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Abstract. Disaggregating daily precipitation data into hourly time scale is crucial for hydrological modelling, urban drainage 

design, and extreme rainfall risk assessment. This study presents Q-CODA, a novel Quasi-Comonotonicity-based 

Disaggregation Algorithm that leverages the quasi-comonotonic relationship between daily precipitation totals and their sub-

daily maxima to generate hourly rainfall sequences consistent with observed extremes. The method first assumes the 

Fréchet–Hoeffding upper bound copula to simulate sub-daily maximum precipitation values conditioned on daily totals, 10 

which serve as target constraints. An initial hourly pattern is obtained via a K-Nearest Neighbours (KNN) approach and 

subsequently refined through an iterative adjustment algorithm to ensure coherence with both the daily precipitation total and 

previously calculated multiple sub-daily target constraints. We evaluated Q-CODA through a rigorous 5-fold cross-

validation over 91 meteorological stations across Spain, spanning 1996–2024. Performance was benchmarked against state-

of-the-art approaches including nearest-neighbour resampling methods, Poisson cluster-based rainfall generators, 15 

multiplicative random cascades models and deep learning techniques. Evaluation metrics were tailored to different aspects of 

the rainfall data: distributional distance (1-D Wasserstein), accuracy measures (MAE, Nash–Sutcliffe efficiency), and 

extreme quantiles (90th to 99.9th percentiles) were computed on the hourly maximum precipitation over 1-hour windows, 

focusing on the representation of rainfall extremes. In contrast, autocorrelation and rainfall event duration statistics were 

calculated on the entire hourly rainfall time series to assess temporal coherence and event structure. Additionally, intensity-20 

duration-frequency (IDF) curves were analysed. Results demonstrate that Q-CODA substantially improves the representation 

of rainfall extremes while maintaining temporal coherence and event structure. This approach offers a robust, data-driven 

framework for accurate sub-daily rainfall disaggregation, with significant implications for hydrometeorological applications 

and infrastructure design.  

1 Introduction 25 

Rainfall is one of the most variable components of the hydrological cycle, exhibiting pronounced fluctuations across spatial 

and temporal scales. While sub-hourly or hourly rainfall data are essential for simulating surface runoff, designing urban 

drainage infrastructure, and assessing flood risks (Schilling, 1991; Fowler et al., 2021; Haslinger et al., 2025), such high-

resolution records are often unavailable or incomplete due to technical and logistical constraints. In contrast, daily 
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precipitation measurements are widely available from global meteorological networks, leading to a growing demand for 30 

accurate temporal disaggregation methods that can transform daily totals into realistic sub-daily sequences (Takhellambam et 

al., 2022; Ebers et al., 2024). 

 

Temporal disaggregation, also known as temporal downscaling, refers to the process of generating high-resolution time 

series from lower-resolution observations while preserving key statistical and hydrological characteristics. Traditional 35 

approaches to precipitation disaggregation can be broadly categorized into two families: stochastic rainfall generators and 

resampling-based methods. Stochastic generators such as Poisson cluster processes (Rodriguez-Iturbe et al., 1987; Onof et 

al., 2000; Qin and Dai, 2024) or Markov chain-based schemes (Stoner and Economou, 2020; Vorobevskii et al., 2024) 

simulate rainfall sequences by modelling the occurrence and intensity of rainfall events using probabilistic laws. While 

theoretically appealing, these models often require extensive calibration and may underperform in replicating extremes 40 

(Vorobevskii et al., 2024). Resampling-based methods such as K-Nearest Neighbors (KNN) and Methods of Fragments 

(MoF) disaggregation rely on analogues from historical high-resolution observations (Pui et al., 2012; Alzahrani et al., 

2023). These approaches are nonparametric, easy to implement, and capable of preserving observed patterns; however, KNN 

and MoF methods can suffer from limitations including sensitivity to the choice of neighbours and potential mismatch lag-1 

autocorrelation (Li et al., 2018). 45 

 

To address some of these challenges and improve the realism of disaggregation, newer approaches such as the 

Microcanonical Multiplicative Random Cascade (MMRC) methodology and deep learning techniques have been 

increasingly explored. MMRC models disaggregate rainfall by recursively partitioning precipitation amounts into smaller 

time intervals using multiplicative random weights, preserving the overall mass while reproducing the multifractal and 50 

scaling properties of rainfall (Förster et al., 2016; Müller and Haberlandt, 2018; Müller-Thomy, 2020; Maloku et al., 2023). 

In parallel, deep learning methods have gained traction in rainfall disaggregation due to their ability to capture complex 

nonlinear dependencies (Scher and Peßenteiner, 2021; Bhattacharyya and Saha, 2023; Oates et al., 2025). Hybrid models 

combining Artificial Neural Networks (ANN) with clustering algorithms (e.g., ANN-K) have shown promise in improving 

event-based performance and capturing nonlinear patterns. A recent study (Bhattacharyya et al., 2024) indicates that ANN-K 55 

produces better results in conserving extreme rainfall than MMRC and Neyman-Scott Rectangular Pulse (NSRP) processes. 

Nonetheless, such data-driven deep learning methods require large training datasets, risk overfitting, and often lack physical 

interpretability, making their generalization across climatic regions challenging. 

 

A particularly persistent difficulty in temporal disaggregation is the adequate reproduction of extreme rainfall intensities and 60 

their temporal structure. Most existing methods either under-represent short-duration maxima or distort their alignment with 

daily totals, which can lead to substantial biases in hydrological simulations and impact assessments. This motivates the need 
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for innovative strategies that explicitly account for the statistical dependence between daily and sub-daily precipitation 

features. 

 65 

Copula theory (Sklar, 1996) provides a robust mathematical framework for modelling such dependencies, allowing the 

construction of joint distributions that preserve individual marginals while flexibly capturing inter-variable dependence. 

Copula-based models have been successfully applied to hydrological problems such as rainfall-runoff modelling, 

multivariate drought analysis, and spatial rainfall simulation (Naderi et al., 2022; Moradzadeh Rahmatabadi et al., 2023). 

However, previous copula-based approaches to rainfall modelling have primarily focused on capturing the statistical 70 

dependence between precipitation intensities at different temporal or spatial scales, or on modelling joint distributions of 

variables such as storm duration and depth (Vorobevskii et al., 2024; Biswas and Saha, 2025). These approaches have not 

explicitly leveraged the quasi-comonotonic relationship between sub-daily precipitation maxima (e.g., 1-hour, 2-hour 

intensities) and the corresponding daily total as a structural constraint in the simulation of high-resolution rainfall time series. 

