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30 Abstract

31 Modelling current permafrost distribution and response to a warming climate depends on
32 understanding which factors most strongly control ground temperatures. The Temperature at the
33 Top of Permafrost (TTOP) model provides a simple, widely used framework for estimating

34  permafrost presence and thermal state, yet its sensitivity to key parameters remains poorly

35 quantified across diverse northern environments. This study evaluates the relative influence of
36  TTOP model parameters using ground and air temperature data from 330 sites across northern
37  Canada. A leave - one - out cross-validation approach combined with random forest analysis was
38  used to assess both model sensitivity and variable importance. Results show that TTOP

39 performance is dominated by freezing-season conditions—particularly the freezing n-factor and
40  freezing degree days—while thaw-season parameters exert less control. Sensitivity patterns vary
41 by region, with thawing parameters becoming more influential where the duration of the freezing
42 and thawing seasons is similar. Machine-learning results highlight the additional importance of
43  thermal offset and mean surface temperatures, emphasizing the importance of substrate

44  properties. While the model generally reproduces observed ground temperatures well, parameters
45  derived from landcover classes were not transferable between sites, underscoring the importance
46  oflocally calibrated inputs. Overall, this study clarifies how different climatic and environmental
47  factors shape the accuracy of permafrost temperature modelling and provides practical guidance

48  for improving parameterization in regional and global permafrost models.
49
50

51
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52 1 Introduction

53 Permafrost is an important element of the cryosphere, impacting, for example, terrain

54  stability (Romanovsky et al., 2017; Smith et al., 2022; O’Neill et al., 2023), carbon storage

55  (Miner et al., 2022), and solute movement (Roberts et al., 2017; Lafreniére & Lamoureux, 2019).
56  Unlike other elements of the cryosphere (e.g., glaciers and sea ice), direct observation of

57  permafrost remains challenging (Kiib, 2008) and modelling is often the best way to predict

58  permafrost temperature and distribution.

59 The Temperature at Top of Permafrost (TTOP) model (Table 2) (Riseborough & Smith,
60  1998) has been used to estimate permafrost temperature and presence at continental to local

61  scales (Henry & Smith, 2001; Gisnas et al., 2013; Way & Lewkowicz, 2016; Obu et al., 2019;
62  Vegter et al., 2024) and in a variety of permafrost environments including in the High Arctic and
63  in mountains (Bevington & Lewkowicz, 2015; Garibaldi et al., 2021; Garibaldi et al., 2024). Its
64  extensive use for spatial modelling is principally due to its simplicity compared to many

65  numerical models, as well as using input data that are generally measured by meteorological

66  stations. It is also directly transferable to a variety of permafrost environments without the need
67  for recalibration as with empirical-statistical models (Juliussen & Humlum, 2007; Riseborough
68  etal, 2008). A of the primary challenge of using the TTOP model, however, is determining the
69  values of the scaling factors (n-factors) and soil thermal conductivities used for model

70  parameterization (Juliussen & Humlum, 2007). In modelling studies, these scaling factors are

71  typically assigned based on landcover class or topographic class using field measurements or

72 values presented in the literature (Riseborough et al., 2008; Gisnas et al., 2013; Obu et al., 2019).

73 Few studies, however, have examined the uncertainties arising from mischaracterization of the
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74 value of the TTOP model parameters on the TTOP model output or the relative importance of

75  each parameter in different permafrost environments (Way & Lewkowicz, 2018).

76 Way and Lewkowicz (2016) demonstrated that utilizing freezing n-factors (nf) from

77  western Canada when running the TTOP model for Labrador-Ungava reduced the accuracy of
78  model outputs in forested environments. Theoretical and field data have both been used to assess
79  TTOP model variable importance (Smith & Riseborough, 2002; Bevington & Lewkowicz,

80  2015). These studies highlighted the importance of n, especially in High Arctic environments,
81  but also noted the increasing influence of differential thermal conductivity (rk — the ratio

82  between thawed and frozen thermal conductivity) near the southern limit of permafrost.

83  However, these studies relied either on theoretical inputs or measurements covering relatively
84  small study areas, potentially limiting the applicability of the conclusions to other locations or
85  broader scales. As the parameterization of the scaling factors and rk remain one of the main

86  challenges in utilizing the TTOP model, understanding the relative importance and sensitivity of
87  the model to these parameters using empirical data is essential. Quantifying the impacts of input

88  parameter selection will aid model parameterization for future permafrost modelling studies.

89 Random forest is a supervised machine learning technique, which combines randomized
90 decision trees with bagging, and aggregates their predictions though averaging or majority vote
91  (Breiman 2001; Biau & Scornet, 2016). Random forest has been used in studies of air quality

92 (Yuetal., 2016; Pendergrass et al., 2022), chemoinfomatics (Mitchell, 2014), ecology (Cutler et
93  al., 2007; Brieuc et al., 2018) and remote sensing (Belgiu & Dragu, 2016). Recently, random

94  forest has been used in spatial mapping of permafrost presence using environmental predictors
95  (topography, rock glaciers, vegetation, and land surface characteristics) in a variety of

96  environments (Pastick et al., 2015; Deluigi et al., 2017; Baral & Haq, 2020). Random forest also
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97  provides variable importance rankings which can be used to either identify important variables
98 for explanatory or interpolation purposes or to identify a small number of variables that provide a
99  good prediction (Diaz-Uriarte & Alvarez de Andrés, 2006; Gromping, 2009; Genuer et al.,
100  2010). In permafrost environments, these importance rankings have been analyzed for snow
101 depth and landslide potential but have yet to be thoroughly investigated for thermal parameters
102  (Behnia & Blais-Stevens, 2018; Meloche et al., 2022). As the expanded use of machine learning
103  parameterization in conjunction with process-based models may be an important next step for
104  permafrost modelling studies, it is important to understand the variation in variable importance

105  for permafrost temperature across a variety of environments.

