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Abstract. Disaggregating daily precipitation data into hourly time scale is crucial for hydrological modelling, urban drainage
design, and extreme rainfall risk assessment. This study presents Q-CODA, a novel Quasi-Comonotonicity-based
Disaggregation Algorithm that leverages the quasi-comonotonic relationship between daily precipitation totals and their sub-
daily maxima to generate hourly rainfall sequences consistent with observed extremes. The method first assumes the
Fréchet-Hoeffding upper bound copula to simulate sub-daily maximum precipitation values conditioned on daily totals,
which serve as target constraints. An initial hourly pattern is obtained via a K-Nearest Neighbours (KNN) approach and
subsequently refined through an iterative adjustment algorithm to ensure coherence with both the daily precipitation total and
previously calculated multiple sub-daily target constraints. We evaluated Q-CODA through a rigorous 5-fold cross-
validation over 91 meteorological stations across Spain, spanning 1996-2024. Performance was benchmarked against state-
of-the-art approaches including nearest-neighbour resampling methods, Poisson cluster-based rainfall generators,
multiplicative random cascades models and deep learning techniques. Evaluation metrics were tailored to different aspects of
the rainfall data: distributional distance (1-D Wasserstein), accuracy measures (MAE, Nash—Sutcliffe efficiency), and
extreme quantiles (90th to 99.9th percentiles) were computed on the hourly maximum precipitation over 1-hour windows,
focusing on the representation of rainfall extremes. In contrast, autocorrelation and rainfall event duration statistics were
calculated on the entire hourly rainfall time series to assess temporal coherence and event structure. Additionally, intensity-
duration-frequency (IDF) curves were analysed. Results demonstrate that Q-CODA substantially improves the representation
of rainfall extremes while maintaining temporal coherence and event structure. This approach offers a robust, data-driven
framework for accurate sub-daily rainfall disaggregation, with significant implications for hydrometeorological applications

and infrastructure design.

1 Introduction

Rainfall is one of the most variable components of the hydrological cycle, exhibiting pronounced fluctuations across spatial
and temporal scales. While sub-hourly or hourly rainfall data are essential for simulating surface runoff, designing urban
drainage infrastructure, and assessing flood risks (Schilling, 1991; Fowler et al., 2021; Haslinger et al., 2025), such high-

resolution records are often unavailable or incomplete due to technical and logistical constraints. In contrast, daily
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precipitation measurements are widely available from global meteorological networks, leading to a growing demand for
accurate temporal disaggregation methods that can transform daily totals into realistic sub-daily sequences (Takhellambam et

al., 2022; Ebers et al., 2024).

Temporal disaggregation, also known as temporal downscaling, refers to the process of generating high-resolution time
series from lower-resolution observations while preserving key statistical and hydrological characteristics. Traditional
approaches to precipitation disaggregation can be broadly categorized into two families: stochastic rainfall generators and
resampling-based methods. Stochastic generators such as Poisson cluster processes (Rodriguez-Iturbe et al., 1987; Onof et
al., 2000; Qin and Dai, 2024) or Markov chain-based schemes (Stoner and Economou, 2020; Vorobevskii et al., 2024)
simulate rainfall sequences by modelling the occurrence and intensity of rainfall events using probabilistic laws. While
theoretically appealing, these models often require extensive calibration and may underperform in replicating extremes
(Vorobevskii et al., 2024). Resampling-based methods such as K-Nearest Neighbors (KNN) and Methods of Fragments
(MoF) disaggregation rely on analogues from historical high-resolution observations (Pui et al., 2012; Alzahrani et al.,
2023). These approaches are nonparametric, easy to implement, and capable of preserving observed patterns; however, KNN
and MoF methods can suffer from limitations including sensitivity to the choice of neighbours and potential mismatch lag-1

autocorrelation (Li et al., 2018).

To address some of these challenges and improve the realism of disaggregation, newer approaches such as the
Microcanonical Multiplicative Random Cascade (MMRC) methodology and deep learning techniques have been
increasingly explored. MMRC models disaggregate rainfall by recursively partitioning precipitation amounts into smaller
time intervals using multiplicative random weights, preserving the overall mass while reproducing the multifractal and
scaling properties of rainfall (Forster et al., 2016; Miiller and Haberlandt, 2018; Miiller-Thomy, 2020; Maloku et al., 2023).
In parallel, deep learning methods have gained traction in rainfall disaggregation due to their ability to capture complex
nonlinear dependencies (Scher and PeBenteiner, 2021; Bhattacharyya and Saha, 2023; Oates et al., 2025). Hybrid models
combining Artificial Neural Networks (ANN) with clustering algorithms (e.g., ANN-K) have shown promise in improving
event-based performance and capturing nonlinear patterns. A recent study (Bhattacharyya et al., 2024) indicates that ANN-K
produces better results in conserving extreme rainfall than MMRC and Neyman-Scott Rectangular Pulse (NSRP) processes.
Nonetheless, such data-driven deep learning methods require large training datasets, risk overfitting, and often lack physical

interpretability, making their generalization across climatic regions challenging.

A particularly persistent difficulty in temporal disaggregation is the adequate reproduction of extreme rainfall intensities and
their temporal structure. Most existing methods either under-represent short-duration maxima or distort their alignment with

daily totals, which can lead to substantial biases in hydrological simulations and impact assessments. This motivates the need
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for innovative strategies that explicitly account for the statistical dependence between daily and sub-daily precipitation

features.

Copula theory (Sklar, 1996) provides a robust mathematical framework for modelling such dependencies, allowing the
construction of joint distributions that preserve individual marginals while flexibly capturing inter-variable dependence.
Copula-based models have been successfully applied to hydrological problems such as rainfall-runoff modelling,
multivariate drought analysis, and spatial rainfall simulation (Naderi et al., 2022; Moradzadeh Rahmatabadi et al., 2023).
However, previous copula-based approaches to rainfall modelling have primarily focused on capturing the statistical
dependence between precipitation intensities at different temporal or spatial scales, or on modelling joint distributions of
variables such as storm duration and depth (Vorobevskii et al., 2024; Biswas and Saha, 2025). These approaches have not
explicitly leveraged the quasi-comonotonic relationship between sub-daily precipitation maxima (e.g., 1-hour, 2-hour
intensities) and the corresponding daily total as a structural constraint in the simulation of high-resolution rainfall time series.
This quasi-comonotonicity implies that extreme hourly accumulations tend to co-occur with large daily totals, imposing an

upper limit on feasible sub-daily intensities.

