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Abstract: There were PM, 5 heavy pollution events in the Bohai Rim regions in China over the past decade, which
can significantly affect radiative forcing (RF). However, the characteristics and influencing factors of RF on heavy
15  pollution days, and its relative importance to precipitation remain unclear. This work combined ground-based and
satellite observations and reanalysis data to investigate the RF characteristics of regional PM» 5 heavy pollution in the
Bohai Rim regions during the fall and winter of 2014-2023. Additionally, the impact of meteorological vertical profiles
on surface PM s and pollution RF, and the importance of various factors to pollution RF and precipitation, were
explored based on machine learning algorithms. The results showed that the RF on PM; s regional heavy pollution
20  days can be up to approximately -70 Wm at the surface, +8 Wm at top of atmosphere (TOA), and +80 Wm in the
atmosphere in clear-sky, with lower absolute values in all-sky. Low- to medium-altitude inversions of temperature (T)
profiles in the boundary layer favored higher surface PM,s concentration, whereas isothermal stratification and
medium- to high-altitude inversions corresponded to higher surface RF. Lower horizontal speeds and upward motion
at low levels can induce higher surface PM» 5 and surface RF. Surface PM; s was the most important factor to surface
25  and atmosphere RF in clear-sky, but V wind in high level (500 hPa) in all-sky. Moreover, pollution RFs in all-sky were
as important as vertical winds to the total precipitation. Notably, there was considerable regional heterogeneity in the

important factors affecting the RF and precipitation in the Bohai Rim regions.
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Highlights

The RF of PM; s heavy pollution in the Bohai Rim regions during 2014-2023 is analyzed;
The variations in PM» 5 and RF values under different temperature profiles are not consistent;
Pollution RFs in all-sky are as important as the vertical winds to the total precipitation;

35  There is regional heterogeneity in the important factors of RF and precipitation in the Bohai Rim.
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1. Introduction

PM: 5 heavy pollution can harm human health and reduce grain production (Shiraiwa et al., 2017; Tie et al., 2016).

Besides, it can affect climate through aerosol-radiation and aerosol-cloud interactions (Zhang et al., 2015). In China,

40  aerosol pollution in the Bohai Rim region (as one of China's most important economic zones) has drawn wide attention.
PM, 5 pollution episodes were frequent and even serve around 2013 (Quan et al., 2014; Wang et al., 2014). Its
concentration has been declined due to the in-depth implementation of China's emission reduction policies after that

(Chen et al., 2024; Ji et al., 2023; Li et al., 2021; Wang et al., 2019). Nevertheless, PM, 5 heavy pollution days (daily
PM,5> 150 pg m™) still occur at some stations in recent years, especially during autumn and winter (Jin et al., 2022;

45  Lietal., 2020; Song et al., 2022; Zhao et al., 2020). Influenced by diffusion and transport, such PM> 5 heavy pollution
often exhibits regional characteristics (Jin et al., 2020; Zhang et al., 2019). Thus, regional variations in pollution are

worthy of attention.

PM: 5 heavy pollution exhibits significant radiation effects, which have been extensively studied through either
observational or modeling approaches (Elias et al., 2009; Kajino et al., 2017; Kumar et al., 2019; Sweerts et al., 2019).

50  Observationally, research often focused on the radiative characteristics of heavy pollution at the station scale, such as
measurements of aerosol optical depth (AOD), single scattering albedo (SSA), and other radiative properties (Jin et
al.,2019; Lietal.,, 2018; Maetal., 2019; Ren et al., 2022; Zheng et al., 2017). Studies on radiative forcing are generally
conducted using models equipped with radiation modules (Che et al., 2014; Gao et al., 2014; Iftikhar et al., 2018; Jones

et al., 1994; Luo et al., 2019). A work indicated that the radiative forcing during an aerosol pollution episode at the

55  surface in the Baltimore-Washington region reached up to -100 Wm (Park et al., 2001). Some research has been
conducted on the radiation effects of PM, s heavy pollution in the Bohai Rim region during pollution episodes in short
periods (within 3-5 years) (Bi et al., 2014; Mao and Wan, 2022; Wen et al., 2020; Zhong et al., 2018b). A severe
regional haze during 2013 over the west of the Bohai Sea exhibited strong negative radiative forcing (cooling) of —63

to —88 Wm 2 at the surface and strong positive radiative forcing (warming) of 57 to 82 Wm ? in the atmosphere, with

60  aslightly negative net radiative forcing of about -6 Wm™ on the top of the atmosphere (Lin et al., 2022). However,
research on the radiative forcing of heavy pollution in the Bohai Rim region during autumn and winter over the past

decade remains limited.

The radiative forcing of heavy pollution is primarily influenced by aerosol concentration, composition, and
vertical distribution (Ding et al., 2019; Haywood and Boucher, 2000; Mishra et al., 2015), while aerosols themselves

65  are affected by factors such as emissions, chemical formation processes, and meteorological dispersion/transport
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(Calvo et al., 2013; Luo et al., 2003; Zhong et al., 2018a). Considerable research has focused on the impacts of
emissions, chemical formation, and meteorological conditions on PM> 5 concentrations in the Bohai Rim region (Du
et al., 2022; Ma et al., 2021). Regarding the contribution of meteorological conditions to aerosol pollution, studies
combining observations and modeling approaches have demonstrated that synoptic patterns such as high-pressure
70  systems, inversion temperature, weak winds, and southerly flows exacerbate heavy pollution episodes in the Beijing-
Tianjin-Hebei region (the west of Bohai Sea) (Liu et al., 2019a; Song et al., 2025; Wu et al., 2018; Zhang et al., 2018).
Numerous studies have applied machine learning and deep learning methods to predict surface PM, 5 concentrations
by incorporating meteorological conditions (Chen et al., 2018; Kleine Deters et al., 2017; Peng et al., 2022; Wang and
Sun, 2019; Zeng et al., 2021). Some work analyzed the impact of meteorological parameters on aerosol radiative
75  properties (such as AOD)(Che et al., 2019; Khoshsima et al., 2014; Tiwari et al., 2015). Nevertheless, the influence of
meteorological conditions on the radiative forcing of heavy pollution remains inadequately explored. Particularly, the
impacts of the structural characteristics of thermal (temperature) and dynamical (wind) factors across vertical profiles

on aerosol pollution-induced radiative forcing have received less attention.

