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Highlights 56 

● The MJO exhibits greater inherent predictability in 1981-1998 compared to 1999-57 

2018, primarily due to stronger MJO amplitude (higher signal-to-noise ratio).  58 

● Climate forcings (QBO, IOD, ENSO) play a primary role in modulating MJO skill in the 59 

models, overcoming model mean state biases.  60 

● Peak skill in MJO prediction is found when easterly QBO (EQBO) winds coincide with 61 

negative IOD or La Niña, a synergy that weakened after 1998. 62 
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Abstract 104 

 105 

The Madden–Julian Oscillation (MJO) is a key driver of global subseasonal-to-seasonal (S2S) 106 

climate variability, initiating teleconnections that affect weather patterns worldwide. 107 

Improving understanding of the factors that constrain MJO predictability is therefore critical 108 

for advancing S2S forecasting systems. Using a multi-model framework, we evaluate changes 109 

in MJO prediction skill between two periods (1981–1998 and 1999–2018) during austral 110 

summer (December–February) and examine the processes underpinning these differences. 111 

Our analysis reveals a pronounced decadal decline in MJO forecast skill, with high-skill years 112 

in 1981–1998 showing prediction lead times of around 10 days longer (based on the bivariate 113 

correlation of the Real-Time Multivariate MJO (RMM) index) than in 1999–2018, while low-114 

skill years show little change. This asymmetric reduction coincides with stronger MJO 115 

amplitude in the earlier period, despite relatively stable model mean-state biases in tropical 116 

sea surface temperatures (SSTs) and lower-tropospheric moisture. Key findings include: (1) 117 

persistent moisture biases across both periods, yet higher skill in 1981–1998, suggesting that 118 

model errors alone cannot explain the differences; (2) a stronger Quasi-Biennial Oscillation 119 

(QBO)–MJO relationship in the first period, independent of stratospheric resolution in the 120 

models; and (3) weakened coupling between the MJO and large-scale climate modes, 121 

including the QBO, El Niño–Southern Oscillation (ENSO), and Indian Ocean Dipole (IOD), in 122 

1999–2018, indicating reduced dynamical support for prediction. These results suggest that 123 

decadal variations in MJO skill are strongly influenced by changes in the background 124 

dynamical environment. They highlight the need for S2S systems to improve representation 125 

of tropospheric processes and stratosphere–troposphere coupling, particularly when large-126 

scale climate forcing is weak. 127 
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 146 

1. Introduction  147 

The Madden-Julian Oscillation (MJO), first identified by Madden and Julian (1971, 1972), is 148 

the dominant mode of intraseasonal tropical climate variability. Through its planetary-scale 149 

coupling of convection and circulation, the MJO modulates global weather systems via 150 

teleconnections and directly influences monsoons, extreme events, and extratropical 151 

patterns (Tseng et al., 2018; Lim et al., 2021a; Stan et al., 2022; Roy et al., 2025). These far-152 

reaching impacts make MJO prediction vital for subseasonal-to-seasonal (S2S) forecasting 153 

(Zhang, 2013; Jiang et al., 2020). Despite its critical role in S2S predictability, accurately 154 

forecasting the MJO remains a persistent challenge for state-of-the-art dynamical models 155 

(Kim et al., 2019a). Since the landmark Intraseasonal Variability Hindcast Experiment (ISVHE) 156 

in 2014, coordinated multi-model efforts have systematically advanced MJO prediction 157 

capabilities through improved model physics, initialisation, and ensemble strategies (Neena 158 

et al., 2014; Vitart, 2017; Pegion et al., 2019). These advances have extended MJO prediction 159 

skill to approximately 25-30 days in leading systems (Kim et al., 2019a). 160 

 161 

Despite modelling improvements, persistent deficiencies in simulating MJO propagation 162 

across the Maritime Continent (MC) continue to limit prediction skill, particularly for MC-163 

terminating events compared to those propagating beyond (Abhik et al., 2023). This 164 

persistent "MC barrier effect" (Zhang & Ling, 2017) arises primarily from model deficiencies 165 

in representing the region’s complex orography, diurnal precipitation cycles, and lower-166 

tropospheric moisture preconditioning (e.g., Peatman et al., 2014; Gonzalez & Jiang, 2017; 167 

Ling et al., 2019; Savarin & Chen, 2023). These issues are compounded by systematic mean 168 

state biases throughout the tropical Indo-Pacific, including an overly dry lower troposphere 169 

and erroneous circulation patterns over the MC region (Kim et al., 2019a; Zavadoff et al., 170 

2023). Furthermore, MJO prediction skill exhibits strong sensitivity to initial conditions, with 171 

forecast reliability depending on the event’s initial amplitude and genesis location, 172 

particularly for Indian Ocean-initiated events (Rashid et al., 2011; Lim et al., 2018; Wu et al., 173 

2023).  174 

 175 

While these tropospheric factors dominate MJO predictability and representation in models 176 

(e.g., Kim et al., 2014; Lin et al., 2024), stratospheric influences also play a critical role. In 177 

particular, the Quasi-Biennial Oscillation (QBO) modulates MJO amplitude and propagation 178 

through stratosphere–troposphere interactions (Son et al., 2017; Nishimoto & Yonden, 2017). 179 

This modulation also extends MJO forecast skill, with S2S models consistently showing higher 180 

predictability during the easterly QBO (EQBO) phases, when equatorial stratospheric winds 181 

blow from east to west (Abhik & Hendon, 2019). The physical mechanisms underlying this 182 

modulation involve two key processes: (1) EQBO-induced cold anomalies in the upper 183 

troposphere-lower stratosphere (UTLS) that reduce static stability and promote deep 184 

convection, and (2) more effective cloud-radiative feedback that amplifies and sustains MJO 185 

circulation (Marshall et al., 2017; Hendon & Abhik, 2018; Sakaeda et al., 2020; Jin et al., 2023). 186 

Notably, the observed QBO-MJO relationship has intensified in recent decades, likely linked 187 

to stratospheric cooling and tropospheric warming trends (Klotzbach et al., 2019). Despite 188 

this well-documented connection, most global forecast models struggle to replicate the QBO-189 

MJO relationship (e.g., Kim et al., 2019b; Martin et al., 2021). Kim et al. (2019b) demonstrated 190 
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only a weak QBO-MJO relationship reproduced by most forecast systems during the 1999-191 