In this study, we propose a novel assumption of the Fréchet-Hoeffding upper bound copula (Joe, 2005; Abdellatif et al.,
2024), also known as comonotonicity copula, to simulate sub-daily maxima conditioned on daily totals, thereby generating
physically plausible upper envelopes that act as dynamic, event-specific constraints. These constraints complement the daily
total in guiding the subsequent disaggregation process and allow for the generation of hourly rainfall sequences that better
preserve the magnitude and timing of extreme events. This methodological innovation constitutes the core contribution of
our disaggregation framework and distinguishes it from existing statistical or deep learning-based approaches. In this
context, we present Q-CODA (Quasi-Comonotonicity-based Disaggregation Algorithm), a novel precipitation
disaggregation framework that leverages the quasi-comonotonic dependence between daily totals and sub-daily maxima to
constrain and guide the generation of hourly rainfall series. The proposed method comprises three key components: (i)
simulation of sub-daily maximum intensities assuming the Fréchet-Hoeffding upper bound copula conditioned on daily
rainfall, (ii) seeding of initial hourly patterns using a K-Nearest Neighbours approach, and (iii) iterative adjustment to
enforce consistency with daily totals and the simulated sub-daily maxima across multiple accumulation windows (1, 2, 6,

and 12 hours).

We evaluate Q-CODA on a high-resolution dataset from 91 meteorological stations distributed across diverse climatic
regions of Spain over the period 1996-2024. The performance is benchmarked against state-of-the-art disaggregation
methods, including KNN, ANN-K, MMRC, and Poisson-cluster rainfall generators. Evaluation metrics encompass
distributional distances (e.g., 1-D Wasserstein distance), error measures (e.g., MAE and Nash—Sutcliffe efficiency), as well

as indicators focused on extremes (quantiles from the 90th to 99.9th percentile), temporal persistence (autocorrelation), and

3
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rainfall event duration statistics. We also assess the capability of Q-CODA to reproduce intensity-duration-frequency (IDF)

curves.

By integrating theoretical copula constraints with data-driven refinement, Q-CODA offers a hybrid approach that combines
interpretability, realism, and robustness. The method is particularly suitable for applications where the preservation of
extreme sub-daily rainfall events is critical and provides a valuable contribution to the growing toolkit of high-resolution

precipitation generation techniques.

The remainder of this paper is organised as follows. Section 2 describes the dataset and study domain. Section 3 introduces
the proposed Q-CODA framework, including the derivation of sub-daily constraints, the comonotonic transformation, and
the iterative adjustment procedure. Section 4 presents the benchmark disaggregation methods used for comparison. Section 5
outlines the evaluation strategy, results of the evaluation are presented in Sect. 6, and finally main conclusions are

summarized in Sect. 7.

2 Data and Study Area

This study leverages a high-quality, high-resolution precipitation dataset from 91 meteorological stations maintained by the
Spanish State Meteorological Agency (AEMET). The selected stations are distributed across the Iberian Peninsula and the
Balearic Islands, ensuring extensive spatial coverage across diverse climatic zones of Spain (see Fig. 1). The dataset spans a
29-year period (1996-2024), with hourly precipitation records available at 0.1 mm resolution. Only stations with at least
90% data completeness were retained to ensure data robustness and minimize biases introduced by missing values. The
geographic diversity of the station network covers coastal, mountainous, and inland regions, as well as areas subject to
Mediterranean, Atlantic, and continental climatic influences. This variability in hydroclimatic regimes, ranging from
convective summer storms to winter frontal systems, provides a rigorous testbed for evaluating the performance and
generalizability of the proposed Q-CODA disaggregation framework across multiple rainfall-generating mechanisms.
Importantly, the scale of this study sets it apart from many recent rainfall disaggregation studies that rely on significantly
smaller station networks, often basing methodological conclusions on fewer than 10 sites (e.g., Lee et al., 2022;
Bhattacharyya et al., 2024; Chowdhury et al., 2025). Such limited spatial sampling can hinder the generalization of results,
particularly in regions with high climate variability. By contrast, our analysis aligns with recent best practices emphasizing
broad spatial validation and data diversity (e.g., Miiller-Thomy, 2020; Ebers et al., 2024), which are crucial for evaluating

the robustness of disaggregation methods across different hydrometeorological contexts.

For visualization, Fig. 1 shows the geographic location of the 91 stations used in the analysis, highlighting the spatial

representativeness of the dataset. All data were subjected to a thorough quality control process and days with clearly
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erroneous or missing hourly values were excluded from the analysis. The full hourly time series were used to derive both
daily precipitation totals (for disaggregation input) and sub-daily maxima over selected accumulation durations (1 h, 2 h, 6 h,

and 12 h), which served as internal constraints and evaluation targets throughout the disaggregation framework.
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Figure 1: Map showing the location of AEMET stations with available hourly precipitation records used in this study (elevation
data: NOAA 2022; https://doi.org/10.25921/fd45-gt74).

3 Methodology
3.1 Conceptual Framework

Temporal disaggregation of daily precipitation into sub-daily time scales relies fundamentally on capturing the strong
dependence between daily precipitation totals and sub-daily maxima. Empirical evidence shows a quasi-comonotonic
relationship between these variables, meaning that high sub-daily maxima tend to coincide with large daily totals. This near-
perfect positive dependence provides a natural constraint for disaggregation, ensuring physically plausible rainfall

sequences.

Copulas are functions that couple multivariate distribution functions to their univariate marginals, enabling flexible

modelling of dependence structures independently of marginal behaviour. Formally, for random variables X and Y with
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marginal cumulative distribution functions (CDFs) Fx(x) and Fy(y), Sklar's theorem (Sklar, 1996; Joe, 2005; Abdellatif et
al., 2024) states that there exists a copula C such that the joint CDF Fyy(x, y) can be expressed as:

Fxy(x,y) = C(Fx(x), Fy () , (1)

The copula C : [0, 17> — [0, 1] encapsulates the dependence structure between X and Y.

Among the family of copulas, the Fréchet—Hoeffding bounds define the theoretical limits of dependence. The upper bound

copula C*, representing perfect positive dependence (comonotonicity), is defined as:
Ct(u,v) = min(u,v) , 2
foru,v €0, 1].