106 The objectives of this study are: (1) to analyze the sensitivity of the TTOP model to

107  incremental changes in parameter value; (2) to test the utility of machine learning for evaluating
108  TTOP model variable importance; and (3) to assess the accuracy of the TTOP model using

109  measured parameters across permafrost regions of Canada. The results should guide efforts to
110  improve TTOP model parameter calculations and to assess the performance of the TTOP model

111 across differing environments.
112 2 Methods
113 2.1 Study Area

114 In situ data used to assess the TTOP model were collected from a variety of Canadian
115  permafrost environments ranging from subarctic to polar desert, in lowlands and mountains (Fig.

116 1).
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118  Figure 1. Study area map showing the general location of the study sites used in the TTOP
119  sensitivity analysis and random forest. The sites were grouped into seven regions for analysis
120  (indicated by colour): High Arctic (Queen Elizabeth Islands), Northern NWT & NU, Western
121 Yukon, Eastern Yukon, Southern NWT, Southern Yukon-Northern British Columbia, and
122 Labrador. Permafrost extent from Brown et al. (2002). Contains information licenced under the
123 Open Government Licence — Canada.

124 The sampling locations were initially grouped into 21 study areas based on the data
125  source and proximity (Table 1). The latter were then combined into seven main study regions

126  based on similarity in environmental and permafrost conditions and on statistically significant
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differences in model parameters (Table S1): High Arctic, Northern NWT & NU, Southern NWT,

Western Yukon, Eastern Yukon, Southern Yukon-Northern BC, and Labrador.

Table 1. Environmental and sampling details for each study area including permafrost condition,
mean annual air temperature (MAAT) for the 1991-2020 climate normal from closest EC station
(if available), vegetation characteristics, number of sampling locations and length of monitoring
period. Total number of observations is the number of individual years of data for each site in the
region.( Stanek et al., 1980; Heginbottom et al., 1995; Aylsworth & Kettles, 2000; Smith et al.,
2009b; Gregory, 2011; Medeiros et al., 2012; Bevington & Lewkowicz, 2015; Duchesne et al.,
2015; Holloway, 2020; Daly et al., 2022; Environment and Climate Change Canada, 2021;
Lewkowicz, 2021; Ackerman, 2022; Garibaldi et al., 2024a; Garibaldi et al., 2024b;; Vegter et

al., 2024).
Sites with Sites with
air, ground | only air and I Number of
Grouped | MAAT . Permafrost Monitoring
Study Area . o Vegetation o surface, and ground . annual
Region °C) Condition period .
ground surface observations
temperature | temperature
Boreal forest
at low
elevations .
Alaska | S Yukon Sporadic
HWY NBC -3.0 shmb Of | Discontinuous 10 0 2005-2018 71
alpine tundra
at high
elevations
High .
Alert . -16.7 | Polar desert | Continuous 3 0 2000-2008 14
Arctic
Boreal white
and black
spruce forests
at lower
. S Yukon elevations Sporadic
5 U N BC L and spruce, | Discontinuous © v AL L
willow, and
birch in the
subalpine
elevations
Baker Northern VeT l:::triin
NWT & | -10.8 yegctat Continuous 1 0 2003-2008 2
Lake including
NU
dwarf shrubs
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Cape
Bounty

High
Arctic

-14.0

Polar desert

Continuous

39

2011-2018

76

Carmacks

S Yukon
N BC

Boreal forest
at low
elevations
shrub or
alpine tundra
at high
elevations

Extensive
Discontinuous

2009-2018

10

Dawson

Western
Yukon

-3.8

white (Picea
glauca) and
black spruce
(Picea
mariana)
forests with
alpine tundra
vegetation
present at
higher
elevations

Extensive
Discontinuous

2008-2021

117

Dempster

Western
Yukon

-9.2

white (Picea
glauca) and
black spruce
(Picea
mariana)
forests with
alpine tundra
vegetation
present at
higher
elevations

Continuous

2015-2021

25

Eureka

High
Arctic

-18.1

Polar desert

Continuous

2009-2013

14

Faro

Eastern
Yukon

-1.9

Boreal forest
at low
elevations
shrub or
alpine tundra
at high
clevations

Extensive
Discontinuous

2006-2009

30

Johnsons
Crossing

S Yukon
N BC

Boreal forest
at low
elevations
shrub or
alpine tundra
at high
elevations

Sporadic
Discontinuous

2006-2018

73
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Keno

Western
Yukon

Boreal forest
at low
elevations
shrub or
alpine tundra
at high
elevations

Extensive
Discontinuous

2006-2018

48

Labrador

Labrador

-2.4to
0.4

Coastal
barrens with
sparse tree
cover and
peatlands
near the coast
transitioning
to open
coniferous
and mixed-
wood upland
forests