2015 period. 192 

 193 

While the QBO's role in MJO predictability is well established, the impacts of tropical sea 194 

surface temperature (SST) variability remain less understood and appear to be model-195 

dependent. Zhou et al. (2024) recently identified enhanced MJO prediction skill during boreal 196 

winter basin-wide warm Indian Ocean SST events, mediated through intensified convective 197 

instability. However, their analysis was restricted to model simulations from the post-1999 198 

period. This finding suggests a potentially essential but underexplored connection between 199 

the Indian Ocean Basin Mode (IOBM) and MJO predictability, consistent with known 200 

thermodynamic controls on MJO propagation. 201 

 202 

Similarly, Liu et al. (2017) demonstrated that Indian Ocean variability (particularly positive 203 

Indian Ocean Dipole phases) might govern the upper limit of MJO predictability in the forecast 204 

system.  However, they cautioned about the potential model overestimation of this 205 

relationship. Notably, both analyses were restricted to shorter periods (about ~ 20 years), 206 

leaving open questions about the robustness of these relationships across different climate 207 

states and longer timescales. The El Niño Southern Oscillation (ENSO)-MJO relationship 208 

exhibits particular complexity, with studies reporting improved skill during both El Niño (via 209 

strengthened air-sea coupling; DeMott et al., 2018; Wu et al., 2023) and La Niña conditions 210 

(Kim et al., 2018; Mengist & Seo, 2022). This suggests that oceanic mode–MJO relationships 211 

are non-stationary, likely reflecting their sensitivity to evolving background climate states on 212 

decadal timescales (Zhao et al, 2016).  213 

This study addresses these knowledge gaps through a multi-model framework examining 214 

decadal shifts in MJO predictability during boreal winter/austral summer (December–215 

February (DJF))—the season of peak MJO activity and strongest coupling with major climate 216 

modes (ENSO, QBO, IOD, IOBM). Using four S2S hindcast datasets, together with 217 

observational verification and statistical benchmarking, we: 218 

1. disentangle intrinsic MJO predictability from model-specific biases; 219 

2. quantify how the influence of large-scale climate modes on predictability varies 220 

between 1981–1998 and 1999–2018; and 221 

3. diagnose the role of evolving background states in shaping the mechanisms and 222 

thresholds of MJO predictability. 223 

 224 

For the rest of the paper, we will describe forecast model configurations, forecast and 225 

verification data, and analysis methods in Section 2 and present results with discussion 226 

in Section 3. Then, we will provide concluding remarks in Section 4. 227 

2. Data and Methods 228 

2.1 Datasets 229 

This study analyses four independent subseasonal-to-seasonal (S2S) hindcast datasets to 230 

evaluate MJO prediction skills across different modelling systems: the Predictive Ocean-231 

Atmosphere Model for Australia Version 2 (POAMA2, Cottrill et al. 2013), the Australian 232 
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Community Climate and Earth-System Simulator—Seasonal (ACCESS-S2, Wedd et al., 2022), 233 

the Community Earth System Model Version 2 (CESM2, Richter et al., 2022), and the Global 234 

Earth Observing System S2S model Version 2 (GEOS-S2S-2, Molod et al., 2020). These models 235 

were selected from the wider S2S database based on the availability of sufficiently long 236 

hindcasts, ensemble sizes, and initialisation frequencies to permit robust skill assessment. In 237 

particular, POAMA2 and ACCESS-S2 provide extended archives (1981–2018), forming the core 238 

of our decadal comparison, while CESM2 and GEOS-S2S-2, available for the later period 239 

(1999–2018), are incorporated to broaden the analysis to more recent state-of-the-art 240 

systems and to test the robustness of the identified mechanisms across diverse model 241 

configurations.  242 

Key features of each hindcast—including vertical resolutions, ensemble sizes, initialisation 243 

frequencies, and hindcast durations—are summarised in Table 1. The study employs three 244 

primary observational datasets for verification: (1) NCEP/DOE Reanalysis II (NCEP2) for 245 

atmospheric variables (Kanamitsu et al., 2002), (2) NOAA AVHRR Outgoing Longwave 246 

Radiation (OLR) as a proxy for tropical convection (Liebmann & Smith, 1996), and (3) the 247 

NOAA OISST V2 SST dataset (Huang et al., 2021). These datasets span the 1981–2018 study 248 

period and were regridded to a consistent 2.5° × 2.5° global grid to facilitate comparison with 249 

model outputs. All model hindcasts (POAMA2, ACCESS-S2, CESM2, GEOS-S2S-2) are regridded 250 

to match the observational 2.5° × 2.5° grid.  251 

2.1.2 Climate Indices 252 

MJO activity is quantified using the Real-Time Multivariate MJO (RMM) index (Wheeler & 253 

Hendon, 2004), which is derived from the combined anomalies of OLR and zonal winds at 200 254 

hPa and 850 hPa. For climate mode classification, ENSO phases are identified using the Niño 255 

3.4 index (Trenberth, 1997), with El Niño (La Niña) defined when the 5-month running mean 256 

of SST anomalies in the Niño 3.4 region (5°S–5°N, 170°–120°W) exceeds +0.5σ (falls below 257 

−0.5σ). The running mean is applied continuously throughout the year, ensuring that phase 258 

classification captures the persistence of ENSO anomalies relevant to the DJF period under 259 

analysis. IOD events are tracked using the Dipole Mode Index (DMI) (Saji et al., 1999), which 260 

is calculated as the difference in SST anomalies between the tropical western (50°–70°E, 10°S-261 

10°N) and eastern (90°–110°E, equator-10°S) Indian Ocean (i.e., the western pole minus the 262 

eastern pole). Events are classified as positive or negative IOD based on the DJF mean of the 263 

DMI. A positive IOD event is defined when the DJF-averaged DMI exceeds +0.5σ (relative to 264 

the DJF climatology), and a negative IOD when it falls below −0.5σ. The Indian Ocean Basin 265 

Mode (IOBM) index is computed as the area-weighted average of SST anomalies across the 266 

tropical Indian Ocean (20°S–20°N, 40–110°E), following Xie et al. (2009). Warm (cold) IOBM 267 

events are identified when the standardised index exceeds +0.5σ (falls below −0.5σ). QBO 268 

phases are determined using 50 hPa zonal wind anomalies averaged over 5S-5N (U50) from 269 

NCEP2, with easterly (westerly) phases defined as U50 < −0.5σ (U50 > +0.5σ) (Son et al., 2017).   270 
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Table 1. Summary of S2S hindcast datasets analysed in this study 271 

