of drainage parameters and pond formation sequences, with new schemes showing differences of over 50% in 

simulated pond coverage (Wang et al., 2024). 840 

The importance of accurate melt pond parametrisations is indisputable. Their future likely lies in hybrid, data-informed 

approaches capable of leveraging multiple data streams. This is especially relevant as data-driven methods may facilitate the 

integration of varied sources. Diamond et al. (2024) noted that only ~11% of the 126 CMIP6 model configurations used 

explicit melt pond schemes, despite their major climate impact. Observations will continue to shape modelling efforts.  

5.2.4. Filling the knowledge gap: Future research and trends  845 

This section outlines priority areas for future research, along with emerging trends enabled by current missions and 

algorithmic advances, that hold the potential to close existing gaps in melt pond observational knowledge and enhance its 

impact across cryospheric science: 

• Physical Processes and Model Integration: Understanding the physical processes driving melt pond fraction 

evolution remains a key challenge. The relationship between pond depths, pond fraction, snow cover and type, 850 

could potentially benefit from the understanding of the interplay between surface physics and MPF variability. 

Emerging efforts to couple remote sensing observation with sea ice components of GCMs, hold the potential of 

improving and simulating pond onset, evolution and refreeze states. The significant influence of physical features 

like snow cover (Webster et al., 2015) or snow depth (Kim et al., 2018; Toyoda et al., 2024) underscores the 

importance coupling these parameters in a modeling framework to resolve inconsistencies between MPF datasets 855 

and improve melt onset detection. 

• Improving Validation and Benchmarking Datasets: Existing discrepancies between pan-Arctic MPF datasets (Table 

2) in terms of spatial distribution and temporal behaviours, particularly in early season melt and MYI zones (Ding et 

al., 2020; Peng et al., 2022; Xiong and Ren, 2023), urges the need for improved validation protocols. Satellite-
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derived MPF values still rely heavily on sporadic and geographically limited field campaigns. A coordinated effort 860 

to expand ground truth datasets, including autonomous platforms and better synchronization with satellite 

overpasses, along with open-access repositories, is essential. Furthermore, the absence of a standardized 

benchmarking/validation dataset hampers algorithm intercomparison and development. High-resolution imagery 

from commercial satellites (e.g., PlanetScope, WorldView-3) offers a promising, though underutilized, resource for 

validation. 865 

• Generalised Microwave and SAR: Despite their potential, microwave and SAR-based melt pond retrieval methods 

still lags behind in situ methods and limited research focus on single polarisation HH over FY regions.  To address 

these limitations, extensive studies comparing surface roughness and incidence angles across different SAR 

frequencies and polarizations over different sea ice surface types could support MPs observations. Multifrequency 

combinations show promise in improving MPF retrievals by reducing frequency-specific ambiguities (Kern et al., 870 

2010). Future work would benefit from assessing multifrequency (C, L, and X band) and polarimetric behaviour 

during seasonal transitions in FYI and MYI (Scharien et al., 2010), alongside expanded summer-season studies and 

improved scattering models (Han et al., 2016). Additionally, increased in situ validation datasets could improve 

SAR-based method assessment, which currently relies mostly on visual comparison rather than true ground truth. 

• Machine Learning and Deep Learning Applications: The rapid growth in AI applications (Wright, 2020; Ding et al., 875 

2020; Feng et al., 2021; Peng et al., 2022), suggests that this trend will increase, in particular since key benefit of AI 

applications is the ability to bypass intermediate classification steps and move toward direct MPF estimations 

(Wright and Polashenski, 2020; Buckley et al., 2020; Niehaus et al., 2022). However, current models face 

significant limitations due to sparse labeled training data, leading to overfitting and poor generalization across 

different regions and times. Limited training samples result in region- and season-dependent errors in MPF 880 

estimations, caused by the strong spatial and temporal variability of sea ice and melt pond reflectance. Current 

scarcity of in situ data may not yet be sufficient to develop robust ML-based MPF retrievals (Wright and 

Polashenski, 2020; Xiong and Ren, 2023). Addressing these challenges requires training models on larger and more 

diverse datasets, potentially through crowdsourced labeling or semi-supervised learning.  

• Standardization in surface classification: The lack of a common taxonomy for cryospheric surface types, 885 

particularly regarding melt pond stages, introduces complexity and challenges. Surface class definitions vary 

considerably across the literature (Webster el al., 2015; Huang et al., 2016; Wright and Polashenski, 2018; Buckley 

et al., 2020), making it difficult to generalize findings. A standardized classification framework would facilitate 

reproducibility and improve model training, along with address. frequent misclassifications in mixed or ambiguous 

pixels.  890 

• Sensor Synergies and Multi-Mission Approaches: To overcome single-sensor limitations, integrating data from 

multiple sensor types (e.g., SAR, passive microwave, and optical) holds promise. Ensemble observations combining 

multi-polarization, multi-frequency SAR with microwave and optical could help resolve detection ambiguities and 
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increase spatial and temporal coherence. Few studies combine multiple sensors for single  product generation. 

Moreover, hyperspectral and active optical sensors remain underutilized, yet could benefit distinction of pond types 895 

and mapping of pond depths, which to date does not exist.     

6. Conclusions 

This comprehensive review of observational methods for Arctic sea ice melt ponds outlines recent advances and current 

capabilities, while also identifying the persistent challenges that continue to constrain observations of these key components 

of the Arctic climate system. 900 

The review examines how EO sensors operating across optical and microwave domains respond to different physical 

properties of melt ponds, and outlines domain-specific signatures that enable melt pond detection or characterization.  

EO data from spaceborne platforms provide long-term and regional-to-pan-Arctic monitoring capabilities, while also 

validating existing model outputs and directly inform the development of melt pond schemes, particularly with respect to 

spatial coverage, timing of pond onset and drainage, as well as  connections to ice concentration and type. Aerial imagery 905 

and very-high-resolution datasets from field campaigns further support the refinement of parameterisations by resolving 

small-scale variability, and they also provide essential ground truth data for validation of remote sensing algorithms.  

