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Abstract  30 

Modelling current permafrost distribution and response to a warming climate depends on 31 

understanding which factors most strongly control ground temperatures. The Temperature at the 32 

Top of Permafrost (TTOP) model provides a simple, widely used framework for estimating 33 

permafrost presence and thermal state, yet its sensitivity to key parameters remains poorly 34 

quantified across diverse northern environments. This study evaluates the relative influence of 35 

TTOP model parameters using ground and air temperature data from 330 sites across northern 36 

Canada. A leave - one - out cross-validation approach combined with random forest analysis was 37 

used to assess both model sensitivity and variable importance. Results show that TTOP 38 

performance is dominated by freezing-season conditions—particularly the freezing n-factor and 39 

freezing degree days—while thaw-season parameters exert less control. Sensitivity patterns vary 40 

by region, with thawing parameters becoming more influential where the duration of the freezing 41 

and thawing seasons is similar. Machine-learning results highlight the additional importance of 42 

thermal offset and mean surface temperatures, emphasizing the importance of substrate 43 

properties. While the model generally reproduces observed ground temperatures well, parameters 44 

derived from landcover classes were not transferable between sites, underscoring the importance 45 

of locally calibrated inputs. Overall, this study clarifies how different climatic and environmental 46 

factors shape the accuracy of permafrost temperature modelling and provides practical guidance 47 

for improving parameterization in regional and global permafrost models.  48 

 49 

 50 

 51 
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1 Introduction  52 

Permafrost is an important element of the cryosphere, impacting, for example, terrain 53 

stability (Romanovsky et al., 2017; Smith et al., 2022; O’Neill et al., 2023), carbon storage 54 

(Miner et al., 2022), and solute movement (Roberts et al., 2017; Lafrenière & Lamoureux, 2019). 55 

Unlike other elements of the cryosphere (e.g., glaciers and sea ice), direct observation of 56 

permafrost remains challenging (Kääb, 2008) and modelling is often the best way to predict 57 

permafrost temperature and distribution.  58 

The Temperature at Top of Permafrost (TTOP) model (Table 2) (Riseborough & Smith, 59 

1998) has been used to estimate permafrost temperature and presence at continental to local 60 

scales (Henry & Smith, 2001; Gisnås et al., 2013; Way & Lewkowicz, 2016; Obu et al., 2019; 61 

Vegter et al., 2024) and in a variety of permafrost environments including in the High Arctic and 62 

in mountains (Bevington & Lewkowicz, 2015; Garibaldi et al., 2021; Garibaldi et al., 2024). Its 63 

extensive use for spatial modelling is principally due to its simplicity compared to many 64 

numerical models, as well as using input data that are generally measured by meteorological 65 

stations. It is also directly transferable to a variety of permafrost environments without the need 66 

for recalibration as with empirical-statistical models (Juliussen & Humlum, 2007; Riseborough 67 

et al., 2008). A of the primary challenge of using the TTOP model, however, is determining the 68 

values of the scaling factors (n-factors) and soil thermal conductivities used for model 69 

parameterization (Juliussen & Humlum, 2007). In modelling studies, these scaling factors are 70 

typically assigned based on landcover class or topographic class using field measurements or 71 

values presented in the literature (Riseborough et al., 2008; Gisnås et al., 2013; Obu et al., 2019). 72 

Few studies, however, have examined the uncertainties arising from mischaracterization of the 73 
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value of the TTOP model parameters on the TTOP model output or the relative importance of 74 

each parameter in different permafrost environments (Way & Lewkowicz, 2018).  75 

Way and Lewkowicz (2016) demonstrated that utilizing freezing n-factors (nf) from 76 

western Canada when running the TTOP model for Labrador-Ungava reduced the accuracy of 77 

model outputs in forested environments. Theoretical and field data have both been used to assess 78 

TTOP model variable importance (Smith & Riseborough, 2002; Bevington & Lewkowicz, 79 

2015). These studies highlighted the importance of nf, especially in High Arctic environments, 80 

but also noted the increasing influence of differential thermal conductivity (rk – the ratio 81 

between thawed and frozen thermal conductivity) near the southern limit of permafrost. 82 

However, these studies relied either on theoretical inputs or measurements covering relatively 83 

small study areas, potentially limiting the applicability of the conclusions to other locations or 84 

broader scales. As the parameterization of the scaling factors and rk remain one of the main 85 

challenges in utilizing the TTOP model, understanding the relative importance and sensitivity of 86 

the model to these parameters using empirical data is essential. Quantifying the impacts of input 87 

parameter selection will aid model parameterization for future permafrost modelling studies.  88 

Random forest is a supervised machine learning technique, which combines randomized 89 

decision trees with bagging, and aggregates their predictions though averaging or majority vote 90 

(Breiman 2001; Biau & Scornet, 2016). Random forest has been used in studies of air quality 91 

(Yu et al., 2016; Pendergrass et al., 2022), chemoinfomatics (Mitchell, 2014), ecology (Cutler et 92 

al., 2007; Brieuc et al., 2018) and remote sensing (Belgiu & Drăgu, 2016). Recently, random 93 

forest has been used in spatial mapping of permafrost presence using environmental predictors 94 

(topography, rock glaciers, vegetation, and land surface characteristics) in a variety of 95 

environments (Pastick et al., 2015; Deluigi et al., 2017; Baral & Haq, 2020). Random forest also 96 
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provides variable importance rankings which can be used to either identify important variables 97 

for explanatory or interpolation purposes or to identify a small number of variables that provide a 98 

good prediction (Díaz-Uriarte & Alvarez de Andrés, 2006; Grömping, 2009; Genuer et al., 99 

2010).  In permafrost environments, these importance rankings have been analyzed for snow 100 

depth and landslide potential but have yet to be thoroughly investigated for thermal parameters 101 

