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Abstract. Dynamic Global Vegetation Models (DGVMs) are established in environmental and agricultural sciences for many1

purposes, e.g., modelling plant growth and productivity, water and carbon cycles, and biosphere-climate interactions. Never-2

theless, DGVMs are still rather limited in terms of simulating mutual interactions between biospheric and human processes.3

While DGVMs such as the Lund Potsdam Jena managed Land (LPJmL) model have been successfully connected to Integrated4

Assessment Models (IAMs), the model couplings often remain loose and static over the simulation period. The copan:LPJmL5

modelling framework is an extension of the copan:CORE framework for integrated and dynamic human-Earth system mod-6

elling, and addresses this issue by integrating LPJmL via a new interface, consisting of an LPJmL coupling library and a Python7

library pycoupler, which together enable LPJmL inputs and outputs to be coupled in copan:LPJmL during the simulation pe-8

riod. It uses the copan:CORE entities and integrates the coupled data into the World (simulation space as a whole) and the9

(grid) Cell entity, allowing other entities such as Individuals, e.g., for agent-based modelling (ABM), to access them. Besides10

ABM, this framework allows for a broad range of modelling approaches to be represented with copan:LPJmL, of which we11

introduce three examples: (1) The model of Integrated Social-Ecological Resilient Land Systems (InSEEDS), which uses a12

classical ABM approach to model management decisions by farmers, (2) an adaption of an established crop calendar model13

(Crop Calendar), and (3) a novel Large Language Model (LLM)-driven ABM approach (LLM Fertilization).14
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1 Introduction15

The Anthropocene is a new epoch in the evolution of the Earth system characterized by increasingly strong and entangled16

coevolutionary dynamics of biogeophysical Earth system processes with human societies (Steffen et al., 2011; Schellnhuber,17

1999; Crutzen, 2002). The recognition of biogeophysical and social processes as intertwined has emerged from historical18

developments in the field of Earth System Science. While James Lovelock already published the Gaia hypothesis in the early19

1970s (Lovelock and Margulis, 1974), the broader scientific uptake of the term “Earth System Science” took place in the 1980s20

and 1990s (Lenton, 2016; Steffen et al., 2020). Central publications in this decade, such as the Bretherton Diagram (Committee,21

1986) and the Brundtland report (Holdgate, 1987), acknowledge that human societies are tightly connected to Earth system22

dynamics. Followed by the realisation that (some) human societies now act as the major driving force of change on our planet23

(Steffen et al., 2011), while at the same time being shaped and impacted by the ecological conditions they are embedded in24

(Rockström et al., 2009), diverse novel conceptualisations of this intertwinedness, like the “technosphere” (Rosol et al., 2017)25

have emerged.26

The consideration of the role of humans in the Earth System has thus progressed towards a coevolutionary, bidirectional ap-27

proach, now evident in different strands of simulation modelling that can be summarised under the term World-Earth (System)28

modelling (WEM) or integrated human-Earth system modelling, with the entirety of human civilizations being referred to as29

the World (Beckage et al., 2020; Donges et al., 2021). There is growing research calling for and adopting a social-ecological,30

integrated perspective of humans embedded in the Earth System (e.g., (Donges et al., 2017; Schill et al., 2019; Beckage et al.,31

2020; Farahbakhsh et al., 2022; Beckage et al., 2022; Moore et al., 2022; Gerten et al., 2018). Different modelling communities32

approach this integration in distinct ways, and focus on different aspects of social-ecological dynamics. One central challenge33

of these efforts is moving beyond simple proof-of-concept models towards more complex, integrated models (Beckage et al.,34

2020).35

Land systems are a key example of the inherently coevolutionary nature of social-ecological interactions in World-Earth36

Systems (Meyfroidt et al., 2022). Agricultural production is the single largest driver of transgressions of multiple planetary37

boundaries: land-system change, freshwater use, biogeochemical flows and biosphere integrity (Campbell et al., 2017), also38

contributing to the transgression of other planetary boundaries, such as climate change. In socio-ecological terms, global food39

demand drives responses in land use and production, including cropland and pasture expansion, and intensification through40

management practices such as irrigation and fertilization, and the reorganization of supply chains through trade. On the pro-41

duction side, farmers’ management decisions, such as the use of crop rotations, cover cropping, reduced tillage, and integrated42

pest management can significantly influence the adverse environmental impacts that manifest themselves in the transgression43

of planetary boundaries (Gerten et al., 2020). Improved knowledge about the dynamic and coevolutionary development of agri-44

cultural systems at scales from local to global is therefore imperative to foster our understanding of fundamental Anthropocene45

dynamics.46

Land use systems alone have been a research subject in Earth system science for years, leading to their incorporation into47

DGVMs (such as LPJmL), crop models (e.g., DSSAT) as well as Earth System Models (ESMs, (e.g. MPI-ESM)) (Foley48
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et al., 2005; Bondeau et al., 2007; Jones et al., 2003; Reick et al., 2013). Specific (such as tillage) or bundled management49

practices (like conservation agriculture) have been represented in detail and studied in local and global applications of such50

models (Herzfeld et al., 2021; Ngwira et al., 2014). Additionally, more holistic applications have been carried out, e.g., to show51

the potential of maintaining multiple planetary boundaries while feeding 10 billion people (Springmann et al., 2018; Gerten52

et al., 2020). However, the most important factor in implementing such measures or achieving such goals has been neglected:53

Humans are often merely represented as biophysical ’disturbance’ factors. This way, their decision-making capacities and54

social-psychological and socio-cultural complexities are therefore underrepresented, with many assumptions and dynamics,55

for example on land management and land use, remaining rather static (Schellnhuber, 1999; Rounsevell et al., 2014; Beckage56

et al., 2022). IAMs make it possible to simulate and optimize certain land use dimensions under a set of “human boundary57

conditions”, such as Shared Socioeconomic Pathways (SSP) scenarios (Dietrich et al., 2019). Through the application of58

macroeconomic and energy-economic optimization approaches, many IAMs reduce the complexity of human behaviour to59

predefined scenarios or boundary conditions, thereby excluding key dimensions of human decision-making uncertainty (Beck60

and Krueger, 2016; Asefi-Najafabady et al., 2021; Koasidis et al., 2023). While the SSP1 and SSP2 scenarios presented in61

the Sixth IPCC Assessment Report are considered economically feasible within IAMs, their assumptions regarding social-62

ecological feasibility—such as behavioural adaptation and governance dynamics—remain subject to significant uncertainty63

(int, 2023; Schleussner et al., 2024; Krawczyk and Braun, 2025). Furthermore, these scenarios lack the fully coupled feedbacks64

of societies with the Earth system, i.e. the coevolution inherent in the underlying dynamics that is currently not representable65

endogenously with the majority of existing modelling approaches (Schlüter et al., 2012; Calvin and Bond-Lamberty, 2018).66

To address this gap, Donges et al. (2020) introduced the copan:CORE modelling framework, which supports the develop-67

ment of World-Earth models (WEMs). WEMs are characterised by the explicit and bidirectional coupling of social and Earth68

system processes, enabling the coevolution of human and natural systems to be represented within a single modelling frame-69

work. They aim to go beyond traditional IAMs by incorporating human agency, social heterogeneity, and feedbacks between70

human decisions and biophysical dynamics (Mathias et al., 2020). A model built in the copan:CORE modelling framework71

consists of entities, such as a simulation cell or individuals, that interact with each other via various processes (Donges et al.,72