Melt pond data processing has evolved from early statistical approaches to sophisticated methods, including spectral 

unmixing, radiative transfer model-based algorithms and machine learning techniques, with a parallel transition from single-

sensor to multi-sensor fusion strategies. This progression reflects the field’s ongoing search for optimal solutions, as 910 

different techniques prove better suited to specific datasets combination thereof. Optical systems currently lead pan-Artic 

product development despite limitations imposed by illumination and cloud cover, while microwave systems offer all-

weather capabilities but struggle to distinguish melt ponds from water, limiting their operational use for  large-scale 

applications. A fundamental trade-off exists between pan-Arctic datasets, which provide continuous monitoring at coarser 

resolutions, while high-resolution regional products deliver meter-scale accuracy but limited spatio-temporal coverage.  915 

Analysis of more than forty leading studies on EO-based melt pond observations reveals that established paradigms of melt 

pond formation are being challenged, with local factors proving as influential as ice type. Differences between melt pond 

fractions, in particular, the lower agreement throughout the melt season and heterogenous temporal patterns and spatial 

dynamics findings reveals significant retrieval uncertainties. 

Three major constraints further exacerbate technical limitations: geographical sampling biases toward accessible coastal 920 

regions leave the central Arctic under-observed (particularly problematic given the ongoing MYI to FYI transition, as MP 

behaviour across these different ice types remains poorly characterised at broad scales); temporal constraints prevent capture 

of critical transition phases; and methodological inconsistencies including absent standardized classification schemes and 

validation protocols hamper algorithm development and inter-study comparisons.  
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These observational limitations have cascading effects across multiple domains: melt pond observations demonstrate strong 925 

predictive potential for sea ice extent forecasting through albedo-feedback mechanisms, yet data quality limitations prevent 

full utilization of this capability. During melt seasons, ponds substantially degrade sea ice concentration retrievals, causing 

systematic underestimation that requires better characterization. Explicit parameterization of melt ponds is crucial for 

reliable climate model projections, as existing models are highly sensitive to parameterization choices; however, such 

schemes remain insufficiently implemented. 930 

This review highlights priority areas for future research to address current limitations. Key directions include enhanced 

physical process coupling between surface dynamics and melt pond variability; expanded ground truth datasets through 

coordinated observation campaigns; the integration of observational data with sea ice models; standardized surface 

classification frameworks; larger machine learning training datasets; and leveraging from methodological evolution and 

multi-sensor synergies. The field would also benefit from a dedicated, centralized platform for accessing melt pond datasets, 935 

along with systematic co-location of EO products, field observations and model diagnostics. Given the importance of 

accurately representing Arctic feedback, such investments represent both scientific opportunities and part of essential 

building blocks to contribute to climate research. 
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 7. Appendices 

Appendix A: Description of MP algorithms or combination of techniques used for MP and MPF applications  

 
Technique Description of techniques, main limitations and outputs  

 

 

 

 

 

 

 

 

 

 

Spectral-based 

methods 

  

Thresholding Applies value cutoffs to values of spectral bands or indices separating pixels into 

different classes (e.g., melt ponds, sea ice, open water). Examples: NDWI thresholds for 

water identification; RGB color thresholds from histogram analysis; red-channel intensity 

cutoffs; and panchromatic intensity thresholds accounting for neighboring pixel effects. 

Limitation:  Sensitive to illumination and atmospheric effects; requires manual threshold 

selection. Output: Binary or multi-class classification maps. 

Spectral unmixing 

(Fixed spectral) 

Decomposes mixed pixels into factional contributions of different surface types (sea ice, 

snow, melt ponds) using known spectral reflectance values (endmembers) from field 

measurements. Physically interpretable results; well-established methodology. 

Limitations: Assumes constant reflectance for each surface type; sensitive to endmember 

quality and representativeness. Output: Fractional coverage maps. 

 

Spectral unmixing 

(Dynamic 

endmember) 

Advanced spectral unmixing methods that address fixed reflectance limitations: 

Fully Constrained 

Least Squares (FCLS) 

Estimates fractional surface coverage with non-negativity and 

sum-to-one constraints. Limitations: Dependent on large, 

representative spectral libraries limited by reference dataset 

accuracy. 

MESMA (Multiple 

Endmember Spectral 

Mixture Analysis) 

Allows number/type of endmembers to vary per pixel, 

improving flexibility over standard unmixing.  Limitations: 

Still depends on quality of reference spectra; computationally 

more demanding 

MPD1 (Melt Pond 

Detection 1) 

Uses a physical model to dynamically derive reflectance based on optical properties; 

simulates BRDF for melt ponds, ice, snow. Limitations: Computationally complex; 

mode assumptions may not capture all real-world variability. Output: Fractional 

coverage maps.  

MPD2 (Melt Pond 

Detection 2) 

Built on MPD1 with physical forward model and prior info (e.g. temperature history) to 

improve retrievals, also includes open ocean. Limitations: Requires prior physical 

information; still limited by accuracy of physical inputs and computational cost. Output: 

Fractional coverage maps. 

LinearPolar 

algorithm 

Transforms spectral data into polar coordinates along melt pond and sea ice axes; angle 

(θ) distinguishes pond/ice, radius (r) captures variability. Limitations: Requires optimal 

band selection; still sensitive to spectral variability and noise; limited validation under 

some conditions.  

Polarization- 

based techniques 

Geophysical 

Inversion 

Uses statistical variations in SAR backscatter (σ°) to estimate melt pond morphology, 

albedo, and surface properties; empirical regression relates σ° to geophysical variables. 