To evaluate MJO prediction skill, we compare dynamical model forecasts against both 272 

observations and predictions from the Vector Autoregression (VAR) model developed by 273 

Maharaj & Wheeler (2005). This statistical approach serves as a key benchmark for assessing 274 

the performance of dynamical models, as established in previous studies (Rashid et al., 2011). 275 

The VAR model predicts MJO evolution using initial values of the RMM indices (RMM1 and 276 

RMM2) along with their lagged temporal variations, effectively functioning as an advanced 277 

bivariate persistence forecast. Further details of the VAR model's mathematical formulation 278 

and training procedures are provided in Marshall et al. (2016). This statistical benchmark 279 

enables systematic evaluation of whether dynamical models outperform a simple empirical 280 

statistical model. This study employs a period-stratified approach, analysing all observational 281 

data, dynamical model outputs (POAMA2, ACCESS-S2, CESM2, GEOS-S2S-2), and statistical 282 

benchmarks exclusively within two independent periods (1981–1998 and 1999–2018) to 283 

address potential non-stationarities in MJO behaviour. The VAR model is separately calibrated 284 

for each period through distinct regression coefficients (see supplementary text). By 285 

maintaining identical period divisions across all components (models, observations, and VAR), 286 

we control for background state variability and accurately quantify the evolution of skill across 287 

different periods. 288 

Model Pressure 
levels 
(hPa) 

Temporal 
Range 

Ensemble 
Members 

Initializatio
n 
Frequency 
(Days of 
the 
Month) 

References 

POAMA2 
(Low top 
model) 
 

17 Levels 
(model top at 
9 hPa) 

1981-2018 11 01,06,16,2
6 

Cottrill et al. (2013) 

ACCESS-S2 
(high-top 
model) 
 

85 levels 
(model top at 
~ 0.01 hPa)  

1981-2018 3 01,06,16,2
6 

Wedd et al. (2022) 

CESM2 
(Low top 
model) 

32 vertical 
levels (model 
top at 2.26 
hPa) 

1999-2018 11 1/week Richter et al. (2022) 

GEOS-S2S-2 
(high-top 
model) 

72 vertical 
levels (model 
top at 
0.01hPa) 

1999-2018 
(data 
unavailable 
for early 
2017) 

4 1/week Molod et al. (2020)  
Lim et al. (2021b) 

https://doi.org/10.5194/egusphere-2025-4453
Preprint. Discussion started: 2 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 9 

2.2 Methods 289 

Our analysis employs bivariate correlation (B.Corr) between observed and forecasted MJO 290 

RMM indices (Rashid et al., 2011) to quantify MJO prediction skill during austral summer (DJF), 291 

focusing specifically on the subseasonal window (15–25-day leads) where operational 292 

forecasting transitions from weather to climate timescales (see supplementary text).  This 293 

subseasonal window is used to compute an interannually varying skill index. A 15–25-day 294 

window to calculate the skill index is selected for two key reasons: 295 

1. Subseasonal Focus: This window captures the critical transition period where 296 

deterministic weather forecasts lose skill, but MJO predictability remains viable, 297 

addressing the core S2S prediction challenge. 298 

2. Signal clarity: In this range, interannual variations in MJO prediction skill are 299 

physically coherent and consistent across models, unlike at shorter leads (dominated 300 

by initial conditions) or longer leads (where noise overwhelms the signal). Broader 301 

windows (e.g., 10–30 days) were also tested, but these either biased the index 302 

toward initial-condition dependence or introduced substantial noise, reducing cross-303 

model consistency. 304 

To examine decadal changes in MJO predictability, we classified years into high- versus low-305 

skill categories for each of ACCESS-S2, POAMA-2, CESM2, GEOS-S2S-2 and for 1981-1998 306 

(ACCESS-S2 and POAMA2 only) and 1999-2018 using the 15–25-day bivariate correlation MJO 307 

skill index (see supplementary text for detailed methodology). We identified the top seven 308 

highest-scoring years as "Good MJO prediction years" (high-skill) and the bottom seven years 309 

as "Poor MJO prediction years" (low-skill) for each model-period combination. This 310 

comparison approach provides maximum diagnostic contrast between high- and low-skill 311 

regimes, allowing us to isolate the specific climate conditions (e.g., ENSO, QBO, IOD phases) 312 

and model characteristics that enhance or degrade MJO forecast skill. Selecting seven years 313 

per category corresponds to approximately the top and bottom 40% of cases in each period, 314 

providing a balance between statistical robustness and clear separation of skill levels. 315 

To investigate drivers of MJO predictability, we correlate each model's MJO skill index with 316 

key climate indices: Niño 3.4 (ENSO), Zonal wind anomalies at 50 hPa (QBO), DMI (IOD), and 317 

the IOBM Index. The climate indices are derived from observed datasets. The MJO amplitude 318 

and phase are derived following Rashid et al. (2011), ensuring compatibility with established 319 

verification frameworks. We detect and track MJO events using a modified version of the Wei 320 

and Ren (2019) methodology. While their original approach focused solely on Indian Ocean-321 

initiated events, our implementation extends coverage to all MJO phases (1-8). This 322 

adaptation provides three advantages: (1) it captures the full spectrum of observed MJO 323 

behaviour, including Pacific-originating events; (2) it eliminates geographical selection biases 324 

that could skew model verification; and (3) it increases the sample size of detectable events, 325 

enhancing statistical robustness. Steps to classify MJO events are discussed in detail in the 326 

supplementary text. We also employ linear regression between the MJO skill indices and key 327 

variables (OLR and 850 hPa specific humidity anomalies) for both observations and model 328 

forecasts to examine the background state changes associated with high MJO skill years 329 

versus low MJO skill years. Observational data are restructured to match forecast 330 

conventions, with four monthly start dates and MJO evolution time is calculated accordingly, 331 

ensuring consistent comparison with model outputs. 332 
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3. Results and Discussions 333 

3.1 Observed MJO characteristics 334 

Figure 1 highlights apparent epochal differences in the modulation of observed MJO 335 

amplitude by key climate modes. During the earlier period (1981–1998; Fig. 1, top row), MJO 336 

amplitude is significantly higher during (1) negative Indian Ocean Dipole (N-IOD) compared to 337 

positive IOD, and (2) easterly Quasi-Biennial Oscillation (EQBO) compared to westerly QBO, 338 

as indicated by stippling. Amplitude is also higher during cold Indian Ocean Basin Mode (C-339 