2020). The latter are categorized by three overlapping process taxa, representing biogeophysical and biogeochemical (ENV,73

e.g. biophysical conditions, crop growth), socio-metabolic (MET, e.g. crop harvest, fertilization) and socio-cultural processes74

(CUL, e.g., governance, social learning, social norms dynamics, or individual cognitive-behavioural processes like attitude75

formation) (Donges et al., 2021). We here have advanced this framework by integrating LPJmL as the ENV taxon (Schaphoff76

et al., 2018), through which we can represent diverse natural as well as managed land systems, such as forests, grassland, and77

cropland (Sakschewski et al., 2016; Wirth et al., 2024b; Braakhekke et al., 2019; Rolinski et al., 2018; Porwollik et al., 2021;78

Jägermeyr et al., 2015; Minoli et al., 2022a) and link them bidirectionally to social processes that can be of economic nature79

but also go beyond that, for example including behavioural change, collective decision making or political processes. Based80

on this, MET and CUL-based components of different modelling approaches can be realized by applying copan:LPJmL to81

represent various dimensions of social-ecological systems. By building on the diverse entities and process/model templates of82
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Figure 1. Basic scheme of copan:LPJmL featuring the global grid, the process taxonomy as well as main entities with the three application

examples: InSEEDS, Crop Calendar, and LLM Fertilization.

copan:CORE, complex and detailed systems can be integrated to map underlying dynamics such as human, social, and societal83

processes using ABMs, dynamical system, or detailed rule-based approaches.84

In this paper, we introduce the copan:LPJmL modelling framework as a flexible and extensible platform for the development85

of WEMs, including a process-based DGVM Earth in a land system context. To demonstrate its applicability and versatility, we86

present three example applications: (1) nSEEDS, a global agent-based framework for simulating the adoption of regenerative87

agricultural practices by farmer agents (Schwarz et al.); (2) Crop Calendar, an integrated (in runtime calculation) update of88

the rule-based model published by Minoli et al. (2019, 2022a); and (3) LLM fertilization, representing the application of crop89

fertilizer by LLM farmer agents. These examples illustrate how copan:LPJmL enables the integration of diverse socio-cultural90

and socio-metabolic processes with detailed Earth system dynamics.91

2 Framework description92

copan:LPJmL is a newly developed, enhanced WEM framework that integrates the DGVM LPJmL and the existing open mod-93

elling framework copan:CORE, thereby creating a modelling environment in which biophysical Earth-system and social world94

processes can be represented and bidirectionally linked to enable fully integrated and global gridded social-ecological mod-95

elling. It is designed to bring together the details and complexity of a process-based land biosphere model with the flexibility of96

an open modelling framework, thereby enabling the build-up of new types of integrated models. It allows selection from vari-97
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ous modelling approaches such as agent-based, rule-based, dynamical system, or data-driven (statistical). copan:CORE forms98

the core framework in which the modular structure and building blocks, such as basic entities, are defined that can interact with99

each other. In copan:LPJmL, LPJmL is currently integrated via annual coupling to represent processes of the ENV taxon, with100

future development aiming to implement more frequent coupling intervals, ranging from monthly to daily. This is facilitated101

by LPJmL itself, which has been extended with a coupler library that is available in LPJmL from version 5.6 onwards, and102

applied in copan:LPJmL via the Python interface pycoupler (Breier and von Bloh, 2025).103

2.1 The CORE framework104

copan:CORE, introduced by Donges et al. (2020), has established a novel systematic approach for building WEMs in a Python-105

based modelling environment with its corresponding Python library pycopancore. All copan:CORE model elements are rep-106

resented as modular, object-oriented entities. These include agents (such as households, firms, or governments), social institu-107

tions, components of the Earth system or even more abstract entities such as a rulebook (basis for Crop Calendar). Additional108

entities can be flexibly introduced using the framework. In copan:CORE, each of these entities is involved in model processes109

that can be categorized by applying the aforementioned taxonomy system described by Donges et al. (2021) (ENV, MET110

and CUL). Another essential feature of copan:CORE is its support for heterogeneous agent populations and scalable network111

structures that define the relationships and interactions among agents, referred to as Individuals, and between agents and112

their linked entities. Besides Individuals these available entities in copan:CORE are the simulation space, the World,113

the underlying elemental spatial units, the Cells, the Social Systems such as countries or cities (Donges et al., 2020).114

Recently, Bechthold et al. (2025) added an additional Group entity as a social structure in which Individuals can organize115

themselves. For copan:LPJmL, this variety is especially valuable, as the underlying hierarchies and networks provide a basic,116

real-life reflecting structure that aligns well with the simulation space (world) of LPJmL, in which Cells also reflect the117

elementary spatial unit of simulation. This way, the framework can represent the LPJmL organizational structure within the118

copan:CORE World. The library, pycopancore, also included model components, models and studies outside of the CORE119

definition (tillkolster et al., 2020). Within the process of building new software around copan:CORE, such as copan:LPJmL,120

this structure was reorganized to distinguish the CORE from other software and components related to copan:CORE, leaving121

only the components used by Donges et al. (2020) as an exemplary modelling approach (Breier et al., 2025b).122

2.2 LPJmL as a model component123

The DGVM LPJmL simulates the carbon, nitrogen, water and energy cycles of the terrestrial biosphere in coupling with the124

growth and productivity of natural and agricultural ecosystems, forced by climate, crop distribution, and other globally gridded125

input data (Schaphoff et al., 2018; von Bloh et al., 2018; Wirth et al., 2024a). It can represent various agricultural management126

practices that require additional information on the spatial and temporal distribution of management systems (Lutz et al., 2019;127

Porwollik et al., 2021; Jägermeyr et al., 2015; Herzfeld et al., 2021; Minoli et al., 2022a; Jägermeyr et al., 2016; Heinke et al.,128

2023). The smallest entity representing these processes is a grid cell, by default with a spatial extent of 0.5× 0.5 degrees,129

such that 67,420 cells represent the land surface globally. Plants are modelled according to the concept of Plant Functional130
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Figure 2. Stylized class diagram of the integrated copan:LPJmL WEM framework. copan:LPJmL (white, dotted box) consists of various

software components from which different functions and/or classes are used: LPJmL (green box) is linked via pycoupler (yellow), which is

responsible for configuration, simulation, and exchange of data in the xarray format (gray box) with copan:LPJmL. World and Cell, as

well as model components, are child classes of the corresponding copan:CORE entities and components.
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Types (PFT) (Smith et al., 1993). The same principle is applied to Crop Functional Types (CFT) used for modelling agriculture131

on prescribed shares of each cell, called stands (Bondeau et al., 2007). copan:LPJmL introduces LPJmL as a new model132

component that covers the ENV taxon. It represents the LPJmL model as a World entity WLPJmL (LPJmL simulation space,133

i.e. global), that integrates the coupled LPJmL model134

WLPJmL = (LPJmL,{Ci | i = 1,2, . . . ,n}) (1)

and its corresponding Cell entities CLPJmL as shown in Fig. 2 following the concept of Donges et al. (2020). CLPJmL includes135

the input and output of LPJmL for the cell as well as the grid information (longitude, latitude) and a network of its neighbouring136

cells N (Ci):137

Ci = (input,output,grid,N (Ci)), (2)

where N (Ci) is defined as138

N (Ci) = {Cj | d(Ci,Cj)≤ r,j ̸= i and Cj ∈WLPJmL} (3)

and is calculated based on the grid information of each cell, with d(Ci,Cj) denoting the Euclidean distance between cell139

centroids, and r =
√

2·0.5◦ corresponding to the maximum distance between adjacent cells in the 0.5° grid (including diagonal140

neighbours). In the copan:LPJmL implementation, both the World entity and its corresponding Cell entities are realized141

using efficient data structures provided by Python libraries xarray and numpy, which enable both array-based and object-142

oriented access (Hoyer and Hamman, 2017; Harris et al., 2020). The attributes of an instantiated World (world, lower case),143

such as LPJmL input, output, and grid information, are stored as xarray-based data sets, which internally use numpy arrays144

that encompass the total simulation domain (Fig. 2). Each cell (Ci) is implemented as a Python object whose xarray-based145

attributes are references (numpy views) to the corresponding cells of the world object, thereby ensuring memory efficiency and146

consistency. This structure allows data associated with a particular cell to be accessed and modified either directly through147

the global world arrays (e.g., world.input[1]) or via the respective cell object in the collection world.cells, with148

both approaches referencing the same underlying data in memory. This ensures that data is always up to date, regardless of the149

entity, and allows data to be read and modified independently of the hierarchy (world, cell).150