This quasi-comonotonicity implies that extreme hourly accumulations tend to co-occur with large daily totals, imposing an 75 

upper limit on feasible sub-daily intensities. 

 

In this study, we propose a novel assumption of the Fréchet–Hoeffding upper bound copula (Joe, 2005; Abdellatif et al., 

2024), also known as comonotonicity copula, to simulate sub-daily maxima conditioned on daily totals, thereby generating 

physically plausible upper envelopes that act as dynamic, event-specific constraints. These constraints complement the daily 80 

total in guiding the subsequent disaggregation process and allow for the generation of hourly rainfall sequences that better 

preserve the magnitude and timing of extreme events. This methodological innovation constitutes the core contribution of 

our disaggregation framework and distinguishes it from existing statistical or deep learning-based approaches. In this 

context, we present Q-CODA (Quasi-Comonotonicity-based Disaggregation Algorithm), a novel precipitation 

disaggregation framework that leverages the quasi-comonotonic dependence between daily totals and sub-daily maxima to 85 

constrain and guide the generation of hourly rainfall series. The proposed method comprises three key components: (i) 

simulation of sub-daily maximum intensities assuming the Fréchet–Hoeffding upper bound copula conditioned on daily 

rainfall, (ii) seeding of initial hourly patterns using a K-Nearest Neighbours approach, and (iii) iterative adjustment to 

enforce consistency with daily totals and the simulated sub-daily maxima across multiple accumulation windows (1, 2, 6, 

and 12 hours). 90 

 

We evaluate Q-CODA on a high-resolution dataset from 91 meteorological stations distributed across diverse climatic 

regions of Spain over the period 1996–2024. The performance is benchmarked against state-of-the-art disaggregation 

methods, including KNN, ANN-K, MMRC, and Poisson-cluster rainfall generators. Evaluation metrics encompass 

distributional distances (e.g., 1-D Wasserstein distance), error measures (e.g., MAE and Nash–Sutcliffe efficiency), as well 95 

as indicators focused on extremes (quantiles from the 90th to 99.9th percentile), temporal persistence (autocorrelation), and 

https://doi.org/10.5194/egusphere-2025-4469
Preprint. Discussion started: 17 November 2025
c© Author(s) 2025. CC BY 4.0 License.



4 
 

rainfall event duration statistics. We also assess the capability of Q-CODA to reproduce intensity-duration-frequency (IDF) 

curves. 

 

By integrating theoretical copula constraints with data-driven refinement, Q-CODA offers a hybrid approach that combines 100 

interpretability, realism, and robustness. The method is particularly suitable for applications where the preservation of 

extreme sub-daily rainfall events is critical and provides a valuable contribution to the growing toolkit of high-resolution 

precipitation generation techniques. 

 

The remainder of this paper is organised as follows. Section 2 describes the dataset and study domain. Section 3 introduces 105 

the proposed Q-CODA framework, including the derivation of sub-daily constraints, the comonotonic transformation, and 

the iterative adjustment procedure. Section 4 presents the benchmark disaggregation methods used for comparison. Section 5 

outlines the evaluation strategy, results of the evaluation are presented in Sect. 6, and finally main conclusions are 

summarized in Sect. 7. 

2 Data and Study Area 110 

This study leverages a high-quality, high-resolution precipitation dataset from 91 meteorological stations maintained by the 

Spanish State Meteorological Agency (AEMET). The selected stations are distributed across the Iberian Peninsula and the 

Balearic Islands, ensuring extensive spatial coverage across diverse climatic zones of Spain (see Fig. 1). The dataset spans a 

29-year period (1996–2024), with hourly precipitation records available at 0.1 mm resolution. Only stations with at least 

90% data completeness were retained to ensure data robustness and minimize biases introduced by missing values. The 115 

geographic diversity of the station network covers coastal, mountainous, and inland regions, as well as areas subject to 

Mediterranean, Atlantic, and continental climatic influences. This variability in hydroclimatic regimes, ranging from 

convective summer storms to winter frontal systems, provides a rigorous testbed for evaluating the performance and 

generalizability of the proposed Q-CODA disaggregation framework across multiple rainfall-generating mechanisms. 

Importantly, the scale of this study sets it apart from many recent rainfall disaggregation studies that rely on significantly 120 

smaller station networks, often basing methodological conclusions on fewer than 10 sites (e.g., Lee et al., 2022; 

Bhattacharyya et al., 2024; Chowdhury et al., 2025). Such limited spatial sampling can hinder the generalization of results, 

particularly in regions with high climate variability. By contrast, our analysis aligns with recent best practices emphasizing 

broad spatial validation and data diversity (e.g., Müller-Thomy, 2020; Ebers et al., 2024), which are crucial for evaluating 

the robustness of disaggregation methods across different hydrometeorological contexts. 125 

 

For visualization, Fig. 1 shows the geographic location of the 91 stations used in the analysis, highlighting the spatial 

representativeness of the dataset. All data were subjected to a thorough quality control process and days with clearly 
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erroneous or missing hourly values were excluded from the analysis. The full hourly time series were used to derive both 

daily precipitation totals (for disaggregation input) and sub-daily maxima over selected accumulation durations (1 h, 2 h, 6 h, 130 

and 12 h), which served as internal constraints and evaluation targets throughout the disaggregation framework. 

 
Figure 1: Map showing the location of AEMET stations with available hourly precipitation records used in this study (elevation 
data: NOAA 2022; https://doi.org/10.25921/fd45-gt74). 

3 Methodology 135 

3.1 Conceptual Framework 

Temporal disaggregation of daily precipitation into sub-daily time scales relies fundamentally on capturing the strong 

dependence between daily precipitation totals and sub-daily maxima. Empirical evidence shows a quasi-comonotonic 

relationship between these variables, meaning that high sub-daily maxima tend to coincide with large daily totals. This near-

perfect positive dependence provides a natural constraint for disaggregation, ensuring physically plausible rainfall 140 

sequences. 

 

Copulas are functions that couple multivariate distribution functions to their univariate marginals, enabling flexible 

modelling of dependence structures independently of marginal behaviour. Formally, for random variables X and Y with 
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marginal cumulative distribution functions (CDFs) FX(x) and FY(y), Sklar's theorem (Sklar, 1996; Joe, 2005; Abdellatif et 145 

al., 2024) states that there exists a copula C such that the joint CDF FX,Y (x, y) can be expressed as: 

,ݔ)௑,௒ܨ (ݕ = ,(ݔ)௑ܨ)ܥ  (1)          , ((ݕ)௒ܨ

The copula C : [0, 1]2 → [0, 1] encapsulates the dependence structure between X and Y. 