Sporadic
Discontinuous

30

2013-2022

130

Mac Valley
North

Northern
NWT &
NU

9.1to -
7.0

Tundra

Continuous

13

1993-2012

99

Mac Valley
Central

SNWT

-5.5to
-4.8

Boreal Forest
with
extensive
peatlands

Extensive
Discontinuous

10

1993-2012

81

Mac Valley
South

SNWT

Boreal forest
with
extensive
peatlands

Extensive
Discontinuous

22

1993-2012

174

North
Canol

Eastern
Yukon

-5.3to -

Boreal forest
but
transitions to
alpine
vegetation at
higher
elevations

Extensive
Discontinuous

21

2016-2021

70

Sa Dena
Hes

S Yukon
N BC

Boreal forest
at low
elevations
shrub or
alpine tundra
at high
elevations

Sporadic
Discontinuous

2006-2009

23

Southern
NWT

SNWT

-4.0 to -
2.2

Patchwork of
black spruce
forest, mixed-
wood forest,
and peatlands

Sporadic
Discontinuous

32

2015-2019

65
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Patchwork of
coniferous
and mixed Extensi

Whati | SNWT | -4.6 | wooded | .20 cov® 10 0 2019-2022 15

Discontinuous
forest, peat

plateaus, and

wetlands

Boreal forest

at low

Whitehors | S Yukon elsyriss Sporadic

0.2 shrub or . .

e N BC . Discontinuous

alpine tundra

at high
elevations

28 0 2007-2015 133

138

139 2.2 Data Collection

140 Air, ground surface and ground temperature at depth measurements were recorded 1-hour
141  to 8-hour intervals at 330 sites (Table 1). Record lengths ranged from 2-16 years. This dataset,
142  spanning over two decades, is the product of long-term federal, territorial, and academic

143 monitoring networks, only possible through funding and support from the Geological Survey of

144  Canada and several Canadian universities.

145 Air temperature was measured ~1.5 meters above the ground surface with a Hobo U23-
146 002 (% 0.25-0.4 °C accuracy, 0.04 °C resolution) thermistors or Vemco loggers (accuracy and
147  precision better than 0.1 °C) housed in a radiation shield (Onset RS1). At newer sites, a Hobo
148  U23-001 (£ 0.25 °C accuracy, 0.04 °C resolution) was housed in a radiation shield. At all sites
149  except the Southern NWT, ground surface temperature was measured 2-5 cm below the ground
150  surface with the Hobo U23-002 internal thermistor. The Southern NWT ground surface

151  temperatures were measured with Maxim IntegratedTM Thermochron iButton temperature

152 loggers (model no. DS1922L; accuracy + 0.5°C).

153 For most sites, ground temperature at depth was measured using the Hobo U23-002 or

154  Hobo Pro U12-008 external thermistors, while for the remaining sites, ground temperatures at

10



https://doi.org/10.5194/egusphere-2025-4478
Preprint. Discussion started: 17 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

155  depth were recorded using multi-sensor cables with RBR loggers. For a majority of sites, the

156  ground depth sensor was positioned close to or at the top of the frost table at the time of

157  installation. For sites with multiple ground temperature observations, the sensor closest to the
158  depth of the frost table was used. However, for some sites (n = 160 observations), annual mean
159  ground temperature (AMGT) may not correspond to the temperature at the top of the frost table
160  due to installation depth limitations. These sites are generally confined to coarse grained, dry,
161  rocky sediment where the thermal gradient is typically small (Lewkowicz et al., 2012). Based on
162  estimations of active layer or frost depth and temperature extrapolation (S1), the temperature

163  difference between the true TTOP and the monitoring depth was generally less than 0.5 °C (n =
164 144 observations, average = 0.2 °C). Therefore, at these sites, AMGT was still compared directly

165  to the modelled TTOP value.

166 The data was assessed for sensor drift, erroneous measurements, and missing intervals.
167  Short data gaps (<3 consecutive days) were filled using linear interpolation, while larger gaps
168  were flagged. Average air, ground surface and ground temperatures were only calculated for

169  years > 85% daily data completeness once erroneous values were removed and data gaps were

170  considered.
171 2.3 TTOP Model Sensitivity

172 The TTOP model calculates equilibrium permafrost temperature using air freezing and
173  thawing degree days, n-factors and the thermal conductivity ratio (Table 2). The TTOP model is
174  often used spatially as the input parameters are based on widely available data commonly

175  measured at meteorological stations (Juliussen & Humlum, 2007). However, as an equilibrium

176  model it is not ideal for modelling transient changes in permafrost temperature and distribution.

11
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Additionally, the TTOP model errors are often largest near zero due to latent heat effects, which

the model does not consider (Riseborough, 2007).

To assess the TTOP model sensitivity to each input parameter we first calculated baseline

input parameters for the TTOP model and the reference TTOP value (TTOP model output when

using values for baseline parameters derived from the measured field data) were calculated for

each site.

Table 2. Variables and equations used in the TTOP sensitivity and random forest analysis.

Freezing (FDD) and thawing (TDD) degree-days were calculated for air (a), ground surface (s),
and ground at or close to top of permafrost (g). P is the period, usually 365 days.