IOBM) years, although this difference is not statistically significant. In contrast, during the 340 

later period (1999–2018; Fig. 1, bottom row), these phase-dependent relationships undergo 341 

a marked reorganisation: the EQBO–MJO linkage strengthens, while the previously significant 342 

IOD contrast weakens and falls below statistical significance, and C-IOBM differences remain 343 

non-significant. 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

Figure 1: Composite mean amplitude of the MJO across different phases of climate indices—361 

IOBM, IOD, QBO, and Niño 3.4—during austral summer. The top row displays results for the 362 

period 1981–1998, while the bottom row shows the same for 1999–2018. Numbers in 363 

parentheses denote the number of years included in each composite phase. The statistical 364 

significance of MJO amplitude differences between positive and negative phases of each 365 

index was assessed using a bootstrapping approach (10,000 iterations), where years were 366 

randomly resampled (7 per phase). Hatched bars/bold text above the bars indicate 367 

differences exceeding the 90th percentile confidence threshold. 368 

In the earlier epoch, enhanced MJO amplitude during specific IOD and IOBM years may be 369 

partly associated with concurrent EQBO conditions. Moderate correlations between the QBO 370 
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and IOD (r = 0.32) and IOBM (r = 0.34) indices suggest some co-variability between 371 

stratospheric and Indian Ocean conditions. Notably, IOD and IOBM are significantly correlated 372 

(r = 0.39), indicating shared variability between these two Indian Ocean modes, while a 373 

weaker correlation exists between QBO and ENSO (r = 0.19). Together, these associations 374 

imply that MJO amplitude during this period was likely influenced by a combination of 375 

stratospheric (QBO) and tropospheric (Indian and Pacific Ocean SST) factors. 376 

While previous studies (e.g., Sun et al., 2019; Mengist & Seo, 2022; Takasuka et al., 2025) have 377 

emphasised the role of EQBO–La Niña co-occurrence in enhancing MJO convection and 378 

reducing the blocking effect of the Maritime Continent, it is notable that La Niña events 379 

frequently coincide with negative IOD- and IOBM-like states (Schott et al., 2009; Cai et al., 380 

2011; Lim et al., 2017). The negative phase of the IOD, characterised by enhanced low-level 381 

moisture and reduced atmospheric stability over the eastern Indian Ocean (Kug et al., 2009; 382 

Wilson et al., 2013), provides a thermodynamic environment favourable for MJO 383 

development, particularly in phases 1 and 2. Similarly, the cold phase of the IOBM, associated 384 

with basin-wide SST cooling, can promote increased atmospheric instability and moisture 385 

convergence across the Indian Ocean sector, particularly in phases 3 and 4. These conditions 386 

likely acted in concert with EQBO to strengthen MJO amplitude during the 1981–1998 period, 387 

highlighting a synergistic interaction between stratospheric and tropospheric drivers. 388 

In contrast, the 1999–2018 period exhibited intensified EQBO–MJO coupling (Klotzbach et al., 389 

2019) but a breakdown of tropospheric linkages, with QBO–IOD/IOBM correlations 390 

weakening to r = 0.15–0.13 and QBO–ENSO becoming slightly anti-correlated (r = −0.18). This 391 

breakdown reflects a fundamental shift in the background state, where the loss of combined 392 

stratospheric-tropospheric forcing—exacerbated by a weakened N-IOD–La Niña relationship 393 

post-1999 (Zu et al., 2024)—diminished MJO amplitude modulation.  394 

To further characterise MJO variability, we examined relationships between interannual MJO 395 

event properties (mean DJF duration and total yearly event count for DJF) and climate mode 396 

indices.  The QBO exerted the most substantial and most persistent influence, with MJO event 397 

duration showing robust negative correlations (1981–1998: r = −0.67; 1999–2018: r = −0.50). 398 

Composite analysis (Figure S1) illustrates the frequency distribution of MJO phases, showing 399 

that in EQBO years, particularly during 1981–1998, the MJO spends more days in phases 3–6. 400 

Although the figure does not directly plot event duration, this higher phase occupancy reflects 401 

longer-lived events, consistent with the negative correlation between QBO and mean DJF 402 

event duration (r = −0.67). In contrast, MJO event count exhibited weaker associations with 403 

QBO (r = −0.28 to −0.20). 404 

The tropospheric modes exhibited temporally varying relationships with MJO frequency: (1) 405 

the DMI correlated negatively with event count in 1981–1998 (r = −0.48, reflecting enhanced 406 

frequency during N-IOD years), but this relationship reversed sign and weakened post-1998; 407 

(2) the IOBM index developed a positive correlation (r = 0.38) in the later period (more events 408 

during W-IOBM years); and (3) ENSO (Niño 3.4) showed strong positive correlations in the 409 

first period (r = 0.46, linking El Niño (La Niña) to increased (decreased) MJO activity) that 410 

weakened substantially thereafter. This weakening of tropospheric mode relationships in the 411 

second period may stem from reduced co-occurrence of favourable QBO and tropospheric 412 

climate mode phases. Notably, none of the tropospheric indices (IOD, IOBM, ENSO) 413 

significantly correlated with MJO duration, underscoring that while they modulate initiation 414 
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frequency, event longevity is governed primarily by stratospheric (QBO) processes. Figure S1 415 

composites illustrate these dynamics: EQBO years in 1981–1998 featured both greater total 416 

MJO days and more substantial phase-specific enhancement (phases 3–6), whereas 417 

tropospheric influences (e.g., El Niño/N-IOD/W-IOBM linkages to MJO frequency) weakened 418 

or reversed in the later period. Collectively, these results demonstrate a stark contrast: 419 

tropospheric mode relationships with MJO evolved markedly between periods, while the 420 

QBO’s stratospheric influence remained robust, highlighting its dominant role in MJO 421 

prediction. 422 

3.2 MJO skill indices in the models  423 

As found in previous studies, all dynamical models exhibit appreciable skill for the 15–25 day 424 

lead time during most years, with bivariate correlations generally above ~0.5, indicating 425 

meaningful predictability of the MJO at subseasonal timescales. Figure 2 reveals systematic 426 

differences in MJO forecast skill between models and across the two periods. Dynamical 427 

models show strong inter-model agreement in skill indices during both 1981-1998 (Fig. 2A) 428 

and 1999-2018 (Fig. 2B), while the statistical VAR model (yellow line) consistently 429 

underperforms - a pattern confirmed also by the mean skill comparison with lead time (Fig. 430 