 

Among the family of copulas, the Fréchet–Hoeffding bounds define the theoretical limits of dependence. The upper bound 150 

copula C+, representing perfect positive dependence (comonotonicity), is defined as: 

,ݑ)ାܥ (ݒ = min(ݑ,  (2)                                      , (ݒ

for u,v ∈ [0, 1]. 

This copula implies that X and Y increase together almost surely, which aligns with the quasi-comonotonic behaviour 

observed between daily precipitation totals and sub-daily maxima. Assuming the Fréchet–Hoeffding upper bound copula 155 

allows us to generate the upper envelope or conditional upper bound of sub-daily maxima given daily totals. This approach 

provides a dynamic constraint that complements the daily precipitation total by restricting the range of possible sub-daily 

intensities to those consistent with observed extreme behaviour. Unlike previous rainfall disaggregation approaches that 

often treat daily totals and sub-daily maxima independently or model their dependence without explicit constraints, our 

method leverages this quasi-comonotonic relationship as a key structural feature. This enhances the physical realism of 160 

simulated hourly sequences, especially for extreme events, by ensuring that sub-daily maxima do not exceed plausible 

bounds conditional on the daily total. To illustrate this quasi-comonotonic dependence, we include Fig. 2 showing the 

empirical Spearman rank correlation coefficient (ρS) between sub-daily precipitation maxima aggregated over different time 

windows (Pt
max) and the corresponding daily total precipitation (Pd).  

 165 

Fig. 2 clearly shows empirical values of Spearman correlation approaching 1, confirming the near-perfect positive 

dependence, though decreases slightly for shorter durations, reflecting the increasing variability of shorter accumulation 

periods. This figure visually supports the theoretical basis of our methodology by quantifying the strength of the dependence 

exploited through the Fréchet–Hoeffding upper bound copula. 

 170 
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Figure 2: Spearman rank correlation coefficient (ρₛ) between sub-daily precipitation maxima aggregated over varying time 

windows (Ptmax) and the corresponding daily total precipitation (Pd). Each boxplot summarizes the distribution across the 91 

stations. 175 
 

3.2 Sub-daily Maximum Simulation 

Following the conceptual framework introduced in Sect. 3.1, the Fréchet–Hoeffding upper bound copula is accepted to 

simulate physically consistent sub-daily maximum precipitation intensities conditioned on daily totals. This step provides a 

set of dynamic constraints that ensure physically plausible short-duration rainfall intensities during the disaggregation 180 

process. 

 

Let Pd denote the daily precipitation total and Pτ
max the maximum accumulated precipitation over a sub-daily windows of 

duration τ ∈ {1 h, 2 h, 6 h, 12 h}. Assuming quasi-comonotonicity, the joint distribution of (Pd, Pτ
max) is modelled using the 

Fréchet–Hoeffding upper bound copula C+, defined as: 185 

௉೏,௉ഓܨ
೘ೌೣ(ݔ, (ݕ = min ቀܨ௉೏

,(ݔ) ௉ഓ ܨ
೘ೌೣ(ݕ)ቁ ,                                   (3) 

Given a daily total Pd = x, we aim to simulate the corresponding sub-daily maxima Pτ
max such that the pair (x, Pτ

max) lies on 

or below the upper copula bound. Since C+ corresponds to perfect rank correlation, the conditional distribution of Pτ
max | Pd 

= x can be approximated via comonotonic transformation, Eq. (4):  

ఛܲ
௠௔௫ = ௉ഓܨ

೘ೌೣ
ିଵ ௉೏ܨ)

 190 (4)                                                                              ,((ݔ)

where ܨ௉೏  and ܨ௉ഓ
೘ೌೣ  are the empirical cumulative distribution functions (ECDFs) estimated from historical in each 

climatological season (DJF, MAM, JJA, or SON). This formulation enforces a strong dependence structure between daily 

totals and sub-daily peaks, while preserving the observed marginal distributions. For each simulated day, a vector of 
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conditional maxima M = (P1h
max, P2h

max, P6h
max, P12h

max) is generated, where Pτ
max denotes the maximum allowable 

precipitation over a sliding window of duration ߬, consistent with the observed comonotonic relationship. These constraints 195 

are subsequently enforced in the disaggregation process (see Sect. 3.4), ensuring that simulated hourly series are consistent 

with both the daily total and realistic sub-daily intensities. This step is essential to preserve the magnitude and timing of 

extreme sub-daily events, which are critical for hydrological applications such as flood modelling, urban drainage, and 

climate impact assessment.  

 200 

To evaluate the suitability of assuming the upper copula C+ to estimate M via comonotonic transformation, defined in Eq. 

(4), we compared its performance against Isotonic Regression (IR), a standard non-parametric machine learning method that 

fits monotonic functions without assuming a specific functional form (De Leeuw, 1977; Chakravarti, 1989; Delong and 

Wüthrich, 2024). Its use as a benchmark is particularly relevant here, as both IR and the Comonotonic Transformation (CT) 

rely on the monotonicity assumption, albeit from different theoretical foundations: IR enforces monotonicity through 205 

piecewise-constant regression fits, while CT exploits comonotonicity explicitly via copula theory. Both approaches were 

trained and tested using a consistent 5-fold cross-validation scheme, applied independently at each station. To ensure 

reproducibility, we used the same non-overlapping temporal folds defined in Sect. 5, where hourly disaggregation 

performance is evaluated in detail. Figure 3 presents the bias (%) in estimating the 99th percentile of observed sub-daily 

maxima for each duration in the constraint vector M, aggregated across 91 stations.  210 

 

 
Figure 3: Bias (%) in estimating the 99th percentile of observed sub-daily precipitation maxima for each duration included in the 

constraint vector M, aggregated across 91 stations. 

