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Abstract. Accurate emission tracking (e.g., locating and quantifying hot spots) using satellite images requires a good signal-to-

noise ratio (SNR) of total column images. Achieving this SNR is challenging for satellite-based trace gas imagers, especially

when enhancements are small relative to the background or small relative to retrieval uncertainty. Therefore, some satellites

carry additional trace gas imagers with high SNR, such as NO2, which is co-emitted with the trace gas of interest. While

NO2 is frequently used qualitatively for plume detection or plume fitting, its potential for quantitative noise reduction remains5

largely untapped. This paper presents two methods to enhance the SNR of total column images using co-registered NO2 images

through minimum mean square error (MMSE) Bayesian denoising, which are a simple form of a Kalman filter or maximum

a posteriori estimate. The first “joint MMSE” method relies on the presence of plumes in both the low- and co-registered

high-SNR NO2 images. The second “self-similar MMSE” method utilizes image self-similarity and is based on an existing

technique called BM3D. The methods are evaluated using a synthetic dataset (SMARTCARB) of atmospheric CO2 and NO210

concentrations, achieving over +40 decibels improvement in peak SNR. Additionally, the methods are applied to TROPOMI

SO2 and NO2 data over South Africa and used to compute a divergence image, demonstrating that an estimated 30-60% noise

reduction is possible. By enhancing the SNR of total column images, these techniques improve the detectability of subtle

emission signals, which could benefit atmospheric monitoring applications.

1 Introduction15

To quantify emissions and support climate policy, satellite-based monitoring system are developed that will detect and quantify

emissions plumes from cities and large point sources (hereafter referred to as ‘hot spots’). To perform emission quantification

for hot spots, a good signal-to-noise ratio (SNR) is essential; first to be able to detect the plumes, and second to be able

to quantify the plume enhancements with good accuracy. Achieving this for satellite observations of CO2 is challenging, as

enhancements are minor compared to background levels and retrieval uncertainties are high (Miller et al., 2007). Therefore,20

CO2 monitoring satellites like GOSAT-GW, CO2M and TANGO will carry an additional NO2 instrument. NO2 is useful

because it is co-emitted with CO2 during high-temperature combustion while it can be measured with a much better SNR.

NO2 thus helps delineating and thereby quantifying the low SNR CO2 plumes using emission quantification methods. So far,

approaches in the literature have used the information contained in the NO2 observations mainly qualitatively. For example,

they guided plume detection or constrained a Gaussian curve fitted to plume transects (Reuter et al., 2019; Kuhlmann et al.,25
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Figure 1. Example of the denoising procedure for a South African region, recorded by TROPOMI on 2021-02-20. Axis labels are omitted to

emphasize the clarity of the denoised image rather than geographical location. Data with a quality factor below 0.75 is masked and appears

as plain gray. By optimally combining the (a) ‘noisy’ SO2 and (b) less ‘noisy’ NO2 images, we create a (c) denoised SO2 image. We highlight

some features of the denoised image. Square A shows that in areas without signal, noise is effectively removed from the image. Rectangle

B indicates that plume signals present in the noisy data are retained, resulting in an enhanced signal-to-noise ratio. Rectangle C illustrates

an east-west (i.e., right-left) feature with low amplitude but sharp, high contrast edges, identifiable in the original SO2 image but absent in

the NO2 image, confirming that significant ‘positive’ and ‘negative’ signals are preserved during denoising. Circle D shows a feature of high

amplitude in the NO2 image which is absent in the SO2 image, indicating we don’t add signal unduly. The noise level estimate is derived

from Immerkaer (1996).

2019, 2021). One prominent emission quantification method, the divergence method (Beirle et al., 2019, 2023; Koene et al.,

2024), cannot effectively leverage the superior SNR of the co-registered NO2 data, as it does not depend on plume detection.

As the divergence method is highly susceptible to noise in the data due to its derivative operations, Hakkarainen et al. (2022)

proposed to apply a mean filter to prepare the noisy CO2M CO2 images for the divergence method; however, such spatial

smoothing risks blurring emission signals at the source.30

In this paper, we explore two data-driven methods to enhance the SNR of trace gas images using the co-registered NO2 im-

ages (a process also referred to as ‘denoising’). An example of the proposed methods is given in Figure 1, which illustrates the

effectiveness in reducing noise in a SO2 image recorded by the TROPOspheric Monitoring Instrument (TROPOMI; Veefkind

et al., 2012). The two methods are minimum mean square estimators (MMSEs). The first is based on the joint information

in CO2 and NO2 pixels. The second is based on image self-similarity. Put simply, the MMSEs we present are operations that35

extract a denoised signal from two (or more) noisy inputs in a Bayesian optimal way, much like a Kalman filter. We define

the estimators in the theory section, and suggest to chain them in series to provide the best results. Within the results section

of the paper, we verify the method by applying it to synthetic CO2M data to denoise synthetic CO2 images. We then show a
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‘real data’ example using combined TROPOMI SO2 and NO2 data and use the denoised SO2 data to denoise the corresponding

divergence map.40

2 Methods

The two denoising methods presented in the following will be referred to as the “joint MMSE” approach and the “self-similar

MMSE” approaches. The former is a novel innovation, whereas the latter is a pre-existing method from the field of computer

vision, which we adapt for denoising co-registered images.

2.1 Joint MMSE (jMMSE)45

In this section, we explore a method that makes use of the joint information in two co-registered signals at the pixel level. The

theory may alternatively be derived from a Bayesian inference point of view, as shown in Appendix B.

2.1.1 Observation model

Satellite data of two co-registered pixels of, say, CO2 and NO2 follow a general model like

 C̃O2

ÑO2


=


 CO2

NO2


+


 nCO2

nNO2


 , (1)50

where the tildes indicate noisy observations; CO2 and NO2 denote the noise-free but unknown true values, and nCO2 and nNO2

indicate the noise on the measurements. We can rewrite this model into a coupled observational model by making it a function

of the noise-free CO2 data,

 C̃O2

ÑO2


=


 1

d(x,y)


CO2 +


 nCO2

nNO2


= M̃ = Hc + n (2)

where M̃ contains the two noisy observed pixels, c = CO2 is the noise-free column, H = [1 d(x,y)]T is the observation55

operator with a spatially varying function d(x,y) that transforms the CO2 pixel into an equivalent NO2 observation, and n

contains the two noise components.

