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14 Abstract. Ammonia emissions from agriculture are the primary source of atmospheric reactive nitrogen,
15 significantly impacting air pollution, soil acidification, eutrophication of water bodies, and human health.
16 Accurate quantification of ammonia from different sources is crucial for effective mitigation. In this
17 study, the air extraction method was employed to collect gases from livestock farms, and the §'°N values
18 of volatilized ammonia (NH3) from the animal husbandry industry in the southern Huang - Huai - Hai
19 Plain of China were analyzed using stable nitrogen isotopes. The results show that isotopic signatures
20 differ significantly among livestock types: dairy cows (-20.6%o + 0.8%o), laying hens (-27.4%o £ 1.0%o),
21 and pigs (-38.4%o £ 1.7%o). These livestock-derived signatures are distinct from those associated with
22 combustion sources (-7.0%o £ 2.1%o) and traffic emissions (6.6%o + 2.1%o), and they exhibit considerably
23 lower variability than fertilizer-derived signatures. Overall, this work provides high-precision isotopic
24 source signatures for livestock operations, offering essential parameters for regional atmospheric

25 ammonia source apportionment and highlighting the need for locally tailored mitigation strategies.
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28 1. Introduction

29 Ammonia (NH3) is a highly reactive and abundant nitrogenous gas in the atmosphere. It is classified
30 as a major alkaline species and readily reacts with sulfuric acid and nitric acid to produce ammonium
31 sulfate ((NH4)2SO4) and ammonium nitrate (NH4sNO3) (Kawashima et al., 2023; Kirkby et al., 2011).
32 These compounds can form particulate ammonium salts or interact with organic aerosols to generate
33 secondary aerosols. In moderately polluted environments, the mass fraction of these ammonium-
34 containing particles within PM, s is relatively low (Huang et al., 2014; Yang et al., 2011). Under severe
35 pollution conditions, however, ammonium sulfate, ammonium nitrate, and other ammonium salts can
36 account for up to approximately 50% of the total PMa s mass (Battye, 2003; Beusen et al., 2008; Goebes
37 et al., 2003). As a key precursor of secondary inorganic aerosols, NH; is a primary contributor to haze
38 formation and constitutes a substantial component of PM» s in polluted atmospheres (Wu et al., 2024;
39  Xiang et al., 2022). Excessive ammonia emissions also drive a range of environmental problems,
40 including soil acidification, climate perturbation, reduced atmospheric visibility, and eutrophication of
41 aquatic ecosystems (Huang et al., 2012; Jiang et al., 2021). Consequently, reducing NHs emissions has
42 recently been proposed as a strategy to mitigate smog pollution in China (Liu et al., 2019).

43 Over the past few decades, substantial changes in air quality have been observed across many
44 countries worldwide (Boyle, 2017; Warner et al., 2017). Notably, China has consistently ranked first in
45 global ammonia (NH3) emissions (Liu et al., 2013). Current NH; emission inventories identify the
46  principal sources as agricultural activities-including fertilizer application and livestock and poultry

47  farming-and non-agricultural sources, such as combustion processes and vehicular emissions (Bouwman
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48 et al., 1997; Schlesinger and Hartley, 1992; Streets et al., 2003). It is widely recognized that agriculture
49 represents the predominant source of atmospheric NH3, contributing over 70% of total emissions (Meng
50 etal., 2017; Xu et al., 2024), accounting for more than 70% of the total (Ma et al., 2021; Ti et al., 2019),
51 with livestock and poultry farming alone accounting for for 50% to 60% of agricultural NH3 emission
52 (Huang et al., 2012; Wang et al., 2018). Despite this, substantial uncertainty remains regarding the
53 contribution of livestock-derived NHj3 to nitrogen deposition (Elliott et al., 2019), and estimating these
54 contributions using satellite remote sensing and livestock emission inventories remains challenging
55 (Beusen et al., 2008; Li et al., 2023a; Van Damme et al., 2018). These conventional approaches typically
56 rely on fixed emission factors, such as unit animal excretion coefficients, which are limited by temporal
57 lags and insufficient spatial resolution, thereby hindering the capture of real-time variations in NH3
58 emissions and the resulting nitrogen deposition at the farm scale. In contrast, nitrogen stable isotope
59 analysis (8'°N) provides a direct and highly effective approach for tracing the sources of NH3 and NH4*
60 (Bhattarai et al., 2020; Xiao et al., 2020). This methodology relies on the principle that distinct emission
61 sources and environmental processes generally exhibit unique isotopic fingerprints (Elliott et al., 2019;
62  Li et al., 2024; Sui et al., 2020), defined by the ratio of heavy (**N) to light (**N) nitrogen isotopes in
63 collected samples (Song et al., 2021).