 215 

While IR can adapt to nonlinearities in the data, it struggles to accurately capture the tail behaviour of precipitation 

distributions. The CT consistently achieves lower biases compared to IR, with the differences being more pronounced at 

shorter aggregation durations, indicating a closer match to the empirical distributions of extreme short-duration rainfall. 
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These distributional advantages make CT a more appropriate choice for integrating sub-daily intensity information into the 

disaggregation framework, as detailed in the following sections. 220 

 

3.3 Initial Pattern Seeding via KNN 

To generate an initial realistic sub-daily precipitation pattern consistent with a given daily total (Pd), we employ a K-Nearest 

Neighbours (KNN) approach. For each target day in the test set, we identify historically observed daily events from the 

training set with similar Pd magnitudes, constrained to the same climatological season (DJF, MAM, JJA, or SON).  225 

 

Given a target daily total Pd
 target, the Euclidean distance is computed between Pd

 target and each training daily total Pd
 train 

within the same season. The k closest neighbours are identified, and one neighbour is randomly sampled. The associated 24-

hour precipitation pattern h = (h1, h2, … , h24) of the selected neighbour is scaled proportionally to match the target total: 

ࢎ ← ࢎ ×
௉ౚ

౪౗౨ౝ౛౪

∑ ୦౟
మర
౟సభ

 ,                                       (5) 230 

This scaled pattern constitutes the initial seeding for the iterative refinement described in Sect. 3.4, which adjusts sub-daily 

intensities to meet prescribed constraints on maxima over multiple accumulation intervals.  

3.4 Iterative Adjustment Procedure 

Starting from the obtained initial hourly precipitation vector h via KNN and target constraints composed of the daily total 

precipitation Pd and the obtained sub-daily maxima vector M via CT, the iterative adjustment procedure modifies h to satisfy 235 

these constraints simultaneously. At each iteration, for each aggregation duration τ ∈ {1 h, 2 h, 6 h, 12 h}, the procedure 

identifies the contiguous time window I߬ = {i, …, i + ߬ -1}, where ݅ is the starting hour of that window (ranging from 1 to 25 

– ߬), for which the current sum is maximal. 

ܵఛ
௠௔௫ = ௜ୀଵ,…,ଶହିఛݔܽ݉ ∑ ℎ௝௝ ∈ ୍த  ,          (6) 

The adjustment magnitude is defined as the difference between the corresponding element in M and the maximum sum in h 240 

for duration τ: 

∆ఛ = ఛܲ
௠௔௫ − ܵఛ

௠௔௫,                                      (7) 

If |Δτ| exceeds a small threshold ε (0.04 mm), the values of h within the window I߬ are uniformly adjusted to reduce this 
difference: 

ℎ௝ ← max ቀ0, ℎ௝ + ∆ഓ 
ఛ

ቁ  ∀j ∈  ఛ ,          (8) 245ܫ 
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This ensures that the sub-daily maxima are adjusted upwards or downwards, depending on whether the current maximum is 

below or above the target. This process is repeated until convergence criteria are met or a maximum number of iterations is 

reached. After adjusting all durations, the entire hourly vector h is scaled to satisfy the daily total constraint using Eq. (5) 

again. To enhance the temporal realism of the resulting precipitation pattern, a refined adjustment step is applied. This step 

improves the lag-1 autocorrelation of h, a key indicator of temporal smoothness and persistence, through two complementary 250 

strategies. First, small precipitation values immediately preceding rainfall events are shifted forward to the subsequent hour 

when doing so increases autocorrelation without violating the constraints on sub-daily maxima or total daily precipitation. 

Second, within sliding windows of 3 to 5 hours, permutations of nonzero precipitation values are explored to find 

reorderings that further enhance autocorrelation while preserving the constraints. These refinements mitigate abrupt changes 

and isolated low values, yielding hourly sequences that better reflect realistic precipitation dynamics.  255 

To handle extremes exceeding the training range (i.e., daily totals surpassing the historical maximum), Q-CODA employs 

only the KNN seed directly, omitting both the comonotonic transformation described in Sect. 3.2 and the iterative adjustment 

procedure described in this section. The overall methodology is summarized in the flowchart presented in Fig. 4. 

 

 260 
Figure 4: Flowchart summarizing the overall Q-CODA methodology. The diagram outlines the sequential steps involved in the 

disaggregation approach. 
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4 Benchmark Methods 

To evaluate the performance of the proposed Q-CODA method, we compare it against established rainfall disaggregation 

techniques: KNN, ANN-K, Poisson-Cluster Disaggregation, and MMRC. These benchmark methods span both data-driven 265 

and stochastic approaches, reflecting the diversity of strategies commonly employed for sub-daily precipitation generation. 

4.1 K-Nearest Neighbors (KNN) 

The KNN method serves as an analog-based disaggregation approach. For each target daily precipitation value, historical 

days with similar daily totals are identified within the same climatological season (DJF, MAM, JJA, or SON), ensuring that 

the selected analogues reflect seasonal variability in rainfall dynamics. Similarity is assessed using Euclidean distance, and 270 

among the k closest matches, one historical 24-hour pattern is randomly selected. This pattern is then linearly scaled to 

match the target daily total. No additional sub-daily structure adjustment is performed. This method represents a baseline 

based on seasonal similarity and direct pattern reuse, as described in (Alzahrani et al., 2023), whose study shows that KNN 

(k =30) outperforms their multiplicative random cascade model and Hurst–Kolmogorov process-based model on a set of 

specific performance metrics and four locations. 275 

4.2 Deep learning disaggregation model (ANN-K) 

This method builds on the deep learning-based disaggregation framework proposed by (Bhattacharyya et al., 2024), 

combining unsupervised clustering via K-Means with a supervised Artificial Neural Network (ANN). The key motivation for 

this hybrid approach is to improve model skill in differentiating between low-intensity and high-intensity rainfall events, 

which are often poorly represented by traditional neural networks due to their tendency to regress towards the mean or zero-280 

inflated values. 

 

Preprocessing is performed using K-Means clustering on triplets of consecutive daily rainfall values: (Pd⁽ᵗ⁻¹⁾, Pd⁽ᵗ⁾, Pd⁽ᵗ⁺¹⁾). The 

clustering is done in three-dimensional space to capture the temporal context around each day. The optimal number of 

clusters is selected using the Silhouette Coefficient method (Rousseeuw, 1987), ranging from K = 2 to 9. This categorical 285 

information (cluster labels) is used as an additional input to the ANN, allowing the model to better differentiate convective 

events, dry days, and transitional regimes. Our model introduces an architecture comprising a 4-layer feedforward neural 

network, defined as follows: (i) Input layer – a concatenated vector consisting of daily rainfall and the corresponding cluster 

label; (ii) First hidden layer – 64 neurons with ELU (Exponential Linear Unit) activation; (iii) Second hidden layer – 32 

neurons with ELU activation; and (iv) Output layer – 24 neurons (representing hourly rainfall estimates), with a linear 290 

activation function. This structure enables the model to learn abstract representations of intra-daily rainfall patterns. The use 

of ELU (Exponential Linear Unit) activation functions helps to reduce vanishing gradients and maintain responsiveness for 

negative inputs, improving convergence during training. The ELU activation function was chosen by (Bhattacharyya et al., 
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2024) over ReLU or LeakyReLU due to its improved numerical stability and convergence when dealing with sparse and 

skewed precipitation data. In addition, the formulation of the loss function has a decisive influence (Lopez-Gomez et al., 295 