Aerosol radiative forcing can vary somewhat between clear-sky and cloudy (all-sky) conditions (Kim and

80  Ramanathan, 2008). Its radiative effect in cloudy conditions affects precipitation at the same time (Huang et al., 2016;
Lopez-Romero et al., 2021; Qian et al., 2009; Stier et al., 2024; Tao et al., 2012; Zhao et al., 2024). Under high pollution
conditions, the frequency of heavy rain increases while the frequency of light rain decreases (Liu et al., 2019b). In East
China, it was found that the increase of aerosol will obviously increase the precipitation frequency when low aerosol
loading, but the excessive aerosol suppresses the precipitation frequency when high aerosol loading in some regions

85  (Sunetal., 2022). Around the Bohai Sea region, aerosol pollution is positively correlated with convective precipitation
during autumn and winter (Xiao et al., 2022), and aerosols enhance both warm-topped and cold-topped rain during the

warm seasons (Li et al., 2025). In Bohai Rim, PM 5 heavy pollution days still occurred in the past decade and exhibit
radiation effects, while there is a lack of understanding of the relative importance of aerosol radiative effects and

thermal (temperature) and dynamical (wind) meteorological conditions on daily precipitation.

90 In the overview, we find that the following issues exist: (1) What are the characteristics of heavy pollution
radiative forcing in the Bohai Sea region during the fall and winter over the past ten years? (2) How are the influences
of thermal (temperature) and dynamical (wind) type changes at vertical height in the radiative forcing of heavy
pollution in the Bohai Rim region during fall and winter? And what are the most important factors influencing the

heavy pollution radiative forcing in combination with the surface PMs concentration? (3) What is the relative
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95  importance of heavy pollution radiative forcing and meteorological factors (thermal and dynamical factors) on daily
precipitation? To address the above questions, this work combines ground-based and satellite observations and
reanalysis data to investigate the pollution and radiation characteristics of regional PM> s heavy pollution days in the
Bohai Rim regions during the fall and winter of 2014-2023, and uses machine learning methods to analyze the effects
of type variations in meteorological parameters (thermal and dynamical factors) at vertical heights on the heavy

100  pollution radiative forcing, to explore the importance of their influencing factors, and to reveal the importance of
pollution radiative forcing on daily total precipitation in the Bohai Rim region during the fall and winter of 2014-2023.
Therefore, the primary objective of this work is to reveal the heavy pollution radiative forcing in the Bohai Rim region
and the impact of meteorological parameters (temperature and wind) at vertical heights on the heavy pollution radiative
forcing. The secondary objective is to explore the importance of factors to pollution RF and precipitation on regional

105  heavy pollution days.

2. Research region, data and methodology

2.1 Study region and ground-based stations

The study area is within 37-41°N and 116—123°E (comprising the Bohai Sea and its bay area), and the 11 ground-

based stations located at the Bohai Rim region were selected based on the location and quantitative balance, which

110  was separated into the following subregions: the west of the Bohai Sea including the Beijing-Langfang-Tianjin stations
on approximately a line (BLT, 116—118°E and 38.5-40.5°N), the north of the Bohai Sea (NB, 118-123°E and 38.5—

41°N), and the south of the Bohai Sea (SB, 116.5-123°E and 37-38.5°N), with the same number of stations in the NB

and SB regions. The specific study regions and locations of the 11 stations are shown in Figure 1 and Table S1. All of

the 11 stations are city stations. The BLT region includes three stations of Beijing (BJ), Langfang (LF), and Tianjin

115  (TJ). Tangshan (TS), Qinghuangdao (QHD), Huludao (HLD), and Dalian (DL) are located in the NB region. Stations

in the SB region are Cangzhou (CZ), Dongying (DY), Yantai (YT), and Weihai (WH).
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Figure 1. Topography of the study area and the 11 ground-based stations located at the Bohai Rim, which are separated
into three regions: the west of the Bohai Sea (BLT), north of the Bohai Sea (NB), and south of the Bohai Sea (SB).

120 2.2 Ground-observed PM; s and satellite CERES radiation products

The ground-observed PMas concentrations at the 11 stations were from China's Ministry of Ecology and
Environment (CMEE, http://www.cnemc.cn/sssj/) in the Bohai Rim. Every station included at least 3-4 observational
sites, and the values of all sites in a station were averaged to represent the station. Past studies have shown that the
data from the CMEE stations fit Benford's Law and were highly consistent with the data measured by the U.S. Embassy

125  in China since 2013 (Liang et al., 2016; Stoerk, 2016). We used daily concentrations of PMz s (averaged by hourly
values) at the 11 stations in the study regions during autumn and winter (9-12 and 1-2 months) from 2014-2023 to
show the pollution characteristics and to explore the heavy PM, 5 pollution day (daily PMas > 150 pgm™) at stations

and in the study regions.