2.1.2 The maximum a posteriori solution

Our aim is to estimate c (the unknown noise-free CO2 column) from M̃ (the noisy observations). This can be written as a

maximum a posteriori problem with a Gaussian distributed prior with mean E[c], noise mean E[n] = 0 and independent errors60

E[cn] = E[c]E[n] = 0, yielding a minimum mean square error (MMSE) optimal estimate of the underlying CO2 field, which

we will denote by ĉ,

ĉ = arg minc E
[
σ−2

c (c−E[c])2 + (Hc−M̃)T C−1
nn(Hc−M̃)

]
, (3)
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where σ2
c = E[c2]−E[c]2 is the variance of the expected prior, and Cnn = E[nnT ] is the noise covariance matrix. See Appendix

A for details how such quantities may be computed in practice. The solution to this problem is well-known (e.g., Fichtner, 2021,65

eq. 6.8),

ĉ =
HT C−1

nnM̃ + σ−2
c E[c]

HT C−1
nnH + σ−2

c

. (4)

The solution in eq. (4) is the maximum a posteriori solution, also known as the generalized least squares solution or the

Bayesian linear estimator, which is mathematically also identical to a single prediction step in a Kalman filter framework

without recursive time updates (e.g., Fichtner, 2021, eqs. 6.13–6.14).70

2.1.3 Solution using only the available data

The solution in eq. (4) is elegant but impractical, as it requires one to know H (i.e. the true NO2:CO2 ratio d(x,y) for every

pixel). However, in the following, we show that the solution may be rewritten into a form that depends merely on the data

itself. For this, we take a closer look at the data covariance matrix, which can be estimated from the data itself (i.e., the sample

covariance matrix):75

Cdd = E[M̃M̃T ]−E[M̃ ]E[M̃ ]T =


 cov( ˜CO2, ˜CO2) cov( ˜CO2, ˜NO2)

cov( ˜CO2, ˜NO2) cov( ˜NO2, ˜NO2)


 . (5)

Given the model of eq. (2), we can also write it as (making judicious use of E[cn] = 0),

Cdd = E
[
(Hc + n)(Hc + n)T

]
−E [Hc + n]E [Hc + n]T , (6)

= E[nnT ]−E [n]E
[
nT
]
+ HHT

(
E[c2]−E[c]2

)
, (7)

= Cnn + HHT σ2
c . (8)80

As detailed in Appendix D1, we can derive a matrix inversion identity from the Sherman–Morrison formula, A(A+BCDT )−1 =

I−BDT A−1/(DT A−1B + C−1), which yields the following relation,

CnnC−1
dd = I− HHT C−1

nn

HT C−1
nnH + σ−2

c

, (9)

for which we note that the right-hand side closely resembles eq. (4). By rearranging terms, pre-multiplying with a vector

wT = [1 0] that satisfies wT H = 1, post-multiplying the result with (M̃ −E[M ]) and adding the expected prior column85

E[c], we obtain

wT
(
I−CnnC−1

dd

)(
M̃ −E[M ]

)
+ E[c] =

HT C−1
nnM̃ + σ−2

c E[c]
HT C−1

nnH + σ−2
c

, (10)

(the details of this step are given in Appendix D2).

The noise-free column estimate ĉ of the Bayesian optimal solution of eq. (4) may thus be obtained entirely from the data

itself, using the left-hand side of eq. (10). It relieves us of the need to know the forward model H that maps the noise-free CO290
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field into NO2 columns. Simplifying the left-hand side of eq. (10), the details of which are given in Appendix D3, we obtain

the optimal joint MMSE estimate,

ĉ = ˜CO2−wT CnnC−1
dd (M̃ −E[M ]). (11)

The various covariance matrices and expected values need to be computed using small patches of size T ×T for small values

of T (e.g., 5) around a given pixel. See Appendix A for an example implementation in the Python programming language, and95

Appendix C for an explicit version of the jMMSE estimate without vector notation.

The ratio CnnC−1
dd in eq. (11) is quite literally the inverse of the SNR. Thus, in regions of a high SNR (CnnC−1

dd ≈ 0) we

simply keep the measurement as it is, ĉ = ˜CO2. In regions without enhanced signals, we have Cnn = Cdd ⇐⇒CnnC−1
dd = I

and thus take the expected value ĉ = E[c], e.g., the local mean or local median. Conversely, noise will be optimally subtracted

in the case of a lower SNR (CnnC−1
dd > I) based on the correlations between the CO2 and NO2 measurements. Hence, the100

derived expression has all the properties that we would expect from a SNR perspective.

2.2 Self-similar MMSE (BM3D)

An alternative method for denoising is called block matching and 3D filtering (BM3D). This method was introduced by Dabov

et al. (2007) in the field of computer vision. It is another MMSE method, but this time it makes use of the self-similarity of

patches within single color images (with three channels) to denoise them. We adapt it for denoising joint satellite images using105

two channels by linearly combining min-max-normalized CO2 and NO2 data (i.e., fitting the data range of the two satellite

images into the range 0 to 1) into the first channel with a factor 0.5 each, and placing the min-max-normalized NO2 image into

the second channel. After computing the denoised estimates for both channels, we subtract the denoised NO2 channel (with a

factor 0.5) from the first channel to extract the denoised CO2 signal.

BM3D is still considered to be a state-of-the-art image denoising algorithm (e.g., Yahya et al., 2020), and computes the110

following MMSE result for the noise-free CO2 field (compare with eq. 4):

ĉ(x) = T −1

[
C−1

nn (f)
C−1

nn (f) +σ−2
c

T
[

˜CO2

]
(f)
]
, (12)

which is also known as a ‘Wiener (deconvolution) filter’. Operators T and T −1 are 3D wavelet transforms and their inverses,

which project the image pixel space (x) into frequency domains (f ). Compared to eq. (4), BM3D works with a scalar quantity

rather than a vector quantity for each frequency, and the observation operator H is simply replaced by 1. The factor C−1
nn (f)115

is given by C−1
nn (f) = |T [CO2](f)|2. Thus, C−1

nn is the energy of the true (noisefree) CO2 signal in the wavelet transformed

domain. High spectral energy implies low noise and vice versa. Of course, the noisefree signal is not available, so the Wiener

filter of eq. (12) is not actually computable. BM3D circumvents this problem by first obtaining an estimate of the noisefree

CO2 data through an initial filtering step, which is used instead of the true noisefree signal in eq. (12).

BM3D manages to achieve good performance using the assumption of image self-similarity (i.e., small patches of similar-120

looking data repeat throughout an image). If one can find several of such similar-looking patches in the image, and takes their

mean, then random noise should be attenuated (this is called ‘non-local means’, Buades et al., 2005, 2011). The first estimate
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Figure 2. A schematic explanation of BM3D. In stage 1, similar looking patches are collaboratively denoised to produce a first denoised

estimated image. In stage 2, similar looking patches are selected from the first estimate, and corresponding patches from the original input,

form two blocks. Using a Wiener filter, the original image patches are denoised, leading to the final denoised image. The steps are carried

out for all possible patches in the image.

in BM3D is obtained in a similar manner. More precisely, first, an 8× 8 image patch is selected and N similar patches are

found in the image. Second, an N × 8× 8 ‘3D block’ is formed of these patches. Third, the 3D blocks are transformed into

the wavelet domain using a 3D wavelet transform T and denoised using a hard thresholding step (i.e., frequency components125

with low energy are removed). Fourth, after an inverse wavelet transform T −1, the N denoised patches are moved back to

their respective spots in the image. This process is repeated for each image patch. The fifth step is to repeat the entire process,

except that the denoising now uses Wiener deconvolution of eq. (12) with C−1
nn defined by the first denoised estimate, yielding

the MMSE of the final image. The method is sketched in Figure 2.