64 Numerous studies have employed stable nitrogen isotope (8'°N) techniques to quantify the
65 contributions of combustion, transportation, and agricultural activities to atmospheric NH3 and NH4"
66 (Xiang et al., 2022; Xie et al., 2008). For example, during the corn growing season in Northeast China,
67 35N values of NH3 volatilized from farmland exhibited a wide range, from -38.0%o to -0.2%o. Notably,
68 3N emission rates were considerably lower during the early stages of corn growth compared to later
69 stages, indicating clear seasonal variation (Song et al., 2024). Under different fertilization regimes,
70 significant differences in 8'>N-NH; emissions were observed, with values fluctuating between -46.0%o
71 and -4.7%o throughout the volatilization period (Ti et al., 2021). Previous studies report that §'"N-NH;
72 and 8'"N-NH4" emissions from combustion sources (-7.6%o to +16.2%o) predominate in winter,
73 contributing up to 51.6% of total ammonia emissions (Xiao et al., 2022, 2025; Zhou et al., 2021). In
74 contrast, NH3 emissions from vehicle exhaust exhibit relatively high §'°N values (13.7 + 3.7%o) (Savard
75 etal., 2017; Xi et al., 2023). However, these emissions are primarily localized in urban environments.
76 Currently, limited studies have reported the 8'°N characteristics of ammonia from livestock and

77  poultry farming. Existing data mostly rely on passive sampling methods (Berner and David Felix, 2020;
3
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78 Chang et al., 2016; Ti et al., 2018), which assess §'°N changes by collecting wet deposition samples
79 surrounding farms (pig farms: -35.1%o to -10.5%o; cattle farms: -24.7%o to -11.3%o). Additional research
80 has quantified 8'°N variability in livestock and poultry (-31.0%o to -15.0%o) through simulated ammonia
81 emissions during manure management processes (Hristov et al., 2009). It is noteworthy that §'SN-NH3
82 fluctuations in livestock and poultry operations may also depend on animal growth stages and
83 reproductive status..

84 The MixSAIR model has primarily been employed to apportion the contributions of atmospheric
85 emission sources using isotope analysis (Chang et al., 2016; Walters et al., 2022). However, there is no
86 universally fixed §'"N-NH4" value for each emission source. As a result, substantial variations in reported
87 8'N-NH," values for the same source have been documented across different studies. To date, no
88 research has validated changes in §'N-NH4" resulting specifically from livestock and poultry farm
89  emissions, nor has the relationship between 8'"N-NH," from different sources and regional variations
90  been examined. To obtain more accurate assessments of §'>N-NHj variations associated with ammonia
91 emissions from livestock and poultry farming, and to achieve reliable atmospheric NHj3 source
92 apportionment, it is essential to characterize the correlation between §'N-NH4" from different sources
93 and regional differences. In this study, active dynamic sampling methods were used to collect ammonia
94 emissions from intensive pig farms, dairy farms, and laying hen farms located in the southern region of
95 the Huang-Huai-Hai Plain. Meta-analysis techniques were employed to analyze the 3'°N signatures of
96 different ammonia emission sources. The specific objectives of this research are: (1) to determine the
97 3'N-NH4" values of emissions from livestock and poultry housing at various growth stages; and (2) to

98  investigate the relationship between §'*N-NHy4" from different sources and regional variations.