The Satellite CERES radiation products (http://ceres.larc.nasa.gov) were used to illustrate the radiative forcing

130  (RF) on regional heavy polluted days. The CERES Edition 4.1 Synoptic 1° (CERES-SYNI1deg) product is a level-3
product at 1° x 1° spatial resolution. CERES-SYN1deg provides hourly gridded observed top of atmosphere (TOA)

fluxes and computed surface fluxes from the Fu-Liou radiative transfer model, which is suitable for regional diurnal

and process studies. The CERES-SYN1deg products have been validated by other measurements (Doelling et al., 2016;
Fillmore et al., 2022; Rutan et al., 2015). This work focuses on the aerosol radiative forcing on the heavy PMa s

135  pollution day during autumn and winter by using the daily net shortwave radiative flux at the TOA and ground surface
from the CERES_SYNldeg-Day Terra-Aqua-MODIS_Ed4.1 product over the study region. The differences between

CERES net radiative fluxes on regional heavy pollution days and the mean of clean days for all stations were used to
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reflect the radiative forcing (RF) of PM. s regional heavy pollution days (abbreviated as pollution RF). The RF in the

atmosphere was calculated by the difference of that at the TOA and the surface.
140 2.3 Reanalysis data TAP and ERA-5

The TAP (http://tapdata.org) dataset was developed at Tsinghua University as a cooperative effort among several
institutions and teams (Geng et al., 2021). The aim was to build a multiscale, near-real-time aerosol and gaseous
pollutant concentration database in China and provide essential support for pollution characteristics analysis. The TAP
data are generated based on the combination of multisource data, including ground measurements, satellite aerosol

145  optical parameter retrievals, model simulations, meteorology field, and land use information, as well as population and
elevation data, by multilayer machine learning models. The daily PM, s data for China with a 10 km resolution (2014-
2023) from TAP were used in this study to explore the importance of surface PM>s (as an approximation of

anthropogenic sources) to the pollution RF and daily total precipitation over study regions.

The European Centre for Medium-Range Weather Forecasts (ECMWF) produces global numerical weather

150  predictions for members and cooperating states and reanalysis data for a broader community (Hoffmann et al., 2019).
The fifth-generation ECMWF atmospheric reanalysis system (ERA-5) provides hourly wind fields on a 0.25° x 0.25°
latitude/longitude grid (Hersbach et al., 2020). The profiles of temperature (T) and three wind components (U, V, and

W) were used to study the impact of the types of meteorological profiles below 850 hPa on surface PMz s and RF on
regional heavy pollution days by the k-means classification method. The temperature and three wind components

155  below 850 hPa can reflect thermal, horizontal, and vertical diffusion in the boundary layer. Besides, the temperature
and three wind components at four levels (500, 700, 850, and 1000 hPa) were used to explore the importance of factors

to pollution RF and precipitation on regional heavy pollution days by machine learning algorithms. The four levels of
temperature and winds can reflect transportation in the middle and upper troposphere (700-500 hPa) and boundary

layer diffusion (1000-850 hPa).

160 2.4 Machine learning algorithms

2.4.1 k-means clustering method

We classified the T and wind components profiles in the boundary layer (below 850 hPa) adopting the k-means
clustering method (Lloyd, 1982). Through calculation, there were 161 days of regional PM, s heavy pollution days,
which is shown in the next section. Then, the profiles at the 11 stations in Bohai Rim on the 161 regional heavy polluted

165  days are used to cluster (the number of samples is 11*161). The steps of the clustering method are as follows. Step 1,
choose k (predefined number of patterns) initial cluster centers (centroids) among the 11*161 samples. Here use the

7



https://doi.org/10.5194/egusphere-2025-4464
Preprint. Discussion started: 17 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

k-means ++ algorithm for cluster center initialization (Arthur and Vassilvitskii 2006). Step 2, compute the squared
Euclidean distance between the daily meteorological profile to each centroid. Step 3, assign each profile to the cluster
with the closest centroid (the minion distance). Step 4, compute the average of the profile in each cluster to obtain k
170  new centroid locations. Step 5, repeat steps 2 through 4 until cluster assignments do not change, or the maximum
number of iterations (100) is reached. We selected the numbers of clusters (2-8) for classification of T, and then
combined the elbow method (the corner of the Sum Square Error) and the representativity of T profiles to determine
the last number of clusters (=5 in this study). The numbers of horizontal and vertical wind component clusters (also 5

clusters) were selected along the T clustering.
175  2.4.2 Importance estimation based on Random Forest algorithms

We used the Random Forest algorithm to compare and rank the importance of various factors to pollution RF and
daily total precipitation. The variable factors concerned in this study were PMas, T, and 3 wind components at four
levels (500, 700, 850, and 1000 hPa). The Random Forest method was proposed by American scientist Leo Breiman
in 2001 (Breiman, 2001). Compared with traditional analysis methods, Random Forest can be used more effectively

180  for voluminous and complex, high-dimensional data, with high model accuracy and tolerance for noise and outliers.
In addition, it performs excellently for evaluating the independent variables’ importance (Cutler et al., 2007). Due to
this high-level performance, Random Forest has been widely used in the field of multiple disciplines. This study mainly
used the importance assessment method in the Random Forest regression model. The calculation of importance is the
use of the “out-of-bag” observations method (Archer and Kimes, 2008). Out-of-bag predictor importance estimates by

185  permutation measure how influential the model’s predictor variables are at predicting the response. The influence of a
predictor increases with the value of this measure. If a predictor is influential in prediction, then permuting its values
should affect the model error. If a predictor is not influential, then permuting its values should have little to no effect

on the model error. Thus, the larger the calculated value, the greater its importance.