(Behnia & Blais-Stevens, 2018; Meloche et al., 2022). As the expanded use of machine learning 102 

parameterization in conjunction with process-based models may be an important next step for 103 

permafrost modelling studies, it is important to understand the variation in variable importance 104 

for permafrost temperature across a variety of environments.  105 

The objectives of this study are: (1) to analyze the sensitivity of the TTOP model to 106 

incremental changes in parameter value; (2) to test the utility of machine learning for evaluating 107 

TTOP model variable importance; and (3) to assess the accuracy of the TTOP model using 108 

measured parameters across permafrost regions of Canada. The results should guide efforts to 109 

improve TTOP model parameter calculations and to assess the performance of the TTOP model 110 

across differing environments.  111 

2 Methods 112 

2.1 Study Area 113 

In situ data used to assess the TTOP model were collected from a variety of Canadian 114 

permafrost environments ranging from subarctic to polar desert, in lowlands and mountains (Fig. 115 

1).   116 
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117 
Figure 1. Study area map showing the general location of the study sites used in the TTOP 118 

sensitivity analysis and random forest. The sites were grouped into seven regions for analysis 119 

(indicated by colour): High Arctic (Queen Elizabeth Islands), Northern NWT & NU, Western 120 

Yukon, Eastern Yukon, Southern NWT, Southern Yukon-Northern British Columbia, and 121 

Labrador. Permafrost extent from Brown et al. (2002). Contains information licenced under the 122 

Open Government Licence – Canada.  123 

The sampling locations were initially grouped into 21 study areas based on the data 124 

source and proximity (Table 1). The latter were then combined into seven main study regions 125 

based on similarity in environmental and permafrost conditions and on statistically significant 126 

https://doi.org/10.5194/egusphere-2025-4478
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 7 

differences in model parameters (Table S1): High Arctic, Northern NWT & NU, Southern NWT, 127 

Western Yukon, Eastern Yukon, Southern Yukon-Northern BC, and Labrador. 128 

Table 1. Environmental and sampling details for each study area including permafrost condition, 129 

mean annual air temperature (MAAT) for the 1991-2020 climate normal from closest EC station 130 

(if available), vegetation characteristics, number of sampling locations and length of monitoring 131 

period. Total number of observations is the number of individual years of data for each site in the 132 

region.( Stanek et al., 1980; Heginbottom et al., 1995; Aylsworth & Kettles, 2000; Smith et al., 133 

2009b; Gregory, 2011; Medeiros et al., 2012; Bevington & Lewkowicz, 2015; Duchesne et al., 134 

2015; Holloway, 2020; Daly et al., 2022; Environment and Climate Change Canada, 2021; 135 

Lewkowicz, 2021; Ackerman, 2022; Garibaldi et al., 2024a; Garibaldi et al., 2024b;; Vegter et 136 

al., 2024). 137 

Study Area 
Grouped 

Region 

MAAT 

(°C) 
Vegetation 

Permafrost 

Condition 

Sites with 

air, ground 

surface, and 

ground 

temperature 

Sites with 

only air and 

ground 

surface 

temperature 

Monitoring 

period 

Number of 

annual 

observations 

Alaska 

HWY 

S Yukon 

N BC 
-3.0 

Boreal forest 

at low 

elevations 

shrub or 

alpine tundra 

at high 

elevations 

Sporadic 

Discontinuous 
10 0 2005-2018 71 

Alert 
High 

Arctic 
-16.7 Polar desert Continuous 3 0 2000-2008 14 

Atlin 
S Yukon 

N BC 
1.4 

Boreal white 

and black 

spruce forests 

at lower 

elevations 

and spruce, 

willow, and 

birch in the 

subalpine 

elevations 

Sporadic 

Discontinuous 
6 0 2011-2019 30 

Baker 

Lake 

Northern 

NWT & 

NU 

-10.8 

Tundra 

vegetation 

including 

dwarf shrubs 

Continuous 1 0 2003-2008 2 
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Cape 

Bounty 

High 

Arctic 
-14.0 Polar desert Continuous 10 39 2011-2018 76 

Carmacks 
S Yukon 

N BC 
-2.1 

Boreal forest 

at low 

elevations 

shrub or 

alpine tundra 

at high 

elevations 

Extensive 

Discontinuous 
3 0 2009-2018 10 

Dawson 
Western 

Yukon 
-3.8 

white (Picea 

glauca) and 

black spruce 

(Picea 

mariana) 

forests with 

alpine tundra 

vegetation 

present at 

higher 

elevations 

Extensive 

Discontinuous 
15 0 2008-2021 117 

Dempster 
Western 

Yukon 
-9.2 

white (Picea 

glauca) and 

black spruce 

(Picea 

mariana) 

forests with 

alpine tundra 

vegetation 

present at 

higher 

elevations 

Continuous 13 0 2015-2021 25 

Eureka 
High 

Arctic 
-18.1 Polar desert Continuous 6 0 2009-2013 14 

Faro 
Eastern 

Yukon 
-1.9 

Boreal forest 

at low 

elevations 

shrub or 

alpine tundra 

at high 

elevations 

Extensive 

Discontinuous 
12 0 2006-2009 30 

Johnsons 

Crossing 

S Yukon 

N BC 
-0.7 

Boreal forest 

at low 

elevations 

shrub or 

alpine tundra 

at high 

elevations 

Sporadic 

Discontinuous 
13 0 2006-2018 73 
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Keno 
Western 