This copula implies that X and Y increase together almost surely, which aligns with the quasi-comonotonic behaviour
observed between daily precipitation totals and sub-daily maxima. Assuming the Fréchet-Hoeffding upper bound copula
allows us to generate the upper envelope or conditional upper bound of sub-daily maxima given daily totals. This approach
provides a dynamic constraint that complements the daily precipitation total by restricting the range of possible sub-daily
intensities to those consistent with observed extreme behaviour. Unlike previous rainfall disaggregation approaches that
often treat daily totals and sub-daily maxima independently or model their dependence without explicit constraints, our
method leverages this quasi-comonotonic relationship as a key structural feature. This enhances the physical realism of
simulated hourly sequences, especially for extreme events, by ensuring that sub-daily maxima do not exceed plausible
bounds conditional on the daily total. To illustrate this quasi-comonotonic dependence, we include Fig. 2 showing the
empirical Spearman rank correlation coefficient (ps) between sub-daily precipitation maxima aggregated over different time

windows (P™*) and the corresponding daily total precipitation (Pq).

Fig. 2 clearly shows empirical values of Spearman correlation approaching 1, confirming the near-perfect positive
dependence, though decreases slightly for shorter durations, reflecting the increasing variability of shorter accumulation
periods. This figure visually supports the theoretical basis of our methodology by quantifying the strength of the dependence
exploited through the Fréchet-Hoeffding upper bound copula.
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Figure 2: Spearman rank correlation coefficient (p;) between sub-daily precipitation maxima aggregated over varying time
windows (P¢™*) and the corresponding daily total precipitation (P4). Each boxplot summarizes the distribution across the 91

stations.

3.2 Sub-daily Maximum Simulation

Following the conceptual framework introduced in Sect. 3.1, the Fréchet—Hoeffding upper bound copula is accepted to
simulate physically consistent sub-daily maximum precipitation intensities conditioned on daily totals. This step provides a
set of dynamic constraints that ensure physically plausible short-duration rainfall intensities during the disaggregation

process.

Let Pqdenote the daily precipitation total and P/ the maximum accumulated precipitation over a sub-daily windows of
duration € {1 h, 2 h, 6 h, 12 h}. Assuming quasi-comonotonicity, the joint distribution of (P4, P;™*) is modelled using the
Fréchet—Hoeffding upper bound copula C*, defined as:

delp%nax(x, _’y) = min (de(x),FPTmax(y)) , (3)

Given a daily total P4 = x, we aim to simulate the corresponding sub-daily maxima P;™** such that the pair (x, P;™*) lies on
or below the upper copula bound. Since C* corresponds to perfect rank correlation, the conditional distribution of P™** | P4

= x can be approximated via comonotonic transformation, Eq. (4):
P = Fohax (Fp (X)), @)

where Fp, and Fpmax are the empirical cumulative distribution functions (ECDFs) estimated from historical in each
climatological season (DJF, MAM, JJA, or SON). This formulation enforces a strong dependence structure between daily

totals and sub-daily peaks, while preserving the observed marginal distributions. For each simulated day, a vector of
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conditional maxima M = (Piy™*, Pu™, Pe™*, Pi1;n™*) is generated, where P:™* denotes the maximum allowable
precipitation over a sliding window of duration 7, consistent with the observed comonotonic relationship. These constraints
are subsequently enforced in the disaggregation process (see Sect. 3.4), ensuring that simulated hourly series are consistent
with both the daily total and realistic sub-daily intensities. This step is essential to preserve the magnitude and timing of
extreme sub-daily events, which are critical for hydrological applications such as flood modelling, urban drainage, and

climate impact assessment.

To evaluate the suitability of assuming the upper copula C* to estimate M via comonotonic transformation, defined in Eq.
(4), we compared its performance against Isotonic Regression (IR), a standard non-parametric machine learning method that
fits monotonic functions without assuming a specific functional form (De Leeuw, 1977; Chakravarti, 1989; Delong and
Wiithrich, 2024). Its use as a benchmark is particularly relevant here, as both IR and the Comonotonic Transformation (CT)
rely on the monotonicity assumption, albeit from different theoretical foundations: IR enforces monotonicity through
piecewise-constant regression fits, while CT exploits comonotonicity explicitly via copula theory. Both approaches were
trained and tested using a consistent 5-fold cross-validation scheme, applied independently at each station. To ensure
reproducibility, we used the same non-overlapping temporal folds defined in Sect. 5, where hourly disaggregation
performance is evaluated in detail. Figure 3 presents the bias (%) in estimating the 99th percentile of observed sub-daily

maxima for each duration in the constraint vector M, aggregated across 91 stations.
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Figure 3: Bias (%) in estimating the 99th percentile of observed sub-daily precipitation maxima for each duration included in the

constraint vector M, aggregated across 91 stations.

While IR can adapt to nonlinearities in the data, it struggles to accurately capture the tail behaviour of precipitation
distributions. The CT consistently achieves lower biases compared to IR, with the differences being more pronounced at

shorter aggregation durations, indicating a closer match to the empirical distributions of extreme short-duration rainfall.



220

225

230

235

240

245

https://doi.org/10.5194/egusphere-2025-4469
Preprint. Discussion started: 17 November 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

These distributional advantages make CT a more appropriate choice for integrating sub-daily intensity information into the

disaggregation framework, as detailed in the following sections.

3.3 Initial Pattern Seeding via KNN

To generate an initial realistic sub-daily precipitation pattern consistent with a given daily total (Pg), we employ a K-Nearest
Neighbours (KNN) approach. For each target day in the test set, we identify historically observed daily events from the

training set with similar P4 magnitudes, constrained to the same climatological season (DJF, MAM, JJA, or SON).

Given a target daily total Py @, the Euclidean distance is computed between P42 and each training daily total Py ™

within the same season. The k closest neighbours are identified, and one neighbour is randomly sampled. The associated 24-

hour precipitation pattern & = (h1, Ao, ... , ha4) of the selected neighbour is scaled proportionally to match the target total:
target

P
hehxf 5
T ®

This scaled pattern constitutes the initial seeding for the iterative refinement described in Sect. 3.4, which adjusts sub-daily

intensities to meet prescribed constraints on maxima over multiple accumulation intervals.