2.3 Bidirectional coupling with LPJmL151

To enable a bidirectional, annual data coupling, LPJmL has been extended such that the writing of input and output files can be152

replaced or extended by TCP/IP socket connections for the corresponding data. This option is now available for all inputs and153

outputs in the LPJmL configuration. The file lpjml_config.cjson contains the base configuration of LPJmL, written154

in a C-flavoured JSON format (Fig. 2). When preprocessed by cpp, the standard C preprocessor, it incorporates additional155

configurations, such as model inputs, and is parsed to produce a standard JSON file. An excerpt of such a configuration with156

coupled inputs and outputs is shown as in Fig. A1, also containing additional information such as the name of the coupled157

model, the start year of coupling, as well as the hostname and the port number of the coupled model. The coupling itself is158
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provided by the LPJmL internal coupler library, which was implemented to encapsulate any socket communication in LPJmL.159

At the start of a coupled LPJmL simulation, a connection to the coupled model is established via a connect() call within this160

library to a host where the coupled model is running with the corresponding port number. The coupling follows a prescribed161

protocol, as described in Fig. S1 of the Supplement.162

Conversely, to enable simple and practical coupling with LPJmL, we have developed pycoupler, a Python interface that163

provides tools around the coupling as well as handling of LPJmL in Python environments (Fig. 2). It serves a configuration164

interface for coupled as well as stand-alone LPJmL simulations as well as functionality to send and receive xarray-based165

data objects from LPJmL. The coupling follows the prescribed coupling protocol, for which pycoupler contains the module166

LPJmLCoupler. The protocol is provided in detail in Fig. S1 of the Supplement. With LPJmLCoupler, LPJmL is coupled167

on the Python side, and both sending and receiving methods are provided. It creates the underlying data structures (input,168

output, grid, country, etc.) and in the case of input data, initialises it with data read in at the start of the simulation. While169

all static data (e.g., grid, country) is only sent at the start of the simulation, time transient LPJmL output data is received170

from LPJmL on an annual basis and updated during simulation time via pycoupler (Chapter 2.3). Likewise, the input data171

can be changed within copan:LPJmL and sent back to LPJmL vice versa. The exchange format LPJmLDataSet is based172

on the existing data class xarray.DataSet of the Python library xarray (see chapter 2.2) and combines it with principles173

of LPJmL metadata processing described in Breier et al. (2024). This way, both the received outputs and the inputs that are174

sent are handled as a single object. The underlying outputs/inputs are in turn available as LPJmLData objects, analogous to175

xarray.DataArray, exposing each by its LPJmL identifier (e.g. output.soilc or input.landuse). This allows176

the use of any arithmetic operation and functionality available by xarray and/or numpy. Both libraries are widely adopted and177

serve many functionalities, such as plotting, statistical analysis, or writing data as Network Common Data Form (NetCDF)178

or Comma Separated Values (CSV) files. pycoupler also allows for configuring (coupled) LPJmL simulations by providing179

an LPJmLConfig module, which simplifies reading, handling, modifying and writing of LPJmL configurations, the files180

of which are subsequently used to run the corresponding LPJmL simulations following Breier et al. (2024). Fig. 3 shows an181

example of how such a configuration can be set up.182

If running an LPJmL simulation locally or submitting it to an High-Performance Computing (HPC) cluster with Simple183

Linux Utility for Resource Management (SLURM) workload manager support (Yoo et al., 2003), the LPJmLCouplermodule184

is used for data exchange. Sending and receiving data is possible during the runtime of LPJmL on an annual basis. After a185

defined coupling year, LPJmL waits until the required input data is sent via LPJmLCoupler to continue the simulation until186

the end of the year to send back the output data. For the following years, the procedure is repeated. For a coupled simulation,187

the modules are usually applied together and in sequence in an individual run script. This way pycoupler can cover numerous188

simulation and coupling cases. An example that builds upon the configuration of Fig. 3 is demonstrated in Fig. 4.189

The pycoupler package is available on GitHub with more detailed function documentation and examples (Breier and von190

Bloh, 2025). Beyond that, pycoupler serves further utility functions around LPJmL, such as getting the neighbour cells of a191

cell or subsetting the grid for country-specific LPJmL simulations.192
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1 from pycoupler.config import read_config

2

3 # Read base configuration from LPJmL

4 config_coupled = read_config(

5 model_path="./LPJmL",

6 file_name="lpjml_config.cjson"

7 )

8

9 # Set coupled run configuration

10 config_coupled.set_coupled(

11 sim_path = ".",

12 sim_name="coupled_run",

13 dependency="historic_run",

14 start_year=2001, end_year=2100,

15 coupled_year=2023,

16 coupled_input=["with_tillage"],

17 coupled_output=["soilc_agr_layer", "harvestc"]

18 )

19

20 # Regrid by country and update configuration

21 config_coupled.regrid(country_code="NLD")

22

23 # Write a configuration as json file

24 config_coupled_fn = config_coupled.to_json()

25

Figure 3. Configuration of a coupled simulation with LPJmL via the LPJmLConfig module of pycoupler. A base configuration is read in

as a LPJmLCoupler object and changed for a coupled simulation, including a regridding to simulate the Netherlands only.
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1 from pycoupler.run import run_lpjml

2 from pycoupler.coupler import LPJmLCoupler

3

4 # Run lpjml simulation with socket coupling set

5 run_lpjml(config_file=config_coupled_fn)

6

7 # Establish coupler connection to LPJmL

8 lpjml = LPJmLCoupler(config_file=config_coupled_fn)

9

10 # Get initial data of previous years of simulation

11 inputs = lpjml.read_input()

12 outputs = lpjml.read_historic_output()

13

14 for year in lpjml.get_sim_years():

15 # Placeholder to interact with inputs

16 lpjml.send_input(inputs)

17 lpjml.read_output(outputs)

18

19 lpjml.close()

Figure 4. Execution of a coupled simulation with LPJmL via the LPJmLCoupler module of and run function of pycoupler that is based

on the coupler extension (Chapter 2.3). inputs and outputs are objects of class LPJmLData and can be accessed and edited following

Hoyer and Hamman (2017); Breier and von Bloh (2025).
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2.4 copan:LPJmL, a World-Earth modelling framework193

The copan:LPJmL framework with its corresponding pycopanlpjml library unites all presented software components pycopan-194

core (Chapter 2.1), LPJmL (Chapter 2.2) including the coupler library and the Python interface pycoupler (Chapter 2.3)). With195

that, we propose a novel WEM framework that enables researchers from diverse disciplinary fields to engage in modelling196

human-environmental interactions in the land-use sector and allows them to specify custom decision rules, agent interactions,197

or feedback mechanisms, without requiring modification of the LPJmL model. This lowers the entry barrier and fosters inter-198

operability, supporting a wide range of applications and interdisciplinary collaboration.199