BM3D denoises color images by forming a composite channel that contains the summed red, green, and blue image data.130

This composite channel is used for patch selection (step 1, above). For the remaining channels, the same patches are used, but

each channel is denoised individually. We propose the same to make the process work for CO2 and NO2 images: we normalize

the CO2 and NO2 images, and then form one channel of (CO2 + NO2)/2 and one channel of just NO2. Patch selection is

carried out on the first channel (the mean of the normalized CO2 and NO2 images), but denoising of the patches is carried out

on both channels individually. By subtracting the second channel from the first, we end up with a new CO2 image, which was135

helped by the higher signal-to-noise ratio of the NO2 image during patch selection and denoising. A reference implementation

in Python can be used that is called ‘bm3d’ on pypi by Mäkinen et al. (2020).
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2.3 Sequential denoising using the two presented methods

As the two methods (joint MMSE and BM3D) are sufficiently different in the structural features they use to denoise the data,

it stands to reason that an application of both BM3D (to provide an initial cleaned up version of the data) followed by the140

joint MMSE (to further enhance the signal) will have the potential to further denoise the data. In this paper, we also test this

sequential denoising method.

3 Results

3.1 Performance metrics

We score the performance of the methods where the truth is available using the two most common metrics in computer vision.145

The first is the peak signal-to-noise ratio (PSNR) in units of decibel, i.e. a higher value means a better performance,

PSNR = 10log10

(
(max(c)−min(c))2

1
nxny

∑
ix

∑
jy

(ĉix,jy
− cix,jy

)2

)
, (13)

where c≡ cix,jy
is the true (noise-free) signal and ĉ≡ ĉix,jy

is the estimated signal, indexed over all 2D pixels ix and jy .

The second metric is the structural similarity index measure (SSIM; Wang et al., 2004, again, a higher value means a better

performance),150

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (14)

where x and y are 7×7 tiles/patches from images c and ĉ respectively, µx and µy are their sample averages, σx and σy are the

sample standard deviations, σxy is their covariance, and c1 = (0.01(max(c)−min(c)))2 and c2 = (0.03(max(c)−min(c)))2.

The PSNR is very sensitive to random noise, while the SSIM is very sensitive to image artifacts such as blurring. Consequently,

we want the PSNR and the SSIM to improve simultaneously.155

We can make a noise estimate using the algorithm described in Immerkaer (1996), which compares a grid-aligned Laplacian

estimate with a diagonal Laplacian estimate, to estimate the noise standard deviation for Gaussian (i.e., white or random) noise

as

σest =
√

π

2
1

6(W − 2)(h− 2)

∑

pixels

|I(x,y) ∗N | (15)

where W and H , respectively, are the width and height of the trace gas image I , and where ∗ denotes a spatial convolution160

with the 2-D kernel

N =




1 −2 1

−2 4 −2

1 −2 1


 . (16)
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3.2 Application to synthetic joint CO2 and NO2 images

In this section, we will apply the algorithms presented above to synthetic CO2M CO2 and NO2 satellite images from the

SMARTCARB dataset (Kuhlmann et al., 2020a, b). As it is essential that plume signals look ‘similar’ for input to the MMSE165

methods, we will use column-averaged dry-air mole fractions of CO2 (XCO2) data (in ppmv) and tropospheric NO2 column

densities (in molecules/cm2). The reason for using XCO2 rather than CO2 column densities is that the latter are strongly

susceptible to surface topography variations. One could also use XNO2 images, but the topographic effect on NO2 images

is typically negligible. Hence, we will essentially use the ‘standard’ data products. When denoting the results with the joint

MMSE, the parameter T refers to the window size used to compute expected values within the joint MMSE method. For170

example, T = 5 means that we select a 5× 5 region centered on a pixel, which for CO2M is a region of about 10× 10 km.

We will refer to results from the joint MMSE as ‘jMMSE’ and from the BM3D method as ‘BM3D’. Additionally, we show

the results from applying a simple 5×5 pixel mean filter (denoted as ‘5×5 mean filter’ or ‘5×5 filter’) to purely the CO2 data,

which was proposed in Hakkarainen et al. (2022) as a simple but effective method to prepare the noisy SMARTCARB data

for the divergence method. Figures 3–4 show an example of the denoising methods applied to synthetic CO2M CO2 and NO2175

images. The examples use the ‘high noise’ scenario of the SMARTCARB dataset with random errors of σVEG50 = 1 ppm for

XCO2 (the VEG50 scenario uses vegetation albedos and solar zenith angle of 50◦; Buchwitz et al. (2013)) and σ = 2× 1015

molecules/cm2 for NO2. We select the simulation day 2015-10-23, and focus on the coal-fired power plants Prunéřov1 and

Počerady2. These mid-sized power plants were selected as their emissions produce only weak plume enhancements compared

to the CO2 measurement noise level. Figure 3 shows that the simulated high noise on the CO2 signal largely obscures the180

signal of the power plants, while the high noise on the NO2 signal does not cause considerable changes with respect to the

‘true’ simulated NO2 field. We can see that the 5× 5 px mean filter does not manage to recover much of the CO2 signal.

Conversely, applying the joint MMSE to the two noisy input fields recovers much of the CO2 images for a window size

T = 9 – see Appendix E for images of other window sizes. The BM3D method (panel c) performs roughly equal to the

joint MMSE method with T = 9 (panel b). We obtain the highest objective score by sequentially applying the joint MMSE185

method with T = 9 to the BM3D results (panel d), with a visibly good fit to the noisefree CO2 signal, as well as an eightfold

improvement of the SSIM and an increase in PSNR by +44.4 dB. To put this into context, consider that for Gaussian white

noise, averaging X images with noise variance σnoisy yields σ2
denoised = σ2

noisy/X . Their PSNR improvement in dB may be

expressed as 10log10

(
σ2

noisy/σ2
denoised

)
= 10log10 (X), correspondingly we obtain here that X = 1044.9/10 ≈ 31000. In other

words, the image denoised with BM3D and jMMSE for T = 9 has the same noise characteristics as if we would have averaged190

31 000 images with these Gaussian independent high noise characteristics. Thus, the joint information content in CO2 and NO2

images is very large.

