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Abstract. Hydrological impact assessments under climate change commonly rely on conventional modeling chains where 10 

climate projections are bias-corrected before being used in hydrological simulations. While this improves agreement with 

historical observations, it can introduce methodological uncertainties, reduce the diversity of climate ensembles, and smooth 

out extreme events. Asynchronous methods have been proposed as an alternative, allowing hydrological models to be 

calibrated directly with raw climate model outputs. However, fully asynchronous methods often fail to capture the timing of 

key hydrological processes, especially in snow-affected regions. 15 

This study introduces and evaluates a semi-asynchronous calibration approach that incorporates a monthly temporal structure 

to address these limitations. Using the physically based WaSiM model, we compare the semi-asynchronous, fully 

asynchronous, and conventional methods across ten snow-influenced catchments in southern Quebec, Canada, under historical 

and future climate conditions. 

The results show that while the fully asynchronous and semi-asynchronous methods perform well in preserving streamflow 20 

distributions and high-flow extremes, only the semi-asynchronous method succeeds in restoring the seasonal timing of key 

processes such as snowmelt and low flows. The semi-asynchronous method notably reduces intermodel variability in 

streamflow and snow water equivalent compared to the fully asynchronous approach. It also exhibits seasonal dynamics that 

closely align with observations and the conventional method, despite relying on uncorrected climate inputs. In contrast, the 

fully asynchronous method shows signs of desynchronization, with unrealistic snowmelt timing and elevated variability across 25 

projections. The conventional method, while more stable in the historical period, exhibits an increase in intermodel variability 

under future conditions, likely due to divergent magnitudes of projected change across climate models. The semi-asynchronous 

method presents a clear improvement over the fully asynchronous approach by restoring temporal coherence and improving 

the simulation of seasonal processes. It also reduces intermodel variability while maintaining the raw climate signal and 

preserving the distribution of streamflow.  30 

Compared to the conventional method, which benefits from stable and consistent simulations but tends to dampen extremes 

through bias correction, the semi-asynchronous approach offers a compelling alternative. It strikes a different balance between 
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realism, ensemble diversity, and the ability to represent extreme events, making it particularly valuable for future-oriented 

climate impact assessments. 

This study highlights the potential of the semi-asynchronous method as an innovative and robust tool for hydrological modeling 35 

under climate change. As climate model simulations continue to improve and their biases are progressively reduced, the semi-

asynchronous approach is poised to benefit significantly, enhancing its potential for future hydrological projections. 

1 Introduction 

Climate change is one of the most significant challenges of our time, with profound implications for the Earth's hydrological 

systems. Alterations in temperature and precipitation regimes affect water availability and the timing of hydrological events. 40 

Understanding these impacts is crucial for effective water resource management and decision-making (Arsenault et al., 2013; 

Calvin et al., 2023). Accurate climate change studies are essential for developing strategies to mitigate and adapt to these 

changes, ensuring the sustainability of natural resources and the resilience of human and ecological systems (Milly et al., 2005; 

Sivakumar, 2011). 

The complex dynamics of watersheds require hydrological models capable of precisely simulating both surface and subsurface 45 

processes (Farjad et al., 2016; T. W. Chu and A. Shirmohammadi, 2004). Accurate depiction of these processes within 

hydrological models is essential for assessing the impacts of climate change (Kour et al., 2016). Physically based and spatially 

distributed hydrological models, such as the Water Balance Simulation Model (WaSiM) (Schulla, 2021), are particularly 

valuable due to their detailed representation of key processes including surface runoff, groundwater recharge, interflow, and 

baseflow. These models further enable accurate simulation of hydroclimatic variables, which are essential for understanding 50 

the physical processes driving water flow and distribution within a catchment (Bormann and Elfert, 2010; Förster et al., 2017, 

2018; Jasper et al., 2006; Natkhin et al., 2012). The use of physically based models like WaSiM, which capture local 

heterogeneity and finer-scale processes, provides a robust framework for evaluating climate change impacts on hydrology 

(Devia et al., 2015; Ludwig et al., 2009; Poulin et al., 2011) and supports stakeholders in making decisions that are both data-

driven and aligned with strategic goals. 55 

The conventional method for evaluating climate change impacts on hydrology involves a multi-step modeling chain designed 

to mitigate biases in both the hydrological model and the climate data. The method typically starts with the calibration of a 

hydrological model using observed meteorological data. Subsequently, raw climate model outputs are corrected using 

techniques such as quantile mapping (Themeßl et al., 2011; Mpelasoka and Chiew, 2009) to reduce potential biases with 

respect to the observed meteorological data. The calibrated hydrological model is then driven by these bias-corrected climate 60 

data to simulate hydrological processes over both a reference and a future period.  By comparing the differences between these 

two periods, the method estimates the potential effects of climate change on hydroclimatic variables, enabling a clearer 

understanding of how projected climate change will influence key hydrological processes. 
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While widely used, conventional methods are constrained by both technical and subjective considerations, including modeling 

assumptions and methodological choices that can introduce uncertainty in the modeling chain (Moges et al., 2021). Bias 65 

correction can disrupt the physical consistency between simulated climate variables and affect long-term climate change 

signals (Chen et al., 2021; Lee et al., 2019). Advanced techniques, such as multivariate quantile mapping bias correction 