2023; Oates et al., 2025) on the model’s skill to disaggregate precipitation events. To guide the ANN toward physically 

meaningful disaggregation, we define a composite loss function that combines multiple criteria: (i) L1 – hourly MSE: Mean 

squared error between predicted and observed hourly rainfall values; (ii) L2 – error in reproducing the maximum 1-hour 

precipitation; (iii) L3 – convectivity penalty, defined only for days with daily total ≥ 20 mm and ratio between the maximum 

1-hour precipitation and daily total greater than 0.7, emphasizing accurate reconstruction of convective peaks; (iv) L4 – error 300 

in hourly precipitation mean; (v) L5 – error in hourly precipitation variance; (vi) L6 – daily cumulative absolute error 

computed between predicted and observed hourly rainfall distributions. L5 was already introduced by (Oates et al., 2025), 

and L6 serves the same purpose as the Kullback–Leibler divergence also used by (Oates et al., 2025). Unlike (Bhattacharyya 

et al., 2024), who used a basic MSE loss (L1), our custom loss explicitly penalizes timing and shape errors in intense rainfall 

events, which are critical for flood forecasting and infrastructure design. The model was trained using the Adam optimizer 305 

(learning rate = 0.001), with early stopping based on validation loss.  

4.3 Poisson-Cluster Rainfall Generator 

The Poisson-Cluster Disaggregation Method (PCDM) is a stochastic framework designed to disaggregate daily precipitation 

totals into hourly values. The method is based on a simplified Poisson cluster process (Onof et al., 2000), where storm events 

(or rain cells) are randomly generated within each day according to a Poisson distribution whose rate parameter is 310 

conditioned on the daily total precipitation Pd. Each storm cluster has a random start time, duration, and intensity, sampled 

from appropriate distributions (uniform, discrete, and gamma, respectively), and the total hourly series is scaled to match the 

original daily total. The number of intra-day events, N, follows a Poisson distribution with parameter λ = (1.5, Pd / D), where 

D is a station-specific scaling divisor. Each event is assigned a start time (random hour of the day), a random duration (1 to 3 

hours), and an intensity drawn from a gamma distribution (shape = 2, scale = station-specific parameter). Hourly intensities 315 

are then aggregated and rescaled to ensure mass conservation, i.e., the sum over 24 hours equals the daily input precipitation 

Pd. PCDM is implemented and applied station-wise using pre-calibrated parameters, D divisor and scale of the gamma 

distribution, obtained via in-site iterative minimization of 1-D Wasserstein distance between observed and simulated 

maximum 1-hour precipitation.  

 320 

The PCDM shares conceptual similarities with widely used Neyman-Scott Rectangular Pulse (NSRP) models. For example, 

both rely on Poisson processes to generate clusters of rainfall events. However, key differences exist. The NSRP model is a 

fully stochastic rainfall generator designed to simulate continuous sequences of rainfall at fine temporal resolution, without 

relying on daily precipitation as a constraint. Rainfall is simulated as a sequence of storms, each consisting of clusters of rain 

cells with rectangular pulses. The model requires a larger number of parameters, including those governing storm arrival 325 

rate, cluster properties, cell duration, and intensity. As such, NSRP is more flexible and capable of reproducing the temporal 
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structure of rainfall over longer periods, but it is also more complex to calibrate and computationally intensive. In addition, 

using a gamma distribution in PCDM instead of the classical exponential distribution used in NSRP for rainfall intensity 

provides greater flexibility and better alignment with observed data. The gamma distribution allows independent control of 

both the mean and variability, offering improved fit to sub-daily rainfall intensities and better representation of extreme 330 

events. This results in more realistic disaggregated series, particularly when preserving hourly maxima is a priority. Another 

important distinction is that PCDM enforces exact agreement with daily totals, which is advantageous in contexts where 

observed daily data are available and fidelity to these values is required. In contrast, NSRP achieves mass conservation only 

in a statistical sense over long simulations, not necessarily for individual days. In summary, while both methods simulate 

hourly rainfall using event-based structures, PCDM offers a simpler, data-driven alternative to NSRP when the goal is to 335 

disaggregate daily precipitation observations to hourly scales, with an emphasis on preserving sub-daily extremes and 

ensuring mass consistency. 

4.4 Multiplicative Microcanonical Random Cascade (MMRC) 

Among the family of Multiplicative Microcanonical Random Cascade (MMRC) models, we selected the implementation 

provided by MELODIST (Förster et al., 2016), as it has been successfully applied in various recent studies (Görner et al., 340 

2021; Hasan et al., 2023; Mayer et al., 2024) and offers a balance between physical realism, probabilistic variability, and 

computational simplicity. The Cascade Model implemented in MELODIST (MEteoroLOgical observation time series 

DISaggregation Tool) offers a purely statistical yet physically consistent approach for disaggregating daily precipitation into 

sub-daily resolutions. Originally proposed by (Olsson, 1998), this MMRC has since been enhanced by subsequent studies to 

better preserve sub-daily rainfall characteristics while maintaining low computational complexity. The cascade model 345 

implemented in MELODIST operates through a hierarchical, stepwise disaggregation in which each level of the time series 

is recursively split into two subintervals of equal duration. At each level, the precipitation in a given time box is divided into 

two sub-boxes by assigning a pair of weights (W1, W2), such that Pi+1,1 = W1 · Pi and Pi+1,2 = (1 - W1) · Pi = W2 · Pi with the 

mass-preserving constraint W1 + W2= 1. This recursive branching continues until the desired temporal resolution is reached 

(e.g., 1 hour). For daily to hourly disaggregation, this typically involves the sequence: 24 h → 12 h → 6 h → 3 h → 1.5 h → 350 