Relies on empirical correlations; accuracy limited by variability in surface conditions and 

calibration. 
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Polarization Ratio 

Methods 

 (VV/HH, cross-pol) 

Uses ratios of SAR backscatter between polarizations (VV/HH, cross-pol) to distinguish 

surface roughness. Advantages: Exploits fundamental scattering differences; relatively 

simple implementation. Limitations: Sensitive to incidence angle and surface roughness; 

prone to overestimation. Output: Surface roughness classifications and MPF estimates. 

Compact Polarization 

SAR 

Uses hybrid polarization parameters with tilted-Bragg scattering models for MPF 

retrieval. Advantages: Reduced data volume compared to full polarimetric; maintains 

scattering information. Limitations: Systematic overestimation; model assumptions may 

not capture all scattering behavior. Output: MPF retrievals  

 

 

 

Traditional machine 

learning methods 

 
  

PCA (Principal 

Component Analysis) 

 Reduces dataset complexity by transforming variables into uncorrelated components for 

surface type separation. Advantages: No training data required (unsupervised approach); 

identifies main spectral variations. Limitations: Sensitive to noise; spectral overlap 

reduces accuracy; limited physical interpretability. Output: Classification maps based on 

principal components. 

Maximum 

Likelihood 

Classification 

Uses labeled training data to compute class statistics (mean, covariance) for pixel 

classification. Advantages: Well-established statistical foundation; handles multiple 

classes effectively. Limitations: Requires representative training data; assumes normal 

distribution of classes. Output: Multi-class surface type maps with probability estimates. 

Bayesian Maximum 

Likelihood (BML) 

Classification 

Incorporates prior knowledge using Bayes' theorem for SAR feature classification into 

surface types. Advantages: Uses prior class probabilities; theoretically robust 

framework. Limitations: Computationally complex; requires accurate priors and 

sufficient training data. Output: Probabilistic surface type classifications. 

Decision Tree + 

Regression models 

Decision-tree classification of imagery followed by regression using polarimetric and 

texture parameters. Advantages: Interpretable decision rules; handles mixed data types. 

Limitations: Accuracy depends on training data quality; regression limited by linear 

assumptions. Output: Classification maps and continuous MPF estimates. 

Object-based 

Classification + 

Random Forest 

Combination of 2 methods: groups neighboring pixels into objects via segmentation; 

Random Forest classifies objects into multiple classes. Advantages: Incorporates spatial 

context; handles complex class boundaries. Limitations: Computationally intensive; 

accuracy depends on segmentation quality; requires careful parameter tuning. Output: 

Object-based classification maps  

Multiscale 

Segmentation + 

Aggregation  

Segments data into ice/melt pond classes using multiscale approaches (e.g. SAR data); 

derives binary water/ice maps. Advantages: Handles scale-dependent features; 

automated processing. Limitations: Underestimates MPF (misses small ponds); 

moderate agreement with reference data. Output: Binary classification maps and MPF 

statistics. 

Deep learning & 

neural-based 

architectures 

 

MLP (Multilayer 

Perceptron) 

Neural network with hidden layers trained to replicate spectral unmixing outputs. 

Advantages: Accelerates traditional spectral unmixing; learns non-linear relationships. 

Limitations: Trained on 8-day composites; may not represent full data variability. 

Output: Fractional coverage maps.  

Multi-Neural 

Network (MNN) + 

Multinomial Logistic 

Regression (MLR) 

MNN classifies reflectance into surface types; MLR predicts MPF from classified data. 

Advantages: Two-stage approach improves accuracy; handles top-of-atmosphere 

reflectance. Limitations: Moderate accuracy (85%); performance affected by temporal 

averaging. Output: Surface type classifications and continuous MPF predictions   
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E-DNN (Ensemble 

Deep Neural 

Network) 

 

 

 

 

Combines multiple neural networks through ensemble learning with 3 hidden layers. 

Advantages: Improved performance through ensemble approach; incorporates all 

spectral bands. Limitations: High computational cost; temporal mismatch between 

training and prediction data. Output: Fractional coverage maps. 

SAE (Stacked 

Autoencoder) 

Learns compressed spectral representations through multiple encoding/decoding layers. 

Advantages: Improved accuracy over earlier approaches; learns efficient data 

representations. Limitations: Sensitive to feature selection; risk of overfitting; still 

affected by MODIS limitations. Output: Fractional coverage maps. 

GA-BPNN (Genetic 

Algorithm-optimized 

Back-Propagation 

Neural Network) 

Uses genetic algorithms to optimize network structure; incorporates temporal filtering. 

Advantages: Optimized network architecture; addresses temporal inconsistencies. 

Limitations: Complex training procedure; requires extensive parameter tuning. Output: 

Fractional coverage maps.  

Visual & statistical-

based 

 

Regression models  Statistical modeling that establishes quantitative relationships between different sensor 

measurements through linear/non-linear regression and texture analysis techniques. 

Example: Relating microwave backscatter/texture from SA to optical MPF 

product;  Linear regression of passive microwave brightness temperature gradients 

against ship-based observations. Advantages: Combines complementary sensor 

information; quantifies relationships statistically. Limitations: Sensitive to incidence 

angle; requires co-located. Output: Empirical models relating input parameters to target 

variables (e.g. MPFs)  

Visual and 

Correlations 

Analyses 

comparisons  

Comparative assessment techniques that examine relationships between different datasets 

through visual inspection and statistical correlation measures. Example: SAR imagery 

and optical-based MPF products. Advantages: Simple implementation; identifies sensor 

relationships. Limitations: Subjective visual assessment. Output: Qualitative 

relationships and correlation coefficients. 
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Appendix B: Melt pond and MPF observation open source datasets 

Dataset 

name 

Reference Time 

range 

Spatial 

Coverage 

Spatial 

Resolution 

Format Data access Preview 

Example 

WorldView

-2 (WW2) 

MPF 

Wright and 

Polashensk

i (2019) 

2000 to 

2015 

Beaufort 

Sea: 

72.0° N- 

128.0° W 

0.46 and 

1.84 m 

GeoTIFF https://arcticdata.io/catalog/

view/doi:10.18739/A22Z12

P4J 

 

The WV2 MPF, based on WorldView satellite imagery, results from being processed using the Open 

Source Sea-Ice Processing algorithm developed by Wright and Polashenski (2018). 