Due to the differences in the spatial resolution of PM, s (from TAP), meteorological parameters (from ERA-5)

190  and radiation data (from CERES), all data needed to be interpolated to a uniform resolution prior to machine learning
training. All datasets were interpolated to the resolution of the ERA-5 dataset: 0.25°x0.25°. The CERES radiation data
(originally at 1° resolution) were interpolated to 0.25° using a linear interpolation method. Similarly, the TAP PM> s

data (with resolutions of 10 km or 0.1°) were also interpolated to 0.25° using linear interpolation. However, before the
interpolation, NaN values in the TAP dataset (corresponding to ocean areas) were set to zero, and grid points adjacent

195  to land with zero values were replaced with values from the nearest terrestrial grid points. This assumption is
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reasonable given the lower anthropogenic emissions over the ocean compared to land areas. A comparison between
the interpolated data and the original data is provided in Supplementary Figure S1. The spatial distributions of the
interpolated and original datasets are generally consistent, with minor discrepancies observed only at a few grid points
exhibiting abrupt value changes. Since the results of this study primarily focus on regional averages, the errors

200  introduced at a limited number of grid points have negligible impact on the regional mean outcomes.

3. Results
3.1 Characteristics of PM, s heavy pollution in the Bohai Rim

3.1.1 Variations in ground-based PM; s at stations and regions

The statistical characteristics of PMa 5 concentrations at the regions and stations in the Bohai Rim during autumn

205  and winter from 2014 to 2023 are shown in Figure 2. The average PM» 5 concentration at all 11 stations around the
Bohai Rim during the study period was 52.80 + 45.34 pgm?, showing a slightly higher value than that of about 50

ugm™ in the Yangtze River Delta and 45-48 pgm™ in the Pearl River Delta of China’s economic regions (Hou et al.,

2019; Tao et al., 2017). Regionally, the mean daily PM, s concentrations were 60.97, 49.90, and 49.57 ugm in the

BLT, NB, and SB regions, respectively (i.e., BLT > NB > SB). Among these stations, Cangzhou (the westernmost

210  station in the SB region) experienced the highest mean PM> s concentration (68.11 + 51.68 ugm™). In contrast, Weihai
station (30.57 + 26.12 ugm™), also in the SB but easternmost, showed the lowest PM, s concentration. In general,
although the mean PM,s concentration in the NB region was slightly higher than that in the SB, there were no
significant north-south differences in Bohai Rim. However, a clear east-west gradient was observed in Bohai Rim,

with the western part experiencing more aerosol pollution than the eastern area.

215 According to the China National Ambient Air Quality Standards for PM2 s in 2012 (GB3095-2012 and HJ 633—
2012), we calculated the frequencies of PM; 5 concentrations at different levels during autumn and winter from 2014-
2023 (Figure 2b). All stations experienced heavy pollution days (daily PMa s> 150 ugm), with the highest frequency
at Langfang (8.70 %) and lowest at Weihai (0.52 %). But not all stations experienced severe pollution days (daily
PM, 5> 250 pugm™), such as Yantai and Weihai stations in the SB region. The frequencies of heavy pollution days were
220  6.87-8.70 % in BLT, 1.32-7.84 % in NB, and 0.52-7.96 % in the SB region. The BLT region (the west of Bohai Sea)
experienced relatively balanced heavy pollution days, whereas the NB and SB regions exhibited higher frequencies of
heavy pollution days at western stations but lower frequencies at eastern stations, indicating the western area suffered

more aerosol heavy pollution than the eastern area in the Bohai Rim.

To explore the characteristics of regional pollution around the Bohai Sea, we identified regional PM; 5 heavy

9
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pollution events with multiple stations experiencing PM s heavy pollution on the same days. For each region, a heavy
pollution day was defined as when more than half of the stations within the region were heavily polluted. Figure 2¢
shows the heavy pollution days for stations and regions. There were 130, 51, and 74 days with daily PM> s reaching
heavy pollution levels in the BLT, NB, and SB regions, respectively. The BLT region exhibited the most of heavy
pollution days, and its periods of pollution often coincided with the other two regions, suggesting the possible transport
of air pollution through BLT to the other two regions. In total, there were 161 days of regional heavy pollution during
autumn and winter in 2014-2023, with a significant decrease from 2017 and even zero in 2021 and 2023. The decreased
trend of regional heavy pollution can be attributed to China’s air pollution control policies implemented from 2013, as

well as the effect of the COVID-19 epidemic beginning in 2019.
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Figure 2. The statistics of PMa s concentration at the stations in the Bohai Rim in autumn and winter during 2014-
2023: (a) Violin plot of daily PM, 5, the mean PM> s (white asterisk) at sites and subregions (gray line); (b) Frequency
distribution of PM> 5 at stations; (c) The heavy pollution day at each station (red) and for each region (gray).

3.1.2 Radiative forcing of regional heavy pollution in the Bohai Rim regions

Radiative forcing (RF) is a widely used parameter for measuring impacts on climate. Aerosol radiative forcing
refers to the effect of anthropogenic aerosols on radiative fluxes at the surface and at the top of the atmosphere (TOA),
as well as in the atmosphere. Figure 3 illustrates the short-wave RF on regional PM,.s heavy pollution days at the

surface and TOA, as well as in the atmosphere for clear-sky and all-sky in the three study regions. The results showed

10
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that regional PM, s heavy pollution reduced net shortwave radiation reaching the surface, increased the net radiation
in the atmosphere, and caused radiative perturbations at the TOA in the study regions. These findings agreed with
245  previous research (Park et al. 2001; Lin et al. 2022). However, our work showed notable regional heterogeneity. At the
surface, RF can be up to -70 Wm™ in clear-sky, and relatively lower at -55 Wm™ in all-sky, with the largest impact in
the NB region. At the TOA, pollution-induced RF is negative in most parts of the BLT and SB regions with values up
to ~-8 Wm2, but positive in most of the NB region (up to ~+8 Wm), as the positive and negative regions are mainly
reflected in the sea and land. Within the atmosphere, the values of pollution RF can reach +80 Wm™ in clear-sky and
250  +60 Wmin all-sky, with also the largest impact in the NB region, followed by the BLT region. The RF values in clear-
sky were higher than those in all-sky, which may be explained by the effect of clouds. The regional variations showed
high values in the NB region, which did not agree with PM» 5 concentrations in the three regions (Figure 2a). This
discrepancy may be related to the aerosol vertical profiles, aerosol composition, and even the diffusion and transport

of aerosols. The impacts of diffusion and transport factors are analyzed in the following sections.