Variable Abbreviation

Equation

Temperature at Top of

TTOP =

(ny * TDD, * rk) — (n¢ * FDD,)

Permafrost (°C) TTOP P
Freezing Degree Days P
(°C days) FDD FDD = |2T|,<0
Thawing Degree Days _|vwP
(°C days) TDD TDD = |2;T|, T >0
. FDD,
Freezing n factor ng ™ =7oD
TDD,
Thawing n factor n ne = TDD
a
Thermal Conductivity " = FDDg + (TDDg — FDDy)
ratio (Thawed:Frozen) N TDDq
FDD, — FDD
Nival Surface Offset NVO NV = —2 S
o P
(W9
Thawing Surface Offset _ TDDs —TDD,
©C) TSO TSO = 2
Surface Offset (°C) SO SO = MAGST — MAAT
Thermal Offset (°C) TO TO = MAGT — MAGST

To allow for direct comparison of model sensitivity in all environments, the TTOP model

equation for permafrost was utilized even for sites considered to be seasonally frozen (Way &

Lewkowicz, 2018; Obu et al., 2019; Garibaldi et al., 2021). For each year and each site, FDD and

12
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190 TDD were calculated using daily average air (T.) and ground surface temperatures (Ts) from

191  September 1st to August 31st of the subsequent year. Freezing and thawing n-factors were then
192  calculated for each measurement location (Table 2). The ratio of thawed to frozen thermal

193  conductivity (rk) for sites with a deeper ground temperature measurement was calculated using
194  FDD and TDD for both the ground surface (s) and the ground temperature observation at or near
195 the frost table () (Table 2). For sites without a depth sensor, rk, was assigned based on

196  vegetation class for the High Arctic and substrate for the Mackenzie Valley (n = 38) (Kersten,
197  1949; Gregory, 2011; Obu et al., 2019; Garibaldi et al., 2021). These sites were included even
198  though rk needed to be assigned as they filled a substantial latitudinal gap in the dataset (Fig.

199  S2). Using the observed thermal offset to determine rk may not necessarily be possible given the
200 materials that are present due to potential disequilibrium. Therefore, for the purpose of this study

201  we assume equilibrium conditions for each observation.

202 Once the parameters and reference TTOP values were determined, the sensitivity of the
203  model to changes in each parameter was assessed by iteratively substituting values for one

204  parameter while holding all other inputs constant and then calculating the TTOP temperature for
205  each substitution. The substituted values used percentiles (minimum, 10%, 25, 50t 75t 9ot
206  and maximum) calculated using the parameters across the entire study dataset. Each year of data
207  for each site was treated as its own observation and run through the sensitivity analysis resulting
208  in 9100 different TTOP values for each parameter. Sensitivity analysis TTOPs were then

209  compared to the reference (i.e observed) TTOP values to assess the influence of the TTOP model

210  to changes in each parameter.

211 Since vegetation is often used when assigning n-factors and rk in regions without

212 observations, the TTOP sensitivity analysis was rerun using the median value for these

13
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213 parameters based on vegetation class and region. These TTOP outputs were then compared to the

214 reference TTOP value for each site.
215 2.4 Random Forest Variable Importance Ranking

216 Algorithm inputs included TTOP model and additional parameters (see Table 2). Samples
217  were randomly split into testing and training data (40% and 60% respectively both for the overall
218  dataset and individual regions) with individual years treated as independent observations. Two
219  random forest models were created, one using all the input variables and the other using only the
220  TTOP model parameters (Table 3). The random forests were generated in R Studio and run using
221  the default settings for the number of variables sampled for splitting at each node (4 and 2 for
222 iterations 1 and 2 respectively) and number of trees (500). For each iteration, the same training
223 and test dataset was used to ensure comparability. The Northern NWT & NU region was not

224  included in this analysis as it had only one site with measured ground temperature at depth.

225  Table 3. Random forest trials including a description of variable selection, and variables used.

Random Forest

Tteration Description Variables used
FDD. TDD. nf ni tk MAAT
1 All Variables MAGST NVO TSO SO TO
FDDs TDDs
2 TTOP model FDD, n¢ TDD, n; rk
variables
226
227 Random forest provides variable importance rankings through two methods: permutation

228  accuracy importance (mean square error (MSE) reduction) or Gini importance (Strobl et al.,
229  2008). The former, used here, has been more widely employed in variable importance studies

230  due to biases in Gini importance when predictor parameters vary in number and scale (Diaz-

14
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231 Uriarte & Alvarez de Andrés, 2006; Strobl et al., 2008; Gromping, 2009; Genuer et al., 2010).
232 Reduction in MSE involves the random permutation of each variable individually to simulate its
233 absence in the model prediction. Variable importance is then determined based on the difference
234 in prediction accuracy before and after the permutation. Variable importance plots were created

235  for each random forest model both for the entire dataset and for each region individually.
236 2.5 TTOP model performance

237 For sites with measured ground temperature, the performance of the TTOP model was
238  assessed by comparing the calculated TTOP and the measured AMGT at or near the top of

239  permafrost (observed TTOP). For the few sites where the observed AMGT was not near the top
240  of'the frost table, the observed AMGT was still compared to TTOP as the thermal offset at these

241 sites was low (S1).
242 3 Results
243 3.1 TTOP Sensitivity

244 To test TTOP model sensitivity, percentile values for each parameter (calculated over the
245  entire dataset) were directly substituted for the measured parameter value (Table 4). As the range
246 of measured values differed for each parameter, the values and range of the substituted

247  percentiles were also different. The potential impact of this on the interpretation of the sensitivity

248  is discussed below.