2C, yellow line). POAMA2 emerges as the highest-skill dynamical model (green solid line; ~26-431 

day skill) (Fig. 2C), potentially attributable to its enhanced MJO amplitude relative to 432 

observations (compare green and black solid lines; Fig. 2D). It is also noteworthy that the MJO 433 

amplitude is substantially underestimated in ACCESS-S2 (blue lines), particularly during the 434 

second period, compared to the other models and observations. This amplitude deficiency, 435 

however, does not translate to proportionally reduced forecast skill; the model maintains skill 436 

levels comparable to those of other dynamical models for this period. This apparent 437 

discrepancy suggests that while accurate amplitude representation may contribute to 438 

forecast skill (as seen in POAMA2's strong first-period performance), other factors may play 439 

compensatory roles in maintaining usable skill despite amplitude biases in ACCESS-S2.   440 

A comparison of good MJO prediction years reveals substantial differences between periods 441 

(Fig. 2E, compare the solid and dashed lines). ACCESS-S2 and POAMA2 demonstrate 442 

approximately 10 days greater forecast skill during 1981–1998 compared to 1999–2018, with 443 

this enhancement directly attributable to stronger MJO amplitudes in the earlier period (Fig. 444 

2F, compare solid and dashed lines). The statistical VAR model shows a similar, though 445 

statistically insignificant (p > 0.05), first-period skill advantage. In contrast, the skill difference 446 

between the first and second periods disappears in years with poor MJO predictions (Fig. 2G, 447 

compare solid and dashed lines), where all models exhibit comparable performance across 448 

periods. Importantly, there is strong consistency across models in the classification of good- 449 

and poor-prediction years, with most years falling into the same category across systems, 450 

reinforcing the robustness of the inter-model signal. These results suggest that recent 451 

changes in tropical climate dynamics—such as changes in the background state—have 452 

disproportionately affected MJO prediction skill in good MJO prediction years, while leaving 453 

poor-prediction years relatively unchanged. 454 

 455 
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Figure 2: Comparison of MJO forecast skill metrics between 1981–1998 (solid lines) and 456 

1999–2018 (dashed lines). (A, B) Skill indices at 15–25-day lead times across models (VAR, 457 

POAMA2, ACCESS-S2 in 1981–1998; CESM2 and GEOS-S2S-2 added in 1999–2018). (C, D) 458 

Composite mean skill and amplitude versus lead time. (E, F) Results for the seven highest-skill 459 

years (good MJO prediction); (G, H) the seven lowest-skill years (poor prediction years). Dots 460 

indicate statistically significant differences (p < 0.05) between periods for models present in 461 

both eras (ACCESS-S2, POAMA2, VAR). The comparison of good and poor MJO prediction 462 

years for the observed MJO amplitude is obtained using the multi-model mean skill index of 463 

the dynamical models for each period. 464 

3.3 Mean State Biases in the Models 465 

Figure 3 illustrates model mean state-specific humidity at 850 hPa and SST biases in the MJO 466 

forecast models across both study periods. All models exhibit an El Niño-like warming pattern 467 

in the eastern tropical Pacific, with POAMA2 and CESM2 showing the most substantial biases 468 

(exceeding +1.5°C) and ACCESS-S2 showing the weakest bias (< +0.8°C). The second period 469 
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(1999-2018) exhibits notable Indian Ocean warming in CESM2 and GEOS-S2S-2, contrasting 470 

with the first period (1981-1998), during which POAMA2 and ACCESS-S2 display more 471 

localised eastern Indian Ocean warming, accompanied by a characteristic negative IOD-like 472 

pattern. The identified SST biases likely affect MJO skill by modifying the background state 473 

through which the MJO propagates. The El Niño-like eastern Pacific warming may weaken the 474 

Walker circulation, and this weakening can, in turn, promote stronger eastward propagation 475 

of the MJO (Wang & Li, 2021). In the first period, negative IOD-like patterns in 476 

POAMA2/ACCESS-S2 could promote more realistic MJO initiation in phases 3 and 4.  477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

Figure 3: Mean state biases in MJO forecast models for 40-day lead time from the initialisation 491 

dates, showing differences between modelled and observed climatologies for (left) specific 492 

humidity at 850 hPa and (right) SST. Top panels (A-D) display biases for 1981-1998 from the 493 

model ensemble (POAMA2, ACCESS-S2), while bottom panels (E-L) show 1999-2018 results, 494 

including models (CESM2, GEOS-S2S-2). Positive values indicate that the model overestimates 495 

the value of the variable relative to the observations. The stippling in the figure suggests 496 

significant biases estimated using the bootstrapping method.  497 

Inter-model and period comparisons reveal no relationship between dry biases and MJO 498 

forecast skill. While POAMA2 and ACCESS-S2 maintain consistently weaker dry biases than 499 

CESM2 and GEOS-S2S-2, their skill characteristics show period-dependent behaviour: both 500 

models achieve superior performance during high-skill years in the first period (1981–1998; 501 

Fig. 2E) but experience notable skill reduction in the second period (1999–2018) without 502 
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corresponding increases in moisture bias. Crucially, mean skill levels remain comparable 503 

across all models despite their divergent dry bias magnitudes (e.g., CESM2/GEOS-S2S-2 vs. 504 

POAMA2). This apparent disconnect suggests that moisture biases alone are insufficient to 505 

explain variations in MJO forecast skill. Supporting this, Figure 3 shows positive SST biases 506 

over the Maritime Continent and eastern Indian Ocean in some models that do not translate 507 

into corresponding positive moisture anomalies at 850 hPa. This mismatch points to a possible 508 

decoupling between SST anomalies and moisture–convection feedback, potentially linked to 509 

weak surface wind anomalies or limitations in convection parameterisation. Thus, while dry 510 

biases do not directly correlate with skill differences, improving convection schemes and their 511 

coupling with large-scale dynamics could still be beneficial for enhancing MJO skill (Zhu & 512 