Yukon 
-2.2 

Boreal forest 

at low 

elevations 

shrub or 

alpine tundra 

at high 

elevations 

Extensive 

Discontinuous 
13 0 2006-2018 48 

Labrador Labrador 
-2.4 to 

0.4 

Coastal 

barrens with 

sparse tree 

cover and 

peatlands 

near the coast 

transitioning 

to open 

coniferous 

and mixed-

wood upland 

forests 

Sporadic 

Discontinuous 
30 0 2013-2022 130 

Mac Valley 

North 

Northern 

NWT & 

NU 

-9.1 to -

7.0 
Tundra Continuous 1 13 1993-2012 99 

Mac Valley 

Central 
S NWT 

-5.5 to   

-4.8 

Boreal Forest 

with 

extensive 

peatlands 

Extensive 

Discontinuous 
4 10 1993-2012 81 

Mac Valley 

South 
S NWT -2.3 

Boreal forest 

with 

extensive 

peatlands 

Extensive 

Discontinuous 
3 22 1993-2012 174 

North 

Canol 

Eastern 

Yukon 

-5.3 to -

5.2 

Boreal forest 

but 

transitions to 

alpine 

vegetation at 

higher 

elevations 

Extensive 

Discontinuous 
21 0 2016-2021 70 

Sa Dena 

Hes 

S Yukon 

N BC 
-2.1 

Boreal forest 

at low 

elevations 

shrub or 

alpine tundra 

at high 

elevations 

Sporadic 

Discontinuous 
12 0 2006-2009 23 

Southern 

NWT 
S NWT 

-4.0 to -

2.2 

Patchwork of 

black spruce 

forest, mixed-

wood forest, 

and peatlands 

Sporadic 

Discontinuous 
32 0 2015-2019 65 
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Whatì S NWT -4.6 

Patchwork of 

coniferous 

and mixed 

wooded 

forest, peat 

plateaus, and 

wetlands 

Extensive 

Discontinuous 
10 0 2019-2022 15 

Whitehors

e 

S Yukon 

N BC 
0.2 

Boreal forest 

at low 

elevations 

shrub or 

alpine tundra 

at high 

elevations 

Sporadic 

Discontinuous 
28 0 2007-2015 133 

 138 

2.2 Data Collection 139 

Air, ground surface and ground temperature at depth measurements were recorded 1-hour 140 

to 8-hour intervals at 330 sites (Table 1). Record lengths ranged from 2-16 years.  This dataset, 141 

spanning over two decades, is the product of long-term federal, territorial, and academic 142 

monitoring networks, only possible through funding and support from the Geological Survey of 143 

Canada and several Canadian universities. 144 

 Air temperature was measured ~1.5 meters above the ground surface with a Hobo U23-145 

002 (± 0.25-0.4 °C accuracy, 0.04 °C resolution) thermistors or Vemco loggers (accuracy and 146 

precision better than 0.1 °C) housed in a radiation shield (Onset RS1). At newer sites, a Hobo 147 

U23-001 (± 0.25 °C accuracy, 0.04 °C resolution) was housed in a radiation shield. At all sites 148 

except the Southern NWT, ground surface temperature was measured 2-5 cm below the ground 149 

surface with the Hobo U23-002 internal thermistor. The Southern NWT ground surface 150 

temperatures were measured with Maxim IntegratedTM Thermochron iButton temperature 151 

loggers (model no. DS1922L; accuracy ± 0.5°C).   152 

For most sites, ground temperature at depth was measured using the Hobo U23-002 or 153 

Hobo Pro U12-008 external thermistors, while for the remaining sites, ground temperatures at 154 
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depth were recorded using multi-sensor cables with RBR loggers. For a majority of sites, the 155 

ground depth sensor was positioned close to or at the top of the frost table at the time of 156 

installation. For sites with multiple ground temperature observations, the sensor closest to the 157 

depth of the frost table was used. However, for some sites (n = 160 observations), annual mean 158 

ground temperature (AMGT) may not correspond to the temperature at the top of the frost table 159 

due to installation depth limitations. These sites are generally confined to coarse grained, dry, 160 

rocky sediment where the thermal gradient is typically small (Lewkowicz et al., 2012). Based on 161 

estimations of active layer or frost depth and temperature extrapolation (S1), the temperature 162 

difference between the true TTOP and the monitoring depth was generally less than 0.5 ºC (n = 163 

144 observations, average = 0.2 ºC). Therefore, at these sites, AMGT was still compared directly 164 

to the modelled TTOP value.  165 

The data was assessed for sensor drift, erroneous measurements, and missing intervals. 166 

Short data gaps (<3 consecutive  days) were filled using linear interpolation, while larger gaps 167 

were flagged. Average air, ground surface and ground temperatures were only calculated for 168 

years ≥ 85% daily data completeness once erroneous values were removed and data gaps were 169 

considered.  170 

2.3 TTOP Model Sensitivity  171 

 The TTOP model calculates equilibrium permafrost temperature using air freezing and 172 

thawing degree days, n-factors and the thermal conductivity ratio (Table 2). The TTOP model is 173 

often used spatially as the input parameters are based on widely available data commonly 174 

measured at meteorological stations (Juliussen & Humlum, 2007). However, as an equilibrium 175 

model it is not ideal for modelling transient changes in permafrost temperature and distribution. 176 
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Additionally, the TTOP model errors are often largest near zero due to latent heat effects, which 177 

the model does not consider (Riseborough, 2007).   178 

To assess the TTOP model sensitivity to each input parameter we first calculated baseline 179 

input parameters for the TTOP model and the reference TTOP value (TTOP model output when 180 

using values for baseline parameters derived from the measured field data) were calculated for 181 

each site. 182 

Table 2. Variables and equations used in the TTOP sensitivity and random forest analysis. 183 

Freezing (FDD) and thawing (TDD) degree-days were calculated for air (a), ground surface (s), 184 

and ground at or close to top of permafrost (g). P is the period, usually 365 days. 185 