Within copan:LPJmL, LPJmL, the DGVM, defines the spatial scope and spatial resolution in this setup. It constitutes the200

ENV taxon of the WEM, and is complemented by the taxa MET and optionally CUL (Fig. 8). While MET processes are201

typically represented in many integrated modelling approches (i.e., IAMs), the CUL taxon is, as indicated in Chapter 1, often202

neglected (Schlüter et al., 2017; Beckage et al., 2022). We here provide a platform to include and explicitly represent these203

social processes of different actors and their interactions that are highly relevant for ENV interactions and feedbacks, such as204

land use and agricultural management. It facilitates the representation of “the social” from different perspectives. The CUL205

taxon can cover individual decision-making, social learning, but also economic dynamics, policy-making, and much more.206

Within the copan:LPJmL framework, MET and CUL processes can be represented with the full flexibility of copan:CORE.207

Their potential interactions with ENV are bound to the data interface of the terrestrial Earth, the inputs and outputs of LPJmL208

(Chapter 2.3). These are, on the one hand, the exposed inputs, represented in the World (World.input), and Cell entity209

(Cell.input). In general, all available time-variable inputs in LPJmL can be exposed via pycoupler and thus coupled, an210

overview is given in Table 1.211

Table 1. Overview and categorization of key inputs to LPJmL (ENV)

Category Key Variables

Climate Temperature (daily mean, min, max), precipitation, radiation, atmospheric CO2 concen-

tration, wind speed

Land Use Land systems, irrigation, irrigation systems

Management Tillage systems, crop residue management, fertilizer & manure nitrogen, sowing dates

& harvest dates

Society Population density, country affiliation, water use of household, industry & livestock

Miscellaneous Soil texture type, soil acidity, elevation, livestock density, lakes & reservoirs, river

drainage direction, neighbour irrigation network, water demand for households, live-

stock and industry, atmospheric nitrogen deposition

A corresponding change to one of these inputs, which is applied in LPJmL in the following year, results in a corresponding212

biophysical response that is reflected in the outputs. Vice versa, the range of available LPJmL outputs can be utilized in the213
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MET and CUL taxon via World (world.output) and Cell (cell.output) to inform and shape the respective processes.214

Here, too, all outputs are available in copan:LPJmL, the most important of which are listed in Table 2.215

Table 2. Overview and categorization of key LPJmL outputs (ENV)

Category Key Variables

Vegetation Aboveground biomass, total vegetation carbon, net primary productivity, gross primary

productivity, respiration,

Soil & Litter Soil carbon & nitrogen content per soil layer, soil temperature per layer, maximum thaw

depth, N2O emissions, nitrogen leaching, ammonium volatilization

Water Soil evaporation, transpiration, canopy interception, local runoff, river discharge, poten-

tial evapotranspiration, soil moisture, irrigation water use per crop

Fire & Disturbance Burned area fraction, fire emissions, fire carbon released, deforestation emissions

Land use & Agricul-

ture

For each simulated crop: yield, growing area, sowing date, harvest date, fertilizer

amount, fertilizer & application

In principle, inputs can be extended, for example, by converting further parameters or settings into inputs. Any state vari-216

able or flux can also be written as an output, providing even more opportunities for model coupling. By design, copan:LPJmL217

allows the integration of a broad range of modelling paradigms of different domains that represent socio-ecological dynamics218

and feedbacks at varying levels of complexity and abstraction. Table 3 shows an overview of approaches that potentially could219

be represented in CUL and MET using copan:LPJmL. These include ABMs for simulating heterogeneous actors and interac-220

tions, rule-based systems for capturing institutional or behavioural heuristics, optimization-based approaches for identifying221

efficient or goal-oriented management strategies, and surrogate or machine learning models for data-driven decision-making.222

System Dynamics models can be incorporated by formulating their underlying equation systems within the Dynamical Sys-223

tems paradigm, ensuring compatibility with its feedback-oriented architecture. The flexibility enables the exploration of diverse224

real-world processes ranging from farmer decision-making to governance interventions.225
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Table 3. Modelling paradigms and application domains supported by copan:LPJmL, with representative examples.

Paradigm Application Domain(s) Representative Examples

Agent-Based Models (ABMs) Socio-ecological systems such as

land-use change and adaptation, or

household and (farmer) decision-

making; socio-hydrological systems,

such as mitigation of extremes and

water management; higher-level or-

ganisation, e.g., policy scenarios

InSEEDS: heterogeneous farmer agents with

LPJmL feedback (Schwarz et al.); CRAFTY:

competition-based land allocation and land

(Murray-Rust et al., 2014); Household-level

farming responses (Wens et al., 2020; Huber

et al., 2022); Social-hydrological studies

(Schrieks et al., 2021; Kreibich et al., 2025)

Rule-Based Models (RBMs) Systems that follow rule-based logic,

such as agricultural management and

land use; higher-level organisations,

e.g., acting schemes of governmental

institutions

Crop Calendar (Minoli et al., 2022a, 2019);

Land use allocation (Liang et al., 2021; Verburg

and Overmars, 2009); Crop rotation and fallow

scheduling (Szalai et al., 2014; Li et al., 2021)

Optimization Models Economic land and resource opti-

mization; yield and input efficiency;

food security and environmental

trade-offs; policy-guided scenario

analysis

Examples: MAgPIE, GLOBIOM, or IMAGE

(Dietrich et al., 2019; Krey et al., 2020;

Stehfest, 2014). E.g. for water and nutrient

optimization (Blanco-Gutiérrez et al., 2013;

Bodirsky et al., 2012; Beier et al., 2025) or

land-based mitigation (Doelman et al., 2020;

Bauer et al., 2020)

Dynamical System Models System-level feedbacks and tip-

ping dynamics; coupled socio-

environmental processes; bioeco-

nomic models; evolutionary game

theoretic models

Tipping point and regime shift models (Bauch

et al., 2016), Socio-epidemic models, complex

contagion (Horsevad et al., 2022)

Human-climate models (Bury et al., 2019)

Data-Driven Models Emulators; Pattern discovery; Sce-

nario validation and calibration;

remote-sensing based approaches

Statistical crop yield emulators (Liu et al.,

2023);

Surrogate models (Natel et al., 2025);

Remote-sensing (Kou-Giesbrecht et al., 2024;

Dantas de Paula et al., 2020)

LLM-Enhanced Models Decision emulation; Stakeholder rea-

soning; Adaptive behavior

LLM-based farmer management decisions

LLM agents as institutional policy-makers

(Zeng et al., 2025)
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In addition, the framework supports a wide range of application areas that interact with the land system, in particular its226

ecological conditions, and resources. This can well result in more complex (social) structures in which, for example, only a227

first layer of agents interacts with the land system, while other actors are only connected to them, as in a supply and demand228

model for agricultural products involving farmers, food producers, and consumers. In general, potential domains are land-229

use change, agricultural management, climate adaptation, food-water-energy dynamics, policy evaluation, or socio-ecological230

transitions (Table 3). Through the modular interface and configurable data exchange with LPJmL, copan:LPJmL can serve as231

a backbone for integrated assessments across spatial scales and decision contexts.232