MEDEA Webster et 

al. (2015) 

May to 

August 

1999 to 

2014 

Site 

locations 

within 

69–85.5 °N 

5 to 25 km PNG, GeoTIFF, 

JPEG, ASCII, 

CSV 

http://psc.apl.uw.edu/melt-

pond-data/ 

 

The MEDEA (Melt Pond Fraction Statistics From High Resolution Satellite) Images, are retrieved by the 

Polar Science Center, University of Washington, also based on visible bands of high-resolution optical data 

(1 m resolution). The statistics of melt pond coverages were retrieved in locations in the Beaufort Sea, 

Chukchi Sea, the Canadian Arctic, the Fram Strait, and the East Siberian Sea from May to August, 

following Webster et al. (2015). 

NSIDC Fetterer et 

al. (2008) 

1999 to 

2000 

72.8–85.1°N 1 x 1 m PNG, GeoTIFF, 

JPEG, ASCII, 

CSV 

https://nsidc.org/data/g0215

9/versions/1#anchor-2 

 

The NSIDC dataset (by the National Snow and Ice Data Center) is based on high resolution imagery 

classified following Fetterrer et al. (2008), and corresponds to the site location of the SHEBA experiment 

(Beaufort Sea, East Siberian Sea, Canadian Arctic and Fram Strait). 

TransArc Nicolaus et 

al. (2012) 

August to 

October 

2011 

83.1–86.3°N 50 m to 1 

km 

CSV https://doi.pangaea.de/10.15

94/PANGAEA.803312 

 

 

n.a. 

The TransArc melt pond observations were collected from the ice breaker RV Polarstern during the 

Germany Trans-Polar cruise ARK-XXVI/3 (Nicolaus et al., 2012), through hourly observations from the 

bridge of the research vessel on 29 August and 6 September. 

PANGEA Niehaus et 

al. (2022) 

2017 to 

2021 

Up to 

82.3°N 

10 x 10 m NetCDF https://doi.pangaea.de/10.15

94/PANGAEA.950885?for

mat=html#download 

 

 
The PANGAEA is based on 31 scenes of cloud-free Sentinel-2 data by Niehaus et al. (2022). A special 

focus was given to cover the Multidisciplinary Drifting Observatory for the Study of Arctic Climate 

(MOSAiC), in fact all scenes from 2020 cover the expedition path. 
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HOTRAX Perovich et 

al. (2009) 

August to 

September 

74.4–86.1°N 57 x 70 m JPEG, PNG thttps://zenodo.org/record/6

602409#.ZFuxlHZBzmE 

 

The HOTRAX MPF were collected during the Healy Oden Trans-Arctic Expedition (HOTRAX) by the 

Polar Science Center, University of Washington (Perovich et al., 2009). The dataset contains mapped melt 

pond zones through deep learning approaches (Sudakow et al., 2022) from aerial photographs obtained 

during helicopter photography flights, as part of HOTRAX campaign. 

NPI Divine et 

al. (2015) 

July to 

August 

2012 

81.4–82.°N 60 x 40 m Tabular https://data.npolar.no/dataset

/5de6b1e4-b62f-4bd4-889c-

8eb7bb862d3b 

n.a. 

The NPI data were collected by the Norwegian Polar Institute (NPI) during the ICE12 field campaign on 

Arctic sea ice north of Svalbard during the summer of 2012.The dataset comprises of fractions of three 

surface types (bare ice, melt ponds and open ocean water) from which MPF were calculated (Divine et al., 

2015), along the flight tracks calculated from images collected by a helicopter-borne camera system. 

IceWatch Norwegian 

Meteorolo

gical 

institute 

2006 to 

present 

Depends on 

the cruise 

Depends on 

the cruise 

CSV, JSON, 

GeoJSON, 

ASPeCT, 

Sigrid3, JPEG 

https://cryo.met.no/en/icewa

tch  

 

The IceWatch observations contain cruise data in multiple formats which are available to download of MPF 

are collected and made available through the IceWatch community. The database is hosted and maintained 

by the Norwegian Ice service (part of the Norwegian Meteorological Institute) and is continuously growing 

as it is community contributed via their web-tool named ASSIST. 

THINICE Rivière et 

al. (2024) 

August 

2022 

70-82°N, 

20°W-40°E 

Up to 1 m. netCDF https://ralithinice.aeris-

data.fr/data-

catalog/  https://data.ceda.ac.

uk/badc/arcticcyclones 

https://a.windbornesystems.c

om/syzygy/mst2/ 

n.a. 

The THINICE campaign was the first dedicated to summertime Arctic cyclones and interactions (with 

clouds, sea ice, polar vortex). Two aircraft as well as WindBorne balloons took extensive and detailed 

measurements to create this dataset. The dataset includes not only detailed surface sea ice characteristics 

but also cloud properties, jet properties, turbulent fluxes and more. Data are available through AERIS 

(RALI-THINICE), CEDA, as well as WindBorne systems. 

DLUT 

MPF 

Huang et 

al. (2016) 

August- 

Sep.2008 

&  

July -Sept 

2010 

71.9–81.0°N 98 × 67 m or 

ranges from 

147 × 100 m 

to 490 × 335 

m 

n.a. Contact the lead author.  

 

n.a. 

The observations were collected during two Chinese Arctic Research Expeditions by the Dalian University 

of Technology (DLUT), in 2008 and 2010, leading to over 9000 images. These images were then classified 

into three surface types (sea ice/snow, water and melt ponds). 
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JOIS MPF Tanaka et 

al.  (2016) 

2003-2014 68.9–88.2°N 1453~2397 

m² 

n.a. Contact the lead author. n.a. 