(a)Heavy polluted-Clean days: Surface Clear (b)Heavy polluted-Clean days: TOA Clear (c)Heavy poll
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Figure 3. The short-wave radiative forcing (Wm™2) on regional PM,s heavy pollution days calculated from the
difference between CERES net radiative fluxes on regional heavy pollution days and the mean of clean days for all
stations: (a and d) at the surface; (b and e) at the top of atmosphere (TOA); (c and f) in the atmosphere, in clear sky (a-
¢) and all sky (d-f).

260 3.2 Impact of meteorological profiles on surface PM: s and RF at regional heavy pollution days

This section intends to explore the impact of temperature (T) and wind vertical profile types in the Bohai Rim
regions on surface PMs 5 concentration and RF during the regional heavy pollution days. Since the boundary layer is
the key level for pollution diffusion and transport, the clustering of T and wind vertical profiles is based on

meteorological parameters below 850 hPa. For the wind profiles, we take into account the clustering of horizontal

11
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265  wind components (U and V) and the vertical wind component (W).
3.2.1 Effect of temperature profile types

The T clusters and their statistics of stations, PM> 5, and RF are shown in Figure 4. The five T types in Figure 4a
can represent three temperature stratifications (decreasing stratification-T CI1, decreasing with isothermal
stratification-T_C2, and inversion stratification-T_C3-5) and the inversion layers at different altitudes (low-altitude

270  inversion-T_C3, mid-altitude inversion-T_C4, and upper-altitude inversion-T_CS5). The decreasing stratification type
T_C1 occurred most frequently (>50%) at all stations, followed by T_C2 and T_C3 (5-20%) (Figure 4b). T_CS was
the least at most stations, except for Qinhuangdao and Huludao, where the lowest frequency was the T C4 type. The
PM, s concentrations at different T types in Figure 4c exhibited notable variations, with low values at T_C1-2
(decreasing stratification and with isothermal stratification) and relatively high values at inversion stratifications T _C3-

275 5. For the altitude of inversion, PMa.s concentrations at T _C3 and C4 were higher than at T _C5, indicating that low-
to medium-altitude inversions are more conducive to aerosol heavy pollution than the high-altitude inversion. The
finding of low-altitude inversion favorable to air pollution is consistent with the past studies (Sun et al., 2025; Wolf et
al., 2014; Xiang et al., 2019). However, this effect of T inversion did not occur at all regions in the Bohai Rim, as the
BLT region showed lower PMzs at T_CS5. This could be related to the aerosol emissions and the lower frequency of

280  T_CS in the BLT region.

The pollution RF at the surface for different T types in Figure 4d was higher at T_C2, T_C4, and T_CS5 (-63.82~-

68.23 Wm™, i.e., T stratification with isothermal layers at high altitude and medium- to high-altitude inversions) and

lower at T C1 and T_C3 (-51.13~-53.50 Wm™, i.e., decreasing stratification and low-altitude inversion), which
partially agreed with the surface PM» s concentrations in Figure 4c (high at T_C4-5 and low at T_C1). The RF is the

285  result of the total column aerosol, not the surface. RF at T C3 was lowest, for this low-altitude inversion restrained
the aerosol to the surface, leading to high surface PM, s but not high column aerosol. The highest surface RF at T C2

can be explained by the fact that this T stratification allows the aerosol to reach a relatively higher altitude, with the
possibility of lower surface PM» s but high total column aerosol, leading to higher RF at T_C2. At the TOA (Figure

4e), RF values were high at T C3 and T_CS5 but with opposite signs, which was related to column aerosol and also the

290  aerosol absorption properties determined by aerosol composition. Within the atmosphere (Figure 4f), the variations of
RF at the five T types resembled those at the surface, which was also related to column aerosol and aerosol composition.
Regarding regional differences, the NB region showed a higher RF value than BLT and SB, which may be partially

attributed to the effect of pollution transport.
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295  Figure 4. The five temperature (T) profiles under 850 hPa by k-means clustering on the regional heavy pollution days
(a); their statistics at the 11 stations (b); the PMa.s concertation (c) and the radiative forcing in the three regions in
clear- and all-sky at the surface (d), top of atmosphere (e), and in the atmosphere (f) at the five T clusters.

3.2.2 Effect of horizontal and vertical wind profile types

300 Figure 5 shows the UV clusters and their statistics of stations, PM s, and RF. The clusters showed that U wind
increased with height with different direction of C3 and C4 in lower levels, while the variations in V wind were
plentiful with opposite direction of C1 to other classes and smaller speeds of C2 and C3 in the lower levels (Figure
5a). The UV_C1 occurred most frequently (>40%) at all stations, followed by UV_C2(10-30%), and the proportion of
UV_CS5 was the least (Figure 5b). The surface PMa s concentrations in different UV types in Figure Sc showed some

305  variations but were not apparent as T clusters, with high values in UV_C1-3 and relatively low values in UV_C4-5.
The relatively high PM» 5 concentration may be related to wind direction and speed, i.e., lower horizontal wind speeds
at low levels in both UV_C2-3 (unfavorable for dispersion) and the anomalous direction of V wind in UV_CI1 (limited
dispersion due to topography) in agreement with the previous research (Liu et al., 2019a; Song et al., 2025; Wu et al.,
2018; Zhang et al., 2018). All regions showed higher PM» s in UV_C1-3, indicating that the horizontal speed and the

310  direction of the V-component were important factors for pollution dispersion in the Bohai Rim.