Variable Abbreviation Equation 

Temperature at Top of 

Permafrost (°C) 
TTOP 𝑇𝑇𝑂𝑃 =  

(𝑛t ∗ 𝑇𝐷𝐷a ∗ 𝑟𝑘) − (𝑛f ∗ 𝐹𝐷𝐷a)

𝑃
 

 

Freezing Degree Days 

(°C days) 
FDD 𝐹𝐷𝐷 = |𝛴1

𝑃𝑇|, < 0 

Thawing Degree Days 

(°C days) 
TDD 𝑇𝐷𝐷 = |𝛴1

𝑃𝑇|, 𝑇 > 0 

Freezing n factor nf 𝑛f =
𝐹𝐷𝐷s

𝐹𝐷𝐷a
 

Thawing n factor nt 𝑛t =
𝑇𝐷𝐷s

𝑇𝐷𝐷a
 

Thermal Conductivity 

ratio (Thawed:Frozen) 
rk 𝑟𝑘 =

𝐹𝐷𝐷s + (𝑇𝐷𝐷g − 𝐹𝐷𝐷g)

𝑇𝐷𝐷s
 

Nival Surface Offset 

(°C) 
NVO 

𝑁𝑉𝑂 =  
𝐹𝐷𝐷a − 𝐹𝐷𝐷s

𝑃
 

 

Thawing Surface Offset 

(°C) 
TSO 𝑇𝑆𝑂 =  

𝑇𝐷𝐷s − 𝑇𝐷𝐷a

𝑃
 

Surface Offset (°C) SO 𝑆𝑂 = 𝑀𝐴𝐺𝑆𝑇 − 𝑀𝐴𝐴𝑇 

Thermal Offset (°C) TO 𝑇𝑂 = 𝑀𝐴𝐺𝑇 − 𝑀𝐴𝐺𝑆𝑇 

 186 

 To allow for direct comparison of model sensitivity in all environments, the TTOP model 187 

equation for permafrost was utilized even for sites considered to be seasonally frozen (Way & 188 

Lewkowicz, 2018; Obu et al., 2019; Garibaldi et al., 2021). For each year and each site, FDD and 189 
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TDD were calculated using daily average air (Ta) and ground surface temperatures (Ts) from 190 

September 1st to August 31st of the subsequent year. Freezing and thawing n-factors were then 191 

calculated for each measurement location (Table 2). The ratio of thawed to frozen thermal 192 

conductivity (rk) for sites with a deeper ground temperature measurement was calculated using 193 

FDD and TDD for both the ground surface (s) and the ground temperature observation at or near 194 

the frost table (g) (Table 2). For sites without a depth sensor, rk, was assigned based on 195 

vegetation class for the High Arctic and substrate for the Mackenzie Valley (n = 38) (Kersten, 196 

1949; Gregory, 2011; Obu et al., 2019; Garibaldi et al., 2021). These sites were included even 197 

though rk needed to be assigned as they filled a substantial latitudinal gap in the dataset (Fig. 198 

S2).  Using the observed thermal offset to determine rk may not necessarily be possible given the 199 

materials that are present due to potential disequilibrium. Therefore, for the purpose of this study 200 

we assume equilibrium conditions for each observation.  201 

Once the parameters and reference TTOP values were determined, the sensitivity of the 202 

model to changes in each parameter was assessed by iteratively substituting values for one 203 

parameter while holding all other inputs constant and then calculating the TTOP temperature for 204 

each substitution. The substituted values used percentiles (minimum, 10th, 25th, 50th, 75th, 90th 205 

and maximum) calculated using the parameters across the entire study dataset. Each year of data 206 

for each site was treated as its own observation and run through the sensitivity analysis resulting 207 

in 9100 different TTOP values for each parameter. Sensitivity analysis TTOPs were then 208 

compared to the reference (i.e observed) TTOP values to assess the influence of the TTOP model 209 

to changes in each parameter. 210 

Since vegetation is often used when assigning n-factors and rk in regions without 211 

observations, the TTOP sensitivity analysis was rerun using the median value for these 212 
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parameters based on vegetation class and region. These TTOP outputs were then compared to the 213 

reference TTOP value for each site.  214 

2.4 Random Forest Variable Importance Ranking 215 

Algorithm inputs included TTOP model and additional parameters (see Table 2). Samples 216 

were randomly split into testing and training data (40% and 60% respectively both for the overall 217 

dataset and individual regions) with individual years treated as independent observations. Two 218 

random forest models were created, one using all the input variables and the other using only the 219 

TTOP model parameters (Table 3). The random forests were generated in R Studio and run using 220 

the default settings for the number of variables sampled for splitting at each node (4 and 2 for 221 

iterations 1 and 2 respectively) and number of trees (500). For each iteration, the same training 222 

and test dataset was used to ensure comparability. The Northern NWT & NU region was not 223 

included in this analysis as it had only one site with measured ground temperature at depth.  224 

Table 3. Random forest trials including a description of variable selection, and variables used.   225 

Random Forest 

Iteration 
Description Variables used 

1 All Variables 

FDDa   TDDa    nf   nt   rk   MAAT 

MAGST   NVO   TSO   SO   TO 

FDDs   TDDs 

2 
TTOP model 

variables 
FDDa   nf   TDDa    nt   rk 

 226 

Random forest provides variable importance rankings through two methods: permutation 227 

accuracy importance (mean square error (MSE) reduction) or Gini importance (Strobl et al., 228 

2008). The former, used here, has been more widely employed in variable importance studies 229 

due to biases in Gini importance when predictor parameters vary in number and scale (Díaz-230 

https://doi.org/10.5194/egusphere-2025-4478
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 15 

Uriarte & Alvarez de Andrés, 2006; Strobl et al., 2008; Grömping, 2009; Genuer et al., 2010).  231 