Dataset collected from ship-based observations by Joint Ocean Ice Study during on the Canadian Coast 

Guard Ship Louis St-Laurent using a camera mounted with a view of the horizon and ice pack were 

classified into 5 classes (water, ice, water and ice, pond and ice, water, pond and ice). 

PRIC-Lei Lei et al. 

(2017) 

Summer 

from2010 

to 2016 

71.7-88.4◦N 1 x 1 km n.a. Contact the lead author. n.a. 

PRIC-Lei melt pond observations were collected during the Arctic Research Expeditions by the Polar 

Research Institute of China (PROC) during summer, where melt ponds along other variables, such as snow 

thickness, sea ice concentration were documented half-hourly from the bridge of the R/V Xuelong, 

covering along the cruise. 

 

 

  965 
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Appendix C: Melt pond fraction remote sensing literature review from summary of main research conclusions and datasets used  

AOI and/or ice 

types 

Period Study description Remote Sensing, 

Campaign (Ca), Validation (Va) 

and Comparison (Co) datasets 

Reference 

Pan-Arctic 2002-2011 

& 2017-

present 

Transferred MPD1 algorithm (see Appendix 

A) retrieval from MERIS to OLCI data to 

create a continuous 20-year MPF dataset 

(MPD2 MPF - see table 2); analyzed spatial 

and temporal trends 

- MERIS 

- Sentinel-3 OLCI, 

- (Co): Sentinel-2 MSI 

  

Istomina  

et al. 

(2025) 

Pan-Arctic 2013-2023 Simultaneous retrieval of MPF and melt pond 

depth (MPD), enabling melt pond volume 

(MPV) estimation. RMSE < 

10%  (MPF),  ~24.5 cm for (MPD). MPF 

showed positive correlation with downward 

surface radiation. 

- Sentinel-2 MSI; Landsat-8 

- (Va): SkySat (OSSP), MOSAiC 

helicopter (PASTA-ice), 

NSIDC/IceBridge (OSSP) 

Xiong and Li 

(2025) 

Pan-Arctic - MPF, ocean and sea ice fraction retrievals 

using MPD2 algorithm. Fully physical 

optimization approach using a priori 

empirical data (sea ice temperature history). 

Uncertainty reduced from 12.9% (MPD1) to 

7.8% with MPD2. Bias of overestimation 

decreased as well. 

- Sentinel-3 OLCI & SLSTR; 

ERA5 2-m air temp.; OSI-SAF 

drift data 

- (Ca): In situ spectral radiometers 

from MOSAiC, TARA,  S106-

ARK31/1 and AlertMAPLI18 

expeditions 

- (Va): Sentinel-2 MSI 

Niehaus  

et al. (2024) 

MOSAiC Track 2019-2020 Mapped melt pond bathymetry independent 

of pond color/sky conditions. Mean depth 

deviation: 3.5 cm; > 1,600 ponds analysed.. 

- (Ca): Helicopter (CANON EOS 

1D) from MOSAiC and from 

PASCAL (RV Polarstern Cruise 

PS106/1) expeditions. PASCAL 

included pond depth measures 

Fuchs  

et al. (2024) 

CAA 

(Landfast Ice) 

2018, 

2020 

Used a co-pol Ku band scatterometer to detect 

timing of  pond onset. High VV/HH co-pol 

ratios were associated with MPF, when ponds 

large enough to cause VV/HH to exceed 

inherent noise (~0.16 dB) 

- ScatSat-1: co-pol (VV/HH); 

ERA5: 2-m air temperature and 

wind speeds 

- (Va): Sentinel-2 (NIR band) 

  

Geldsetzer  

et al. (2023) 

Pan-Arctic 

(including 

marginal seas) 

2000-2021 Physically-based MPF retrieval via dynamic 

spectral unmixing with radiative transfer 

modeling. Found an increasing trend in MPF 

in marginal seas. For typical regions MPF and 

ice cover fraction show contrasting trends. 

- MOD09AI (8-day), 

- (Va): MEDEA;  WV2-MPF; 

NSIDC; TransArc; IceWatch (see 

Appendix B) 

Xiong and 

Ren (2023) 
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CAA &North 

Greenland 

(MYI) 

May 2020 Monitoring melt onset though MPF from 

thresholding NDWI (Sentinel-2), and pond 

depth estimates from ICESat-2 via UMD-

MPA and DDA algorithms (Farrell el al., 

2020; Herzfeld et al., 2023). MPF peaked at 

16 % in late June. 

- Sentinel-2 MSI: 2-4 & 8 bands; 

ICESat-2 

- (Co): WorldView-2: 2,3,5 & 7 

bands 

  

Buckley  

et al. (2023) 

Pan-Arctic 

(MYI & FYI) 

2000-2020 Increased the temporal span of retrieval of 

MPF using MODIS daily data. Generated 

open pan-Arctic MPF dataset NENU-MPF 

(see Table 2). Accuracies of R2 = 0.76, 

RMSE = 0.05. 

- MODIS09GA: 1-7 bands 

- (Co): UB-MPF ; UB-OLCI, UH-

MPF, BNU-MPF (Table 2) 

- (V/Ca): ASIMPSM, MEDEA, 

TransArc, IceWatch and 

HOTRAX (see Appendix B) 

Peng 

et al. 

(2022) 

MOSAiC Track 2019-2021 Retrieval of MPF using medium  resolution 

data, (with LinearPolar algorithm – see 

Appendix A). MPF with a resolution of 10 m 

and uncertainty of 6%. 

- Sentinel-2 MSI: 2 and 5 bands 

- (Va): SkySat data classified with 

OSSP (from Wright and 

Polashenski (2018) 

); (Ca):  Helicopter-borne Canon 

EOS 1D Mark III (MOSAiC) 

Niehaus 

et al. 

(2022) 

CAA  

2006-2018 

Retrieval of MPF based on brightness 

temperature. Best channels to be used on the 

gradient radio: 10 & 18 GHz at near-shore 

environments. 