150.42◦N 13.26◦E; simulated with emissions of 11.4 Mt CO2/yr and 11.3 kt NO2/yr.
250.43◦N 13.68◦E; simulated with emissions of 9.3 Mt CO2/yr and 9.2 kt NO2/yr.

8

https://doi.org/10.5194/egusphere-2025-4477
Preprint. Discussion started: 13 October 2025
c© Author(s) 2025. CC BY 4.0 License.



49.75

50.00

50.25

50.50

50.75

51.00

51.25

La
tit

ud
e

True CO2 True NO2

13.0 13.5 14.0
Longitude

49.75

50.00

50.25

50.50

50.75

51.00

51.25

La
tit

ud
e

PSNR=46.7
SSIM=0.1

Noisy CO2

13.0 13.5 14.0
Longitude

Noisy NO2

400

401

402

403

404

405

CO
2 [

pp
m

v]

0

1

2

3

4

5
NO

2 [
m

ol
ec

ul
es

/c
m

2 ]
1e16

Figure 3. An example of a synthetic CO2M satellite image on 23

October 2015 for a ‘high noise’ scenario zooming on the emission

plumes of the coal-fired power stations near Prunéřov and Počerady.
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Figure 4. The noisy data from Figure 3(c) denoised using the jMMSE

methods. Visually, it is clear that the plumes originally obscured by

noise become visible again. The PSNR and SSIM scores have in-

creased (indicating improvement). The best denoising performance

is obtained by the combination of BM3D and the jMMSE method for

T = 9, with a +44.9 dB improvement.

3.3 Application to joint SO2 and NO2 TROPOMI images

The method is tested on real observations from TROPOMI, which provides trace gas images at approximately 7× 3.5 km2 at

nadir. Note that this resolution is coarser than that of CO2M. Two of the measured quantities are NO2 tropospheric columns and195

SO2 total columns. To better represent surface emissions, an air mass factor correction is applied to the SO2 images, dividing

the total column by the average of the three lowest averaging kernel weights3. While a more detailed investigation of air mass

correction factors would benefit accurate emission estimates, that is beyond the scope of this study. Figure 5(a-d) shows a

TROPOMI overpass image over South Africa centered at Johannesburg for 3 March 2021, along with the ratio of the reported

column precision to column values. The NO2 image has substantially larger regions of low inverse SNR values (indicative of200

3Following equation SO2,new = (
∑

l x′l/
∑

l Alx
′
l)SO2 with x′ = [0, . . . ,0,1,1,1] from the top of the atmosphere to the surface and A is the averaging

kernel.

9

https://doi.org/10.5194/egusphere-2025-4477
Preprint. Discussion started: 13 October 2025
c© Author(s) 2025. CC BY 4.0 License.



a good SNR) than that found for SO2. Hence, the SNR for NO2 is much better than that for SO2. Figure 5(e) shows that the

SO2 signal can be improved using the NO2 signal with the multichannel BM3D method. The noise reduction becomes greater

when the combination of the BM3D and jMMSE method is applied (panel f). Note that we use the jMMSE using T = 5,

which effectively implies a window of 25× 24.5 km2 at nadir, which is larger than what we used for the SMARTCARB test.

Figure 5(g-h) illustrates the changes compared to the original TROPOMI image, indicating substantial noise reduction. What is205

notable is that values close to 0 in Figure 5(g-h) are exactly those regions with good SO2 SNR as shown in Figure 5(d). Hence,

denoising has primarily removed ‘bad’ signal while preserving ‘good’ signal. Furthermore, the removed noise as shown in

5(g-h) is essentially feature-less and consists of random speckles. Had we seen plume-like features in Figure 5(g-h) we would

know that we were subtracting signal and not just noise, but this is clearly not the case. Thus, subtracting the denoised image

from the original image provides an easy way to check if signal was added or destroyed.210

If we apply the noise estimation method from Immerkaer (1996) to our image, we find that the original SO2 image has

σest,original = 6.8 mol/cm2 (which is 1.7 times the mean reported column precision for this overpass), while σest,BM3D = 2.1

mol/cm2 and σest,BM3D+jMMSE T=5 = 1.2 mol/cm2; in other words, a relative improvement of about 70% or 82%, respectively.

When averaging over a full year of observations (only selecting observations with a qa value larger than 0.75) we find that

the original SO2 image has a mean noise estimate following the method of Immerkaer (1996) of σest,original = 7.0 mol/cm2, the215

BM3D average estimated noise is σest,BM3D = 4.35 mol/cm2, and σest,BM3D+jMMSE T=5 = 2.7 mol/cm2 – that is, a 38% and 62%

improvement in noise characteristics, respectively.

To further illustrate the advantage of this methodology, we present annual SO2 divergence maps in Figure 6, i.e., computa-

tions of ∇ · (ueff SO2) averaged over a full year, where ueff is the 2-D vector containing the effective horizontal wind. In this

case, wind fields were computed by vertically averaging ERA-5 reanalysis fields using the GNFR-A emission profile. The di-220

vergence was computed on the TROPOMI overpass coordinate system, and then remapped to a common 0.03-degree grid. We

consider the divergence map after applying BM3D to the overpasses in Figure 6(b), a 5×5 pixel mean filter to each TROPOMI

overpass as suggested by Hakkarainen et al. (2022) in Figure 6(c), and the BM3D+jMMSE T=5 approach in Figure 6(d). The

5× 5 pixel mean filter reduces noise but considerably smears the signal; in contrast, the other two methods better suppress

noise while retaining source sharpness. Using the method of Immerkaer (1996), we observe a 94% noise reduction with the225

5× 5 pixel mean filter, while the BM3D approach reduces noise by 37% and the BM3D+jMMSE approach by 60%.

To demonstrate that the denoising minimally impacts the signal structure, we compare emission estimates from different

divergence fields in Figure 7 (a more detailed examination of the estimates is provided in Appendix E, where we also present a

‘difference’ plot between the original divergence image and the denoised estimates). We focus on the ratio of the original ‘noisy’

TROPOMI data estimates to those obtained with the denoising approaches. Emission estimates were obtained by masking data230

more than 0.15 degrees from the point source location, corresponding to an integration radius of 16.7 km longitudinally and

15 km latitudinally. It is clear that the 5× 5 pixel mean filter estimates significantly deviate from those based on noisy data.

In contrast, estimates using the BM3D and BM3D+jMMSE T=5 approaches are closer to the noisy data estimates, although

some deviation is present. Sources where these two methods significantly differ from the noisy data are weakly represented

in the SO2 and/or NO2 dataset. This indicates that the noisy data may not accurately capture their presence and thus may not235
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Figure 5. Single TROPOMI overpass image on 2021-03-03 of (a) NO2 and (c) SO2. All pixels with a qa value larger than 0.75 are plotted.