At the surface, the pollution RF in different UV types in Figure 5d was higher in UV_C2-3 and lower in UV_Cl1
and UV_C4-5, indicating lower horizontal speeds at low levels (UV_C2-3 unfavorable for dispersion) causing higher
pollution RF. The RF variations among UV clusters mostly matched with surface PMas changes, suggesting that
horizontal diffusion differed from the T inversion that restricted the aerosol near the surface. At the TOA (Figure 5e),

13
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315  RF variation was not the same as surface RF matching well with PM, 5, which was related to column aerosol and also
the aerosol absorption determined by aerosol composition. Within the atmosphere (Figure 5f), the variation of RF at
the UV types was mostly similar to RF at the surface, with a partial discrepancy in UV_C4 (maybe also related to
column aerosol and aerosol composition). Regionally, the NB region also exhibited higher RF values at the surface
and in the atmosphere than BLT and SB, which may be partially attributed to the effect of pollution transport above

320  the boundary layer. This effect will be discussed in section 3.3.
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Figure 5. Same as Figure 4 but for horizontal wind components clustering (U and V winds).

Vertical wind may also affect aerosol pollution and its RF, so W wind profiles were clustered and the same number

325  of five clusters were selected (seen in Figure 6). The five W clusters (Figure 6a) showed large changes with the height,
with predominantly upward of C2-3, downward of C4-5, and ascending firstly and then descending of C1 below 850

hPa. Compared with T and horizontal wind clustering, the proportions of the five categories for vertical wind showed

no significant differences, with little higher proportions in W_C1-2 (Figure 6b). The variations in PM> 5 concentrations

in different W wind types (Figure 6¢) were not as significant as T and UV clusters, with only slightly high values at

330  W_C1-3 and little low values at W_C4-5. The reason may be that the vertical winds were ascending motion at low
levels in W_C1-3, which helped for aerosol dispersion after emission. Conversely, the W winds in W_C4-5 at low

levels displayed descending motion, not conducive to diffusion and emission of aerosol. As for the regional variations,

this effect of W wind direction was less obvious at NB and SB regions. This may be related to lower aerosol emissions

at these two regions than the BLT region, as well as related to aerosol transport.
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335 The surface pollution RF at different W types in Figure 6d was higher in W_C1-3 and lower in W_C4-5, indicating
that upward motion at low levels caused higher pollution RF. However, the differences among W profile types were
not significant, suggesting lower importance to RF of vertical wind than T and horizontal winds. The RF variations in
W clusters mostly matched with changes in the surface PM, s concentrations, implying that vertical diffusion and
horizontal diffusion were not as same as the T inversion restraining the aerosol to the surface. At the TOA (Figure 6¢),

340  the RF variation was not as same as surface RF, with high values in W _C1 and W _C4, which was related to column
aerosol concentration profiles and composition. In the atmosphere (Figure 6f), the variation of RF among the W types

was generally similar to RF at the surface. Regional variations resembled those seen in T and UV clusters.
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Figure 6. Same as Figure 4 but for vertical wind clustering (W wind).
345

3.3 The importance of factors to pollution RF and precipitation on regional heavy pollution days

The above two sections have demonstrated that surface PM,s concentration and meteorological profile types

within the boundary layer (T, horizontal and vertical winds) can affect the pollution RF around the Bohai Rim area.

The surface PM» 5 concentration is certainly related to the anthropogenic emissions, while the meteorological profile

350 types in the boundary layer primarily reflect diffusion factors. Additionally, the transport above the boundary layer
may also impact the regional pollution RF. The winds above the boundary layer may have a significant influence on
transport. Therefore, we focused on the surface PMz s concentration, temperature, and three wind components at four

levels (500, 750, 850, and 1000 hPa) to assess the relative importance of each parameter to pollution RF using machine

learning methods (Random Forest and Gradient Boosting algorithms). Regarding the relative importance of factors to
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355  total precipitation on regional heavy pollution days, the above parameters, along with RFs in all-sky, were taken into

consideration. Ocean and land were also discussed due to the significant discrepancy shown in Figure 3.
3.3.1 The importance of factors to radiative forcing

Figure 7 illustrates the importance of surface PM»s, winds, and T at four levels to the RF on regional heavy

polluted days. For RF at the surface in clear-sky, PM2 s, V wind at high levels (500-700 hPa) and T in low layers (700-

360 1000 hPa) were relatively important factors, with the largest importance of PM 5 in all study regions. These indicated
that anthropogenic emissions, meridional transport, and thermal diffusion in low layers were more important to
pollution RF around the Bohai Rim area. Compared to land areas, the U wind in the high layer instead of PM, 5 became

the most important factor over the ocean. Among the three subregions, the importance of T in the lower layer was
relatively weaker in the BLT and NB regions (anthropogenic emissions and meridional transport were more important

365  in these two regions), while the importance of V wind at high levels in the SB region was lower (anthropogenic
emissions and thermal diffusion in lower layers were more important in the SB region). In all-sky, the relatively
important factors were as same as that in clear-sky, but the most important factor was V wind at high level (500 hPa)

instead of surface PM s, suggesting the meridional transport became more important than anthropogenic emissions to

pollution RF in the all-sky.