0.75 h → 1 h. The model distinguishes between four types of “wet” time boxes: (i) Starting box, follows a dry interval and 

precedes a wet one; (ii) Ending box, follows a wet interval and precedes a dry one; (iii) Isolated box, surrounded by dry 

intervals; and (iv) Enclosed box, surrounded by wet intervals. Each of these box types is associated with a set of probabilistic 

rules for assigning the weights (W1, W2), with three possible branching scenarios: (i) (0, 1), all precipitation goes to the 

second subinterval; (ii) (1, 0), all precipitation goes to the first subinterval; and (iii) (x, 1 − x), where precipitation is split 355 

proportionally with a random weight x ∈ (0, 1). The probabilities associated with each case are derived empirically through a 

reverse scaling procedure applied to high-resolution rainfall data. During this process, fine-resolution data is aggregated up 

the cascade (e.g., 1 h → 2 h → 4 h → 8 h, etc.), and the branching weights and their frequencies are recorded for each box 

type and precipitation intensity class (above or below the mean). Instead of fitting parametric distributions, the model uses 
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empirical histograms of weight values (x ∈ [0, 1]) divided into seven bins. These empirical distributions and associated 360 

branching probabilities are stored in lookup tables, which serve as input for a random number generator during 

disaggregation. For each cascade step during disaggregation, a random number is used to determine the branching type—

either (0, 1), (1, 0), or (x, 1 − x); if the (x, 1 − x) case is selected, a second random number is drawn to choose the specific 

weight bin x, and the precipitation volume is then split accordingly between the two resulting time steps, ensuring that the 

total mass is preserved at every level. Because the process is stochastic, different disaggregation realizations may vary, 365 

though their statistical properties remain consistent by design. The MMRC model preserves key physical constraints such as 

precipitation volume conservation (microcanonical property) and captures the intermittency and variability of sub-daily 

rainfall events with minimal parameterization. The cascade algorithm is a computationally efficient and robust method for 

producing sub-daily rainfall inputs for hydrological modelling, especially when sub-daily observations are unavailable or 

sparse. 370 

5 Evaluation Framework 

To rigorously evaluate the skill and generalization capacity of the proposed Q-CODA, we implement a 5-fold cross-

validation procedure, benchmarking its performance against four established disaggregation methods described in Sect. 4: 

KNN, ANN-K, PCDM, and MMRC. This comparative framework ensures a systematic and fair evaluation across a spectrum 

of methodologies. Each fold corresponds to a distinct multi-year period: Fold 1 (1996–2001), Fold 2 (2002–2007), Fold 3 375 

(2008–2013), Fold 4 (2014–2019), and Fold 5 (2020–2024). Each fold is disaggregated using the others for training and 

finally the 5-folds are joint to reconstruct the whole evaluation period. 

 

The first part of the evaluation focuses on 1-hour maximum precipitation (P1h
max), a critical variable for hydrological 

simulations, risk assessment, and infrastructure design due to its direct relation to peak intensities and convective extremes. 380 

By centring the analysis on this high-impact variable, we ensure that the evaluation prioritizes features most relevant to 

extreme event representation. Model skill is quantified using standard accuracy metrics, Nash–Sutcliffe Efficiency (NSE) 

and Mean Absolute Error (MAE), calculated across the full P1h
max time series. In addition, distributional similarity is 

assessed using the first-order Wasserstein distance between observed and simulated P1h
max distributions. To further probe 

distributional fidelity, we compute relative biases (%) in the mean, variance, and upper-tail quantiles (99th, and 99.9th 385 

percentiles), and maximum value of P1h
max. Beyond daily extremes, the second component of the evaluation addresses the 

temporal consistency and structural realism of the full disaggregated hourly time series. Metrics include bias in the temporal 

mean and temporal variance, the mean duration of precipitation events, as well as the zero proportion (the fraction of dry 

hours) which captures rainfall intermittency. These structural descriptors are essential for ensuring that the internal dynamics 

of rainfall sequences are plausible and useful for process-based modelling. Temporal correlation structure is further assessed 390 

via biases in the autocorrelation coefficients at lags of 1, 2, 6, and 12 hours, providing insight into the persistence and 
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organization of precipitation over sub-daily timescales. Finally, to assess the hydrological applicability of each method, we 

compare Intensity–Duration–Frequency (IDF) curves derived from disaggregated outputs to those obtained from observed 

hourly records. For the estimation of IDF curves, the classical annual maxima approach was adopted, which remains the 

standard in hydrological applications. Although alternative methods such as the peaks-over-threshold (POT) framework 395 

exist, the annual maxima method was selected to ensure comparability with previous studies, given that the primary focus of 

this work is the evaluation of the disaggregation algorithm. For each duration (1–24 h), annual maxima were extracted from 

the hourly precipitation series using a rolling sum. These maxima were fitted to a Gumbel distribution using maximum 

likelihood estimation. Returns levels (mm) were then computed with the Gumbel inverse CDF: 

்ݔ = ߤ − ߚ ∙ ݈݊[−݈݊(1 − 1 ܶ⁄ )],                                  (9) 400 

where μ and β are the fitted parameters and T is the return period (years). Intensities (mm h⁻¹) were obtained by dividing each 

estimate by its duration.  

This analysis is conducted at all sites, enabling evaluation of each model’s capacity to reproduce local extremes and 

temporal scaling behaviours under varied climatic conditions. This multi-faceted validation framework thus offers a robust 

basis for comparing the accuracy, distributional fidelity, and physical realism of alternative disaggregation approaches. 405 

6 Results 

This section presents the results of the 5-fold cross-validation, comparing the performance of Q-CODA against the 

benchmark disaggregation methods. The aim is to highlight where Q-CODA improves upon existing approaches and to 

identify trade-offs across the evaluated metrics. 

 410 

Figure 5 presents a comparative evaluation of the disaggregation methods based on the ability to reconstruct the daily 

maximum 1-hour precipitation (P1h
max) across 91 meteorological stations. Each panel displays boxplots that summarize the 

spatial distribution of different performance metrics for each method. The evaluated metrics include: Mean Absolute Error 

(MAE) (Fig. 5a), Nash–Sutcliffe Efficiency (NSE) (Fig.  5b), 1-D Wasserstein distance (Fig.  5c), bias in the mean (Fig. 5d), 

variance (Fig. 5e), 99th percentile (Fig. 5f), 99.9th percentile (Fig. 5g), and daily maximum (Fig. 5h). Across all these 415 

metrics, Q-CODA consistently outperforms all benchmark methods, demonstrating superior accuracy and robustness in 

reproducing high-resolution rainfall extremes. In terms of MAE (Fig. 5a), Q-CODA exhibits the lowest errors across the 

station network, followed closely by ANN-K. The remaining methods—KNN, PCDM, and MMRC—yield significantly 

higher errors, with highly similar performance distributions. For the NSE (Fig. 5b), Q-CODA and ANN-K attain the highest 

median values, approaching 0.75, while KNN, PCDM, and MMRC display lower medians in the range of 0.5 to 0.6. 420 

Notably, MMRC exhibits a broader interquartile range and a substantially extended lower whisker, indicating greater spatial 

variability and underperformance at some locations. The results for the 1-D Wasserstein distance (Fig. 5c) further confirm 
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the advantage of Q-CODA, which yields the lowest values overall, indicating the closest alignment with the observed 

distribution of P1h
max. KNN ranks second, while the other methods perform markedly worse. Interestingly, ANN-K performs 

the worst despite its custom loss function, underscoring the limitations of neural networks in preserving distributional shapes 425 

under regression pressure. With respect to the bias in the mean (Fig. 5d), Q-CODA again leads with minimal bias, followed 

by KNN. In contrast, ANN-K and MMRC exhibit wide interquartile ranges, and PCDM shows a consistent negative bias. 