249  Table 4. Substituted percentile values for each parameter replacing the measured parameter
250  value for each iteration of this trial method. These values were determined based on the
251  observation data.

. . 10th 25th 50th 75th 9(th .
Minimum Percentile Percentile Percentile Percentile Percentile Maximum
nf 0 0.06 0.15 0.29 0.48 0.76 1.0

15
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nt 0.01 0.54 0.66 0.79 0.93 1.14 43
rk 0.18 0.51 0.68 0.83 0.97 1.11 1.98
FDDa
©C days) 274 1851 2324 2857 3467 4588 7223
TDDa
C days) 150 727 1081 1438 1378 1944 2368
252
253 For a majority (>53 %) of sample points, changes to FDDa, ni, TDD,, and rk resulted in <

254 1 °C difference between the reference and perturbed TTOP output (Fig. 2b,c,d,e). However, for
255  nrless than half (< 27 %) remained within 1 °C of the initial TTOP value (Fig. 2a). FDD, showed
256  more sensitivity than TDD,, n¢, and rk with less than 70% of sample points remaining within 2

257  °C of the initial observation value (compared to > 75 %).

258 Latitudinal trends in sensitivity were observed with the region with the coldest permafrost
259  (High Arctic) showing a much greater response to changes in winter parameters FDD, and nr)
260  and muted response to changes in summer parameters (n) and the thermal conductivity ratio (rk)
261  (Table 5, Fig. 3). However, the High Arctic region was also disproportionately sensitive to

262  changes in TDD, when compared to more southern regions. Moving from north to south the

263  difference between the reference and perturbed TTOP generally increased for the thawing

264  parameters and decreased for the freezing parameters. In the southernmost regions (Southern

265  Yukon-Northern BC and Labrador) all parameters had similar sensitivity. All sites had the

266  greatest sensitivity to changes in nr or n; and the least sensitivity to changes in FDD, and rk. The

267  sensitivity to rk was most similar between regions compared to the other parameters.

268

16
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Figure 2. Reference TTOP model values compared to perturbed TTOP model values for the
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Table 5. Average absolute difference between the reference TTOP and the perturbed TTOP for
each parameter within each region. Regions are High Arctic, Northern NWT & NU, Western
Yukon, Eastern Yukon, Southern NWT, Southern Yukon-Northern BC, and Labrador. Values
followed by the same superscript letter are not significantly different (P > 0.05) between regions
(along a row). Values followed by a subscript italicized letter are not significantly different (P >
0.05) within a region (down a column).

High N NWT W E Yukon SNWT S Yukon Labrador
Arctic & NU Yukon N BC
FDDa 6.4 2.0 1.64° 1.4/ 0.9¢ 2.1 0.9¢
(°0)
TDDa 3.7 1.02 1.54 1.8 1.1% 1.94 1.64°
(W)
nt (°C) 7.5 3.9 2.6, 2.4 2.8,° 2.2, 2.4%
nt (°C) 0.84 1.9, 2.7° 2.3b8 2.7° 2.3/%® 2.8°
rk (°C) 0.74% 0.8 1.5 1.3 1.6° 1.4¢ 1.64°

«1n column 2 indicates that the difference in TTOP for n: and rk is not significantly different in
the High Arctic.

# in the second row indicates that the difference in TTOP for changes in FDD, is not significantly
different for the Northern NWT & NU and the Southern Yukon-Northern BC regions.
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Figure 3. Boxplots for the regional absolute difference between the reference TTOP and TTOP
calculated when parameters were directly substituted to a percentile value. Mean values are
represented by an X, outliers are shown as circles, and the ends of the whiskers show the value
for one and a half times the interquartile range. The ends of the box show the first (25 percent)
and third (75 percent) quartiles and the black line within the box shows the median.
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291 Using the internal median parameter value (based on measured values for each landcover
292 class within each region) resulted in a lower error than using the external median parameter

293 value for every region and landcover class (Fig. 4). These differences were especially

294  pronounced for nr. For each region the shrub landcover class showed the least difference when

295  using the internal vs. external parameters.

296 3.2 Random Forest

297 For the random forest iterations 1 and 2 (Table 3), several parameters were consistently
298  ranked as the most and least important by virtue of the percent increase in MSE (Fig. 5). When
299 all variables were used within the entire dataset, TO, rk and FDDs were ranked as the most

300 important. The least important were NVO, TSO and TDD.. Regionally, freezing season

301  parameters (FDDs and nf) and MAGST were consistently ranked as the most important

302  parameters. Surprisingly, TDDs was ranked as highly important only in the High Arctic and

303 Labrador.

304 When using only the TTOP model parameters, nr was ranked as the most important for
305 every region, while n, rk, and TDDa. most often ranked lower in importance. TDD. was the an
306  most important parameter for the two southern regions and the High Arctic but was deemed to be
307 the least important parameter for the remaining three regions. Overall, the variable importance
308  rankings once again highlight the prominence of freezing season conditions compared to

309 thawing.