- AMSR-E/2 brightness 

temperature data different 

channels at H-polarisation 

Tanaka 

and 

Scharien 

(2022) 

pan-Arctic (north 

of 60 N) 

2017 

(Mid June-

July) 

Used MODIS daily product to retrieve and 

establish relationships with MPF. Improved 

RMSE by 3.7%, comparatively to other 

models. Allowed to show MPF’s  seasonal 

cycle. 

- MOD09AI (8-day): 1 - 5 bands; 

Air temperature and sea level 

pressure 

- (Co:) UH-MPF (Table 2); 

NSIDC (Appendix B) 

Feng et 

al.  (2021) 

NW Passage 

locations in CAA 

2016, 

2018, 

2019 

Determined the best band combination for 

LinearPolar algorithm (see Appendix A) in 

Landsat. Comparison between LinearPolar 

and PCA 

- Landsat (8 scenes): 2,3,4 and 4 

bands 

- (Va): Sentinel-2 MSI (6 scenes): 

2 and 8 bands 

Qin 

et al. 

2021 

Central Arctic 

Ocean (FYI) and 

CAA (MYI) 

Summer 2019 Assessment of ICESat-2 on detecting ponds 

with different reflective properties. FYI 

smooth melt ponds most reflective, MYI 

larger ponds: most variable. 

- ICESat-2: ATL03, 

ATL07,ATL10 

- (Co/Ca): Sentinel-2: RGB bands 

and WV2 

Tilling  

et al. 

(2020) 

CAA 

Landfast FYI 

2009-2018 

(April) 

Retrieved peak MPF with time series, and 

used them to predict summer sea ice. 

Correlations were found. 

- RADARSAT-2: HH-pol, 

incidence angle between 20.0° and 

49.3° 

- (Ca): LiDAR  

- (Co.): UH-MPF (Rösel et al., 

2012) (see Table 2) 

Howell 

et al. 

(2020) 
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Northern 

Canadian Arctic 

and Greenland 

(MYI & FYI)  

2016-2017 Developed high-temporal-resolution (1–4 

day) multi-sensor γ° SAR composites 

(Sentinel-1, RADARSAT-2) for melt onset 

detection.  Compared melt onset dates to 

ASCAT and passive microwave algorithms. 

Results showed better performance on FYI.  

- Sentinel-1, RADARSAT-2 

(SAR) 

- (Co): ASCAT  

Howell  

et al. (2019) 

Pan-Arctic 

(MYI & FYI) 

7 years from 

to 2019 

Melt pond classification (4 classes) and MPF 

retrieval for TOA 20-year record data - 

created MODIS-Lee MPF dataset (see Table 

2). Normalised band differences produced the 

best results. Accuracy: 85.5%, RMSE: 0.18. 

- MOD02HKM: 1-4 bands 

- (Va): WorldView, NSIDC, 

MEDEA (Appendix A) 

- (Ca): ARKTIS-XXII-2, PS86 

data 

Lee 

et al. 

(2020) 

  

Pan-Arctic 

(MYI & FYI) 

2000-2019 Created the longest (to date) MPF dataset - 

BNU-MPF (see Table 2). 

The sea ice concentration (SIC) dataset 

played a minor effect on the MPF retrieval 

results. RMSE < 0.1 

- MOD09A1: 1-7 bands 

- (Ca/V): HOTRAX; DLUT; 

TransArc; PRIC-Lei; NSIDC; 

NPI; IceWatch and JOIS, 

- (Va) MEDEA; WV2-MPF( see 

Appendix B) 

Ding 

et al. 

(2020) 

Pan-Arctic 

(MYI & FYI) 

2000-2017 MPF retrieved with an E-DNN. RMSE: 0.48-

0.67; correlation coefficient: 6-12% 

depending on MPF observations. Evolution 

trends: increase. 

- MOD09A1: 1,2,3,5 bands 

- (Ca): HOTRAX, DLUT, 

TransArc, PRIC-Lei, NSIDC 

dataset (Appendix A) 

- (Va): MEDEA (Appendix A) 

Ding 

et al. 

(2019) 

CAA 

(MYI & FYI) 

2017 

(4 days) 

LinearPolar algorithm (Appendix A) to 

retrieve MPF (accounting for variable 

reflectances): more accurate and precise than 

previous methods, with a 30% lower RMSE 

value. 

- Sentinel-2: 2 and 8 bands 

- (Co): IceBridge DMS imagery 

(see section 3.2.1) 

Wang 

et al. 

(2020) 

CAA 

(MYI & FYI) 

2017 

(Summer) 

Fully constrained (FCLS) to retrieve MPF. 

Achieved high accuracy: (RMSE~0.06). 

Evolution of melt ponds on FYI/MYI and 

relationship with albedo and temperature 

- Sentinel-2, 2,4 and 8 bands; 

Landsat 8 L2 

- ERA-Interim 2 m temperature 

reanalysis data 

- (Va):WorldView-2  (WV2) 

(Appendix B) 

Li 

et al. 

(2020) 

Beaufort/Chukchi 

Seas, Central A. 

Ocean, 

(MYI & FYI) 

2016-2017 

(July) 

Classification of pixels into 4 classes 

(undeformed ice, deformed ice, open ocean & 

melt ponds) and 3 colors. Differences 

associated with FYI vs MYI. 

- (Ca): Airborne Digital Mapping 

System (DMS) (IceBridge NASA) 

(see section 3.2.1) 

- (Co): AMSR2 SIC 

Buckley 

et al. 

(2020) 

FYI & MYI  2009, 

2014, 

2016, 

Developed new algorithm OSSP (Open 

Source Sea Ice Processing) for 3 classes 

classification: snow/bare ice, melt 

ponds/submerged ice,/open water, using new 

algorithm. Accuracy over 96%. Originated 

WV2 MPF dataset (see Appendix B). 