The evaluation of variance bias (Fig. 5e) highlights a major strength of Q-CODA, which substantially outperforms the 

alternatives. KNN and MMRC tend to overestimate variance, whereas ANN-K and PCDM show systematic underestimation, 

a well-documented limitation of neural network-based disaggregation (Oates et al., 2025; Bhattacharyya et al., 2024). 430 

Regarding extreme rainfall reconstruction, panels 5f through 5h show biases in the 99th percentile, 99.9th percentile, and 

maximum of daily P1h
max values. Q-CODA delivers remarkably low biases in the 99th and 99.9th percentiles and remains the 

best-performing method even when evaluating the absolute maximum, despite a slight increase in error. The other methods 

struggle considerably with tail behaviour: ANN-K systematically underestimates extremes, MMRC tends to overestimate 

them, and PCDM performs similarly to ANN-K in this regard. KNN offers moderately accurate results but falls short of Q-435 

CODA. The poor performance of ANN-K in reproducing maximum P1h
max may also stem from the well-known limitation of 

deep learning models to extrapolate beyond the range of their training data.  
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Figure 5: Comparative evaluation of disaggregation methods based on their ability to reconstruct daily maximum 1-hour 440 
precipitation (P1hmax) across 91 meteorological stations. Each panel shows boxplots summarizing the spatial distribution of key 

performance metrics: (a) Mean Absolute Error (MAE), (b) Nash–Sutcliffe Efficiency (NSE), (c) 1-D Wasserstein distance, (d) bias 

in the mean, (e) bias in the variance, (f) bias in the 99th percentile, (g) bias in the 99.9th percentile, and (h) bias in the maximum. 
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Overall, the results in Fig. 5 demonstrate the superior ability of Q-CODA to reproduce both the magnitude and statistical 

characteristics of peak sub-daily precipitation. Its consistent performance across multiple metrics and spatial locations 445 

highlights its value as a robust and accurate disaggregation tool. 

 

Figure 6 presents a comparative assessment of the disaggregation methods based on their ability to reproduce key statistical 

and temporal properties of the full hourly time series at the 91 evaluation stations. Each subplot shows the spatial distribution 

of bias (%) for different metrics, summarized through boxplots, where each box reflects variability across sites. The analysed 450 

metrics include: bias in the temporal mean (Fig. 6a), temporal variance (Fig. 6b), zero proportion (Fig. 6c), mean event 

duration (Fig. 6d), and autocorrelation at lag-1 (Fig. 6e), lag-2 (Fig. 6f), lag-6 (Fig. 6g), and lag-12 (Fig. 6h). For the mean of 

the hourly series (Fig. 6a), Q-CODA exhibits an almost negligible bias, clearly outperforming the other methods. KNN, 

PCDM, and MMRC follow with slight underestimations, while ANN-K stands out negatively, displaying a more pronounced 

underestimation close to 0.5%. The results for the variance (Fig. 6b) show a similar pattern. Q-CODA again achieves the 455 

lowest bias, followed by KNN, PCDM, and MMRC, which tend to modestly underestimate variability. ANN-K shows the 

most significant underestimation, with a median bias exceeding 25%, confirming the well-known difficulty of neural 

networks in reproducing precipitation variability, as previously documented by (Bhattacharyya et al., 2024; Oates et al., 

2025). When evaluating the proportion of zero values (Fig. 6c), which corresponds to the share of dry hours, KNN achieves 

the lowest bias, followed closely by Q-CODA and MMRC. ANN-K and PCDM show worse performance, with ANN-K 460 

underestimating and PCDM overestimating the frequency of dry periods. For the mean event duration (Fig. 6d), Q-CODA 

again demonstrates the best performance, yielding the smallest bias across stations. KNN and PCDM both tend to 

underestimate event lengths, while MMRC shows a tendency to overestimate. ANN-K has its median bias near zero, but a 

large interquartile range indicates high spatial variability and reduced robustness. Autocorrelation results further highlight Q-

CODA's superiority. In the lag-1 (Fig. 6e), lag-2 (Fig. 6f), lag-6 (Fig. 6g), and lag-12 (Fig. 6h) cases, Q-CODA consistently 465 

provides the lowest median bias. While MMRC shows the smallest median bias at lag-12, Q-CODA achieves a narrower 

interquartile range, suggesting greater spatial consistency. KNN systematically underestimates autocorrelation across all 

lags. PCDM and MMRC also show underestimation, except for lag-12 where MMRC slightly improves. The issue of 

autocorrelation underestimation in the MMRC approach had previously been identified and reported by (Müller and 

Haberlandt, 2018). ANN-K transitions from underestimation at lag-1, to a nearly unbiased result at lag-2, but then shifts to 470 

strong overestimation at lag-6 and lag-12, pointing to instability in its representation of temporal structure.  

 

Overall, the metrics in Fig. 6 underscore the robustness and generalization ability of Q-CODA. It achieves the best or near-

best performance across all statistical and temporal features of the hourly rainfall series, offering a consistent advantage over 

benchmark methods. 475 
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Figure 6. Comparative evaluation of disaggregation methods based on their ability to reconstruct complete hourly precipitation 

time series across 91 meteorological stations. The panel presents boxplots summarizing the spatial distribution of key performance 

metrics: (a) mean hourly precipitation, (b) hourly precipitation variance, (c) bias in zero proportion, (d) bias in mean precipitation 480 
event duration, (e) bias in lag-1 autocorrelation, (f) bias in lag-2 autocorrelation, (g) bias in lag-6 autocorrelation, and (h) bias in 

lag-12 autocorrelation. 
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The realistic reproduction of key temporal rainfall characteristics, such as the proportion of zero values, the mean 

precipitation event duration, and the autocorrelation structure, is critical in hydrological applications, as these attributes 485 

directly influence runoff generation, soil moisture dynamics, and flood modelling. An over- or underestimation of dry 

intervals (i.e., zero proportion) can distort the temporal distribution of rainfall, while inaccuracies in event duration may lead 

to erroneous estimates of infiltration and surface flow. Similarly, the autocorrelation of rainfall, particularly at short lags, 

affects the temporal persistence of wet conditions, which in turn shapes hydrological responses at various scales. Among the 

evaluated disaggregation methods, Q-CODA stands out by most accurately preserving these features across the network of 490 

stations. Its ability to replicate the observed structure of rainfall time series with high fidelity enhances the reliability of 

downstream hydrological simulations, making it a robust tool for both historical analysis and future climate impact 

assessments. 