Reduction in MSE involves the random permutation of each variable individually to simulate its 232 

absence in the model prediction. Variable importance is then determined based on the difference 233 

in prediction accuracy before and after the permutation. Variable importance plots were created 234 

for each random forest model both for the entire dataset and for each region individually.  235 

2.5 TTOP model performance  236 

 For sites with measured ground temperature, the performance of the TTOP model was 237 

assessed by comparing the calculated TTOP and the measured AMGT at or near the top of 238 

permafrost (observed TTOP). For the few sites where the observed AMGT was not near the top 239 

of the frost table, the observed AMGT was still compared to TTOP as the thermal offset at these 240 

sites was low (S1).  241 

3 Results  242 

3.1 TTOP Sensitivity 243 

To test TTOP model sensitivity, percentile values for each parameter (calculated over the 244 

entire dataset) were directly substituted for the measured parameter value (Table 4). As the range 245 

of measured values differed for each parameter, the values and range of the substituted 246 

percentiles were also different. The potential impact of this on the interpretation of the sensitivity 247 

is discussed below.  248 

Table 4. Substituted percentile values for each parameter replacing the measured parameter 249 

value for each iteration of this trial method. These values were determined based on the 250 

observation data. 251 

 Minimum 
10th 

Percentile 

25th 

Percentile 

50th 

Percentile 

75th 

Percentile 

90th 

Percentile 
Maximum 

nf 0 0.06 0.15 0.29 0.48 0.76 1.0 
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nt 0.01 0.54 0.66 0.79 0.93 1.14 4.3 

rk 0.18 0.51 0.68 0.83 0.97 1.11 1.98 

FDDa 

(°C days) 
274 1851 2324 2857 3467 4588 7223 

TDDa 

(°C days) 
150 727 1081 1438 1378 1944 2368 

 252 

For a majority (>53 %) of sample points, changes to FDDa, nt, TDDa, and rk resulted in < 253 

1 ºC difference between the reference and perturbed TTOP output (Fig. 2b,c,d,e). However, for 254 

nf less than half (< 27 %) remained within 1 ºC of the initial TTOP value (Fig. 2a). FDDa showed 255 

more sensitivity than TDDa, nt, and rk with less than 70% of sample points remaining within 2 256 

°C of the initial observation value (compared to > 75 %). 257 

Latitudinal trends in sensitivity were observed with the region with the coldest permafrost 258 

(High Arctic) showing a much greater response to changes in winter parameters FDDa and nf) 259 

and muted response to changes in summer parameters (nt) and the thermal conductivity ratio (rk) 260 

(Table 5, Fig. 3). However, the High Arctic region was also disproportionately sensitive to 261 

changes in TDDa when compared to more southern regions.  Moving from north to south the 262 

difference between the reference and perturbed TTOP generally increased for the thawing 263 

parameters and decreased for the freezing parameters. In the southernmost regions (Southern 264 

Yukon-Northern BC and Labrador) all parameters had similar sensitivity.  All sites had the 265 

greatest sensitivity to changes in nf or nt and the least sensitivity to changes in FDDa and rk. The 266 

sensitivity to rk was most similar between regions compared to the other parameters.  267 

 268 
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269 
Figure 2. Reference TTOP model values compared to perturbed TTOP model values for the 270 

direct substitution of the minimum, 5th, 25th, 50th, 75th, 95th, and maximum percentile value for 271 

[A] nf, [B] FDDa, [C] nt, [D] TDDa, and [E] rk. Large dashes indicate a ± 1 °C difference while 272 

small dashes indicated a ± 2 °C difference. 273 
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Table 5. Average absolute difference between the reference TTOP and the perturbed TTOP for 274 

each parameter within each region. Regions are High Arctic, Northern NWT & NU, Western 275 

Yukon, Eastern Yukon, Southern NWT, Southern Yukon-Northern BC, and Labrador. Values 276 

followed by the same superscript letter are not significantly different (P > 0.05) between regions 277 

(along a row). Values followed by a subscript italicized letter are not significantly different (P > 278 

0.05) within a region (down a column). 279 

 High 

Arctic 

N NWT 

& NU 

W 

Yukon 

E Yukon S NWT S Yukon 

N BC 

Labrador 

FDDa 

(°C) 

6.4 2.0b
a 1.6d

b 1.4f
b 0.9c 2.1hi

a 0.9c 

TDDa 

(°C) 

3.7 1.0c
a 1.5d

c 1.8cd 1.1a 1.9i
d 1.6k

c 

nf (°C) 7.5 3.9 2.6e
abc 2.4ad 2.8g

c 2.2hj
d 2.4bd 

nt (°C) 0.8a 1.9b
a 2.7e

b 2.3ba 2.7g
b 2.3j

ab 2.8b 

rk (°C) 0.7a
a 0.8c

a 1.5d
b 1.3f

c 1.6b 1.4c 1.6k
b 

a in column 2 indicates that the difference in TTOP for nt and rk is not significantly different in 280 

the High Arctic. 281 

a in the second row indicates that the difference in TTOP for changes in FDDa is not significantly 282 

different for the Northern NWT & NU and the Southern Yukon-Northern BC regions.  283 

 284 

285 
Figure 3. Boxplots for the regional absolute difference between the reference TTOP and TTOP 286 

calculated when parameters were directly substituted to a percentile value. Mean values are 287 

represented by an X, outliers are shown as circles, and the ends of the whiskers show the value 288 
for one and a half times the interquartile range. The ends of the box show the first (25 percent) 289 

and third (75 percent) quartiles and the black line within the box shows the median.  290 
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 Using the internal median parameter value (based on measured values for each landcover 291 

class within each region) resulted in a lower error than using the external median parameter 292 

value for every region and landcover class (Fig. 4). These differences were especially 293 

pronounced for nf. For each region the shrub landcover class showed the least difference when 294 

using the internal vs. external parameters.   295 

3.2 Random Forest 296 

For the random forest iterations 1 and 2 (Table 3), several parameters were consistently 297 

ranked as the most and least important by virtue of the percent increase in MSE (Fig. 5). When 298 

all variables were used within the entire dataset, TO, rk and FDDs were ranked as the most 299 

important. The least important were NVO, TSO and TDDa. Regionally, freezing season 300 

parameters (FDDs and nf) and MAGST were consistently ranked as the most important 301 

parameters. Surprisingly, TDDs was ranked as highly important only in the High Arctic and 302 