99 2. Materials and methods

100 2.1. Sampling points in the study area and sample collection and processing.

101 The sampling experiment at the farm was conducted from May 9, 2024, to December 6, 2024. No
102 samples were collected in July and August due to the absence of livestock or poultry during these months.
103 The collected samples covered the entire breeding period of fattening pigs and the period from chicks to
104  peak egg production in laying hens. Throughout the trial period, six batches of samples were obtained,

105 amounting to a total of 120 samples for measuring ammonia emissions from livestock and poultry
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106 housing. On days when samples were collected during hazy weather, the air pollution level was classified
107 as severe, whereas samples collected under clean atmospheric conditions corresponded to air quality
108 classified as excellent. Samples were collected using atmospheric samplers (Beijing Ke'an Labor
109 Protection Company) at a flow rate of 0.1 to 2 L-min"!, with each sample collected over a duration of 60
110  minutes.

111 The intensive fattening pig farm is located in Luoyang City, Henan Province (112.71° E, 34.52° N),
112 with no other livestock operations in the surrounding area. The sampled fattening pig farm houses 2,600
113 pigs distributed across four fully enclosed pig houses. One of these houses was selected as the target
114 sampling site. The sampling procedure was as follows: an atmospheric sampler was positioned 2.0 meters
115 from the exhaust vent of the livestock and poultry house at a height of 1.6 meters, corresponding to the
116 central height of the exhaust outlet. T The sampling duration was set to 60 minutes, with the gas flow
117  rate maintained at 2 L-min using a flow meter. A bubbler absorption bottle filled with absorption
118 solution was used to collect NHs. Three atmospheric samplers were operated simultaneously during each
119 sampling event. Figure 1 marks the sampling points of the intensive pig farms with green pentagrams.
120 In the case of intensive laying hens farms, each building houses approximately 15,000 laying hens
121 and is fully enclosed, with a total of 300,000 laying hens being raised. The sampling site is located in
122 Zhengzhou City, Henan Province (114.03° E, 34.59° N). One building was selected as the target sampling
123 point, with the sampling method mirroring that used for the fattening pig farms. As shown in Figure 1,
124 the light blue pentagons represent the sampling points of intensive layer farms.

125 The intensive dairy farm operates with an open-style barn design, housing 400 dairy cows per barn,
126  with a total of 4,000 dairy cows being raised. Four atmospheric samplers were installed in the
127 passageways of the dairy barns, with each sampler spaced 10 meters apart and positioned at a height of
128 1.6 meters. The dairy farm is located in Zhengzhou City, Henan Province (114.11° E, 34.81° N). The
129 sampling time and method remained consistent with those described above. In Figure 1, the dark blue
130  pentagons represent the sampling points of intensive dairy farms.

131 To investigate the variations in 3'°N levels associated with differing degrees of air pollution, samples
132 collected for 8'"°N measurement during periods of severe smog and when air quality was pristine. The
133 sampling location was situated on a spacious lawn within the campus of Henan Agricultural University,
134 devoid of tall buildings or traffic. The sampling point is illustrated in Figure 1, where the pink triangle

135 represents the sampling site for both haze and clean air (Longitude 113.82° E, Latitude 34.80° N). Each
5
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136 sampling event utilized three atmospheric samplers, positioned at a height of 1.6 meters, with the duration
137  of sampling aligned with that of the livestock farm.