Panels (b) and (d) plot the inverse of an estimate of the SNR, where values close to zero are assumed to be of high SNR. Panels (e) and (f)

show an application of the (multichannel) BM3D and additionally the jMMSE. Panels (g) and (h) show the difference between the estimates

and the original SO2 image.

11

https://doi.org/10.5194/egusphere-2025-4477
Preprint. Discussion started: 13 October 2025
c© Author(s) 2025. CC BY 4.0 License.



serve as reliable ground truth for comparison. In fact, the major deviations in Figure 7, the Newcastle Steel Works and Camden

Power Station, yield negative emissions. Therefore, the divergence method does not provide a reliable estimate of these source

emissions in these cases.
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Figure 6. Annual divergence maps for a region in South Africa. (a)

shows the original ‘noisy’ TROPOMI SO2 divergence map, (b) the

estimate from applying BM3D to the SO2 and NO2 field prior to tak-

ing the divergence, (c) the estimate from a 5× 5 mean filter to the

noisy SO2 prior to taking the divergence, (d) the estimate from the

optimal SO2 image using the proposed BM3D+jMMSE T=5 method

prior to taking the divergence. A number of known sources are encir-

cled.
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Figure 7. SO2 emission estimate ratios from integrating along a∼15

km radius around point source locations across the divergence maps

shown in Fig. 6. A ‘blue’ color in the ratio columns corresponds to an

underestimation compared to the ‘noisy’ SO2 divergence map, while

a ‘red’ color in the ratio columns corresponds to an overestimation.

Note, that the ‘noisy’ SO2 divergence map is not necessarily a ground

truth, and this plot is shown for illustrative purposes only.

4 Discussion

The joint MMSE and BM3D approaches aim to denoise data while preserving the signal. The examples demonstrate the240

effectiveness of these methods, but they also have limitations. Firstly, these methods assume independent and identically

distributed (i.i.d.) noise with zero mean. Consequently, structural noise patterns, such as stripes, may not be denoised and

could be misinterpreted as meaningful signals by BM3D due to the self-similarity of structural noise. While tuning BM3D

for such cases is possible with prior knowledge of noise distribution in the 2D wavenumber domain (Mäkinen et al., 2020),
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this knowledge is often absent for satellite data. Secondly, the practical implementation of jMMSE requires spatial stationarity,245

meaning the ratio of NO2:CO2 column densities (or similarly chosen trace gases) should be approximately constant within

a window of T ×T pixels. It is clear that there is no globally fixed NO2:CO2 ratio, and although this is approximately true

when we focus on a small region, NOx chemistry inside plumes will change ratios inside plumes (Meier et al., 2024; Krol

et al., 2024). Hence, the value for T must be kept as low as possible. The competing interest, of course, is that for robust

statistics, T should be chosen as large as possible. This raises the question of how to appropriately choose T . This can be250

based on subtracting the original image from the denoised image. Whatever shows up as structureless features there is noise,

while whatever shows up as structured noise is likely the removal of real signal (e.g., this might happen if the difference shows

something that looks like a plume and is indeed coincident with a plume on the original data). If one can grow T , but at some

value of T the noise rejection does not improve anymore, then one has found the optimal T for noise rejection. Conversely, if

one can grow T but at some point one is starting to reject also signal, then one can say they have found the optimal T to retain255

the signal. This argument suggests that spatial stationarity is best satisfied over small regions and indicates that denoising will

be more applicable in high-resolution rather than coarse-resolution satellite images.

5 Conclusions

We presented two minimum mean square error (MMSE) estimators that enhance the signal-to-noise ratio (SNR) of noisy

CO2 or SO2 images using co-registered NO2 images from the upcoming GOSAT-GW and CO2M satellites, as well as from260

Sentinel-5P. These methods enhance the visibility of plumes that are hard to discern in the noisy images. The first method,

joint MMSE, preserves plumes with good SNR (i.e., where the signal is strong or highly correlated with the NO2 field) while

subtracting noise elsewhere. The second method, BM3D, leverages image self-similarity by denoising a linear combination of

normalized CO2 or SO2 and NO2 images. The best outcomes result from combining both estimators, initially applying BM3D

for denoising, followed by joint MMSE for further refinement of the CO2 or SO2 image.265

We demonstrate the effectiveness of these techniques in two case studies. In synthetic data tests, the denoising process

improves peak SNR by more than 40 decibels. When applied to TROPOMI SO2 and NO2 images over South Africa, or their

annual divergence maps, we observe that a 30-60% reduction in noise levels is possible, while leaving plume structures intact.

The proposed denoising methods can enhance plume detection for single-overpass images and averaged satellite datasets.

These techniques improve plume visibility and may assist in plume emission quantification methods, such as Gaussian plume270

inversion, cross-sectional flux methods, or the divergence method, by providing cleaner input data. Therefore, by systematically

reducing noise in total column images, this approach strengthens satellite capabilities for monitoring atmospheric emissions

with greater precision.

Code and data availability. A C++ implementation of BM3D may be obtained from https://github.com/gfacciol/bm3d, although in this paper

we use a Python implementation from https://pypi.org/project/bm3d/. The code which implements the joint MMSE is added as a supplement275
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to this paper, along with example data (one example from the SMARTCARB dataset and one example from the TROPOMI dataset), which

can be used to reproduce Figures 1, 3-5.

Appendix A: Python implementation

In order to implement eq. (11), we need to compute the quantities Cnn, Cdd and E[M ] with sufficient accuracy. In this section,

we give some possible ways to obtain these quantities.280

1. The expected column E[M ] is defined as the average (here: median) value of a T ×T patch around any given pixel.

2. The data covariance matrix Cdd is defined by eq. (5). To estimate it from the data (the ‘sample covariance matrix’), we

form two row vectors of size 1×T 2 – for example, ˜CO2 as a 1×T 2 row vector containing all ˜CO2 observations in

a T ×T patch around the pixel, and ˜NO2 as a 1×T 2 row-vector containing all ˜NO2 observations around the pixel.

Defining the sample deviation matrix as a 2×T 2 array, M = [ ˜CO2
T ˜NO2

T ]T −E[M ], we may compute the 2× 2285

data covariance matrix,

Cdd|sample =
1

T 2− 1
MMT . (A1)

As we want to use a small value for T , it makes sense to use covariance shrinkage operators, which makes the estimation

more robust (Ledoit and Wolf, 2022). A simple operation is to get the eigenvector decomposition Cdd|sample = UΛUT ,

and reconstruct it with modified eigenvalues as290

Cdd|est = UΛ′UT , (A2)

where Λ′ = (αΛ+ (1−α)Diag(nCO2 ,nNO2)) contains the modified eigenvalues based on the expected noise charac-

teristics of the data, and Diag(·, ·) forms a diagonal matrix with the elements given. For α = 0.5 and nCO2 and nNO2 as

diagonal entries of Cdd|sample we, for example, mix the sample covariance matrix and a diagonalized covariance matrix.