310

311
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312
313  Figure 4. Boxplots for the difference between the measured ground temperature and the TTOP
314  model using the internal parameter value (median value for the landcover type within the region)
315 and the external parameter value (median value for the landcover type outside the region). Red
316  asterisk (*) indicates the difference resulting from using the internal and external parameter
317  value was not significant (P > 0.05). Mean values are represented by an X, outliers are shown as
318 circles, and the ends of the whiskers show the value for one and a half times the interquartile
319  range. The ends of the box show the first (25 percent) and third (75 percent) quartiles and the
320  black line within the box shows the median.
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322
323 3.3 Random Forest Variable Importance Rankings Compared to TTOP Sensitivity Results

324 The variable importance conclusions from the TTOP sensitivity and random forest using
325  only the TTOP parameters did not match perfectly, but there were commonalities for certain
326  parameters. Both analyses highlighted the importance of the freezing parameters (especially nr).
327  Three regions (High Arctic, Southern NWT, and Labrador) showed similarity in parameter

328  importance between the two methods. The remaining regions showed greater discrepancies,

329  particularly in the rankings of n; and rk. Despite the differences between the two analyses, both
330  methods generally captured the trends in the overall and regional differences in parameter

331  importance.
332 3.4 TTOP Model Performance

333 The TTOP model performed well compared to the observed AMGT overall with an

334  RMSE of 0.2 °C, but with regional differences in model performance (Fig. 6). Model error was
335 low in most regions, except for the High Arctic. However, the Southern NWT and Southern

336 Yukon-Northern BC regions included a number of outliers with large errors. Additionally, the
337  model only misclassified permafrost presence or absence at 3 of the 612 observations. Two of
338 the three observations were in the Southern Yukon-Northern BC region both of which were false
339  positives for permafrost (no permafrost in observation but negative modelled temperature). The
340  third observation was in the SNWT region where permafrost was observed but the model

341 indicated its absence.
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342

343  Figure 6. A) Comparison of TTOP model outputs to the measured annual mean ground

344  temperature (AMGT). The solid line in panel A is the 1:1 relation between modelled and

345  observed while the dashed lines indicate 1 and 2 °C differences. B) Boxplots for the absolute

346  difference between the modelled TTOP and the measured AMGT close to the frost table across
347  the entire study area and for individual regions. Mean values are represented by an X, outliers are
348 shown as circles, and the ends of the whiskers show the value for one and a half times the

349  interquartile range. The ends of the box show the first (25 percent) and third (75 percent)

350 quartiles and the black line within the box shows the median.
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351 4 Discussion

352 4.1 TTOP Model Parameter Sensitivity

353 The sensitivity of the TTOP model to changes in specific parameters is affected by the
354  structure of the model and the values of the parameters. The model across all regions was most
355  sensitive to changes in ng, due to the higher number of FDD, (compared to TDD.), which

356  amplified the response to changes (Smith & Riseborough, 1996, 2002; Bevington & Lewkowicz,
357  2015). Regionally, the sensitivity of the model to changes in the thawing parameters, especially
358  TDD. and n; increased southward as the difference between FDD, and TDD, decreased. The

359  exception to this was the High Arctic, where the model was disproportionately sensitive to

360 changes in TDD, despite the large contrast in the number of FDD, and TDD. in this region (up to
361  five times as many FDD. as TDD.). The increased sensitivity to changes in TDDs likely results
362  from the high values of n; and rk, with values regularly approaching or exceeding 1.0. As a

363  result, changes in TDD, were amplified in this region. This also highlights the vulnerability of
364 this region to changes in climate due to the lack of vegetation increasing the importance and

365 influence of MAAT on the ground thermal regime compared to other regions with more well-
366  developed surface cover (Shur & Jorgenson, 2007; Throop et al., 2012; Smith et al., 2022).

367 It is also important to note this study perturbed TTOP model parameters using the entire
368  measured dataset. Therefore, sensitivity to certain parameters may be higher than for studies with
369 altered parameters based on values measured within a region which may have limited variability
370 (Way & Lewkowicz, 2018). As a result, our results may highlight relatively higher sensitivity for
371  different parameters such as n; compared to nrin Labrador (Way & Lewkowicz, 2018).

372 The sensitivity analysis also showed that TTOP model parameters are not necessarily

373  transferable between regions with the same landcover class. This is especially true for nrand n¢ as
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374  using the median values for the same landcover class, but an external region resulted in a

375  significantly greater error than utilized the median value corresponding to the site region. This
376  could be a result of the large range of environments sampled in this analysis as previous studies
377  have shown transferability of n; between rock and forest landcovers of Labrador and Southern
378  Yukon (Way & Lewkowicz, 2018). However, utilizing nf from Southern Yukon in Labrador
379  increased TTOP model errors (Way & Lewkowicz, 2016), which supports our findings. Rk

380  appears to be generally more transferable, especially for the limited number of tundra sites which
381  might be the result of restricted soil (and organic) development and moisture in this landcover
382  (Throop et al., 2012). Additionally, rk may have a smaller influence on ground temperature in
383  certain environments (Karjalainen et al., 2019) and therefore the importance (or lack of

384  transferability) may be masked by the large dataset. These results demonstrate the need for

385 caution in assuming the regional transferability of parameters, especially in environments where

386  values may differ substantially.