138 The collected sample solution is transferred into a centrifuge tube and returned to the laboratory,
139 where the concentration of NH; is measured using a UV spectrophotometer. The detection method
140 adheres to the guidelines outlined in “Determination of Ammonia Nitrogen in Water by Salicylic Acid

141 Spectrophotometry” (HJ 536-2009), and the calculation method is presented in Equation (1):

_ As—Ap-a
bxv

142 ou x D D)

143 Where, py represents the mass concentration of ammonia nitrogen in the water sample (expressed as N),
144 in mg-L>. The variables are defined as follows: A, denotes the absorbance of the sample, while 4,
145 indicates the absorbance of the blank experiment, which is prepared from the same batch as the sample.
146 The parameters a and b correspond to the intercept and slope of the calibration curve, respectively.
147 Additionally, V refers to the volume of the water sample taken, measured in mL, and D signifies the
148 dilution factor of the water sample.

149 The analytical method described employs the bromate-hydroxylamine chemical approach (Soler-
150 Jofra et al., 2016; Zhang et al., 2007). Initially, a potassium bromate-potassium bromide solution reacts
151 under acidic conditions to produce bromine, which subsequently reacts in a strongly alkaline
152 environment to generate bromate, a potent oxidizing agent capable of oxidizing NH4" to NOy™. In the
153 following step, hydroxylamine hydrochloride reduces NO;™ in an acidic environment to form N>O. The
154 resultant N>O is then analyzed using a stable isotope ratio mass spectrometer, along with a multi-purpose
155 online gas preparation device, and an automatic sampler, to determine the §'°N value. For each sample
156 analysis, four international standard materials for NH4* (IAEA-N-1, USGS-25, IAEA-N-2, and USGS-
157 26, with 3'°N concentrations of 0.4%o, -30.41%o, 20.3%o, and 53.75%., respectively) are processed

158  simultaneously.
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160 Figure 1. Sampling sites of livestock farms, haze weather, and clear weather in this study, extracted from
161  the main research sampling locations. Yellow dots represent the main global research sampling sites, pink
162 triangles represent sampling sites during haze and clear weather, dark blue pentagons represent cattle

163 farms, light blue pentagons represent layer farms, and green pentagons represent fattening pig farms.

164 2.2. Data collection and processing

165 We screened articles published between January 2000 and January 2025 regarding the sources of
166 3'SN-NHj3 and §'N-NH,". Specifically, we utilized ISI Web of Science, Google Scholar, and PubMed,
167 employing the search terms “8'°N,” “NHs,” “ammonia emissions,” and “isotopes” to identify relevant
168 literature. Studies included in our analysis were required to meet the following criteria: (1) Samples must
169  be measured for either 8'"N-NH; or §'"N-NH4*; (2) Experiments must encompass at least one of the
170 following: combustion, fertilization, agriculture, transportation, or livestock farming; (3) The number of
171 experimental replicates and sampling events must be explicitly reported; (4) Samples must primarily
172 consist of atmospheric NH3 or PMzs, and detection must employ chemical methods. A total of 37
173 documents were included in the analysis. This dataset comprehensively encompasses multiple meta-
174  analyses and original studies, detailing changes in §'*’N-NHj3 and §'SN-NH4" from combustion sources,

175 transportation sources, agricultural sources, and livestock farming sources; the proportion of 3'°N values
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176 in the atmosphere; geographical location (latitude and longitude); and the GDP of each city where
177 samples were collected. If the data in the literature was presented solely in chart form, we utilized
178 WebPlotDigitizer-4.7 (https://apps.automeris.io/wpd4/) to extract the data. We categorized the collected
179 data into five distinct groups: combustion, transportation, farmland, livestock farming, and PMs 5.

180 A total of 126 samples were collected, and 41 literature references were gathered. Data analysis was

181 performed using Excel, SPSS, and Python version 3.11.