Labrador.  303 

When using only the TTOP model parameters, nf was ranked as the most important for 304 

every region, while nt, rk, and TDDa most often ranked lower in importance. TDDa was the an 305 

most important parameter for the two southern regions and the High Arctic but was deemed to be 306 

the least important parameter for the remaining three regions. Overall, the variable importance 307 

rankings once again highlight the prominence of freezing season conditions compared to 308 

thawing.  309 

 310 

 311 
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 312 

Figure 4. Boxplots for the difference between the measured ground temperature and the TTOP 313 

model using the internal parameter value (median value for the landcover type within the region) 314 

and the external parameter value (median value for the landcover type outside the region). Red 315 

asterisk (*) indicates the difference resulting from using the internal and external parameter 316 

value was not significant (P > 0.05). Mean values are represented by an X, outliers are shown as 317 

circles, and the ends of the whiskers show the value for one and a half times the interquartile 318 
range. The ends of the box show the first (25 percent) and third (75 percent) quartiles and the 319 

black line within the box shows the median. 320 
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 322 

3.3 Random Forest Variable Importance Rankings Compared to TTOP Sensitivity Results  323 

 The variable importance conclusions from the TTOP sensitivity and random forest using 324 

only the TTOP parameters did not match perfectly, but there were commonalities for certain 325 

parameters. Both analyses highlighted the importance of the freezing parameters (especially nf). 326 

Three regions (High Arctic, Southern NWT, and Labrador) showed similarity in parameter 327 

importance between the two methods. The remaining regions showed greater discrepancies, 328 

particularly in the rankings of nt and rk.  Despite the differences between the two analyses, both 329 

methods generally captured the trends in the overall and regional differences in parameter 330 

importance.  331 

3.4 TTOP Model Performance 332 

 The TTOP model performed well compared to the observed AMGT overall with an 333 

RMSE of 0.2 ºC, but with regional differences in model performance (Fig. 6). Model error was 334 

low in most regions, except for the High Arctic. However, the Southern NWT and Southern 335 

Yukon-Northern BC regions included a number of outliers with large errors.  Additionally, the 336 

model only misclassified permafrost presence or absence at 3 of the 612 observations. Two of 337 

the three observations were in the Southern Yukon-Northern BC region both of which were false 338 

positives for permafrost (no permafrost in observation but negative modelled temperature). The 339 

third observation was in the SNWT region where permafrost was observed but the model 340 

indicated its absence. 341 
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 342 

Figure 6. A) Comparison of TTOP model outputs to the measured annual mean ground 343 

temperature (AMGT). The solid line in panel A is the 1:1 relation between modelled and 344 

observed while the dashed lines indicate 1 and 2 ºC differences. B) Boxplots for the absolute 345 

difference between the modelled TTOP and the measured AMGT close to the frost table across 346 

the entire study area and for individual regions. Mean values are represented by an X, outliers are 347 

shown as circles, and the ends of the whiskers show the value for one and a half times the 348 
interquartile range. The ends of the box show the first (25 percent) and third (75 percent) 349 

quartiles and the black line within the box shows the median.  350 
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4 Discussion 351 

4.1 TTOP Model Parameter Sensitivity   352 

 The sensitivity of the TTOP model to changes in specific parameters is affected by the 353 

structure of the model and the values of the parameters. The model across all regions was most 354 

sensitive to changes in nf, due to the higher number of FDDa (compared to TDDa), which 355 

amplified the response to changes (Smith & Riseborough, 1996, 2002; Bevington & Lewkowicz, 356 

2015). Regionally, the sensitivity of the model to changes in the thawing parameters, especially 357 

TDDa and nt increased southward as the difference between FDDa and TDDa decreased. The 358 

exception to this was the High Arctic, where the model was disproportionately sensitive to 359 

changes in TDDa despite the large contrast in the number of FDDa and TDDa in this region (up to 360 

five times as many FDDa as TDDa). The increased sensitivity to changes in TDDa likely results 361 

from the high values of nt and rk, with values regularly approaching or exceeding 1.0. As a 362 

result, changes in TDDa were amplified in this region. This also highlights the vulnerability of 363 

this region to changes in climate due to the lack of vegetation increasing the importance and 364 

influence of MAAT on the ground thermal regime compared to other regions with more well-365 

developed surface cover (Shur & Jorgenson, 2007; Throop et al., 2012; Smith et al., 2022).  366 

 It is also important to note this study perturbed TTOP model parameters using the entire 367 

measured dataset. Therefore, sensitivity to certain parameters may be higher than for studies with 368 

altered parameters based on values measured within a region which may have limited variability 369 

(Way & Lewkowicz, 2018). As a result, our results may highlight relatively higher sensitivity for 370 

different parameters such as nt compared to nf in Labrador (Way & Lewkowicz, 2018).  371 

 The sensitivity analysis also showed that TTOP model parameters are not necessarily 372 

transferable between regions with the same landcover class. This is especially true for nf and nt as 373 
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using the median values for the same landcover class, but an external region resulted in a 374 

significantly greater error than utilized the median value corresponding to the site region. This 375 

could be a result of the large range of environments sampled in this analysis as previous studies 376 

have shown transferability of nt between rock and forest landcovers of Labrador and Southern 377 