3.4 Iterative Adjustment Procedure

Starting from the obtained initial hourly precipitation vector & via KNN and target constraints composed of the daily total
precipitation Py and the obtained sub-daily maxima vector M via CT, the iterative adjustment procedure modifies 4 to satisfy
these constraints simultaneously. At each iteration, for each aggregation duration 7 € {1 h, 2 h, 6 h, 12 h}, the procedure
identifies the contiguous time window Ir = {i, ..., 1+ T -1}, where i is the starting hour of that window (ranging from 1 to 25

— 1), for which the current sum is maximal.

.....

ST =maxi=q, o5+ ZjEI'r hj > (6)

The adjustment magnitude is defined as the difference between the corresponding element in M and the maximum sum in A

for duration 7:

A, = P — e, @)

If |A{ exceeds a small threshold € (0.04 mm), the values of & within the window I: are uniformly adjusted to reduce this
difference:

hy < max (0, h; +°%) Vi€ I, @®)
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This ensures that the sub-daily maxima are adjusted upwards or downwards, depending on whether the current maximum is
below or above the target. This process is repeated until convergence criteria are met or a maximum number of iterations is
reached. After adjusting all durations, the entire hourly vector 4 is scaled to satisfy the daily total constraint using Eq. (5)
again. To enhance the temporal realism of the resulting precipitation pattern, a refined adjustment step is applied. This step
improves the lag-1 autocorrelation of A, a key indicator of temporal smoothness and persistence, through two complementary
strategies. First, small precipitation values immediately preceding rainfall events are shifted forward to the subsequent hour
when doing so increases autocorrelation without violating the constraints on sub-daily maxima or total daily precipitation.
Second, within sliding windows of 3 to 5 hours, permutations of nonzero precipitation values are explored to find
reorderings that further enhance autocorrelation while preserving the constraints. These refinements mitigate abrupt changes
and isolated low values, yielding hourly sequences that better reflect realistic precipitation dynamics.

To handle extremes exceeding the training range (i.e., daily totals surpassing the historical maximum), Q-CODA employs
only the KNN seed directly, omitting both the comonotonic transformation described in Sect. 3.2 and the iterative adjustment

procedure described in this section. The overall methodology is summarized in the flowchart presented in Fig. 4.

Q-CODA

INPUT DATA

= Daily precipitation total £
= Historical hourly precipitation
records

STEP1

Apply Comonotonic Transformation
P = Fritax(Fp, ()

M= (Pip™, Py, PgpMaX, Pyop™aX)

STEP2 ~
Initial Pattern Seeding (KNN)

« Search historical daily events with
similar P4(same season) M&h
+ Randomly select 1 of the k-nearest
events
+ Retrieve associated 24-hour
precipitation vector A= (hy, hy, ..., hys)
+ Rescale A to match Py:
Ptarget

hehxS —
Zf:Lhi

Figure 4: Flowchart summarizing the overall Q-CODA methodology. The diagram outlines the sequential steps involved in the

disaggregation approach.

OUTPUT DATA

Final Hourly Series A
» Matches £y
«» Satisfies sub-daily constraints M
+ Realistic temporal structure

STEP 3 T

Iterative Adjustment

» Foreachte{1h,2h,6h,12h}in A

calculate window I; = {i, ..., i + 7 -1} with
max sum:
SP = max;.,,. 25-1 Z h;
JElIt

» Compute discrepancy:

A, = pmav. gmax

» Adjust h:

h; < max (0, h; ‘AT') vie I,

» Repeat until convergence (all |A; | <eor

max iterations) and final scaling to match
daily total.

» Post-processing: Lag-1 autocorrelation

enhancement shifting small pre-rain
values forward and permuting within
sliding windows to increase temporal
coherence while satisfying M

10
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4 Benchmark Methods

To evaluate the performance of the proposed Q-CODA method, we compare it against established rainfall disaggregation
techniques: KNN, ANN-K, Poisson-Cluster Disaggregation, and MMRC. These benchmark methods span both data-driven

and stochastic approaches, reflecting the diversity of strategies commonly employed for sub-daily precipitation generation.

4.1 K-Nearest Neighbors (KNN)

The KNN method serves as an analog-based disaggregation approach. For each target daily precipitation value, historical
days with similar daily totals are identified within the same climatological season (DJF, MAM, JJA, or SON), ensuring that
the selected analogues reflect seasonal variability in rainfall dynamics. Similarity is assessed using Euclidean distance, and
among the & closest matches, one historical 24-hour pattern is randomly selected. This pattern is then linearly scaled to
match the target daily total. No additional sub-daily structure adjustment is performed. This method represents a baseline
based on seasonal similarity and direct pattern reuse, as described in (Alzahrani et al., 2023), whose study shows that KNN
(k =30) outperforms their multiplicative random cascade model and Hurst-Kolmogorov process-based model on a set of

specific performance metrics and four locations.

4.2 Deep learning disaggregation model (ANN-K)

This method builds on the deep learning-based disaggregation framework proposed by (Bhattacharyya et al., 2024),
combining unsupervised clustering via K-Means with a supervised Artificial Neural Network (ANN). The key motivation for
this hybrid approach is to improve model skill in differentiating between low-intensity and high-intensity rainfall events,
which are often poorly represented by traditional neural networks due to their tendency to regress towards the mean or zero-

inflated values.

Preprocessing is performed using K-Means clustering on triplets of consecutive daily rainfall values: (P¢t™, Pq®, P4t*D). The
clustering is done in three-dimensional space to capture the temporal context around each day. The optimal number of
clusters is selected using the Silhouette Coefficient method (Rousseeuw, 1987), ranging from K = 2 to 9. This categorical
information (cluster labels) is used as an additional input to the ANN, allowing the model to better differentiate convective
events, dry days, and transitional regimes. Our model introduces an architecture comprising a 4-layer feedforward neural
network, defined as follows: (i) Input layer — a concatenated vector consisting of daily rainfall and the corresponding cluster
label; (ii) First hidden layer — 64 neurons with ELU (Exponential Linear Unit) activation; (iii) Second hidden layer — 32
neurons with ELU activation; and (iv) Output layer — 24 neurons (representing hourly rainfall estimates), with a linear
activation function. This structure enables the model to learn abstract representations of intra-daily rainfall patterns. The use
of ELU (Exponential Linear Unit) activation functions helps to reduce vanishing gradients and maintain responsiveness for

negative inputs, improving convergence during training. The ELU activation function was chosen by (Bhattacharyya et al.,