3. The noise covariance matrix Cnn corresponds to the precision of the instrument. If the noise is uncorrelated and known295

as σ2
CO2 and σ2

NO2 for the two measurements, that simply corresponds to Cnn|instrument = Diag(σ2
CO2,σNO2). Alter-

natively, if this type of data is not available, we may estimate it as the median covariance of a single overpass (or

image), the idea being that a typical image contains primarily ‘noise’ and only a limited amount of ‘signal’ (i.e., hot spot

enhancements) such that the median covariance matrix of the data is representative for the noise.

We can give a straightforward example of an implementation of this algorithm in about 100 lines of Python code. Special300

care is taken of missing data through use of the numpy ‘mask’ feature. Along with the robust estimator for Cdd, we also include

the capacity to make sure Cdd has a stable inverse by clipping the conditioning number and by adding small values along its

diagonal. The code given here is given as an example of how the quantities used in the theory could be computed in practice.
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def covariance_shrinkage(Cdd, alpha, max_cond, min_eig):

var_CO2 = np.ma.median(Cdd[:,:,0,0])305

var_NO2 = np.ma.median(Cdd[:,:,1,1])

λ, U = np.linalg.eigh(np.nan_to_num(Cdd))

λ[:,:,0] = alpha * λ[:,:,0] + (1-alpha) * var_CO2

λ[:,:,1] = alpha * λ[:,:,1] + (1-alpha) * var_NO2

eig_max = np.maximum(λ[:,:,1], min_eig)310

eig_min_allowed = eig_max / max_cond

λ[:,:,0] = np.maximum(λ[:,:,0], eig_min_allowed)

recon = (U * λ[..., None, :]) @ U.T((0,1,3,2))

recon[np.isnan(Cdd)] = np.nan

return recon315

def ridge_regularization(Cdd, max_cond, γ, Γ):

cond_num = np.linalg.cond(Cdd.filled(1.0)) # shape (lon, lat)

p = 2.0 # curvature of ramp

cond_factor = np.clip(np.log10(cond_num) / np.log10(max_cond), 0, 1)320

nugget_strength = γ + cond_factor**p * (Γ - γ)

# Apply proportional nugget to each variance term

Cdd[:,:,0,0] += nugget_strength * np.ma.median(Cdd[:,:,0,0])

Cdd[:,:,1,1] += nugget_strength * np.ma.median(Cdd[:,:,1,1])325

variance_floor = np.ma.median( Cdd[:,:,0,0] )

Cdd[:,:,0,0] = np.maximum(Cdd[:,:,0,0], variance_floor)

return Cdd

330

def covariance(D, i, j):

count = (D[i,...]*D[j,...]).count(axis=-1) - 1

return np.ma.sum(D[i,...]*D[j,...], axis=-1)/count

def nanaverage(A,W,axis=-1):335

return np.nansum(A*W,axis=axis)/((~np.isnan(A))*W).sum(axis=axis)

def MMSE_estimate_fixed(
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in_arr1, in_arr2, T, CNN=None, alpha=0.5,

method='median', max_cond=1e7, min_eig=1e-13,340

γ=1e-3, Γ=1e0):

# --- Pad data (s.t. our windows catch all the data)

CO2 = np.pad(in_arr1, ((T, T), (T, T)), 'symmetric')

NO2 = np.pad(in_arr2, ((T, T), (T, T)), 'symmetric')345

# --- Extract overlapping patches of size WxW

CO2_tiles = view_as_windows(CO2 , (T,T))

NO2_tiles = view_as_windows(NO2 , (T,T))

mask_tile = view_as_windows(~np.isnan(CO2+NO2), (T,T))350

# --- Reshape

mask_tile = mask_tile.reshape(*mask_tile.shape[:-2], -1)

X = np.stack((CO2_tiles.reshape(*CO2_tiles.shape[:-2], -1),

NO2_tiles.reshape(*NO2_tiles.shape[:-2], -1)))355

# --- Generate masked array

X = np.ma.array( X, mask=~np.stack([mask_tile] * 2, axis=0) )

# --- Compute expected value of the dataset360

av_field = {"mean": np.nanmean(X,-1,keepdims=1),

"median": np.nanmedian(X,-1,keepdims=1)}[method]

# --- Compute sample covariance matrix

D = X - av_field365

Cdd = np.ma.zeros((*D.shape[1:3], 2, 2)) * np.nan

Cdd[...,0,0] = covariance(D, 0, 0)

Cdd[...,0,1] = covariance(D, 0, 1)

Cdd[...,1,0] = covariance(D, 1, 0)

Cdd[...,1,1] = covariance(D, 1, 1)370

Cdd = covariance_shrinkage(Cdd, alpha, max_cond, min_eig)

Cdd = ridge_regularization(Cdd, max_cond, γ, Γ)
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# --- Compute noise covariance matrix

Cnn = np.zeros_like(Cdd)375

Cnn[:,:,0,0] = np.ma.median(Cdd[...,0,0])

if CNN is None:

pass

elif type(CNN) is np.float32:

Cnn[:,:,0,0] = Cnn[:,:,0,0]*0.5 + CNN*0.5380

else:

CNN = np.pad(CNN, ((T, T), (T, T)), 'symmetric')

CNN = view_as_windows(CNN, (T,T))

CNN = CNN.reshape(*mask_tile.shape[:-1], -1)

CNN = np.nanmedian(CNN, -1)385

Cnn[:,:,0,0] = Cnn[:,:,0,0]*0.5 + CNN*0.5

# --- Apply filter

wCddICnn = np.linalg.solve(Cdd.filled(np.nan),Cnn.filled(np.nan))

wCddICnnEM = np.einsum('ijk,kijl->ijl',wCddICnn[...,0].squeeze(),D)390

est_gather = np.zeros((*CO2.shape, T**2)) * np.nan

for i in range(T**2):

y, x = np.mod(i,T)-T//2, i//T-T//2

xs, xe = max((T//2)+x,0), min(CO2.shape[0]-(T//2)+x, CO2.shape[0])395

ys, ye = max((T//2)+y,0), min(CO2.shape[1]-(T//2)+y, CO2.shape[1])

est_gather[xs:xe, ys:ye, i] = wCddICnnEM[:,:,i]

# --- Generate filter grid coordinates

y, x = np.meshgrid(np.arange(-T//2+1, T//2+1), np.arange(-T//2+1, T//2+1))400

weights_2dgauss = np.exp(-(x**2 + y**2) / (2 * 4**2))

# --- Compute final output

pred = CO2 - nanaverage(est_gather,W=weights_2dgauss.flatten())

est = np.where( np.isfinite(CO2), pred, np.nan )405

est = np.where( np.isnan(NO2) & np.isnan(est), CO2, est )

return est[T:-T,T:-T]
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Appendix B: Alternative derivation of jMMSE estimator

The jMMSE estimator derived in the main text provides a straightforward route to obtaining an estimator of the noisefree CO2410

data based on the joint observational model of eq. (2). That is, we first derive the maximum a posteriori solution, and rewrite

this to the linear minimum mean square estimator. The original derivation, however, was done along the following lines – it

may be considered to be an alternative derivation of the method, for which the generalization to other setups might be obtained

more easily.