182 3. Result and discussion

183 3.1. Temporal Variations in Ammonia Emissions and 3'°N Signatures from Livestock Farms

184 During the sampling period from May to December, ammonia emissions varied significantly among
185 the three farm types: 4.9 to 6.7 mg-m™ for fattening pigs (Figure 2a), 1.7 and 2.5 mg-m™ for dairy cows
186 (Figure 2b), and 3.8 to 7.1 mg'm™ for laying hens (Figure 2¢), with the latter exhibiting substantial
187 temporal fluctuations. NHs emissions from fattening pigs peaked when the pigs reached 130 kg-head™!
188 (Figure 2a), For laying hens, NH3 concentrations initially increased and subsequently declined in
189 response to temperature variations, reflecting enhanced urease activity within the housing environment,
190 which accelerates urea hydrolysis and promotes NH; volatilization.3'N-NH4" levels at the livestock
191 farms showed significant temporal variation (p < 0.05) (Groot Koerkamp et al., 1998; Rosa et al., 2020).
192  From May to June, the 3'*N-NH," From May to June, 15N-NH4+ increased from -31.0%o to -25.2%o in
193 fattening pig farms and from -26.4%o to -24.6%o in laying hen farms. In September, 3'°N-NH4" values
194 from fattening pig farms (-13.3 £ 1.3%o) were significantly higher than those from laying hen and dairy
195 cow farms (-13.9 + 0.9%o), which were comparable. Over the following three months, §'N-NH4" levels
196 decreased significantly across both farm types. As illustrated in Figure 2, the highest NH; concentration
197  at the dairy farm (2.5 £+ 0.3 mg'm™) occurred in October, coinciding with the lowest 3'*N-NH4" values.
198  while laying hen farms also recorded minimum §"N-NH4" during this period of elevated NH.
199 Conversely, the lowest 3'"'N-NH," at fattening pig farms was observed in December, despite peak NHs
200 concentrations. NH3 concentrations differed significantly between hazy and clear weather in December
201 (Figure 2d), with 3'"N-NH," values being significantly higher under clear conditions (1.9 + 0.8%o) than

202 under hazy conditions (1.6 = 0.2%o; p < 0.05).
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Figure 2. Changes in NH3 emissions and 3'°N-NH," values outside the livestock farms among different
months. (a)Fatting pig farm; (b)Dairy cow farm; (c) Laying hens farm; (d) Comparison of Haze and clean
air samples. Statistical difference was calculated by T-test, P < 0.05, n =3.

As illustrated in Figure 3, throughout the entire monitoring period, ammonia (NH3) sources form
the farms exhibited nitrogen depletion, indicated by negative 3'’N-NH4" values. Overall, §'*N-NH4"
values exhibited significant fluctuations in dairy and fattening pig farms, while variations were
comparatively moderate in laying hens farms. Notably, the §'N-NH4" values at dairy cattle farms
displayed substantially greater overall changes during the monitoring period compared to those in laying
hens and fattening pig farms. The arithmetic mean value at fattening pig farms was -30.8 + 1.6%o, the
lowest among the three types of farms, whereas the 3'’N-NH," values in laying hens manure remained
at an intermediate level throughout the entire period. From October to December, the 3'*'N-NH," values
at livestock and poultry farms were generally lower than those observed in the first half of the monitoring
period (Figure 3). However, when comparing hazy and clear weather conditions, the 8'*N-NH4" values

for all three types of farms consistently remained at a relatively low level during this timeframe (Figure

3).
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220 Figure 3. Changes of 3">N-NH," abandance at intensive livestock farms during the sampling period. Hazy
221 and clean air were also sampled at December. The air sample of laying hens in December was missed,

222 because of death of chicken by avian influenza.

223 3.2. Comparison with Literature and Implications for Local Sources

224 During the monitoring period, the §'"N-NH4" values ranged from -50.0%o to -10.0%o (Figure 4a).
225 For fattening pigs, 8'°N-NH," values averaged -38.4%o + 1.8%o between October and December, which
226  was significantly lower than the previously reported range of -27.10%o to -31.7%o (Chang et al., 2016)
227  Notably, the overall variation remained within the 3'*N-NH4" emission ranges report for fattening pigs
228 in other studies (Bhattarai and Wang, 2023; Wang et al., 2022). Furthermore, due to differences in
229 livestock management practices and nitrogen content in feed, the 8'*°N-NH4" values from dairy farms in
230 this study, averaging -29.4%o + 13.9%o, were substantially lower than those reported by Martine M et al.
231 (20.5%o0 + 34.5%o) (Savard et al., 2017).