Yukon (Way & Lewkowicz, 2018). However, utilizing nf from Southern Yukon in Labrador 378 

increased TTOP model errors (Way & Lewkowicz, 2016), which supports our findings. Rk 379 

appears to be generally more transferable, especially for the limited number of tundra sites which 380 

might be the result of restricted soil (and organic) development and moisture in this landcover 381 

(Throop et al., 2012). Additionally, rk may have a smaller influence on ground temperature in 382 

certain environments (Karjalainen et al., 2019) and therefore the importance (or lack of 383 

transferability) may be masked by the large dataset. These results demonstrate the need for 384 

caution in assuming the regional transferability of parameters, especially in environments where 385 

values may differ substantially.  386 

4.2 Random Forest Variable Importance Rankings 387 

 The variable importance rankings for the overall and regional datasets were a product of 388 

differences in values of the measured field inputs. TO and rk were ranked as the most important 389 

parameters when all variables were used. TO has previously been suggested as the most 390 

important parameter for determining the southern extent of permafrost, under equilibrium 391 

conditions, as a high TO can protect permafrost from higher air temperatures (Smith & 392 

Riseborough, 2002). However, neither were ranked as the most important parameters in any of 393 

the regional analyses. TO and rk had lower correlation with the other parameters, which may 394 

have artificially elevated their importance, but they are correlated with each other which may 395 

explain why both have elevated importance.  396 
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NVO has also been highlighted in the literature as an important parameter, determining 397 

the northern and southern limit of discontinuous permafrost and influencing permafrost existence 398 

within the discontinuous zone (Nicholson & Granberg, 1973; Smith & Riseborough, 2002). 399 

However, in this study NVO ranked as middle to low importance overall and for every region, 400 

even those spanning the continuous to discontinuous permafrost transition. Finally, overall and 401 

regionally, MAGST was deemed to be an important parameter for accurate predictions of 402 

MAGT. While this may be true for sites with a negligible thermal offset (Lou et al., 2019; 403 

Garibaldi et al., 2021), MAGST alone cannot accurately predict the thermal state of permafrost 404 

without additional information on the thermal properties, especially at sites with larger thermal 405 

offsets (James et al., 2013; Guo et al., 2024; Brown & Gruber, 2025) .  Therefore, the elevated 406 

importance of this parameter may indicate that sites with small thermal offsets are over-407 

represented in the dataset (Fig. S3c).  408 

4.3 TTOP model performance 409 

The TTOP model generally performed well compared to observed AMGT, resulting in 410 

minimal errors in predicted TTOP even seasonally frozen sites. The RMSE for the TTOP model 411 

for this study was similar to or smaller than those from previous TTOP modelling results in the 412 

same region (Obu et al., 2019; Garibaldi et al., 2021). This is likely a product of the use of 413 

directly measured and calculated input parameters rather than the characterization of parameters 414 

from environmental variables such as vegetation or spatial interpolation. This highlights the 415 

importance of in situ data for validation of parameters for accurate predictions of permafrost and 416 

ground temperatures.   417 

The TTOP model did not perform as well in the High Arctic for certain observations, 418 

especially those from Cape Bounty during 2016-2017, when the predicted TTOP was higher than 419 
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the observed values. The AMGST for 2016-2017 was substantially higher than those from the 420 

previous years. Although the AMAT showed only a slight deviation, nf at these sites decreased 421 

substantially, indicating greater snow depths.  As a result, the TTOP model parameters were not 422 

in equilibrium with ground temperature for this year, yielding a larger discrepancy.  423 

The TTOP model using measured parameters performed surprisingly well in locations of 424 

warmer, more marginal permafrost or locations with seasonal frost, despite these locations 425 

potentially being in disequilibrium with the current climate. However, these regions, especially 426 

the Southern NWT and Southern Yukon-Northern BC, also included individual sites with the 427 

largest errors (Fig. 6a) showing a lack of consistency in model performance. These results may 428 

indicate sites with more ecosystem-protected permafrost and high apparent TOs or 429 

disequilibrium conditions (Shur & Jorgenson, 2007; James et al., 2013; Vegter et al., 2024). It 430 

should be noted that even small temperature errors can result in the misclassification of 431 

permafrost presence where ground temperatures are close to 0 °C (Daly et al., 2022; Vegter et 432 

al., 2024) whereas the classification would be unaffected even with a larger temperature error in 433 

the High Arctic. However, the model accurately predicted permafrost presence or absence for the 434 

vast majority of observations (> 98 %) in this study even though 38% of observations were 435 

within -1 °C to +1 °C.  436 

4.4 Sources of Uncertainty 437 

The methods used to rank the importance of variables have their own uncertainties that 438 

could affect the reliability of the results. First, since the percentiles were derived from the 439 

observed data the range of values for each parameter differed and would vary if a different 440 

dataset was used. Second, although random forest is able to cope with highly correlated variables 441 
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for prediction (Boulesteix et al., 2012), there are conflicting conclusions on the reliability of 442 

variable importance rankings (Strobl & Zeileis, 2008; Nicodemus et al., 2010; Tolosi & 443 

Lengauer, 2011; Gregorutti et al., 2017). For this study, a majority of the input parameters are 444 

highly correlated with at least one other parameter as some parameters are used to derive others. 445 

This may have led the variable importance rankings of the random forest to be unreliable when 446 

all parameters where used. Additionally, although the random forest model using all variables 447 

performed relatively well (MSE 0.2 °C; variance explained 98%), the regional models had lower 448 

percentages of variance explained (43 - 93 %) even though MSE was similar (0.2 – 0.8 °C). This 449 

may have impacted the reliability of the variable importance rankings for these models, as they 450 

may have accurately predicted ground temperature. Despite the possible errors and uncertainty in 451 

the results of this, the variable importance analyses were in general agreement for the two 452 

methods and supported findings from previous studies.  453 

Variation in variable importance rankings between the two methods may also have 454 

resulted from the difference in approaches. As the TTOP model utilized multiplicative factors, 455 

the importance of the parameters was elevated by nature of the model equation. The random 456 

forest variable importance ranking was not dependent on this equation and as a result, the 457 

importance was potentially different based on the predictive method alone. Additionally, the 458 