3 Application examples233

In order to illustrate a broad range of modelling approches that can be covered using copan:LPJmL, we present in the following234

three different representative applications examples of varying complexity, which are based on the different model paradigms235

and application areas shown in Table 3. While those examples give a taste of the possibilities of copan:LPJmL, they are not236

exhaustive, and many more applications of the framework are possible.237

3.1 InSEEDS: a new agent-based World-Earth model238

In the field of social-ecological system (SES) science, different modelling approaches have emerged to capture the intertwined239

dynamics between human and biophysical spheres (Farahbakhsh et al., 2022; Anderies et al., 2023; Ye et al., 2024). Arguably,240

the most prominent approach to social-ecological modelling, ABM, is ideal to be used for modelling with copan:LPJmL241

(Rounsevell et al., 2012; Filatova et al., 2013; Schulze et al., 2017; Donges et al., 2020). ABMs simulate interactions between242

agents and their environments over time. These agents can represent individuals, households, organizations, or other entities.243

The simulation of these micro-level interactions gives rise to different macro-level outcomes, like spatial adoption patterns of a244

certain land use (Murray-Rust et al., 2014). Several features of ABMs make them a particularly useful methodological choice245

for the investigation of SES. SES are often understood as complex adaptive systems and therefore are inherently characterized246

by dynamical adaptation to changing behaviors and environments (Preiser et al., 2018). Furthermore, ABMs facilitate the study247

of macro-level phenomena emerging through micro-level dynamics. Lastly, ABMs are able to capture agent heterogeneity in248

human and biophysical spheres (Schlüter et al., 2021). InSEEDS, first described in detail in Schwarz et al., is a WEM created249

using the copan:LPJmL framework and uses an ABM component to capture farmer agent decision-making (Fig. 5).250

InSEEDS was originally designed to investigate the SES dynamics at play in transitions from conventional farming to re-251

generative farming practices such as conservation tillage. The CUL taxon comprises farmer management decision-making252

processes that are based purely on social interactions (i.e., evaluation of social norms) as well as information obtained from253

social-ecological processes (i.e., observing the environment). The social network of farmers forms the basis for these social254

dynamics and is initialized based on the LPJmL model grid (Chapter 2.2). In this realization, one representative farmer agent is255

assigned to each cell. This means that each farmer has a maximum of eight direct neighbours who form their neighbourhood,256

which is currently the only social network represented. It follows the implementation of acquaintance networks as described257
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Socio-cultural taxon (CUL)

Socio-metabolic taxon (MET)
• crop growth
• soil carbon+

-

+

+

• conventional tillage
• no residue cover

Agent functional types (AFT):
   pioneer
   traditionalist

water & carbon
fluxes

• no-till
• with residue cover

• crop yield
• soil carbon

Biophysical taxon (ENV)

InSEEDS
a developing integrated World-Earth model 

Entity:
Individual

Figure 5. Detailed scheme of InSEEDS following Fig. 8 representing the feedback mechanisms among the taxons ENV, MET and CUL.

Individuals who are either of type pioneer or of type traditionalist observe crop yields and soil carbon and make decisions on conservation/

conventional tillage to then be re-evaluated again.

for copan:CORE (Donges et al., 2020). An example of an implementation of a social-ecological feedback for a farmer in258

InSEEDS is given in Fig. 6. It shows a simple attitude formation process of farmer agents as an evaluation of their farming per-259

formance. The generic processing of any LPJmL output, like agricultural soil carbon or CFT-specific crop yield demonstrates260

the flexibility copan:LPJmL provides in combination with the multiple features of xarray in subsetting and aggregating the261

underlying data. Thereby, it allows for direct feedback functions to be set up to simulate important social-ecological aspects,262

like the attitude of farmers towards their land.263

Such processes are part of the MET taxon, constituting the cross-section of socio-cultural and biophysical processes. Fig. 6264

shows a typical example of an observation of ecological variables, as well as the initiation of potential management decisions:265

Information on average crop yield and topsoil carbon content is calculated by the LPJmL ENV component and provided via266

cell.output to farmer agents within a MET process. Vice versa, farmers’ decisions are forwarded to LPJmL as input for267

the simulation via the MET component. Following the agent-based logic, the current main actors in the InSEEDS model are268

individual Farmer agents. The Farmer agent class itself is a child class of the Individual agent class in the copan:CORE269

modelling framework, inheriting the logic of Individuals described in (Donges et al., 2020). As an additional property of270

the Farmer, we introduce two agent-functional types (AFTs) (Arneth et al., 2014), a traditionalist and a pioneer farmer,271
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1

2 def attitude_own_land(self):

3 self.soilc = self.cell.output.soilc_agr_layer.values[0]

4 self.cropyield = self.cell.output.harvestc.values.mean()

5

6 attitude_soil = (self.soilc - self.soilc_past) / self.soilc_past

7 attitude_yield = (self.cropyield - self.cropyield_past) / self.cropyield_past

8

9 return sigmoid(

10 self.weight_yield * attitude_yield

11 + self.weight_soil * attitude_soil

12 )

13

Figure 6. Simple example function of a farmer agent estimating their attitude toward their land based on two ENV variables (LPJmL

output, see Chapter 2.3). The agent compares the topsoil carbon content and average crop yield between simulation steps, multiplied by

the underlying AFT-specific weight. Variables such as soilc_past and yield_past refer to values from the past evaluation, while the

sigmoid function normalizes the return value (Schwarz et al.).

who differ in their respective weighting of different parameters in the decision-making function (Fig. 6. The decision-making272

process is based on a formalization of the Theory of Planned Behaviour originally described by Ajzen (1985).273

InSEEDS can simulate social-ecological model dynamics on a wide spectrum of scales up to global scale. Analysis possi-274

bilities include distributed and accumulated social and ecological outcomes of variables such as attitude, social norm, or soil275

carbon, crop yield, or even adoption patterns of certain management practices. InSEEDS is the first model realisation using276

copan:LPJmL that simulates the aforementioned coevolutionary social-ecological dynamics through closed feedback loops.277

Fig. 10 illustrates the underlying coevolution via three variables: The top row (a) shows the spatio-temporal dynamics of man-278

agement practice adoption globally. The middle and lower row (b, c) depict the biophysical response of these behaviour changes279

in topsoil carbon content and average crop yield, compared to a business-as-usual simulation. In some areas, such as Kaza-280

khstan, the spreading of conservation tillage and the underlying coevolution is particularly evident. Here, the adoption started281

in the southern regions and spread north-eastwards with moderate increases in soil carbon and significant increases in average282

crop yield. This synergistic effect results in a certain irreversibility in the modelled system. In our simulation, we find that in283

many regions, the adoption of conservation tillage has a positive effect on these variables, even though the results vary strongly284

at the local level. To better understand the underlying dynamics of specific cases, a more regional perspective is needed, which285

can be found together with the decision equations, parameterisation, parameter sensitivity, and detailed simulation results on286

coevolutionary model dynamics in Schwarz et al..287

The development of InSEEDS is currently in an early phase. Future projects such as mapping non-local networks, social288

systems with multiple layers of complexity, and more social-ecological feedback processes can build on this approach. At this289

point, at the latest, the connection to the IAMs and the existing paradigmatic problems as described in (Chapter 1), such as290
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Figure 7. InSEEDS simulation of a) global spreading of conservation tillage represented as years since last management switch (backwards

from simulation end year 2100). The adoption and spatial spreading of conservation tillage is depicted in orange, and conventional farming

adoption in blue. If the saturation of both colours decreases over time, this indicates that there will be no further change in strategy. Vice

versa, the more saturated the colour, the more recent the change. b) and c) show the corresponding changes in topsoil carbon content and

average crop yield in 2100 compared to a simulation without management changes (business-as-usual) until 2100.