370 Regarding the RF at the TOA in clear-sky, the relatively important factors were T at all levels and U wind in high
layers (500-700 hPa), with the most important factor of T (in the boundary layer). These were different from those for
RF at the surface, indicating that zonal transport and thermal diffusion in the troposphere, especially the T in the
boundary layer (not only reflecting the thermal diffusion but also affecting the aerosol chemical formation), were
important for TOA RF in clear-sky. Regional differences were not significant, except for the slightly high importance
375  of U wind in high layers in the BLT region. In all-sky, V500 and T500 were relatively important in all regions. But
U850 was also important in the SB and ocean regions, and T at low level (1000 hPa) was also important in the BLT
region. These reflected that meridional transport and thermal effects in the troposphere were important in all-sky for

TOA RF, with the relative importance of zonal transport and diffusion in low levels in the SB and ocean regions.

For RF in the atmosphere, the important factors in clear-sky and all-sky were similar to those at the surface,

380  although the importance of T (thermal effects) was weaker in the atmosphere than at the surface. Regionally, surface
PM> 5 (anthropogenic emissions) was dominant in the SB region under clear-sky, while PM» s and V700 (anthropogenic
emissions and meridional transport) were nearly equally important in the NB and BLT regions. In all-sky, T500 and

PMa 5 were also relatively important after V500-700 in the BLT region, while U850 was also relatively important in
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the SB region. In the NB region, V factors are dominant.

385 We also calculated the importance using the Gradient Boosting algorithm. The results showed that the rank of
factors’ importance was basically unchanged and the factor with the most importance based on the Gradient Boosting
algorithm was the same as that from the Random Forest algorithm. Therefore, we used the one machine learning

method (Random Forest) to analyze in the following part.
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390  Figure 7. The Random Forest’s importance of PM2 s, winds, and temperature at four levels (500, 700, 850, and 1000
hPa) to the radiative forcing on regional heavy pollution days at the surface (first row), top of atmosphere-TOA (second
row), and in the atmosphere-Atmos (third row) in clear-sky (first column) and all-sky (second column) in different
regions.

395 The most important factor has been explored, but what is the grid proportion of each region with the maximum
importance factor? Figure 8 shows the percentage of regional grids with maximum importance factor to the RF on
regional heavy pollution days. In clear-sky, the most important factor of PM, s at the surface and in the atmosphere
can account for ~ 50% of all areas with SB>NB>BLT and land>ocean. In addition, the grid percentage of V wind at
higher levels (500 and 700 hPa) can reach 30-40%, with the regional variations of SBKNB<BLT. In all-sky for the

400  surface and atmosphere, the maximum factor of V500 accounted for the mean of ~40% with the order BLT>SB>NB

at the surface and SB>BLT>NB in the atmosphere. Furthermore, the PM» 5 accounted for the mean of ~20%, but with
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larger differences in each region (PM»s in BLT can exceed 30%). Regarding the RF at the TOA, T at low levels
accounted for the majority in clear-sky with the largest percentage of 80% for T1000 in the BLT region, while the
larger percentages in all-sky can be of U850, V500, and T500, with the largest percentage of ~50% for T500 in the

405  BLT region.
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Figure 8. The percentage of regional grids with maximum importance factor (including PM> 5, winds, and temperature
at four levels) to the radiative forcing on regional heavy pollution days for surface (first row), TOA (second row), and
atmosphere-Atmos (third row) in clear sky (first column) and all sky (second column) in different regions.

410

3.3.2 The importance of factors to total precipitation

The importance of PM, s, winds and temperature at four levels, and RF in all-sky to daily total precipitation on

regional heavy pollution days in different regions is shown in Figure 9a. The results showed that the pollution RF in

all-sky (at the surface-RFSA, at the TOA-RFTA and in the atmosphere-RFAA) and W wind at high levels (500-700

415  hPa) were the two most important factors for daily total precipitation, followed by V wind at the high level. In contrast,
surface PMz s, T at each level, and U wind were not important. These indicated that pollution RF in all-sky, vertical
movement, and meridional transport in the upper layers were important to total precipitation on heavy aerosol pollution

days around the Bohai Rim area, whereas other factors such as anthropogenic emissions and thermal effects were less
important. The W wind can generate air convection, which is an essential condition for precipitation, and the V-

420  component may bring the abundant water vapor for precipitation. The pollution RF in all sky (including effects of
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aerosol-radiation and aerosol-cloud) can affect the development of clouds, start time and duration of precipitation, and
then the total precipitation, which is an inherent aerosol-meteorology—precipitation dilemma existing unexplained
underlying physical processes (Guo et al., 2018; Li et al., 2011). Regionally, the importance of pollution RF in all-sky
was stronger over the ocean areas. Among the three subregions, the importance of pollution RF in all-sky was

425  NB>SB>BLT.

The percentage of regional grids with maximum importance factor to total precipitation (Figure 9b) demonstrated
the important factors of W in the upper layers could account for 15-20% of all regions with NB>BLT>SB and
land>ocean. In addition, the percentages of pollution RF in all-sky reached to ~15% for all regions, with the largest
percentage of ~30% over ocean areas and the subregional variations of NB>SB>BLT. As is well known, vertical wind