- WorldView (panchromatic) 

(75m); WorldView 8-bands 

(multispectral) (125m) 

- (Ca) NASA IceBridge, Canon 

EOS 5D DMS (25m) (see section 

3.2.1) 

Wright and 

Polashenski 

(2018) 
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Resolute Passage, 

Canada, Landfast 

FYI 

2012 Correlations between the melt pond fractions 

and late-winter linear and polarimetric SAR 

parameters and texture measures derived from 

the SAR. Best RMSE of 0.09. 

- Aerial photography 

- RADARSAT-2: HH, VV, HV, 

VH, incidence angles from 23.1 to 

42.6° 

- (Ca): Airborne Canon G10 

Ramjan 

et al. 

(2018) 

10 sites in Arctic 

Ocean 

FYI 

2000, 

2006, 

2012, 

2018 

First MPF retrieval from hybrid-polarised 

compact polarisation (CP) SAR. Systematic 

overestimations due to the ignored effect of 

snow. Limitation to inc. angles: >35 degrees. 

-  RADARSAT-2:  quad-pol data 

(VV/HH) 

  

Li 

et al. 

(2017) 

North of 

Svalbard, 

Drifting FYI 

2012 MPF retrieval from 4 dual-pol X-band. Best 

results: co-pol ratio at medium wind speeds, 

VV-pol at low wind speeds. Best inc. angle: 

29°, >40° not reliable. 

-TerraSAR-X: HH-VV 

- (Ca): Helicopter-borne Canon 

5D Mark II and GPS/INS 

(ICE2012) 

- Weather station for wind 

retrievals 

Fors 

et al. 

(2017) 

Pan-Arctic 

(FYI)  

n.a. MPF estimation at basin scale. Reliable 

results in MPF zones; overestimation in low 

MPF zones. 

- MOD09 

- (Va): QuickBird data 

Yackel 

et al. 

(2017) 

NW Passage 

MYI 

and FYI  

2016 

(Winter and 

spring) 

Estimating MPF using only HH-pol 𝛾°. 

RMSE: 0.09. Strong correlation between 

winter backscatter coefficient and MPF: 

spring MPF.  

- Sentinel-1 EW Mode: HH 𝛾° 

- GeoEye-1 (GE): 4 bands 

Scharien 

et al. 

(2017) 

CAA & Beaufort 

Sea 

2005-2014 

(Jul-Oct) 

Estimation of MPF from AMSR-E in 

comparison with ship-born observations. 89 

GHz provided more details in areas of high 

sea ice concentration. 

- AMSR-E: 6.9 GHz, H-pol and 

89.0 GHz, V-pol 

- (Va): MODIS MPF (Table 2)- 

(Ca): HOTRAX (Appendix B) 

Tanaka 

et al. 

(2016) 

Chukchi Sea, 

(MYI)  

2011 

3 days 

Classification of melt ponds, water and sea 

ice. Difficult discrimination of melt ponds vs 

open (ocean) water. HH-pol contributed the 

most to the Random Forest. RMSE: of 2.4% 

- TerraSAR-X: HH and HV-pol 

with 32.7° incidence angle 

- Airborne X-band (9.3 m 

resolution) 

- Aerial photographs (Kim et al., 

2013) 

Han 

et al. 

(2016) 

Central Arctic 

(FYI & MYI) 

2010 

(Summer)  

Classification of surface into 3 classes: snow-

covered/bare ice, melt ponds and open leads. 

Collected statistics on melt pond 

characteristics. 

- Helicopter-borne photograph 

with Canon G9 (CHINARE2010) 

Huang 

et al. 

(2016) 

Pan-Arctic 

(MYI & FYI) 

2009 

(June - 

August) 

Deriving MPF from MODIS, to understand 

how sea ice concentration retrievals are 

impacted by the presence of MPF 

- MOD09GA: 1,3,4 bands 

- (Co): AMSR-E/Aqua: 16 Ghz 

Kern 

et al. 

(2016) 

Central Arctic 

Ocean; FYI and 

MYI 

1998 

(SHEBA) 

2005 

(HOTRAX) 

Developed image-based graph algorithm to 

analyze melt pond connectivity and fluid flow 

using conductance networks. Supports 

modeling of albedo feedback. 

- (Ca): SHEBA, HOTRAX (See 

Table 1); aerial photographic 

imagery 

Barjatia 

et al. 

(2016 
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Beaufort/ 

Chukchi Sea 

region 

FYI 

and MYI 

2011 Analysed seasonal evolution of melt ponds on 

Arctic sea ice using, for an entire melt season 

on drifting first-year and multiyear sea ice. 

Classification into 4 classes sea ice, thin ice, 

melt pond and open ocean water. 

- Panchromatic satellite data (1 m) 

- (Ca): Airborne and in situ data 

(NASA DISTANCE) 

  

Webster 

et al. 

(2015) 

Pan-Arctic  

2002-2012 

Development of a new algorithm to retrieve 

MPF (without fixed values of spectral 

reflectances & accounting with bi-directional 

reflectance & atmospheric corrections). 

Errors for dark ponds: can exceed 50%. 

Generated UH-MPF dataset (Table 2). 

- MERIS Level 1B: 1-15 bands 

- (Ca):MELTEX 

Zege 

et al. 

(2015) 

Pan-Arctic 

(MYI & FYI)  

2008, 

2006 

Algorithm to retrieve MPF from MERIS data. 

Unscreened cloud overestimates MPF before 

melt onset and underestimates MPF during 

the melt season. FYI floes results are worse 

due to ice drift. Ambiguities on retrieved 

MPFs, suggest with addition of temperature 

could improve results. 

- MERIS Level 1B: 1-4, 8, 10, 12-

14  bands 

-(Ca/V): Barrow 2009, MELTEX 

2008, NOGRAM-2 2011, 

NOGRAM-2 2011, C-ICE 2002, 

HOTRAX 2005, TransArc 2011, 

POL-ICE 2006 (Appendix B) 

Istomina 

et al. 

