Table S1: Simplified TCP/IP socket protocol between LPJmL and pycoupler used in copan:LPJmL. Upper case words indicate communication tokens: GET_DATA, PUT_DATA, End_DATA, GET_DATA_SIZE, PUT_DATA_SIZE, GET_STATUS, FAIL_DATA, COPAN_OK, COPAN_ERROR. The initialization (init) is the first exchange of coupling information, while in the main phase data is exchanged. The direction refers to the LPJmL point of view.

Phase	Direction	Item	Description
	In	version	coupler library version
	In	ncell	number of simulation cells
	In	ninput	number of input streams
	In	noutput	number of output streams
	For each input stream:		
	In	GET_DATA_SIZE	confirmation input info exchange
	In	index	input data index of LPJmL config
	In	type	data type (short, int, float, double)
	Out	${ t nband}/{ t COPAN_ERR}$	number of bands of input or error
Init	For each output stream:		
	In	PUT_DATA_SIZE	confirmation output info exchange
	In	index	output data index of LPJmL config
	In	nstep	subannual output time steps
	In	nband	number of bands
	In	type	data type (short, int, float, double)
	Out	COPAN_OK/-	copan:LPJmL status
		COPAN_ERR	
	In	GET_STATUS	confirmation copan;LPJmL status
	Out	$\mathtt{COPAN_OK}/$	copan:LPJmL status
		COPAN_ERR	
Main	For each input stream:		
	In	$\mathtt{GET}_{-}\mathtt{DATA}$	confirmation input data exchange
	In	index	input data index LPJmL config
	In	year	simulation year
	Out	<pre>data[ncell, nband]</pre>	sequential data in order ncell, nband
	For each output stream:		
	In	PUT_DATA	confirmation output data exchange
	In	index	output data index of LPJmL config
	In	year	simulation year
	In	data[ncell,	sequential data in order ncell, nband
	Out	nband]	conon I Dimi atatus
	Out	COPAN_OK/ COPAN_ERR	copan:LPJmL status
End	In	END_DATA or	status of simulation success
		FAIL_DATA	

```
f"""You are a crop farmer for the 0.5°x0.5° simulation cell
         centered at {self.position}.
2
         You manage the following crop types on your land (with land
3
         fractions): {self.crops}.
         Your aim is to increase your overall harvest as much as
         possible.
6
         However, all you are able to adjust is the amount of nitrogen
         fertilizer that you apply to your different crops.
         Use your general knowlegde about the location and the crops
         you are growing.
10
         Moreover you know the amount of fertilizer you applied in the
11
         past {self.mem_fert} as well as the corresponding crop yields
12
         (in gC/m<sup>2</sup>/year) {self.mem_yield}.
13
         Please note that some crops (e.g. rainfed pulses and rainfed
14
         soybeans) naturally fix nitrogen and generally require less
15
         or no external nitrogen.
16
         State the reasoning for your decision explicitly for
17
         rainfed rice, reinfed maize, and rainfed tropical cereals for
         every year.
19
20
         Format your response exactly like this:
21
         Reasoning: [Max 200 characters]
22
         Response: [['crop1','crop2'], [amount1, amount2]]
23
         Example:
25
         Reasoning: Increased temperate cereal N due to low yield
26
         response, kept others constant.
         Response:
28
         [['rainfed temperate cereals', 'irrigated biomass tree'],
29
30
         [5, 8]]
31
         Technical Note:
32
         - Use **only** the format above.
33
         - Ensure that crop names and amounts match and that both
34
         lists are the same length.
35
         - Do **not** use semicolons ';' in your response.
36
37
```

Figure S1: LLM prompt of the LLM fertilization model as part of land-manager, which is passed to GPT-40-mini via the openai API (OpenAI, 2024). self.position provides latitude and longitude of the cell center while self.crops define the grown crops and their land system share. self.mem_fert and self.mem_yield pass the memorized fertilization rates and crop yields for the corresponding crops of the last ten years.

Bibliography

 $Open AI:\ GPT\text{-}4o\text{-}mini,\ URL\ \texttt{https://platform.openai.com/},\ 2024.$