11
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2024) over ReLU or LeakyReLU due to its improved numerical stability and convergence when dealing with sparse and
skewed precipitation data. In addition, the formulation of the loss function has a decisive influence (Lopez-Gomez et al.,
2023; Oates et al., 2025) on the model’s skill to disaggregate precipitation events. To guide the ANN toward physically
meaningful disaggregation, we define a composite loss function that combines multiple criteria: (i) L; — hourly MSE: Mean
squared error between predicted and observed hourly rainfall values; (ii) L, — error in reproducing the maximum 1-hour
precipitation; (iii) L3 — convectivity penalty, defined only for days with daily total > 20 mm and ratio between the maximum
1-hour precipitation and daily total greater than 0.7, emphasizing accurate reconstruction of convective peaks; (iv) L4 — error
in hourly precipitation mean; (v) Ls — error in hourly precipitation variance; (vi) L¢ — daily cumulative absolute error
computed between predicted and observed hourly rainfall distributions. Ls was already introduced by (Oates et al., 2025),
and Le serves the same purpose as the Kullback—Leibler divergence also used by (Oates et al., 2025). Unlike (Bhattacharyya
et al., 2024), who used a basic MSE loss (L), our custom loss explicitly penalizes timing and shape errors in intense rainfall
events, which are critical for flood forecasting and infrastructure design. The model was trained using the Adam optimizer

(learning rate = 0.001), with early stopping based on validation loss.

4.3 Poisson-Cluster Rainfall Generator

The Poisson-Cluster Disaggregation Method (PCDM) is a stochastic framework designed to disaggregate daily precipitation
totals into hourly values. The method is based on a simplified Poisson cluster process (Onof et al., 2000), where storm events
(or rain cells) are randomly generated within each day according to a Poisson distribution whose rate parameter is
conditioned on the daily total precipitation Py. Each storm cluster has a random start time, duration, and intensity, sampled
from appropriate distributions (uniform, discrete, and gamma, respectively), and the total hourly series is scaled to match the
original daily total. The number of intra-day events, N, follows a Poisson distribution with parameter A = (1.5, P4/ D), where
D is a station-specific scaling divisor. Each event is assigned a start time (random hour of the day), a random duration (1 to 3
hours), and an intensity drawn from a gamma distribution (shape = 2, scale = station-specific parameter). Hourly intensities
are then aggregated and rescaled to ensure mass conservation, i.e., the sum over 24 hours equals the daily input precipitation
Py. PCDM is implemented and applied station-wise using pre-calibrated parameters, D divisor and scale of the gamma
distribution, obtained via in-site iterative minimization of 1-D Wasserstein distance between observed and simulated

maximum 1-hour precipitation.

The PCDM shares conceptual similarities with widely used Neyman-Scott Rectangular Pulse (NSRP) models. For example,
both rely on Poisson processes to generate clusters of rainfall events. However, key differences exist. The NSRP model is a
fully stochastic rainfall generator designed to simulate continuous sequences of rainfall at fine temporal resolution, without
relying on daily precipitation as a constraint. Rainfall is simulated as a sequence of storms, each consisting of clusters of rain
cells with rectangular pulses. The model requires a larger number of parameters, including those governing storm arrival

rate, cluster properties, cell duration, and intensity. As such, NSRP is more flexible and capable of reproducing the temporal
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structure of rainfall over longer periods, but it is also more complex to calibrate and computationally intensive. In addition,
using a gamma distribution in PCDM instead of the classical exponential distribution used in NSRP for rainfall intensity
provides greater flexibility and better alignment with observed data. The gamma distribution allows independent control of
both the mean and variability, offering improved fit to sub-daily rainfall intensities and better representation of extreme
events. This results in more realistic disaggregated series, particularly when preserving hourly maxima is a priority. Another
important distinction is that PCDM enforces exact agreement with daily totals, which is advantageous in contexts where
observed daily data are available and fidelity to these values is required. In contrast, NSRP achieves mass conservation only
in a statistical sense over long simulations, not necessarily for individual days. In summary, while both methods simulate
hourly rainfall using event-based structures, PCDM offers a simpler, data-driven alternative to NSRP when the goal is to
disaggregate daily precipitation observations to hourly scales, with an emphasis on preserving sub-daily extremes and

ensuring mass consistency.

4.4 Multiplicative Microcanonical Random Cascade (MMRC)

Among the family of Multiplicative Microcanonical Random Cascade (MMRC) models, we selected the implementation
provided by MELODIST (Forster et al., 2016), as it has been successfully applied in various recent studies (Gorner et al.,
2021; Hasan et al., 2023; Mayer et al., 2024) and offers a balance between physical realism, probabilistic variability, and
computational simplicity. The Cascade Model implemented in MELODIST (MEteoroLOgical observation time series
DISaggregation Tool) offers a purely statistical yet physically consistent approach for disaggregating daily precipitation into
sub-daily resolutions. Originally proposed by (Olsson, 1998), this MMRC has since been enhanced by subsequent studies to
better preserve sub-daily rainfall characteristics while maintaining low computational complexity. The cascade model
implemented in MELODIST operates through a hierarchical, stepwise disaggregation in which each level of the time series
is recursively split into two subintervals of equal duration. At each level, the precipitation in a given time box is divided into
two sub-boxes by assigning a pair of weights (Wi, W>), such that Piy1,1 = Wi - Piand Pivip = (1 - W1) - Pi= W, - P; with the
mass-preserving constraint W, + W,= 1. This recursive branching continues until the desired temporal resolution is reached
(e.g., 1 hour). For daily to hourly disaggregation, this typically involves the sequence: 24h - 12h—-6h—>3h—>15h—
0.75 h — 1 h. The model distinguishes between four types of “wet” time boxes: (i) Starting box, follows a dry interval and
precedes a wet one; (ii) Ending box, follows a wet interval and precedes a dry one; (iii) Isolated box, surrounded by dry
intervals; and (iv) Enclosed box, surrounded by wet intervals. Each of these box types is associated with a set of probabilistic
rules for assigning the weights (W), W,), with three possible branching scenarios: (i) (0, 1), all precipitation goes to the
second subinterval; (ii) (1, 0), all precipitation goes to the first subinterval; and (iii) (x, 1 — x), where precipitation is split
proportionally with a random weight x € (0, 1). The probabilities associated with each case are derived empirically through a
reverse scaling procedure applied to high-resolution rainfall data. During this process, fine-resolution data is aggregated up
the cascade (e.g., | h -2 h — 4 h — 8 h, etc.), and the branching weights and their frequencies are recorded for each box