387 4.2 Random Forest Variable Importance Rankings

388 The variable importance rankings for the overall and regional datasets were a product of
389  differences in values of the measured field inputs. TO and rk were ranked as the most important
390 parameters when all variables were used. TO has previously been suggested as the most

391  important parameter for determining the southern extent of permafrost, under equilibrium

392  conditions, as a high TO can protect permafrost from higher air temperatures (Smith &

393  Riseborough, 2002). However, neither were ranked as the most important parameters in any of
394  the regional analyses. TO and rk had lower correlation with the other parameters, which may
395  have artificially elevated their importance, but they are correlated with each other which may

396  explain why both have elevated importance.
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397 NVO has also been highlighted in the literature as an important parameter, determining
398  the northern and southern limit of discontinuous permafrost and influencing permafrost existence
399  within the discontinuous zone (Nicholson & Granberg, 1973; Smith & Riseborough, 2002).
400  However, in this study NVO ranked as middle to low importance overall and for every region,
401  even those spanning the continuous to discontinuous permafrost transition. Finally, overall and
402  regionally, MAGST was deemed to be an important parameter for accurate predictions of

403  MAGT. While this may be true for sites with a negligible thermal offset (Lou et al., 2019;

404  Garibaldi et al., 2021), MAGST alone cannot accurately predict the thermal state of permafrost
405  without additional information on the thermal properties, especially at sites with larger thermal
406  offsets (James et al., 2013; Guo et al., 2024; Brown & Gruber, 2025) . Therefore, the elevated
407  importance of this parameter may indicate that sites with small thermal offsets are over-

408  represented in the dataset (Fig. S3c¢).

409 4.3 TTOP model performance

410 The TTOP model generally performed well compared to observed AMGT, resulting in
411  minimal errors in predicted TTOP even seasonally frozen sites. The RMSE for the TTOP model
412 for this study was similar to or smaller than those from previous TTOP modelling results in the
413  same region (Obu et al., 2019; Garibaldi et al., 2021). This is likely a product of the use of

414  directly measured and calculated input parameters rather than the characterization of parameters
415  from environmental variables such as vegetation or spatial interpolation. This highlights the

416  importance of in situ data for validation of parameters for accurate predictions of permafrost and

417  ground temperatures.

418 The TTOP model did not perform as well in the High Arctic for certain observations,

419  especially those from Cape Bounty during 2016-2017, when the predicted TTOP was higher than
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420 the observed values. The AMGST for 2016-2017 was substantially higher than those from the
421  previous years. Although the AMAT showed only a slight deviation, nr at these sites decreased
422  substantially, indicating greater snow depths. As a result, the TTOP model parameters were not

423  in equilibrium with ground temperature for this year, yielding a larger discrepancy.

424 The TTOP model using measured parameters performed surprisingly well in locations of
425  warmer, more marginal permafrost or locations with seasonal frost, despite these locations

426  potentially being in disequilibrium with the current climate. However, these regions, especially
427  the Southern NWT and Southern Yukon-Northern BC, also included individual sites with the
428  largest errors (Fig. 6a) showing a lack of consistency in model performance. These results may
429  indicate sites with more ecosystem-protected permafrost and high apparent TOs or

430  disequilibrium conditions (Shur & Jorgenson, 2007; James et al., 2013; Vegter et al., 2024). It
431  should be noted that even small temperature errors can result in the misclassification of

432  permafrost presence where ground temperatures are close to 0 °C (Daly et al., 2022; Vegter et
433 al., 2024) whereas the classification would be unaffected even with a larger temperature error in
434  the High Arctic. However, the model accurately predicted permafrost presence or absence for the
435  vast majority of observations (> 98 %) in this study even though 38% of observations were

436  within -1 °C to +1 °C.
437 4.4 Sources of Uncertainty

438 The methods used to rank the importance of variables have their own uncertainties that
439  could affect the reliability of the results. First, since the percentiles were derived from the
440  observed data the range of values for each parameter differed and would vary if a different

441  dataset was used. Second, although random forest is able to cope with highly correlated variables
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442  for prediction (Boulesteix et al., 2012), there are conflicting conclusions on the reliability of

443  variable importance rankings (Strobl & Zeileis, 2008; Nicodemus et al., 2010; Tolosi &

444  Lengauer, 2011; Gregorutti et al., 2017). For this study, a majority of the input parameters are
445  highly correlated with at least one other parameter as some parameters are used to derive others.
446  This may have led the variable importance rankings of the random forest to be unreliable when
447  all parameters where used. Additionally, although the random forest model using all variables
448  performed relatively well (MSE 0.2 °C; variance explained 98%), the regional models had lower
449  percentages of variance explained (43 - 93 %) even though MSE was similar (0.2 — 0.8 °C). This
450  may have impacted the reliability of the variable importance rankings for these models, as they
451  may have accurately predicted ground temperature. Despite the possible errors and uncertainty in
452 the results of this, the variable importance analyses were in general agreement for the two

453  methods and supported findings from previous studies.