missing closed social-ecological feedback loops can be drawn. With one of these new and rather unique features, it will become291

apparent whether InSEEDS and the underlying copan:LPJmL approach are capable of generating new insights.292
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Biophysical taxon (ENV)

Rule based
crop calendar

(after Minoli et al. 2022)

earlier sowing and later maturing,
hence longer growing periods, 
can increase crop yields

in warming scenarios earlier 
sowing can make use of an
extended vegetation period 

estimate ideal
sowing and harvest dates

based on climatic conditions

Entity:
Cell

observe climate data, such
as temperature, precipitation &
potential evapotranspiration
of the last 10 years

Socio-metabolic taxon (MET)

Figure 8. Detailed scheme of the crop calendar implementation following Fig. 8 and Minoli et al. (2022a) representing the feedback mech-

anisms between the taxons ENV and MET. Climate data is forwarded by LPJmL to be used by the Crop Calendar to determine sowing

and harvest dates for the upcoming year. Under changing climatic conditions, choosing the right sowing and harvesting times is crucial for

maximizing crop yields, indicated by the grey and orange maize plants.

3.2 Integrated rule-based approaches: Crop calendar293

In many land-use and agricultural systems, management decisions are not made by autonomous agents, but instead follow fixed294

logics, institutional guidelines, or context-dependent thresholds. These RBMs operate via explicit if–then conditions, fuzzy295

logic or temporal schedules, allowing for transparent and interpretable decision structures (Arnold et al., 2018; Adriaenssens296

et al., 2004; Moore et al., 2014). Their structured logic makes them particularly suitable for encoding expert knowledge,297

empirical heuristics, or scenario-specific governance interventions, especially when interactions between agents are minimal298

or absent. As such, RBMs offer an efficient and reproducible way to represent adaptive but non-agentive processes across299

socio-environmental domains. Nevertheless, the boundaries are fluid, and rule-based and agent-based systems often overlap.300

While global, top-down approaches with Boolean logic can be clearly assigned to RBMs, there are bottom-up, autonomous301

approaches, such as cellular automata, that can be located between these paradigms (Li et al., 2016). Within copan:LPJmL,302

the RBM paradigm is particularly useful when system feedbacks should arise directly from dynamic ENV quantities—such as303

climate or resource availability—rather than from emergent behaviour. This makes them well-suited to simulate adaptive but304

non-agentic responses to environmental change.305

The adjustment of growing seasons in response to changes in climatic conditions is such an example and a central element306

in agricultural adaptation strategies. While changes in sowing dates may already be implemented by the farmers based on307

their experience (Waha et al., 2012), cultivar choices are subject to availability and breeding (Zabel et al., 2021). Minoli et al.308
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1

2 def calc_warm_winter(self):

3

4 self.world.output.temp.mean("time")

5 min_temp = temp.min(dim="band")

6

7 return min_temp > self.basetemp_low

8

Figure 9. A simplified vectorized function of the Crop Calendar rule-based model logic, estimating whether a given winter season is consid-

ered warm based on multi-year average minimum temperatures.

(2019) proposed a modelling approach for simulating changes in growing seasons based on changes in climatic conditions only.309

This approach was used to create climate-scenario-specific time series of sowing dates and cultivar parameters as inputs for310

simulations with LPJmL (Minoli et al., 2022a). Implementing the algorithms of Minoli et al. (2019) using copan:LPJmL allows311

for a flexible application of adaptive growing seasons during runtime without requiring to previously compute growing seasons312

and corresponding crop parameters for each climate scenario. In this setup, which is exemplary for rule-based management313

decisions, LPJmL passes only climate information as output to the growing season rules, which represent the MET taxon. A314

CUL taxon is not involved in this setup, as there is no interaction between individual rule-based decision-making per crop315

and grid cell. To compute the required multi-year averages of monthly temperature and precipitation, the data is stored over a316

10-year rolling window in world.output or cell.output, updated annually via pycoupler, and continuously averaged317

during the simulation. Together with a vectorized global xarray-based implementation of the rule set at World level this318

approach is comparatively concise and computationally efficient compared to its reference (Minoli et al., 2022b). Fig. 9 shows319

this functionality as a simplified example of the Crop Calendar rule-based model logic.320

To verify the suitability of copan:LPJmL as a framework for Crop Calendar, it was implemented in its entirety and applied321

with one new climate input data set (SSP460, climate model: IPSL-CM6A-LR) from ISIMIP3b (Lange et al., 2024) to repro-322

duce the original approach from Minoli et al. (2022a). Similar to this study, we conducted a comparison of recent and future323

(2080-2099) sowing and harvest dates for two important crop types, maize and temperate cereals (Fig. 10).324

For maize, the implementation dynamically adapts sowing dates in response to climatic changes, enabling earlier sowing325

in large areas of the temperate latitudes (Fig. 10a), while in the tropical regions, patterns are more heterogeneous, with both326

earlier and later sowing, depending on local conditions. Maturity dates (Fig. 10b) show greater spatial variability, often, but not327

always, following the pattern of earlier sowing. In some cases (e.g., India and China), maturity is reached later despite earlier328

sowing.329

For temperate cereals, two varieties –a spring and a winter variety– are distinguished, which are sown in different seasons.330

The model not only adapts sowing dates for each variety but also allows for variety switching based on climate thresholds.331

While major variety switches remain rare due to modest warming, the model captures spatially nuanced shifts in sowing332

timing, with earlier sowing in parts of Canada, Europe, Russia, China, and India, and later sowing in eastern Europe and the333

19

https://doi.org/10.5194/egusphere-2025-4475
Preprint. Discussion started: 28 October 2025
c© Author(s) 2025. CC BY 4.0 License.



USA. Maturity dates shift accordingly, with earlier maturity in the USA and southern Europe, and later dates, especially in334

higher latitudes.335

These changes emerge from the dynamic rule-based responses to the climate input as indicated in Fig. B1 a and b, showing336

the change in average annual temperature and annual precipitation between the recent and future time steps. For example,337

increases in spring temperatures extend the viable growing season and enable earlier sowing in temperature-sensitive regions.338

The calculation of the maturity date involves a multi-step approach (Minoli et al. (2019) for more details): (i) climate-sensitive339

harvest rule classification and (ii) harvest date and reason determination based on thresholds such as wet season or the warmest340

days. Fig. B1 c–f shows that harvest rules for maize shift the harvest reason in response to climate change, for instance, a341

transition in harvest reason from “mid temperature/precipitation” to “high temperature/precipitation” in South America, and342

from “mid temperature/mixed” to “high temperature/mixed” in parts of the USA and China (Fig. B1 c and d). Although this is343

only a comparison between two time steps, the underlying runtime algorithm provides insight into each simulation year.344

The results demonstrate that the copan:LPJmL-based crop calendar implementation successfully reproduces the climate-345

responsive adaptation of sowing and maturity dates of Minoli et al. (2019). However, unlike the reference implementation of346

Minoli et al. (2019), which requires additional preprocessing steps of the corresponding data products, the copan:LPJmL-based347

implementation enables a direct, runtime calculation of sowing and harvest dates under changing conditions. This makes the348

system more suitable for ensemble climate simulations or further SES applications in models such as InSEEDS, where crop349

production needs to coevolve endogenously to changing biophysical conditions.350

Finally, this approach can also be applied to other existing rule-based model systems, such as livestock densities as a function351

of past grassland performance (Heinke et al., 2023) or whether to plant cover crops in the off-season (Porwollik et al., 2022).352
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Figure 10. Recreated figure after Minoli et al. (2022a) (Fig. 1) showing the difference in simulated sowing a and maturing b between no

adaptation and timely adaptation for a climate period 2080-2099 in an SSP460 scenario using ISIMIP3b data (Lange et al., 2024).