 

To evaluate the ability of each disaggregation method to reproduce observed IDF (Intensity–Duration–Frequency) 495 

relationships, we conducted an illustrative case study at the Reus station (41.1450°N, 1.1636°E), which lies within a 

Mediterranean climate zone (Köppen-Geiger climate classification Csa). This site was selected because it exhibits the 

highest recorded 1-hour precipitation among all stations in the historical dataset. Figure 7 compares the IDF curves obtained 

from each method against the observed benchmark for return periods of 2, 5, 10, 25, 50, and 100 years. Q-CODA closely 

tracks the empirical IDF across all return periods, exhibiting minimal deviation even at more extreme thresholds. MMRC 500 

also performs well in this case, yielding simulated IDF curves that remain relatively consistent with the observations. By 

contrast, the IDF curves produced by KNN, ANN-K, and PCDM deviate more substantially from the reference, especially at 

longer return periods. While informative, this example represents a single location and does not capture the broader spatial 

variability in IDF performance. To address this, we computed the root mean squared error (RMSE) between simulated and 

observed IDF curves at each station and for each method, yielding a spatial distribution of RMSE values summarized via 505 

boxplots in Fig. 8. This analysis reveals that Q-CODA consistently achieves the lowest IDF reconstruction error across the 

network of 91 stations, followed (at increasing distances) by KNN, MMRC, PCDM, and ANN-K. This ranking remains 

stable across all return periods, although RMSE values increase with return period, reflecting the greater challenge of 

accurately modelling rare extremes. These results underscore Q-CODA’s superior capacity to preserve high-order rainfall 

statistics essential for hydrological design and risk assessment. 510 
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Figure 7. Comparison of Intensity–Duration–Frequency (IDF) curves derived from each disaggregation method with the observed 

benchmark at the Reus station (41.1450°N, 1.1636°E). Curves are shown for return periods of 2, 5, 10, 25, 50, and 100 years. 
 515 
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Figure 8. Spatial distribution of root mean squared error (RMSE) between observed and simulated IDF (Intensity–Duration–

Frequency) curves across 91 meteorological stations, grouped by disaggregation method. Boxplots summarize the performance 

variability of each method in reproducing IDF relationships, providing a broader evaluation beyond the single-station case study 

shown in Fig. 7. 520 
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7 Conclusions 

This study introduced Q-CODA, a novel data-driven rainfall disaggregation framework that leverages the quasi-comonotonic 

relationship between daily precipitation totals and sub-daily maxima. Building on this empirically supported dependence 

structure, Q-CODA, through a comonotonic transformation, ensures that the simulated sub-daily maxima lie within plausible 525 

bounds conditional on the daily total, especially preserving the upper tail behaviour essential for extreme event modelling. 

Subsequently, Q-CODA initiates the disaggregation process by seeding an initial hourly pattern via a seasonal K-Nearest 

Neighbours (KNN) search, selecting and scaling realistic historical analogs. This pattern is then iteratively refined to satisfy 

both the daily total and the set of comonotonicity-based sub-daily maxima constraints across multiple durations (1 h, 2 h, 6 

h, and 12 h). The adjustment procedure further enhances the temporal structure by increasing lag-1 autocorrelation through 530 

targeted reordering and smoothing, ensuring realism in the resulting rainfall sequences. This hybrid approach combines 

probabilistic rigor, empirical realism, and interpretability. 

 

A comprehensive benchmarking against four existing methods—KNN, ANN-KMeans (ANN-K), Microcanonical 

Multiplicative Random Cascade (MMRC), and the Poisson Cluster Disaggregation Model (PCDM)—demonstrates that Q-535 

CODA consistently outperforms alternatives across a wide range of metrics. These include deterministic accuracy (e.g., 

MAE, NSE), distributional fidelity (bias in mean, variance, and high quantiles), and temporal structure (autocorrelation, 

event duration, dry hour frequency), evaluated across 91 stations in Spain. In particular, Q-CODA excels at reproducing 

extremes such as the 99th and 99.9th percentiles of hourly maxima and produces the lowest error in simulated IDF curves. 

 540 

The comparative performance of ANN-K highlights some benefits of deep learning in rainfall disaggregation, but also 

reveals important drawbacks, such as underestimation of variance and systematic misrepresentation of extremes, partially 

due to the limitations of neural networks in extrapolation beyond the training range. Traditional approaches such as MMRC 

and PCDM capture some statistical properties but show greater variability and biases across stations. Overall, Q-CODA 

emerges as a robust, flexible, and physically grounded methodology for disaggregating daily rainfall into sub-daily time 545 

series. Its explicit use of dependence structures via comonotonic transformations, combined with an efficient constraint-

based adjustment scheme, makes it well suited for hydrological modelling, flood risk assessment, and climate adaptation 

planning because it can be used for the extension of insufficient hourly precipitation data or the temporal disaggregation of 

climate change daily projections. 

 550 

Future research may explore several promising directions. Extending Q-CODA to include spatial coherence across station 

networks or gridded products would enable its application in basin-scale hydrological simulations. Coupling the 

methodology with regional climate model outputs could allow integration into broader downscaling frameworks. Moreover, 

increasing the temporal resolution from hourly to sub-hourly or minute-scale disaggregation is particularly relevant for high-

https://doi.org/10.5194/egusphere-2025-4469
Preprint. Discussion started: 17 November 2025
c© Author(s) 2025. CC BY 4.0 License.



24 
 

resolution hydrological applications, including urban drainage, flash flood forecasting, and early warning systems, where 555 

rainfall dynamics at minute-level resolution are critical. 

 

Code availability 

The source code used to implement the Q-CODA disaggregation method is openly available at GitHub 

(https://github.com/carloscorreag/pyqcoda) and has been archived in Zenodo with the DOI 560 

https://doi.org/10.5281/zenodo.16364100. Additionally, the package is distributed via the Python Package Index (PyPI) at 

https://pypi.org/project/pyqcoda/, enabling straightforward installation through standard Python package managers. 
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