TTOP model sensitivity analysis was determined through perturbation of the model parameters, 459 

thereby ranking the parameters’ importance based on the response. Contrastingly, the random 460 

forest variable importance ranking was determined based on the current thermal conditions. This 461 

may also have resulted in some discrepancy in the rankings. However, both methods showed 462 

similar rankings and regional trends overall.  463 

4.5 Parameter classification recommendations 464 
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Since the TTOP model was deemed more sensitive to certain model parameters in the 465 

entire dataset and in certain regions, accurate parameterization of the most important variables 466 

for the study location is vital. Overall, the freezing season parameters were generally deemed the 467 

most important; therefore, adequate characterization is essential for accurate predictions of 468 

TTOP at national or circumpolar scales. This is especially true for nf which is typically the most 469 

difficult to parameterize since it is dependent on a wide range of conditions including timing, 470 

depth, and morphology of snow and substrate conditions including soil moisture and is not 471 

necessarily transferable between regions (Smith & Riseborough, 2002; Zhang, 2005;Throop et 472 

al., 2012; Way & Lewkowicz, 2016).  473 

Regionally, in locations where FDDa >> TDDa, the impact of inadequate characterization 474 

of nt, rk, and was shown to be minimal. Therefore, more general assumptions and classifications 475 

will not result in a substantial increase in uncertainty and greater focus should be put on accurate 476 

characterization of FDDa and nf. In locations where FDDa and TDDa are similar (i.e., AMAT is 477 

close to 0°C), the sensitivity of the model to changes in thawing parameters is elevated and 478 

accurate characterization of nt and rk becomes more important. For several continental and 479 

circumpolar modelling studies, a uniform value of 1.0 was utilized as the input for nt across the 480 

study area (Henry & Smith, 2001; Obu et al., 2019). While this assumption is unlikely to 481 

increase uncertainty in areas above treeline and tundra it is likely to result in errors in boreal 482 

forested areas due to the elevated importance of nt in this landcover. Additionally,  nf and to 483 

some extent nt varied regionally even within the same landcover type due to microclimatic 484 

differences, vegetation and wind exposure, which influence both summer and winter conditions 485 

(Smith & Riseborough, 2002). As such regional transferability of these parameters between 486 

regions may be limited especially over large geographic and climatological gradients.   487 
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Finally, many studies that determine TTOP characterize rk using vegetation, assigning 488 

values between 0.0 and 1.0 (Smith & Riseborough, 1996; Riseborough & Smith, 1998; Way & 489 

Lewkowicz, 2016; Obu et al., 2019; Garibaldi et al., 2021). However, recent studies (including 490 

the data analyzed for this study) have shown rk values exceeding 1.0 (Bevington & Lewkowicz, 491 

2015; Lin et al., 2015; Zou et al., 2017). This likely occurs as a product of extremely dry 492 

conditions in winter and higher soil moisture during summer, resulting in greater thermal 493 

conductivity in the warm season. This is typically observed at sites with rocky or bedrock 494 

substrates and limited vegetation cover and soil moisture (Lin et al., 2015; Luo et al., 2018). In 495 

southern permafrost environments, the assumption of rk < 1 at these sites (such as high elevation 496 

rocky slopes, Fig. 2b) likely results in mischaracterization of the permafrost condition. The 497 

varying sensitivity of the TTOP model to specific parameters in different environments 498 

demonstrates the need for accurate parameterization and validation of TTOP model parameters 499 

to ensure valid outputs. This highlights the need for in situ data parameter to increase the 500 

accuracy of future TTOP modelling studies to validate remotely-derived parameter values.  501 

5 Conclusions 502 

 The results of this analysis highlight the overall sensitivity of the TTOP model to changes 503 

in the freezing parameters (nf and FDDa) compared to the response to changes in the thawing 504 

parameters (nt, TDDa) and rk. Across all sites, regions, and perturbation methods, the model was 505 

most sensitive to changes in nf with 73 % of TTOP outputs changing by at least 1 ºC from the 506 

original TTOP value followed by FDDa at 30 % changing by at least 2 °C. The model was least 507 

sensitive to changes in TDDa with only  22 % of TTOP model outputs exceeding 2 ºC difference 508 

from the reference TTOP value, followed by nt and rk at 25 %. Differing sensitivity patterns 509 

emerged regionally, mainly showing the diminishing response to changes in nf and the increasing 510 
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response to changes in TDDa, nt, and rk at more southerly sites, although sensitivity to changes 511 

in nf remained high.  512 

The random forest variable importance rankings also highlighted the importance of the 513 

freezing season parameters using both a wide variety of temperature parameters and only those 514 

used in the standard form of the TTOP model. The increasing importance of the thawing and 515 

annual parameters moving south was also shown. Although the random forest variable 516 

importance rankings showed some differences from the TTOP sensitivity results, potentially due 517 

to high correlation between variables, they indicated similar regional trends in variable 518 

importance. 519 

  The results of this study highlight the importance of correct parameterization, 520 

specifically of the freezing parameters in small-scale national or circumpolar modelling studies, 521 

and the increased importance of parameterization of the thawing parameters in locations where 522 

the magnitude of FDDa and TDDa are similar. Although these conclusions had been theorized, a 523 

robust network of in situ data provided essential empirical support. Ultimately, the findings of 524 

this study will help future modelling studies determine parametrization allocation effort based on 525 

location and scale and may help explain sources of error and uncertainty in modelled results.  526 
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