3.3 Enhancing classical modelling with LLMs: LLM fertilization353

In recent years, there has been an increasing number of modelling approaches using LLMs to emulate agent behaviour in354

various use cases, spanning from modelling mobility choices to agents’ behaviour in online forums (Gao et al., 2024). This355

strong synergy with ABM stems from the fact that LLMs are inherently trained to model human language, reasoning, and356

decision-making patterns (Gao et al., 2024). As such, they are well-suited to serve as proxies for heterogeneous agents, whether357

individuals, households, or institutions—by generating context-sensitive decisions, goals, or narratives based on inputs from358

their environment. This capacity makes LLMs particularly compatible with the core idea of ABMs: Simulating the interactions359

and adaptive behaviour of autonomous entities in a shared environment. However, the integration of LLMs is not limited to360

ABMs. Their ability to translate between qualitative knowledge and formal rules makes them suitable for enhancing RBMs,361

for example, by extracting management logic or institutional rules from text sources. Yet, it is in agent-based environments362

where the conversational and decision-oriented nature of LLMs most directly reflects the modelled processes, making ABMs363

the current frontier for LLM integration. In the field of land use and agricultural management system, this approach has been364

taken up by Zeng et al. (2025) to simulate institutional agency of land use dynamics (Chen and Huang, 2024). Using the365
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manages a 0.5°x0.5° simulation
cell centered at {self.position}. 
You cultivate the following crop
types on the corresponding land
fractions: {self.crops} 
Your goal is to maximize your
overall harvest by [...]"

Entity:
Individual

increase nitrogen
fertilizer application

based on knowledge & 
past experience

Figure 11. Detailed scheme of the LLM-based fertilization approach following Fig. 8 representing the feedback mechanisms between the

taxons ENV and MET. The LLM gets a prompt with the context of the application, information about location and the cultivated crops, as

well as ENV output on crop-specific fertilizer applications and corresponding crop yields. This information helps the LLM to decide whether

to increase, maintain, or decrease fertilizer levels for the next simulation year.

copan:LPJmL framework, such an approach can also be used to represent the underlying coevolutionary social-ecological366

dynamics.367

As proof of concept for being able to enhance WEMs with LLM agents, we have developed a simple model for nitrogen368

fertilizer application based on copan:LPJmL, whose approach is illustrated in Fig. 11. The basis is similar to that of InSEEDS369

(Chapter 3.1, in which one farming agent is initialized per grid cell to make decisions about local farming practices based on370

LPJmL (ENV) observations. However, except for the interface between observations and fertilizer application located in the371

MET taxon, the farmer or decision-making process has been completely outsourced to the LLM. This way CUL processes are372

not explicitly represented, neither through modelled interactions between farmers, nor through predefined decision rules based373

on social norms or beliefs. For simplicity, we have therefore decided to omit the CUL taxon in Fig. 11, even though CUL374

processes might be part of the LLM reasoning. At the beginning of each simulation year, the farming agent is given a prompt375

like in Fig. 11 (full prompt in Fig. S2) including ENV observations of the farmer and the request to make decisions based on376

this knowledge. In the fertilization example described here, the initialized LLM-based farming agents know their geographical377

position, the crops (CFTs) they grow, the share of land they cultivate, the amount of nitrogen fertilizer applied in each of the last378

10 years, and the resulting crop yield for the corresponding years. Based on this knowledge, the LLM-farmers decide on the379

amount of nitrogen fertilizer they want to apply to each of their crops in the next year, to “increase the crop yield by increasing380
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Figure 12. Results of the LLM-based farmer model for Togo in 2050. On the left (a), accumulated nitrogen fertilizer levels between 2024

and 2050 compared to an offline LPJmL run are displayed. On the right, the Nitrogen fertilization (b) and harvest of three crops for one cell

(c, marked as red in (a)) are displayed over time.

the application of nitrogen fertilizer as long as it is reasonable” (full prompt in Fig. S2). Moreover, the LLM-farmers are asked381

to provide their reasoning for the decision taken.382

Results of this model for Togo are depicted in Fig. 12. The map (a) shows that the Nitrogen fertilization level varies strongly383

from cell to cell and thus proves that the implemented LLM-farmers adopt the Nitrogen fertilization level differently depending384

on their local needs. After the coupling in 2024, the Nitrogen fertilization levels (b) of all three displayed crops are strongly385

increased by the LLM-farmer with respective higher harvests (c), with the LLM-farmer reasoning “Increased nitrogen for386

rainfed rice, maize, and tropical cereals due to low historical application and potential yield gains.” (full prompt in Fig. S2).387

After that, the LLM-agents are only making smaller adjustments to the N fertilization levels, reacting to declines in the harvest.388

While the maize harvest seems to be stable over the simulated time, rice and tropical cereals show more fluctuating harvests.389

Thus, the LLM Agent in this cell holds the Nitrogen fertilization level stable for maize, while it adjusts its application to the390

other two crops. This shows that the LLM-farmer can adapt to changes in the conditions without taking unreasonable decisions.391

While this only constitutes a demonstration case, it illustrates the potential of integrating LLM-based agents with copan:LPJmL392

to introduce more responsive and context-sensitive management decisions. This may offer a more flexible alternative to static393

assumptions, such as fixed fertilizer levels—in traditional model configurations.394

4 Discussion395

A central aim of copan:LPJmL is to provide a platform for connecting modelling paradigms, research domains, and com-396

munities (Chapter 3). In particular, we seek to enable the integration of process-rich, dynamic Earth system model compo-397

nents with models of social dynamics, supporting use cases ranging from SES science to IAM applications. Previous studies398
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have highlighted key limitations in many agent-based and optimization models, which often lack either the integration of399

detailed Earth system dynamics or the representation of fundamental social systems and their underlying processes (Calvin400

and Bond-Lamberty, 2018; Krawczyk and Braun, 2025). Conversely, ESMs and DGVMs frequently rely on static or oversim-401

plified representations of human behaviour and decision-making (Chapter 1), despite their otherwise detailed process-based402

structures. The copan:LPJmL framework addresses these gaps by providing a flexible and extensible WEM framework that403

supports the realization of hybrid approaches, unifying natural and social systems science in a synergistic way (Chapter 3).404

It allows, for instance, the coupling of agent-based decision-making, rule-based logic, or complex dynamical systems with405

the biophysical processes of LPJmL. The integrated architecture enables the exploration of social-ecological feedbacks and406

coevolutionary mechanisms across multiple spatial and temporal scales. We demonstrate this potential with three examples407