The linear minimum mean square error problem can be formulated as415

arg minh,b E
[(

hT M̃ + b− c
)2
]
, (B1)

i.e., we try to estimate c by hT M̃ + b. Note that h acts on the noisy data, while before H acted on the noise-free column,

thus these are entirely different vectors. In the ideal noise-free case we have that h = w = [1 0]T . We take a derivative with

respect to b and equate the result to zero,

∂E
[(

hT M̃ + b− c
)2
]

∂b
= 2E

[
hT M̃ + b− c

]
≡ 0, (B2)420

⇐⇒ b̂ = E[c]−hT E[M̃ ] (B3)

Substituting this in eq. (B1) we get

E
[(

hT M̃ + b− c
)2
]

= E
[
(hT (M̃ −E[M̃ ]))2 + (c−E[c])2− 2hT (M̃ −E[M̃ ])(c−E[c])

]
, (B4)

= hT
(
E[(M̃ −E[M̃ ])(M̃ −E[M̃ ])T ]

)
h

︸ ︷︷ ︸
hT Cddh

+E[(c−E[c])2]︸ ︷︷ ︸
σ2

c

− 2hT E[(M̃ −E[M̃ ])(c−E[c])]︸ ︷︷ ︸
2hT Cdc

, (B5)425

with Cdd the data covariance matrix as given in eq. (5), σ2
c the variance of the prior, and Cdc is given as following, assuming

signal-independent noise E[cn] = E[c]E[n], and recalling the covariance rule E[(a−E[a])(b−E[b])] = E[ab]−E[a]E[b],

Cdc = E[(M̃ −E[M̃ ])(c−E[c])], (B6)

= E[M̃c]−E[M̃ ]E[c], (B7)

= E[(Hc + n)c]−E[Hc + n]E[c], (B8)430

=


H

(
E
[
c2
]
−E [c]2

)

︸ ︷︷ ︸
σ2

c

+E [nc]−E [n]E [c]︸ ︷︷ ︸
=0


HT w︸ ︷︷ ︸

=1

(B9)

= HHT σ2
cw (B10)

= (Cdd−Cnn)w, (B11)
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where we used eq. (8) to find a convenient model-free expression.

Differentiating eq. (B5) with respect to h and equating the result to zero yields435

∂E
[(

hT M̃ + b− c
)2
]

∂h
= 2Cddh− 2Cdc ≡ 0, (B12)

⇐⇒ ĥ = C−1
dd (Cdd−Cnn)w =

(
I−C−1

dd Cnn

)
w. (B13)

The obtained least-squares optimal values for ĥ and b̂ yield the jMMSE estimate for the denoised CO2 column,

ĉ = ĥT M̃ + b̂, (B14)

= ĥT (M̃ −E[M̃ ]) + E[c], (B15)440

= wT (I−CnnC−1
dd )(M̃ −E[M̃ ]) + E[c], (B16)

which we recognize is the same as eq. (11).

Appendix C: Explicit form of the Joint MMSE model

We can simplify eq. (11) by using the fact that wT = [1 0],

ĉ = ˜CO2− [Cov(nCO2 ,nCO2) Cov(nCO2 ,nNO2)]C
−1
dd (M −M), (C1)445

and we may furthermore invert the data covariance matrix to write eq. (C1) as

ĉ = ˜CO2−
1

1− Cov( ˜CO2, ˜NO2)2

Cov( ˜CO2, ˜CO2)Cov(ÑO2, ˜NO2)

Cov(nCO2 ,nCO2)
Cov( ˜CO2, ˜CO2)

( ˜CO2−CO2)

+
1

Cov( ˜CO2, ˜CO2)Cov(ÑO2, ˜NO2)

Cov( ˜CO2, ˜NO2)2
− 1

Cov(nCO2 ,nCO2)
Cov( ˜CO2, ˜NO2)

( ˜NO2−NO2),

− 1
Cov( ˜CO2, ˜CO2)Cov(ÑO2, ˜NO2)

Cov( ˜CO2, ˜NO2)2
− 1

Cov(nCO2 ,nNO2)
Cov( ˜CO2, ˜NO2)

( ˜CO2−CO2),

+
1

1− Cov( ˜CO2, ˜NO2)2

Cov( ˜CO2, ˜CO2)Cov(ÑO2, ˜NO2)

Cov(nCO2 ,nNO2)
Cov( ˜NO2, ˜NO2)

( ˜NO2−NO2). (C2)

Assuming no noise correlation between the CO2 and NO2 data, Cov(nCO2 ,nNO2) = 0, that simplifies to

450

ĉ = ˜CO2−
Cov(nCO2 ,nCO2)

Cov( ˜CO2, ˜CO2)− Cov( ˜CO2, ˜NO2)2

Cov(ÑO2, ˜NO2)

(
( ˜CO2−CO2)−

Cov( ˜CO2, ˜NO2)
Cov( ˜NO2, ˜NO2)

( ˜NO2−NO2)

)
(C3)
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Appendix D: Details for the derivation

We provide some more detail to some equations in the main body of the text, to aid a reader in reproducing the derivation of

the (joint) MMSE model.

D1 Sherman-Morrison-like matrix inversion identity455

The Sherman-Morrison formula is typically given as

(
A+ uvT

)−1
= A−1− A−1uvT A−1

1 +vT A−1u
. (D1)

By pre-multiplying with A we obtain

A
(
A+ uvT

)−1
= I− uvT A−1

1 +vT A−1u
. (D2)

Furthermore, if we substitute u = v = fw for some constant factor f , we can rewrite the left- and right-hand side into460

A
(
A+ wf2wT

)−1
= I− wf2wT A−1

1 + f2wT A−1w
. (D3)

Dividing the numerator and denominator of the fraction by f2 finally yields

A
(
A+ wf2wT

)−1
= I− wwT A−1

f−2 + wT A−1w
. (D4)

In the main text we used A = Cnn, w = H , and f2 = σ2
c , i.e.,

Cnn

(
Cnn + HHT σ2

c

)−1

︸ ︷︷ ︸
C−1

dd

= I− HHT C−1
nn

σ−2
c + HT C−1

nnH
. (D5)465

D2 Moving from (9) to (10)

We started with eq. (9), also stated above,

CnnC−1
dd = I− HHT C−1

nn

σ−2
c + HT C−1

nnH
, (D6)

where Cdd = Cnn + HHT σ2
c . We have as our sole goal to rewrite this expression into a form that equals eq. (4).