(2015) 

Campaign 

CHINARE 2010 

2010 

(Summer) 

Classification of high resolution data in 4 

classes: (water,  submerged ice, melt ponds 

and submerged ice along ice edges), shadow, 

and ice/snow). Overall classification accuracy 

of 95.5%, with a producer’s accuracy of 

90.8% and a user’s accuracy of 91.8% 

- Aerial photographs with Canon 

G9 (helicopter-

borne,CHINARE2010) 

- (V/Ca): Ship-based observations 

Miao 

et al. 

(2015) 

North of 

Svalbard, Nansen 

Basin, 

FYI 

2012 

July-August 

10000 images (with homogeneous 

MPF)  classified into 4 classes:  dark ponds, 

bright ponds, open water and bare ice. Pond 

fractions decrease matched open water 

increase in the marginal ice zone. 

- Helicopter-borne photograph 

with Canon EOS 5D (ICE12) 

- In situ broadband albedo 

measurements 

Divine 

et al. 

(2015) 

CAA 

(Landfast FYI) 

2012 

May-June 

Developed VV/HH-based model to retrieve 

MPF during 3 ponding stages. HV/HH offer 

more potential over VV/HH ratio, RMSE 

0.05-0.07 comparable to optical approaches 

- RADARSAT-2: HH, VV, HV, 

VH 

  

Scharien 

et al. 

(2014) 

North Fram 

Strait, Greenland, 

Svalbard 

2009 

June- August 

ENVISAT SAR-based MPF retrieval. SAR σ◦ 

mosaics were visually compared with MODIS 

MPF, along with spatio-temporal coinciding 

data. Hard to depict correlation except for 

smooth landfast FYI. 

- ENVISAT WSM: HH-pol 

- (Co): UH-MPF dataset (Table 2), 

MOD09GA RBG:3-6-7 and 2-1-3 

bands 

Mäkynen 

et al. 

(2014) 

Campaigns 

(North Svalbard 

and Fram Strait) 

2010 Semi-automatic classification of melt ponds, 

open (ocean) water, thin ice, bare ice, and 

submerged ice (5 classes) in combination 

with sea ice thickness measurements. 

Provided insight on relation between MPF 

and sea ice thickness. 

- Helicopter-borne photograph 

with Canon EOS 350D 

Renner 

et al. 

(2013) 
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Campaign 

Chukchi Sea  

2011 

(Summer) 

Mapping melt ponds using very high airborne 

and space-born high-resolution X-band SAR. 

Results were comparable with aerial 

photographs from previous studies. 

-(Ca): Helicopter-born X-band 

NanoSAR: HH-pol (KOPRI-led 

R/V Araon) and airborne SAR 

(SHEBA), 

- (Va): aerial photograph; (Co): 

TerraSAR-X Stripmap mode (6 m 

and dual-pol HH and VV) 

Kim 

et al. 

(2013) 

Pan-Arctic 

(MYI & FYI) 

2008 Estimation of MPF, and ice and water 

coverage and sea ice concentration for the 

entire Arctic region, improving Tschudi et al. 

(2008). Showed good agreement with 

observations. 

- MOD09AI (8-day): 1,3,4 bands 

- (Va): MOD09AG daily: 2,3,4 

bands 

-(V/Ca): HOTRAX, NSIDC, 

MELTEX (Appendix B) 

Rösel et al. 

(2012)  

Northern 

Beaufort 

Sea  

2001 

(July)  

Comparison of MPF retrievals from Landsat 

and MODIS. Classification in 4 classes (open 

(ocean) water, snow-covered ice, and two 

types of melt ponds). Results showed 

problems with saturated pixels, which is 

related to sun elevation and the surface type. 

- Landsat 7 ETM+: 8 bands 

- MOD09: 1,3,4 bands 

Rösel and 

Kaleschke 

(2011) 

  

3 Locations 

Arctic Ocean  

2017 

(August) 

Analysis of the potential of radar backscatter 

data for melt pond identification using 

different frequencies. MPF estimates become 

more realistic if X- and Ku-band are used in 

combination with C-band. 

- Helicopter-borne Multi³Scat 

radar: S-, C-, X-, Ku-band at HH, 

HV, VV and VH, from incidence 

angles between 20 and 60° 

-(Co/Ca): Video data 

(ARKCCII/2) 

Kern 

et al. 

(2010) 

Beaufort/ 

Chukchi Sea 

region 

2004  Estimation of MPF evolution at the basin 

scale. Areal extension of melt ponds has 

increased over the study period. 

- MOD09: 1-3 bands 

- (Va): UAV digital camera 

images 

Tschudi et al. 

(2008) 

4 Arctic Ocean 

sites 

1999-2001 Surface maps of 2 (water and ice) or 3 

(ponds, open water and ice) and MPF 

statistics of 500 m cell with 1 m resolution. 

Attempts to relate MPF and SIC from 

microwave data proved unsuccessful. 

- High resolution optical satellite 

imagery (n.d.) 

Fetterer et al. 

(2008)  

Campaign 

Wellington 

Channel 

FYI 

1997 Understanding the capacity of the 

RADARSAT-1 time series for melt pond 

coverage. Found correlations between the 

scattering coefficients and the MPF and 

retrieved MPF geophysical parameters. 

- RADARSAT-1 (C-band): HH, 

several incidence angles 

- (Co/Ca): In situ Temperature and 

wind velocity and aircraft video 

data 

Yackel and 

Barber 

(2000) 

Campaign 

Wellington 

Channel 

FYI 

Melt season 

(Julian Days 

181-184) 

Semi-automated spectral classification of FYI 

melt season surface types from digital aerial 

videography; classified four distinct surface 

cover types: snow, saturated snow, light and 

dark-colored melt ponds; analyzed fractional 

coverage, integrated surface albedo, and melt 

pond morphology patterns 

- Digital aerial videography 

-(Va): In situ surface albedo 

measurements 

-(Co): RADARSAT-1 SAR 

observations 

Yackel et al. 

(2000) 
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