Hendon, 2015), particularly during periods of weak external forcing. We investigate the 513 

influence of large-scale dynamics in the following section. 514 

3.4 Large-scale dynamics influencing MJO skill in the models 515 

Figure 4 elucidates the large-scale atmospheric controls on MJO forecast skill by analysing 516 

regression patterns between model and observed state variables and the MJO skill index 517 

computed for individual models for respective periods. 30-day lead OLR and 850 hPa specific 518 

humidity anomalies are regressed onto the MJO skill index (see Section 3.2). This approach 519 

identifies characteristic patterns associated with high-skill/low-skill MJO prediction years 520 

while enabling direct model-observation comparisons. 521 

During the first period (1981–1998; Fig. 4, top panels), POAMA2, ACCESS-S2, and VAR 522 

simulate a negative IOD-like pattern in the Indian Ocean, marked by lower-tropospheric 523 

moistening in the eastern Indian Ocean (EIO) and drying in the western Indian Ocean (WIO), 524 

alongside collocated OLR anomalies showing enhanced EIO convection and WIO suppression. 525 

This dipole structure suggests that higher MJO skill coincides with a background state 526 

replicating an IOD-driven moisture-convection feedback. In the Pacific, models exhibit weak 527 

La Niña-like signatures in humidity and OLR, although these are statistically insignificant (p> 528 

0.10). ACCESS-S2 shows the strongest La Niña signal, while VAR captures only marginal Pacific 529 

anomalies. Collectively, these patterns indicate that first-period MJO skill is optimised when 530 

models simulate (1) a negative IOD-like regime in the Indian Ocean, enhancing moisture 531 

convergence, and (2) weak La Niña-like Pacific Ocean conditions, supporting a stronger 532 

Walker circulation. 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 
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Figure 4: Linear regression of OLR anomalies and 850 hPa specific humidity anomalies onto 541 

MJO skill indices computed for individual models and periods. The top panels display results 542 

for the period from 1981 to 1998, while the bottom panels show results for the period from 543 

1999 to 2018. Stippling marks regions where regression coefficients are statistically significant 544 

(p < 0.10). 545 

During the second period (1999–2018; Fig. 4, bottom panels), the models simulate distinct 546 

shifts in the relationships with the background states. POAMA2, CESM2, and GEOS-S2S-2 547 

exhibit strong moistening in the central Pacific, resembling a central Pacific El Niño pattern 548 

(Ashok et al., 2007), with collocated OLR anomalies showing enhanced convection; however, 549 

these linkages remain statistically insignificant (p> 0.10). In contrast, ACCESS-S2 and VAR lack 550 

a clear El Niño-like signature. The Indian Ocean displays divergent model behaviours: most 551 

models (excluding POAMA2, ACCESS-S2, and VAR) align with a warm IOBM regime, marked 552 

by basin-wide moistening and convection, while POAMA2, ACCESS-S2, and VAR instead reflect 553 

a positive IOD-like dipole pattern. Notably, all models systematically underestimate the 554 

observed magnitudes of moistening in the Indian Ocean across both periods, suggesting a 555 

pervasive bias in representing moisture convergence dynamics in the Indian Ocean region. 556 

These results highlight how epochal changes in tropical climate modes differentially influence 557 

model skill, with central Pacific El Niño, warm-IOBM and positive IOD-like regimes emerging 558 

as competing controls on MJO predictability in the most recent period. 559 
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Our analysis reveals fundamental differences in how tropospheric background states 560 

modulate MJO predictability across epochs. Between 1981 and 1998, both dynamical and 561 

statistical models demonstrated higher skill under consistent background conditions—a cold 562 

IOD-like pattern in the Indian Ocean, coupled with weak La Niña-like Pacific anomalies—563 

suggesting robust tropospheric control of MJO predictability. Post-1998, this coherence 564 

breaks down: models diverge in their responses to background states, with POAMA2, CESM2, 565 

and GEOS-S2S-2 tracking central Pacific (CP) El Niño-like conditions, while ACCESS-S2 and VAR 566 

exhibit either positive IOD linkages or weak tropical Pacific connections. This reduced 567 

tropospheric influence likely stems from the following: 568 

1. Increased sensitivity to Indian Ocean warming in recent years in some models 569 

(Dalpadado et al., 2021); 570 

2. ENSO diversity, particularly increased CP El Niño events (Freund et al., 2019), which 571 

alter MJO propagation pathways (Chen et al., 2015) and 572 

3. Stratospheric dominance, as the QBO’s role in MJO skill, intensifies due to the 573 

absence of coherent tropospheric drivers. 574 

The declining inter-model agreement further underscores that contemporary MJO prediction 575 

skill may depend more on interannual variability in stratospheric processes (e.g., QBO) than 576 

on the tropospheric background state. This has important implications for model 577 

development. 578 

To elucidate the evolving relationship between large-scale drivers and MJO predictability, we 579 

computed correlations between the multi-model mean skill index and the climate mode 580 

indices (averaged across dynamical models) during austral summer (December-February) for 581 

each period separately. This analysis reveals how the MJO-climate mode linkage has changed 582 

between 1981-1998 and 1999-2018, identifying which climate condition became more or less 583 

influential on MJO forecast skill over time. During 1981–1998, the multi-model mean skill 584 

index exhibited the strongest correlation with the QBO index (r = −0.41, p < 0.01), 585 

demonstrating enhanced predictability during EQBO years, with EQBO conditions supporting 586 

extended predictability windows of 25-35 days. This was complemented by weaker but 587 

consistent relationships with negative phases of the ocean-atmosphere coupled modes: IOD 588 

(r = -0.36, p < 0.01), ENSO (r = -0.30), and IOBM (r = -0.21), indicating that La Niña and negative 589 

IOD/IOBM conditions further enhanced predictability when coincident with EQBO. These 590 

correlation patterns strongly support our earlier findings that optimal MJO predictability 591 

occurred during periods when negative IOD/IOBM/ENSO phases coincided with EQBO 592 

conditions. This enhanced predictability primarily results from strengthened MJO convection 593 

during phases 3-6, when the MJO's convective envelope interacts most strongly with the 594 

Indian Ocean-western Pacific warm pool. The combined effects of (1) EQBO-induced 595 

stratospheric wind modulation and (2) warmer SSTs under negative IOD/IOBM/ENSO phases 596 

create favourable conditions for enhanced lower-tropospheric moisture convergence and 597 

deep convection. Both observational composites (Figure S1) and model simulations confirm 598 

this amplification mechanism, demonstrating more vigorous MJO activity in phases 3-6 during 599 

these co-occurring climate mode conditions (not shown). Post-1998, while the QBO influence 600 

strengthened further (r = -0.46, p < 0.01), its practical impact diminished as predictability 601 

windows shortened to 21-26 days during EQBO years. This paradox stems from a breakdown 602 

in the previously synergistic QBO-ocean-atmosphere coupling, as evidenced by reversed 603 

correlations with IOD (r = +0.34), ENSO (r = +0.31), and IOBM (r = +0.17) and weakened phase 604 
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alignments. This reversal occurred alongside a breakdown in favourable phase alignments 605 