type and precipitation intensity class (above or below the mean). Instead of fitting parametric distributions, the model uses
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empirical histograms of weight values (x € [0, 1]) divided into seven bins. These empirical distributions and associated
branching probabilities are stored in lookup tables, which serve as input for a random number generator during
disaggregation. For each cascade step during disaggregation, a random number is used to determine the branching type—
either (0, 1), (1, 0), or (x, 1 — x); if the (x, 1 — x) case is selected, a second random number is drawn to choose the specific
weight bin x, and the precipitation volume is then split accordingly between the two resulting time steps, ensuring that the
total mass is preserved at every level. Because the process is stochastic, different disaggregation realizations may vary,
though their statistical properties remain consistent by design. The MMRC model preserves key physical constraints such as
precipitation volume conservation (microcanonical property) and captures the intermittency and variability of sub-daily
rainfall events with minimal parameterization. The cascade algorithm is a computationally efficient and robust method for
producing sub-daily rainfall inputs for hydrological modelling, especially when sub-daily observations are unavailable or

sparse.

5 Evaluation Framework

To rigorously evaluate the skill and generalization capacity of the proposed Q-CODA, we implement a 5-fold cross-
validation procedure, benchmarking its performance against four established disaggregation methods described in Sect. 4:
KNN, ANN-K, PCDM, and MMRC. This comparative framework ensures a systematic and fair evaluation across a spectrum
of methodologies. Each fold corresponds to a distinct multi-year period: Fold 1 (1996-2001), Fold 2 (2002-2007), Fold 3
(2008-2013), Fold 4 (2014-2019), and Fold 5 (2020-2024). Each fold is disaggregated using the others for training and

finally the 5-folds are joint to reconstruct the whole evaluation period.

The first part of the evaluation focuses on 1-hour maximum precipitation (P;y™*), a critical variable for hydrological
simulations, risk assessment, and infrastructure design due to its direct relation to peak intensities and convective extremes.
By centring the analysis on this high-impact variable, we ensure that the evaluation prioritizes features most relevant to
extreme event representation. Model skill is quantified using standard accuracy metrics, Nash—Sutcliffe Efficiency (NSE)
and Mean Absolute Error (MAE), calculated across the full Pi,™* time series. In addition, distributional similarity is
assessed using the first-order Wasserstein distance between observed and simulated Pi,™** distributions. To further probe
distributional fidelity, we compute relative biases (%) in the mean, variance, and upper-tail quantiles (99th, and 99.9th
percentiles), and maximum value of P,™*. Beyond daily extremes, the second component of the evaluation addresses the
temporal consistency and structural realism of the full disaggregated hourly time series. Metrics include bias in the temporal
mean and temporal variance, the mean duration of precipitation events, as well as the zero proportion (the fraction of dry
hours) which captures rainfall intermittency. These structural descriptors are essential for ensuring that the internal dynamics
of rainfall sequences are plausible and useful for process-based modelling. Temporal correlation structure is further assessed

via biases in the autocorrelation coefficients at lags of 1, 2, 6, and 12 hours, providing insight into the persistence and
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organization of precipitation over sub-daily timescales. Finally, to assess the hydrological applicability of each method, we
compare Intensity—Duration—Frequency (IDF) curves derived from disaggregated outputs to those obtained from observed
hourly records. For the estimation of IDF curves, the classical annual maxima approach was adopted, which remains the
standard in hydrological applications. Although alternative methods such as the peaks-over-threshold (POT) framework
exist, the annual maxima method was selected to ensure comparability with previous studies, given that the primary focus of
this work is the evaluation of the disaggregation algorithm. For each duration (1-24 h), annual maxima were extracted from
the hourly precipitation series using a rolling sum. These maxima were fitted to a Gumbel distribution using maximum

likelihood estimation. Returns levels (mm) were then computed with the Gumbel inverse CDF:
xp =p—p-In[-ln(1-1/T)], )

where ¢ and f§ are the fitted parameters and 7 is the return period (years). Intensities (mm h™') were obtained by dividing each
estimate by its duration.

This analysis is conducted at all sites, enabling evaluation of each model’s capacity to reproduce local extremes and
temporal scaling behaviours under varied climatic conditions. This multi-faceted validation framework thus offers a robust

basis for comparing the accuracy, distributional fidelity, and physical realism of alternative disaggregation approaches.

6 Results

This section presents the results of the 5-fold cross-validation, comparing the performance of Q-CODA against the
benchmark disaggregation methods. The aim is to highlight where Q-CODA improves upon existing approaches and to

identify trade-offs across the evaluated metrics.

Figure 5 presents a comparative evaluation of the disaggregation methods based on the ability to reconstruct the daily
maximum 1-hour precipitation (P;,™**) across 91 meteorological stations. Each panel displays boxplots that summarize the
spatial distribution of different performance metrics for each method. The evaluated metrics include: Mean Absolute Error
(MAE) (Fig. 5a), Nash—Sutcliffe Efficiency (NSE) (Fig. 5b), 1-D Wasserstein distance (Fig. 5c), bias in the mean (Fig. 5d),
variance (Fig. 5e), 99th percentile (Fig. 5f), 99.9th percentile (Fig. 5g), and daily maximum (Fig. 5h). Across all these
metrics, Q-CODA consistently outperforms all benchmark methods, demonstrating superior accuracy and robustness in
reproducing high-resolution rainfall extremes. In terms of MAE (Fig. 5a), Q-CODA exhibits the lowest errors across the
station network, followed closely by ANN-K. The remaining methods—KNN, PCDM, and MMRC—yield significantly
higher errors, with highly similar performance distributions. For the NSE (Fig. 5b), Q-CODA and ANN-K attain the highest
median values, approaching 0.75, while KNN, PCDM, and MMRC display lower medians in the range of 0.5 to 0.6.
Notably, MMRC exhibits a broader interquartile range and a substantially extended lower whisker, indicating greater spatial