454 Variation in variable importance rankings between the two methods may also have

455  resulted from the difference in approaches. As the TTOP model utilized multiplicative factors,
456  the importance of the parameters was elevated by nature of the model equation. The random

457  forest variable importance ranking was not dependent on this equation and as a result, the

458  importance was potentially different based on the predictive method alone. Additionally, the

459  TTOP model sensitivity analysis was determined through perturbation of the model parameters,
460 thereby ranking the parameters’ importance based on the response. Contrastingly, the random
461  forest variable importance ranking was determined based on the current thermal conditions. This
462  may also have resulted in some discrepancy in the rankings. However, both methods showed

463  similar rankings and regional trends overall.

464 4.5 Parameter classification recommendations
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465 Since the TTOP model was deemed more sensitive to certain model parameters in the
466  entire dataset and in certain regions, accurate parameterization of the most important variables
467  for the study location is vital. Overall, the freezing season parameters were generally deemed the
468  most important; therefore, adequate characterization is essential for accurate predictions of

469  TTOP at national or circumpolar scales. This is especially true for nf which is typically the most
470  difficult to parameterize since it is dependent on a wide range of conditions including timing,
471  depth, and morphology of snow and substrate conditions including soil moisture and is not

472  necessarily transferable between regions (Smith & Riseborough, 2002; Zhang, 2005;Throop et

473  al., 2012; Way & Lewkowicz, 2016).

474 Regionally, in locations where FDD, >> TDD,, the impact of inadequate characterization
475  of ny, rk, and was shown to be minimal. Therefore, more general assumptions and classifications
476  will not result in a substantial increase in uncertainty and greater focus should be put on accurate
477  characterization of FDD, and ny. In locations where FDD, and TDD, are similar (i.e., AMAT is
478  close to 0°C), the sensitivity of the model to changes in thawing parameters is elevated and

479  accurate characterization of n; and tk becomes more important. For several continental and

480  circumpolar modelling studies, a uniform value of 1.0 was utilized as the input for n; across the
481  study area (Henry & Smith, 2001; Obu et al., 2019). While this assumption is unlikely to

482  increase uncertainty in areas above treeline and tundra it is likely to result in errors in boreal

483  forested areas due to the elevated importance of n; in this landcover. Additionally, nrand to

484  some extent n¢ varied regionally even within the same landcover type due to microclimatic

485  differences, vegetation and wind exposure, which influence both summer and winter conditions
486  (Smith & Riseborough, 2002). As such regional transferability of these parameters between

487  regions may be limited especially over large geographic and climatological gradients.
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488 Finally, many studies that determine TTOP characterize rk using vegetation, assigning
489  values between 0.0 and 1.0 (Smith & Riseborough, 1996; Riseborough & Smith, 1998; Way &
490  Lewkowicz, 2016; Obu et al., 2019; Garibaldi et al., 2021). However, recent studies (including
491  the data analyzed for this study) have shown rk values exceeding 1.0 (Bevington & Lewkowicz,
492  2015; Lin et al., 2015; Zou et al., 2017). This likely occurs as a product of extremely dry

493  conditions in winter and higher soil moisture during summer, resulting in greater thermal

494  conductivity in the warm season. This is typically observed at sites with rocky or bedrock

495  substrates and limited vegetation cover and soil moisture (Lin et al., 2015; Luo et al., 2018). In
496  southern permafrost environments, the assumption of rk < 1 at these sites (such as high elevation
497  rocky slopes, Fig. 2b) likely results in mischaracterization of the permafrost condition. The

498  varying sensitivity of the TTOP model to specific parameters in different environments

499  demonstrates the need for accurate parameterization and validation of TTOP model parameters
500 to ensure valid outputs. This highlights the need for in situ data parameter to increase the

501 accuracy of future TTOP modelling studies to validate remotely-derived parameter values.
502 5 Conclusions

503 The results of this analysis highlight the overall sensitivity of the TTOP model to changes
504 in the freezing parameters (nr and FDD,) compared to the response to changes in the thawing

505  parameters (n;, TDDa) and rk. Across all sites, regions, and perturbation methods, the model was
506  most sensitive to changes in nr with 73 % of TTOP outputs changing by at least 1 °C from the
507  original TTOP value followed by FDD, at 30 % changing by at least 2 °C. The model was least
508  sensitive to changes in TDD, with only 22 % of TTOP model outputs exceeding 2 °C difference
509 from the reference TTOP value, followed by n; and rk at 25 %. Differing sensitivity patterns

510 emerged regionally, mainly showing the diminishing response to changes in nr and the increasing
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511  response to changes in TDDs, n, and rk at more southerly sites, although sensitivity to changes

512  innrremained high.

513 The random forest variable importance rankings also highlighted the importance of the
514  freezing season parameters using both a wide variety of temperature parameters and only those
515  used in the standard form of the TTOP model. The increasing importance of the thawing and
516  annual parameters moving south was also shown. Although the random forest variable

517  importance rankings showed some differences from the TTOP sensitivity results, potentially due
518 to high correlation between variables, they indicated similar regional trends in variable

519  importance.

520 The results of this study highlight the importance of correct parameterization,

521  specifically of the freezing parameters in small-scale national or circumpolar modelling studies,
522  and the increased importance of parameterization of the thawing parameters in locations where
523  the magnitude of FDD, and TDD. are similar. Although these conclusions had been theorized, a
524  robust network of in situ data provided essential empirical support. Ultimately, the findings of
525 this study will help future modelling studies determine parametrization allocation effort based on

526  location and scale and may help explain sources of error and uncertainty in modelled results.
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