(Chapter 3.1; Schwarz et al., Chapter 3.2, Chapter 3.3). Yet, there are many more opportunities, as the framework offers a408

high degree of interoperability, making it relatively easy to combine different approaches. Also, combinations are thinkable,409

e.g., where InSEEDS farmer agents would access crop calendar rules and use this information to make decisions about which410

crops and varieties to grow. The possibilities within the MET and CUL taxon are manifold and are mainly constrained by the411

available computing resources. The copan:LPJmL framework builds upon copan:CORE and its modular and open structure412

that has now been enhanced by the LPJmL ENV integration — all without additionally coupling LPJmL within the model413

code itself. This lowers the entry barrier and fosters interoperability for modellers from diverse fields enabling researchers to414

incorporate customised decision rules, agent interactions, additional entities such as governance agents or cooperations, and415

feedback mechanisms, without requiring modification of the LPJmL model. This is also the main advantage compared to many416

pre-existing coupler libraries (e.g., Hanke et al., 2016; Hutton et al., 2020; Müller et al., 2024). Both the LPJmL coupler li-417

brary and the Python interface pycoupler (Chapter 2.3) were purpose-built to couple LPJmL with the copan:CORE framework,418

which is the basis of the integrated copan:LPJmL framework and supports the implementation of numerous projects and ideas,419

some of which are illustrated in Chapter 3. This approach eliminates the need to integrate libraries that may require advanced420

technical know-how —such as BMI (Hutton et al., 2020)— for model coupling. At the same time, copan:LPJmL follows421

the FAIR principles for research software in providing a findable, accessible, interoperable, and reusable modelling software422

(Barker et al., 2022), with extensive documentation and tutorials available at copanlpjml.pik-potsdam.de.423

Nevertheless, there are some obstacles and shortcomings associated with the use of copan:LPJmL. Currently, the coupling424

between ENV and MET/CUL is only possible on an annual basis, constrained by the LPJmL coupler library and pycoupler425

( 2.3). As with all dynamically coupled modelling frameworks, the development of any of the coupled components requires426

testing and vetting of the coupled system and eventually co-development. Simulated decision making in MET/CUL does not427

only depend on plausible decision-making mechanisms, but also on plausible and quantitative accurate simulated responses in428

ENV and vice versa. This complexity often leads to using legacy model versions in coupled systems (e.g., Müller et al., 2016).429

Required testing could be facilitated by a model validation tool chain to allow the harmonization and integration of data sets430

from various sources such as FAOSTAT (FAO, 2025) for comparing these reference data with simulated data from the coupled431

system and stand-alone components (e.g. LPJmL) and at a later stage for calibrating the parametrizations of model components.432

As for now, the functionality of copan:LPJmL and each copan:LPJmL-based model presented here (Chapter 3) is backed up433

24

https://doi.org/10.5194/egusphere-2025-4475
Preprint. Discussion started: 28 October 2025
c© Author(s) 2025. CC BY 4.0 License.



by unit and integrity tests to verify their functional and internal validity. With copan:LPJmL, we intend to provide a modelling434

framework to address research questions around the complex dynamics of the Anthropocene and its coevolution of human and435

natural systems. While we have tested different types of models based on this novel framework (Chapter 3), we expect that436

more features, revisions and extensions will be necessary for future models built on this framework. The open-source basis of437

all model components should facilitate necessary changes (Schaphoff et al., 2025; Breier and von Bloh, 2025; Breier et al.,438

2025b; Breier, 2025).439

5 Summary and Outlook440

This paper introduces copan:LPJmL, a new modelling framework designed to build World-Earth models with a process-rich441

Dynamic Global Vegetation Model (LPJmL) and a flexible and modular core providing the structures and functionalities to442

represent various kinds of socio-cultural and socio-metabolic structures and processes. This way, models built on this frame-443

work can represent social and biophysical dynamics in a consistent and co-evolutionary manner. With minimal overhead and444

a lightweight Python interface, copan:LPJmL enables the coupling of LPJmL to diverse types of decision logics—from top-445

down rule-based models to agent-based bottom-up dynamics, without the need for modifying the LPJmL model itself. By446

integrating LPJmL as the single component of the ENV taxon into the copan:CORE framework and hierarchy, the framework447

supports easy access to LPJmL outputs and enables dynamic adjustments to inputs via flexible coupling mechanisms. Future448

work could build on this setup and extend the current ENV taxon by additionally representing atmosphere and ocean dynamics,449

for example, by using the Potsdam Earth Model (POEM, Drüke et al., 2021), allowing it to develop the framework towards450

a more comprehensive human-Earth system model of the Anthropocene. The three examples presented and discussed in this451

paper illustrate the breadth of modelling approaches that copan:LPJmL can accommodate: from the top-down, vectorized452

Crop Calendar, to the bottom-up, agent-based InSEEDS, and towards novel, experimental LLM-based setups. These diverse453

implementations underscore the framework’s adaptability to a wide range of research questions related to land-use dynam-454

ics, adaptation, and the co-evolution of human and natural systems. By adhering to FAIR principles and providing extensive455

documentation, copan:LPJmL invites collaboration across research domains and communities. It lowers technical barriers for456

incorporating social dynamics into process-based Earth system modelling and creates a space for new perspectives on topics457

such as food security, land-use resilience, and regenerative transformations. Ultimately, the framework aims to support the458

growing need for integrated tools that enable better understanding—and shaping—of coupled human–Earth dynamics in the459

Anthropocene.460

Code availability. The copan:LPJmL framework is composed of four software components, each maintained in its own GitHub reposi-461

tory, and the version applied in this paper is archived on Zenodo. LPJmL is available at https://github.com/pik-lpjml/LPJmL(Schaphoff462

et al., 2025), pycoupler at https://github.com/pik-lpjml/pycoupler (Breier and von Bloh, 2025), pycopancore at https://github.com/pik-copan/463

pycopancore (Breier et al., 2025b), and pycopanlpjml at https://github.com/pik-copan/pycopanlpjml (Breier et al., 2025c). All components464

are licensed under the GNU General Public License v3.0, except pycopancore, which is distributed under the BSD 2-Clause License. The465
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models InSEEDS as well as Crop Calendar and LLM Fertilization (both part of landmanager library), have been developed under the same466

license and are available at https://github.com/pik-copan/inseeds (Breier et al., 2025d) and https://github.com/jnnsbrr/landmanager (Breier467

et al., 2025a). Comprehensive documentation of copan:LPJmL, including installation instructions, tutorials, a complete API overview, and468

usage examples, is available at https://copanlpjml.pik-potsdam.de (Breier, 2025).469

Data availability. The historical climate data set (GSWP-W5E5) that has been used for the InSEEDS and LLM fertilizer simulations as470

well as the future scenario data set, used for the Crop Calendar simulations (SSP460, IPSL-CM6A-LR) are both available on the ISIMIP471

homepage https://data.isimip.org/1 (Lange et al., 2023, 2024). All further data is either linked directly to the model that is archived together472

with the model code, model outputs, and scripts that have been used to produce the results presented in this paper on Zenodo (https:473

//doi.org/10.5281/zenodo.17054847, Breier and Prawitz, 2025).474

Appendix A: Configuration of LPJmL475

1 {

2 "coupled_model": "landmanager",

3 "coupled_host": "localhost",

4 "coupled_port": 2224,

5 "start_coupling": 2025,

6 "input": {

7 "with_tillage": {

8 "id": 7,

9 "socket": true
10 }

11 },

12 "outputs": {

13 {

14 "id": "harvestc",

15 "file": {

16 "socket": true
17 }

18 }

19 }

20 }

Figure A1. Excerpt of the LPJmL base configuration file lpjml_config.cjson with coupled model name (coupled_model), host (cou-

pled_host), and port (coupled_port), start year of coupling (start_coupling) as well as input and outputs to be coupled.
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Appendix B: Additional figures476

Figure B1. Additional crop calendar variables: (a) Global temperature and (b) precipitation change from 2025 to 2090 in the SSP460 scenario

using ISIMIP3b (Lange et al., 2023). Harvest rules (c, d, e, f) following Minoli et al. (2019) for both CFTs, temperate cereals and maize for

2025 and 2090. Harvest reason (g, h, i, j) also follows Minoli et al. (2019) with a similar order.
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