variability and underperformance at some locations. The results for the 1-D Wasserstein distance (Fig. 5c) further confirm
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the advantage of Q-CODA, which yields the lowest values overall, indicating the closest alignment with the observed
distribution of P;™**. KNN ranks second, while the other methods perform markedly worse. Interestingly, ANN-K performs
the worst despite its custom loss function, underscoring the limitations of neural networks in preserving distributional shapes
under regression pressure. With respect to the bias in the mean (Fig. 5d), Q-CODA again leads with minimal bias, followed
by KNN. In contrast, ANN-K and MMRC exhibit wide interquartile ranges, and PCDM shows a consistent negative bias.
The evaluation of variance bias (Fig. 5e) highlights a major strength of Q-CODA, which substantially outperforms the
alternatives. KNN and MMRC tend to overestimate variance, whereas ANN-K and PCDM show systematic underestimation,
a well-documented limitation of neural network-based disaggregation (Oates et al., 2025; Bhattacharyya et al., 2024).
Regarding extreme rainfall reconstruction, panels 5f through 5h show biases in the 99th percentile, 99.9th percentile, and
maximum of daily P;y™** values. Q-CODA delivers remarkably low biases in the 99th and 99.9th percentiles and remains the
best-performing method even when evaluating the absolute maximum, despite a slight increase in error. The other methods
struggle considerably with tail behaviour: ANN-K systematically underestimates extremes, MMRC tends to overestimate
them, and PCDM performs similarly to ANN-K in this regard. KNN offers moderately accurate results but falls short of Q-
CODA. The poor performance of ANN-K in reproducing maximum P;,™* may also stem from the well-known limitation of

deep learning models to extrapolate beyond the range of their training data.
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Figure 5: Comparative evaluation of disaggregation methods based on their ability to reconstruct daily maximum 1-hour

precipitation (P1n™*) across 91 meteorological stations. Each panel shows boxplots summarizing the spatial distribution of key

performance metrics: (a) Mean Absolute Error (MAE), (b) Nash—Sutcliffe Efficiency (NSE), (¢c) 1-D Wasserstein distance, (d) bias

in the mean, (e) bias in the variance, (f) bias in the 99th percentile, (g) bias in the 99.9th percentile, and (h) bias in the maximum.
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Overall, the results in Fig. 5 demonstrate the superior ability of Q-CODA to reproduce both the magnitude and statistical
characteristics of peak sub-daily precipitation. Its consistent performance across multiple metrics and spatial locations

highlights its value as a robust and accurate disaggregation tool.

Figure 6 presents a comparative assessment of the disaggregation methods based on their ability to reproduce key statistical
and temporal properties of the full hourly time series at the 91 evaluation stations. Each subplot shows the spatial distribution
of bias (%) for different metrics, summarized through boxplots, where each box reflects variability across sites. The analysed
metrics include: bias in the temporal mean (Fig. 6a), temporal variance (Fig. 6b), zero proportion (Fig. 6¢), mean event
duration (Fig. 6d), and autocorrelation at lag-1 (Fig. 6¢), lag-2 (Fig. 6f), lag-6 (Fig. 6g), and lag-12 (Fig. 6h). For the mean of
the hourly series (Fig. 6a), Q-CODA exhibits an almost negligible bias, clearly outperforming the other methods. KNN,
PCDM, and MMRC follow with slight underestimations, while ANN-K stands out negatively, displaying a more pronounced
underestimation close to 0.5%. The results for the variance (Fig. 6b) show a similar pattern. Q-CODA again achieves the
lowest bias, followed by KNN, PCDM, and MMRC, which tend to modestly underestimate variability. ANN-K shows the
most significant underestimation, with a median bias exceeding 25%, confirming the well-known difficulty of neural
networks in reproducing precipitation variability, as previously documented by (Bhattacharyya et al., 2024; Oates et al.,
2025). When evaluating the proportion of zero values (Fig. 6¢), which corresponds to the share of dry hours, KNN achieves
the lowest bias, followed closely by Q-CODA and MMRC. ANN-K and PCDM show worse performance, with ANN-K
underestimating and PCDM overestimating the frequency of dry periods. For the mean event duration (Fig. 6d), Q-CODA
again demonstrates the best performance, yielding the smallest bias across stations. KNN and PCDM both tend to
underestimate event lengths, while MMRC shows a tendency to overestimate. ANN-K has its median bias near zero, but a
large interquartile range indicates high spatial variability and reduced robustness. Autocorrelation results further highlight Q-
CODA's superiority. In the lag-1 (Fig. 6e), lag-2 (Fig. 6f), lag-6 (Fig. 6g), and lag-12 (Fig. 6h) cases, Q-CODA consistently
provides the lowest median bias. While MMRC shows the smallest median bias at lag-12, Q-CODA achieves a narrower
interquartile range, suggesting greater spatial consistency. KNN systematically underestimates autocorrelation across all
lags. PCDM and MMRC also show underestimation, except for lag-12 where MMRC slightly improves. The issue of
autocorrelation underestimation in the MMRC approach had previously been identified and reported by (Miiller and
Haberlandt, 2018). ANN-K transitions from underestimation at lag-1, to a nearly unbiased result at lag-2, but then shifts to

strong overestimation at lag-6 and lag-12, pointing to instability in its representation of temporal structure.
Overall, the metrics in Fig. 6 underscore the robustness and generalization ability of Q-CODA. It achieves the best or near-

best performance across all statistical and temporal features of the hourly rainfall series, offering a consistent advantage over

benchmark methods.
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Figure 6. Comparative evaluation of disaggregation methods based on their ability to reconstruct complete hourly precipitation
time series across 91 meteorological stations. The panel presents boxplots summarizing the spatial distribution of key performance
metrics: (a) mean hourly precipitation, (b) hourly precipitation variance, (c) bias in zero proportion, (d) bias in mean precipitation

event duration, (e) bias in lag-1 autocorrelation, (f) bias in lag-2 autocorrelation, (g) bias in lag-6 autocorrelation, and (h) bias in
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The realistic reproduction of key temporal rainfall characteristics, such as the proportion of zero values, the mean
precipitation event duration, and the autocorrelation structure, is critical in hydrological applications, as these attributes
directly influence runoff generation, soil moisture dynamics, and flood modelling. An over- or underestimation of dry
intervals (i.e., zero proportion) can distort the temporal distribution of rainfall, while inaccuracies in event duration may lead
to erroneous estimates of infiltration and surface flow. Similarly, the autocorrelation of rainfall, particularly at short lags,
affects the temporal persistence of wet conditions, which in turn shapes hydrological responses at various scales. Among the
evaluated disaggregation methods, Q-CODA stands out by most accurately preserving these features across the network of
stations. Its ability to replicate the observed structure of rainfall time series with high fidelity enhances the reliability of
downstream hydrological simulations, making it a robust tool for both historical analysis and future climate impact

assessments.