We start by bringing the identity matrix to the left-hand side and multiplying with −1,470

I−CnnC−1
dd =

HHT C−1
nn

σ−2
c + HT C−1

nnH
. (D7)

We then pre-multiply with wT = [1 0] which satisfies wT H = 1 to find

wT
(
I−CnnC−1

dd

)
=

HT C−1
nn

σ−2
c + HT C−1

nnH
, (D8)
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and we post-multiply with M̃ to get

wT
(
I−CnnC−1

dd

)
M̃ =

HT C−1
nnM̃

σ−2
c + HT C−1

nnH
. (D9)475

Compared to eq. (4) we now only lack a factor σ−1
c E[c]/(σ−2

c + HT C−1
nnH). The simplest way to gain this factor is to

simply add E[c] to both sides,

wT
(
I−CnnC−1

dd

)
M̃ + E[c] =

HT C−1
nnM̃

σ−2
c + HT C−1

nnH
+ E[c], (D10)

and realizing we can make E[c] part of the fraction by multiplying it with the denominator,

wT
(
I−CnnC−1

dd

)
M̃ + E[c] =

HT C−1
nnM̃ +

(
σ−2

c + HT C−1
nnH

)
E[c]

σ−2
c + HT C−1

nnH
, (D11)480

=
HT C−1

nnM̃ + σ−2
c E[c]

σ−2
c + HT C−1

nnH
+

HT C−1
nnHE[c]

σ−2
c + HT C−1

nnH
. (D12)

We can see on the right-hand side that we got our desired term with σ−2
c E[c] and an extra, unwanted term. There is a convenient

expression for this extra unwanted term which we can deduce from eq. (D8), namely,

wT
(
I−CnnC−1

dd

)
HE[c] =

HT C−1
nnHE[c]

σ−2
c + HT C−1

nnH
. (D13)

Subtracting (D13) from (D12) gives485

wT
(
I−CnnC−1

dd

)(
M̃ −HE[c]

)
+ E[c] =

HT C−1
nnM̃ + σ−2

c E[c]
σ−2

c + HT C−1
nnH

. (D14)

Finally, we can see that HE[c] = E[Hc] = E[M −n], which we can use as a substitution on the left-hand side of the

equation,

wT
(
I−CnnC−1

dd

)(
M̃ −E[M ] + E[n]

)
+ E[c] =

HT C−1
nnM̃ + σ−2

c E[c]
σ−2

c + HT C−1
nnH

. (D15)

Under the assumption of zero mean noise E[n] = 0 which underpins the Bayesian solution of eq. (4), we obtain the final490

expression,

wT
(
I−CnnC−1

dd

)(
M̃ −E[M ]

)
+ E[c] =

HT C−1
nnM̃ + σ−2

c E[c]
σ−2

c + HT C−1
nnH

. (D16)

As a sidenote, we remark that we can obtain the posterior covariance also from eq. (D8), namely,

wT
(
I−CnnC−1

dd

)
Cnnw =

1
σ−2

c + HT C−1
nnH

, (D17)

see, e.g., eq. 6.9 in Fichtner (2021). The left-hand portion here allows for a simplification, e.g.,495

wT
(
I−CnnC−1

dd

)
Cnnw = σ2

CO2−wT CnnC−1
dd Cnnw (D18)
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D3 Moving from (10) to (11)

Finally, we can simplify eq. (10), also present in the previous subsection, to a simplified expression,

ĉ = wT
(
I−CnnC−1

dd

)(
M̃ −E[M ]

)
+ E[c], (D19)

= wT I
(
M̃ −E[M ]

)
−wT

(
CnnC−1

dd

)(
M̃ −E[M ]

)
+ E[c], (D20)500

= wT M̃︸ ︷︷ ︸
= ˜CO2

−wT E[M ] + E[c]︸ ︷︷ ︸
=0

−wT
(
CnnC−1

dd

)(
M̃ −E[M ]

)
, (D21)

= ˜CO2−wT
(
CnnC−1

dd

)(
M̃ −E[M ]

)
. (D22)

Appendix E: Additional figures

E1 Synthetic case – jMMSE for different window sizes

E2 TROPOMI SO2 case – jMMSE for different window sizes505

E3 SO2 emission estimates

In the main body of the paper, we display the emission estimate ratios between the ‘noisy’ divergence and denoised SO2

divergence estimates. Here, we provide the actual estimates we obtained in the form of a heatmap. Some emission estimates

are negative, specifically for Newcastle steel works, Camden power station, and Kelvin power station. This indicates that the

integration radius may be inadequate or that an important nearby sink was overlooked. As noted in the main body, a more510

thorough study, with improved AMF corrections and carefully chosen integration ranges for each source, would likely yield

more reliable numbers. However, this is beyond the scope of the current paper.

Author contributions. EK derived and implemented the jMMSE algorithm and BM3D method modification. EK, GK, and DB all contributed

equally to the writing process.
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Figure E1. The noisy data from which Figure 3(c) was drawn, though

we now consider a larger area, denoised using the jMMSE with T =

3 to T = 13 leads to increasing PSNR and SIM scores. This indicates

enhanced performance with larger window sizes.

50

51

52

53

La
tit

ud
e

difference w.r.t.
noisefree case

(a) jMMSE T=3
difference w.r.t.
noisefree case

(b) jMMSE T=5

50

51

52

53

La
tit

ud
e

difference w.r.t.
noisefree case

(c) jMMSE T=7
difference w.r.t.
noisefree case

(d) jMMSE T=9

12 14
Longitude

50

51

52

53

La
tit

ud
e

difference w.r.t.
noisefree case

(e) jMMSE T=11

12 14
Longitude

difference w.r.t.
noisefree case

(f) jMMSE T=13

6

4

2

0

2

4

6

[
pp

m
v]

Figure E2. Same as Figure E1, but now we show the difference with

respect to the noise-free case. We see that we remove increasingly

more noise, but do not improve our recovery of some plumes (visible

as ‘blue’ features, i.e., where our recovery underestimates the true

source strength).
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Figure E3. The noisy data from Figure 5(c) denoised using the

jMMSE with T = 3 to T = 13 (without an application of BM3D).

We can see that the data becomes increasingly less noisy.
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Figure E4. Same as Figure E3, but now we show the difference with

respect to the original SO2 input data. We notice diminishing returns

regarding noise removal as T grows.
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Figure E5. Heatmap of SO2 emission estimates. The abbreviation SW stands for ‘steel works’ and ‘PS’ stands for power station.
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