232 Comparison with 8'SN-NH," values measured in dairy farms in Akita, Japan, were -22.5%o £ -14.6%o
233 (Kawashima, 2019), no significant difference was observed relative to the values obtained in this study.

234 However, these values exceeded those reported by David et al (Felix et al., 2014), which ranged from -
10
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235 37.9%o to -22.9%o based on passive sampling techniques. Previous research has shown that active
236 sampling generally yields higher 8N values than passive sampling (Kawashima and Ono, 2019; Pan et
237 al., 2020). This discrepancy arises from the diffusion-driven nature of passive samplers, in which lighter
238 NH; molecules are preferentially adsorbed. Consequently, passive sampling typically produces 5'°N
239 values that deviate by approximately 15%o from those obtained by active sampling (Bhattarai and Wang,
240 2023; Skinner et al., 2006). Variations in 3'*N-NH4" values are known to occur among different livestock
241  species. During the monitoring period, 3'*°N-NH4" values from laying hen farms were consistently lower
242 than those from dairy farms but higher than those from fattening pig farms, consistent with previously
243 reported trends. This pattern suggests that 3'’N-NH4" variations in emitted NHj are not primarily driven
244 by animal body weight but are instead strongly modulated by environmental conditions (Choi et al., 2017;
245 Qu and Zhang, 2021). In agreement with earlier studies, 8'"N-NH4" emissions from fattening pig and
246 laying hen farms differed significantly from previously documented values, whereas no significant
247 difference was observed for dairy cattle farms. Furthermore, the magnitude of §'SN-NHy4" fluctuations
248 across the three farm types was smaller than that reported in earlier literature. Comparison with major
249 atmospheric NH3 sources further demonstrated that the 3'"N-NH4" values measured in this study diverged
250 substantially from those associated with combustion (-7.0%o £ 2.1%o), fertilization application (-38.0%o
251 + 0.2%o), and transportation (6.6%o * 2.1%o). Based on §'SN-NHy4" signatures measured under both hazy
252 and clear weather conditions, it can therefore be inferred that agricultural and livestock emissions are not
253 the dominant contributors to atmospheric NH3 in Zhengzhou. Instead, traffic exhaust and combustion

254 sources appear to constitute the primary contributors.

11
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Figure 4. Comparison of 3'N-NH4" values within different livestock farms and historical reported data.

(a)Comparison of the §'’N-NH4" values among different livestock farms; (b)Comparison of the §'>N-

NH4" values from present study with previously reported data.

3.3. Global Variability of NH3 Source Signatures and Challenges for Source Apportionment

Ammonia emissions that contribute to urban smog primarily arise from combustion activities,

vehicle exhaust, agriculture fertilization, and livestock production. As national economies expand, the

frequency and severity of smog events have intensified. Figure 5a (slope: 0.026, intercept: 1.6323, R%:

12
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263 0.0963) shows that from 2000 to 2025, when GDP remains below 70 billion USD, atmospheric §'>N-
264  NHy4" signatures predominantly reflect fertilizer-derived emissions from agricultural regions and NH3
265  volatilization from livestock operations (Kawashima et al., 2022; Kawashima and Kurahashi, 2011). This
266 pattern indicates that lower-income regions rely heavily on agriculture and animal husbandry as the
267 foundational components of their economies (Leng et al., 2018).