(QBO-tropospheric mode correlations < 0.15), leaving no coherent multiscale forcing regime. 606 

Figure 5: Linear regressions of observed and modelled vertical profiles of (a) temperature and 607 

(b) zonal wind anomalies onto each model's MJO skill index for both periods (1981-1998 and 608 

1999-2018). The top panels present regression patterns for the earlier period (1981-1998), 609 

while the bottom panels show results for the later period (1999-2018). Stippling indicates 610 

regions where regression coefficients are statistically significant at the 90% confidence level 611 

(p < 0.10). 612 

Figure 5 validates the identified MJO skill-background state relationships through vertical 613 

structure analysis, examining temperature and zonal wind anomaly profiles via linear 614 

regression with model skill indices. During 1981–1998 (top panel), all models simulate EQBO-615 

like zonal wind patterns (easterly anomalies <-5 m/s in the lower stratosphere) which results 616 

in tropopause-level (100-200 hPa) temperature instability (ΔT ~-2.2–-1.2 K), though with 617 

notable inter-model differences: ACCESS-S2 better resolves these stratospheric signatures 618 

compared to POAMA2, which exhibits weaker vertical coherence due to its poor stratospheric 619 

representation. These patterns intensify post-1998, with wind anomalies strengthening and 620 

temperature instability increasing by ~1–2 K, indicating enhanced QBO-MJO coupling. This 621 
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vertical structure analysis aligns with our skill-index correlations, where the QBO relationship 622 

strengthened (r = −0.41 to −0.46). The consistency between these independent diagnostics 623 

(regressions and correlations) demonstrates that MJO predictability has shifted from being 624 

governed by coordinated tropospheric-stratospheric drivers in the first period to increasingly 625 

stratosphere-dominated controls in the second period, with model skill strongly dependent 626 

on faithful representation of QBO-related vertical coupling processes.  627 

3.5 Relationship Between MJO Event Characteristics in the Models and the Climate Indices  628 

Figure 6 displays the correlation coefficients between interannual MJO characteristics in the 629 

models (mean MJO event duration and total MJO event count for every DJF) and observed 630 

climate indices. In the first period, ACCESS-S2 (compared to POAMA2 and VAR) shows a 631 

significant negative correlation (−0.48) between the QBO index and MJO event count, a 632 

stronger relationship than observed. 633 

Figure 6: Correlation between MJO event characteristics (total MJO event count and mean 634 

annual event duration) against various climate indices (QBO, Niño3.4, DMI and IOBM for 635 

different periods.  636 

In the second period, the relationship between MJO event counts and the QBO index 637 

strengthens in ACCESS-S2 (−0.68) and is also evident in GEOS-S2S-2 (−0.47). This suggests a 638 

higher MJO event count during EQBO years. This is unlike the case in the observations. 639 

Additionally, moderate negative correlations (−0.39 to −0.49) emerge between MJO event 640 

durations and QBO indices in CESM2, ACCESS-S2, and GEOS-S2S-2. However, these model-641 

simulated relationships underestimate the observed relationships between the QBO and MJO 642 

duration linkages, except for ACCESS-S2. Because the QBO is skilfully predicted by the models 643 

(Table 2), these model-dependent relationships between the MJO characteristics and the 644 

QBO appear to originate not from stratospheric forecast errors, but from misrepresented 645 

tropospheric responses. 646 

During the second period, both POAMA2 and GEOS-S2S-2 exhibit significant positive 647 

correlations between the Niño3.4 index and MJO event count (0.51 and 0.70, respectively), 648 
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in contrast to observations, which show no such relationship. This discrepancy is also evident 649 

in the first period, as neither model captures the observed moderate positive MJO event 650 

count-ENSO connection (see section 3.1). Additionally, these models overestimate the 651 

relationship between MJO event duration and the ENSO index, suggesting that simulated MJO 652 

events persist longer during El Niño years or that the models exhibit a bias toward El Niño-653 

like conditions. The El Niño-like warming bias in the Pacific Ocean region observed in Section 654 

3.3 may be indicative of the same phenomenon. Klingaman and DeMott (2020) reported a 655 

similar result, finding increased MJO activity during El Niño years in CMIP-class models 656 

(specifically SPCAM3 and SPCCSM3), a pattern largely attributed to the East Pacific warming 657 

bias present in these climate models. 658 

The relationship between MJO event count and the DMI index during the first period differs 659 

substantially from observations in all models except VAR. While observations indicate an 660 

increase in MJO event frequency during negative IOD years, models generally fail to capture 661 

this association. In the second period, some models produce weak correlations between MJO 662 

event frequency and positive DMI, unlike in the observations. Notably, observations reveal 663 

no significant relationship between MJO event duration and IOD phases in either period. 664 

However, during the second period, most models generate weak (albeit non-significant) 665 

positive correlations between MJO duration and DMI, suggesting a potential positive IOD-like 666 

bias, with VAR and GEOS-S2S-2 as notable exceptions. The moderate skill in representing DMI 667 

variability across models (Table 2) further implies that the fidelity of MJO-IOD linkages in 668 

models may be tied to their ability to simulate IOD behaviour realistically. 669 

A moderate positive correlation exists between MJO event count and the IOBM index during 670 

the first period, suggesting that warm IOBM phases (W-IOBM years) are associated with 671 

enhanced MJO activity in model simulations. However, observational records show no 672 

significant MJO-IOBM relationship, implying this connection may be a modelling artifact 673 

rather than a genuine climate feature. While Table 2 indicates that most models reproduce 674 

the IOBM index with reasonable accuracy, this apparent skill in representing Indian Ocean 675 

variability does not extend to the MJO-IOBM linkage, suggesting potential oversimplifications 676 

or errors in the modelled physical mechanisms. During the second period, models generally 677 

underestimate MJO event frequency during warm IOBM phases, with GEOS-S2S-2 being the 678 

notable exception - its overestimation of this relationship may stem from the warm bias in its 679 

Indian Ocean simulation (Section 3.3). Additionally, CESM2 performs distinctly worse than 680 

other models in simulating IOBM-like conditions, as evidenced by its lower correlation (0.69) 681 

between observed and modelled IOBM indices. The Indian Ocean warming bias identified in 682 