To evaluate the ability of each disaggregation method to reproduce observed IDF (Intensity—Duration—Frequency)
relationships, we conducted an illustrative case study at the Reus station (41.1450°N, 1.1636°E), which lies within a
Mediterranean climate zone (K&ppen-Geiger climate classification Csa). This site was selected because it exhibits the
highest recorded 1-hour precipitation among all stations in the historical dataset. Figure 7 compares the IDF curves obtained
from each method against the observed benchmark for return periods of 2, 5, 10, 25, 50, and 100 years. Q-CODA closely
tracks the empirical IDF across all return periods, exhibiting minimal deviation even at more extreme thresholds. MMRC
also performs well in this case, yielding simulated IDF curves that remain relatively consistent with the observations. By
contrast, the IDF curves produced by KNN, ANN-K, and PCDM deviate more substantially from the reference, especially at
longer return periods. While informative, this example represents a single location and does not capture the broader spatial
variability in IDF performance. To address this, we computed the root mean squared error (RMSE) between simulated and
observed IDF curves at each station and for each method, yielding a spatial distribution of RMSE values summarized via
boxplots in Fig. 8. This analysis reveals that Q-CODA consistently achieves the lowest IDF reconstruction error across the
network of 91 stations, followed (at increasing distances) by KNN, MMRC, PCDM, and ANN-K. This ranking remains
stable across all return periods, although RMSE values increase with return period, reflecting the greater challenge of
accurately modelling rare extremes. These results underscore Q-CODA’s superior capacity to preserve high-order rainfall

statistics essential for hydrological design and risk assessment.
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Figure 7. Comparison of Intensity—Duration—-Frequency (IDF) curves derived from each disaggregation method with the observed

benchmark at the Reus station (41.1450°N, 1.1636°E). Curves are shown for return periods of 2, 5, 10, 25, 50, and 100 years.
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Figure 8. Spatial distribution of root mean squared error (RMSE) between observed and simulated IDF (Intensity—Duration—

Frequency) curves across 91 meteorological stations, grouped by disaggregation method. Boxplots summarize the performance

variability of each method in reproducing IDF relationships, providing a broader evaluation beyond the single-station case study

shown in Fig. 7.
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7 Conclusions

This study introduced Q-CODA, a novel data-driven rainfall disaggregation framework that leverages the quasi-comonotonic
relationship between daily precipitation totals and sub-daily maxima. Building on this empirically supported dependence
structure, Q-CODA, through a comonotonic transformation, ensures that the simulated sub-daily maxima lie within plausible
bounds conditional on the daily total, especially preserving the upper tail behaviour essential for extreme event modelling.
Subsequently, Q-CODA initiates the disaggregation process by seeding an initial hourly pattern via a seasonal K-Nearest
Neighbours (KNN) search, selecting and scaling realistic historical analogs. This pattern is then iteratively refined to satisfy
both the daily total and the set of comonotonicity-based sub-daily maxima constraints across multiple durations (1 h, 2 h, 6
h, and 12 h). The adjustment procedure further enhances the temporal structure by increasing lag-1 autocorrelation through
targeted reordering and smoothing, ensuring realism in the resulting rainfall sequences. This hybrid approach combines

probabilistic rigor, empirical realism, and interpretability.

A comprehensive benchmarking against four existing methods—KNN, ANN-KMeans (ANN-K), Microcanonical
Multiplicative Random Cascade (MMRC), and the Poisson Cluster Disaggregation Model (PCDM)—demonstrates that Q-
CODA consistently outperforms alternatives across a wide range of metrics. These include deterministic accuracy (e.g.,
MAE, NSE), distributional fidelity (bias in mean, variance, and high quantiles), and temporal structure (autocorrelation,
event duration, dry hour frequency), evaluated across 91 stations in Spain. In particular, Q-CODA excels at reproducing

extremes such as the 99th and 99.9th percentiles of hourly maxima and produces the lowest error in simulated IDF curves.

The comparative performance of ANN-K highlights some benefits of deep learning in rainfall disaggregation, but also
reveals important drawbacks, such as underestimation of variance and systematic misrepresentation of extremes, partially
due to the limitations of neural networks in extrapolation beyond the training range. Traditional approaches such as MMRC
and PCDM capture some statistical properties but show greater variability and biases across stations. Overall, Q-CODA
emerges as a robust, flexible, and physically grounded methodology for disaggregating daily rainfall into sub-daily time
series. Its explicit use of dependence structures via comonotonic transformations, combined with an efficient constraint-
based adjustment scheme, makes it well suited for hydrological modelling, flood risk assessment, and climate adaptation
planning because it can be used for the extension of insufficient hourly precipitation data or the temporal disaggregation of

climate change daily projections.

Future research may explore several promising directions. Extending Q-CODA to include spatial coherence across station
networks or gridded products would enable its application in basin-scale hydrological simulations. Coupling the
methodology with regional climate model outputs could allow integration into broader downscaling frameworks. Moreover,

increasing the temporal resolution from hourly to sub-hourly or minute-scale disaggregation is particularly relevant for high-

23



555

560

565

570

575

https://doi.org/10.5194/egusphere-2025-4469
Preprint. Discussion started: 17 November 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

resolution hydrological applications, including urban drainage, flash flood forecasting, and early warning systems, where

rainfall dynamics at minute-level resolution are critical.

Code availability

The source code used to implement the Q-CODA disaggregation method is openly available at GitHub
(https://github.com/carloscorreag/pyqcoda) and has  been  archived in  Zenodo with  the DOI
https://doi.org/10.5281/zenodo.16364100. Additionally, the package is distributed via the Python Package Index (PyPI) at
https://pypi.org/project/pyqcoda/, enabling straightforward installation through standard Python package managers.
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