268 When GDP increases to between 80 billion and 300 billion USD, the contribution of combustion-
269 related and vehicular sources to §'’N-NH4" becomes increasingly prominent. Notably, vehicle exhaust
270  remains the dominant contributor within this GDP interval, suggesting that transportation serves as a key
271 economic driver during mid-stage development. In densely populated and economically advanced cities,
272 rapid vehicle growth further amplifies the influence of transportation-related 8'N-NH,4" signatures(Lim
273 et al., 2022; Pan et al., 2018; Stratton et al., 2019). Throughout the entire dataset, vehicle exhaust and
274 combustion together account for nearly 70% of ammonia emissions(Wu et al., 2019). Once GDP
275 surpasses 300 billion USD, §'"*°N-NH4" from combustion becomes the dominant atmospheric source,
276 while the relative contribution from vehicle exhaust begins to decline and emissions from agricultural
277 fertilization and livestock farming become negligible (Li et al., 2023b). It is important to note that
278 sampling sites in the present study were located near power plants (Lim et al., 2019; Zou et al., 2022),
279  whereas comparison data from previous studies were collected in urban cores. This spatial difference
280 further supports the conclusion that in highly developed cities, shifts in economic structure lead to
281 combustion sources emerging as the principal contributors to atmospheric NH3 under both hazy and clear
282 meteorological conditions. As illustrated in Figure Sb, the proportion of §'°N-NH4" attributed to
283  combustion and vehicular sources has increased over time. This temporal trend suggests that, with
284 economic growth, agricultural and livestock emissions no longer represent the dominant contributors to

285 atmospheric ammonia.
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287 Figure 5. Changes of 3'"N-NH4" values among different GDP cities and years. (a) The relationship
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288  between GDP and §'N-NH," values; (b) Changes of 3'"N-NH," values reported between 2008 to 2021.
289 The extracted dataset was classified into four major emission categories-livestock farming,
290 combustion, farmland fertilization, and vehicle exhaust-and subsequently subjected to statistical
291 evaluation. As illustrated in Figure 6, §'N-NH4" values associated with combustion sources showed
292 strong consistency with previously reported ranges (Chang et al., 2021). Although traffic exhaust and
293 livestock-related 3'N-NH4" values exhibited moderate dispersion, both sources remained within
294 relatively well-defined isotopic ranges. In sharp contrast, 3'*N-NH4" signatures following farmland
295 fertilization displayed pronounced heterogeneity, covering nearly the entire isotopic spectrum reported
296 for combustion, livestock, and vehicular emissions. This extensive variability highlights substantial
297 regional differences in agricultural ammonia emission processes (Felix et al., 2014; Li et al., 2023b).
298 Consequently, accurate source apportionment of atmospheric NH; requires distinguishing dominant local
299 emission pathways rather than relying solely on generalized isotopic patterns (Chen et al., 2022; Zhang

300 etal,2023).

60

40

8'"N-NH, (%o)

Combustion Livestock Agriculture Transportation

301

302 Figure 6. Statistical analysis of extracted data categorized by source: combustion sources, livestock and

303  poultry farming sources, agricultural sources, and transportation exhaust sources.

304 4. Summary

305 This study establishes high-precision 3'°N signatures for ammonia emissions from three dominant

306 intensive livestock systems in the Huang-Huai-Hai Plain. Distinct isotopic fingerprints were identified

14
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307  for dairy operations (-20.6%o £ 0.8%o), laying hen facilities (-27.4%o + 1.0%o), and fattening pig farms (-
308 38.4%0 + 1.7%o), underscoring clear differences among livestock categories. Our results further
309 demonstrate that isotopic signatures vary dynamically with NH3 volatilization intensity, highlighting the
310 need to incorporate volatilization-driven fractionation effects into isotope-based source apportionment
311 frameworks. When compared with ambient §'N-NH4" measurements in Zhengzhou, the newly
312 constrained source end-members indicate that non-agricultural sources-particularly vehicular emissions
313 and combustion-are likely major contributors to urban atmospheric ammonia. This interpretation,
314 however, requires validation through comprehensive isotopic mixing and dispersion modeling. Moreover,
315 global-scale evaluation reveals that the exceptional variability of §'°N associated with fertilized soils
316 continues to pose a substantial challenge for accurate identification of agricultural contributions.
317 Collectively, the findings presented here provide critical isotopic constraints that can enhance regional
318 atmospheric chemistry models and support the design of more precise and effective ammonia emission

319 control policies.
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