430 s a key factor for precipitation. Our results confirm it in agreement with previous researches (Jun and Rind, 2024;
Wingo and Cecil, 2010). Moreover, the above findings suggested that pollution RFs in all-sky also played a significant
role in total precipitation in the Bohai Rim regions. This insight can provide some assistance in precipitation forecasting

around the Bohai Rim area, particularly by considering the role of radiative forcing on days with regional heavy

pollution.
(a) Importance of parameters to total_Pre
sBEl0ee0000@0e0 @o0ecoo 1 0.41
Py . -0.014
2 NBre ¢ 0000 ®e @ 000ece U C
c 1 0.4
§ BTeoeoece0@ GOO 000000
] g
g' Oceante © © @ @ @ ©® @ o ......L,/“ 0.2
Land;e e @ 0@ @ © @ (X X NN N
AIIregions*O... 0.. GB....O . 0
Q
& S ’\A‘b(oﬁ$<o¢\’\$% X ,<\,\Q> Vé@?
(b) Percentage of max |mporlanoe factor to total Pre
SB»oooo...oo?, .oooo.. .593
§ NBre ¢ ¢ ¢ ¢ @ © o o e @ © o o o
o I
g BLTte © ¢ ¢ ¢ @ @ o ®@ 0 0 0 o ® 20
§Ocean—ooooo.oo e o o o O C/
5 I
10
o Landfe © ¢ ©¢ @ @ ® o o ® ® 0 0 0 o @ ON
Allregions e o e o e @ o ¢ o ®@ ®@ ¢ 0 0 0@ D 0
35 0 0 OO OO0
o) OO 2’ S
Q& RO 0%0,9 go 4« o 4@ \@ \@@Q XSRS Qg\qg??
435 Factor

Figure 9. (a) The Random Forest’s importance of PM» 5, winds, and temperature at four levels, and RF in all-sky to
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total precipitation; and (b) the percentage of regional grids with maximum importance factor to total precipitation on
regional heavy pollution days in different regions.

440 4. Conclusions and discussion

Using ground-based monitoring data, satellite radiation products, and TAP and ERAS reanalysis datasets, the
radiative forcing of PM s heavy pollution days in the Bohai Rim regions during autumn and winter in 2014-2023 and
the impact of meteorological profiles on surface PM, s and pollution RF were analyzed. Besides, the importance of
factors to pollution RF and precipitation on regional heavy pollution days in the Bohai Rim regions, were investigated

445 by using machine learning algorithms. The results showed that all stations experienced heavy pollution days (daily
PMas > 150 pgm™) with frequencies of 0.52-8.70%, and there were 161 days of regional heavy pollution during
autumn and winter in 2014-2023. The RF on PM 5 regional heavy pollution days reached approximately -70 Wm™ at
the surface, 8 Wm at the TOA and +80 Wm in the atmosphere in clear-sky, with lower absolute values of RF in all
sky at the surface and in the atmosphere. Different T and winds profiles can influent the surface PMa s and pollution

450  RF. The differences in surface PM; s and RF are most pronounced under different temperature profile types. The winds
profiles with lower horizontal speeds and upward motion at low levels leaded to slightly higher surface PM» s and RF
at the surface. Among the parameters of surface PM»s, winds, and T at four levels, surface PM»s was the most
important factor to surface and atmosphere RF in clear-sky, while the most important factor in all-sky was the V wind
at the high level (500 hPa). As for TOA RF, T in the low level (boundary layer) was the most important factor in clear-

455  sky, whereas both V and T at higher levels were more important in all-sky. For daily total precipitation, pollution RFs
in all-sky were as important as vertical winds. Notably, there was regional heterogeneity for the important factors in

the Bohai Rim regions.

In the results, we found that the temperature profiles associated higher surface PM; s concentration and RF at the

surface were not entirely consistent. Specifically, low- to medium-altitude inversions corresponded to higher surface

460  PMa2;s concentrations compared to high-altitude inversion, whereas isothermal stratification of T at high altitudes and
medium- to high-altitude inversions were linked to higher surface RF. This discrepancy arises from the association
mechanism between RF and surface aerosols: RF reflects the total column aerosol burden rather than just surface

aerosol levels. This finding underscores the importance of addressing climate change by considering not only surface
pollution emissions but also aerosol effects throughout the entire atmospheric column. Furthermore, the finding that

465  the variation of RF in the atmosphere was similar to RF at the surface, while RF variation at the TOA differed from
RF at the surface in different meteorological profile types, primarily stems from the fact that RF at the surface and in
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the atmosphere correlates more strongly with aerosol content, whereas RF at the top of the atmosphere depends more
on aerosol composition. Additionally, the most important factor to pollution RF in clear-sky and all-sky is different,

highlighting the significant role of cloud processes.

470 This work revealed the RF of PMa 5 heavy pollution from an observational perspective in the Bohai Rim regions,
which improved understanding of the radiative effect of heavy pollution. The analysis of their influence factors of
vertical meteorological parameters by combing machine learning algorithms, deepened knowledge of the impact of
meteorological parameters in different layers on surface PMa s concentration and pollution RF in different positions
and skies. Besides, the findings of the importance of pollution RFs to total precipitation can provide some assistance

475  inprecipitation forecasting in the Bohai Rim area. Nevertheless, some uncertainties remain in the results. The pollution
RF calculated by the difference between CERES net radiative fluxes on regional heavy pollution days and the mean
of clean days may be imprecise. Besides, the machine learning method cannot explain the interaction and physical
processes between pollution RF, vertical temperature and winds, and precipitation. The mechanism and degree of the
impact of pollution RF on precipitation are not unequivocal. The interpolation of datasets with different spatial

480  resolutions used for training of the machine learning algorithm may cause some uncertainty. Further studies are
required to quantify the impacts of these factors on RF and precipitation and to explore the underlying physical
mechanisms or connections through additional observations in diverse regions and in higher spatial resolution, and

numerical simulations in the future.

485  Data availability. The ground-observed PMz s concentrations at the stations were from China's Ministry of Ecology
and Environment (CMEE, http://www.cnemc.cn/sssj/). The Satellite CERES radiation products are available from
http://ceres.larc.nasa.gov. The reanalysis data- TAP and ERA-5 data can be obtained from http://tapdata.org and
https://cds.climate.copernicus.eu/, respectively.
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