CESM2 in Section 3.3 also supports the lower correlation.  683 

 684 

 685 

 686 

 687 

 688 

 689 
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Table 2: Correlations between climate mode indices computed from the observed datasets 690 

and model datasets for the two periods 691 

4. Conclusion 692 

Accurate prediction of the MJO is crucial for advancing S2S forecasting capabilities, given its 693 

global impact on tropical convection and extratropical teleconnections (Vitart & Robertson, 694 

2018). Our analysis of four S2S models (POAMA2, ACCESS-S2, GEOS-S2S-2, CESM2) and a 695 

statistical benchmark (VAR) during austral summer (December–February) across two periods 696 

(1981-1998 (POAMA2, ACCESS-S2)) vs. 1999-2018 (POAMA2, ACCESS-S2, GEOS-S2S-2, 697 

CESM2)) highlights three key findings. 698 

First, we assessed how the MJO interacts with various climate modes by conducting a 699 

composite analysis of observed MJO amplitude during different phases of the climate modes. 700 

In the earlier period, the IOD exhibited a pronounced influence on MJO amplitude, with the 701 

negative phase associated with more vigorous MJO activity. This enhancement was further 702 

supported by increased MJO amplitude during EQBO years and cold phases of the IOBM. 703 

However, in the later period, the relationship between the negative phase of the IOD and 704 

MJO amplitude disappears, leaving the MJO modulation primarily associated with the EQBO. 705 

Additionally, during the first period, EQBO–MJO events tended to coincide with favourable 706 

tropospheric states, such as negative IOD, cold IOBM, or La Niña-like conditions, suggesting a 707 

coherent multi-mode influence. By contrast, in the second period, the connection between 708 

stratospheric and tropospheric climate modes is diminished, and QBO–MJO events occur 709 

largely independently of favourable tropospheric forcings. The annual count of MJO events in 710 

observations shows a moderate correlation with coupled ocean–atmosphere modes, while 711 

the mean yearly event duration correlates directly with EQBO conditions.  712 

In the second part of our study, we analysed the relationship between MJO prediction skill 713 

and large-scale climate modes to verify the characteristics identified in observational records. 714 

The mean prediction skill for the MJO in ACCESS-S2 and POAMA2 showed minimal difference 715 

Model  QBO DMI IOBM Niño 3.4 

ACCESS-S2  
1981-1998 

0.96 0.73 0.95 0.80 

POAMA2 
1981-1998 

0.84 0.80 0.93 0.81 

ACCESS-S2 
1999-2019 

0.94 0.53 0.83 0.83 

POAMA2 
1999-2019 

0.86 0.67 0.83 0.93 

CESM2 0.97 0.67 0.69 0.98 

GEOS-S2S-2 0.98 0.55 0.70 0.82 
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between the two periods examined. This difference between the periods, however, is not 716 

observed in the years with poor MJO predictions. The elevated skill observed in the high-skill 717 

years of the first (earlier) period was primarily linked to higher MJO amplitude. These years 718 

showed a clear association with EQBO-like signatures in the stratosphere, a negative IOD–like 719 

pattern or cold IOBM-like pattern in the Indian Ocean sector, and, to a lesser extent, La Niña–720 

like conditions in the Pacific. This phase alignment among the stratospheric process, 721 

processes in the Indian and the Pacific Oceans provided a favourable multiscale environment 722 

that enhanced both MJO amplitude and model predictability. By contrast, in the second (later) 723 

period, high-skill MJO years exhibited distinctly different background conditions. For these 724 

years, Indian Ocean SST patterns resembled warm IOD/IOBM–like modes, and the Pacific 725 

showed El Niño–like features—conditions less conducive to amplified MJO activity. As a 726 

result, the previously robust synergistic connection between different climate modes 727 

appeared to break down, resulting in diminished MJO predictability even in otherwise “high-728 

skill” years. Notably, EQBO remained the only significant and persistent modulator of MJO 729 

skill in the second period, but its overall impact was weaker without concurrent favourable 730 

patterns in other climate modes. 731 

We speculate that in the later period, the weaker QBO–MJO relationship in model forecasts—732 

despite the QBO being reasonably well represented in both high-top (ACCESS-S2, GEOS-S2S-733 

2) and low-top (POAMA2) models, and consistent with the earlier period—likely reflects 734 

changes in the tropospheric background state. In the second period, the models struggle to 735 

capture the stratosphere–troposphere coupling, particularly in the absence of strong external 736 

forcing, as was more commonly observed during the first period. Additionally, key processes 737 

in the troposphere are often poorly captured by the models. For example, models analysed 738 

in this study fail to accurately replicate the observed relationship between MJO event 739 

frequency and duration and the ENSO index. This limitation suggests an underlying Pacific 740 

bias, with many models skewing toward El Niño–like conditions, potentially linked to a known 741 

warm bias in the eastern Pacific. Moreover, models (notably POAMA2, CESM2, and GEOS-742 

S2S-2) exhibit a tendency toward the warm phases of the IOD and IOBM, in contrast to 743 

observed variability. These systematic biases in representing coupled ocean–atmosphere 744 

background states may limit the models’ ability to simulate realistic MJO behaviour. 745 

Therefore, future modelling efforts would benefit from improving the representation of 746 

tropospheric circulation patterns and reducing SST-related biases, particularly in the Indo-747 

Pacific region, alongside enhanced stratospheric resolution. Such improvements may provide 748 

a pathway to improving MJO prediction skill, especially during periods lacking strong 749 

multiscale external forcing. A key limitation of this study is the relatively short hindcast record 750 

available, particularly for some models, which constrains the ability to robustly assess longer-751 

term variability and low-frequency influences. Extending forecast datasets further back in 752 

time would strengthen the ability to disentangle model biases from genuine dynamical shifts 753 

and provide a more comprehensive understanding of decadal changes in MJO predictability. 754 

Code and data availability 755 

The model data analysed during this study are available from the corresponding author upon 756 

reasonable request. All publicly available observational and reanalysis datasets are provided 757 

by the NOAA Physical Sciences Laboratory (PSL) and the Australian Bureau of Meteorology 758 

(BOM) as follows: 759 
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● The NCEP-DOE Reanalysis 2 data: 760 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html 761 

● The High-Resolution OISST Version 2 data: 762 

https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html 763 

● The Real-time Multivariate MJO (RMM) index (Wheeler and Hendon, 2004): 764 

http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt 765 

The analysis codes and scripts used in this study are available from the 766 

corresponding author upon reasonable request. 767 
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