(MBCn) (Cannon, 2018), have been developed to address some of these issues while preserving inter-variable relationships, 

which are essential for reliable hydrological modeling. Additionally, the choice of bias correction method itself contributes to 

overall uncertainty in hydrological projections, as studies have shown that different correction techniques can alter streamflow 70 

estimates and influence the magnitude of projected hydrological impacts (Senatore et al., 2022; Chae and Chung, 2024). Chen 

et al. (2021) further highlight the challenges of maintaining the integrity of climate signals due to the non-stationarity of biases 

in climate model outputs over time. Their study, which compares pre-processing bias correction of climate model outputs with 

post-processing corrections applied directly to hydrological model outputs, reveals that while both approaches can significantly 

reduce biases, they also introduce uncertainties, particularly when dealing with sharp seasonal gradients in correction factors. 75 

Despite these challenges, they recommend using a pre-processing approach rather than post-processing for climate impact 

studies. Additionally, conventional methods rely on high-quality meteorological observations, which are often unavailable in 

many regions (Ricard et al., 2023). 

Asynchronous methods have been proposed to address some of these challenges (Ricard et al., 2019, 2020, 2023; Valencia 

Giraldo et al., 2023). This framework avoids the need for bias correction by adapting the hydrological model calibration process 80 

to directly use raw climate model projection data. This allows conducting climate change studies without relying on observed 

meteorological data or the underlying assumptions of conventional methods, albeit at the cost of reduced temporal 

synchronicity. Because the sequence of climatic events within climate model simulations is different from the historical 

observations, it is not possible to use the correlation between observed and simulated daily streamflow during the calibration 

process. Instead, the fully asynchronous method focuses on calibrating the statistical distribution of observed streamflow rather 85 

than reproducing historical time series. Given that most climate change impact studies assess the projected change in statistical 

properties between a reference and a future period (Piani et al., 2010), the need for accurate daily temporal correlation may 

become less critical (Ricard et al., 2019).  

While fully asynchronous methods offer a promising alternative to conventional modeling chains by preserving the raw climate 

signal and streamflow distribution, they might do so at the expense of temporal coherence in hydrological processes. This 90 

study introduces a semi-asynchronous method that seeks to overcome this possible limitation by incorporating a monthly 

calibration structure, thereby restoring seasonal alignment without relying on bias correction. Using the physically based 

WaSiM model, the study evaluates and compares the conventional, fully asynchronous, and semi-asynchronous methods 

across ten snow-influenced catchments in southern Quebec. The objective is to assess how each approach represents key 

hydroclimatic variables and seasonal processes under both historical and future climate conditions. The semi-asynchronous 95 

method emerges as a compelling compromise, retaining the advantages of the fully asynchronous framework while 

significantly improving temporal realism and reducing intermodel variability. This comparison provides valuable insights into 
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the trade-offs between methodological simplicity, process fidelity, and ensemble diversity in hydrological climate change 

impact assessments. 

2 Methods and data 100 

2.1 Study area 

The study focuses on a selection of forested catchments in Southern Quebec, Canada, chosen for their varied sizes and 

hydrological characteristics. These catchments range in area from 549 km² to 1910 km² (Table 1), providing a diverse 

representation of the region's physiographic and climatic conditions (Fig. 1). This subset was selected from catchments 

previously studied (Talbot et al., 2025), where we have extensive knowledge of their behavior and a well-established baseline 105 

for comparison. These catchments are well-suited for hydrological modeling with WaSiM, as their natural hydrological 

processes remain largely intact and are minimally influenced by human-made structures such as dams. The availability of 

comprehensive streamflow data further supports their suitability for this study. 

The region experiences a humid continental climate, with significant seasonal variation characterized by cold, snowy winters 

and warm, rainy summers. The Köppen-Geiger Climate Classification designates most of this region as Dfb (Humid 110 

Continental Mild Summer Wet All Year), with a smaller northern part classified as Dfc (Subarctic with Cool Summers and 

Year-round Precipitation) (Beck et al., 2018). Specifically, the Godbout, Matane, and Bonaventure catchments belong to the 

Dfc climate class, while all other catchments fall under the Dfb classification. 

Climatic conditions show marked seasonal variations. Winters, extending from December to February, are cold with significant 

snowfall, contributing to the snowpack that influences spring runoff. Average temperatures during these months frequently 115 

drop below freezing, and snow depths can accumulate substantially, impacting streamflow upon melting. 

Summers, from June to August, are characterized by warm temperatures and increased rainfall (Fig. 6). The transitional seasons 

of spring (March to May) and autumn (September to November) exhibit moderate temperatures and variable precipitation, 

playing a significant role in the hydrological cycle by contributing to groundwater recharge and streamflow variability. 

Table 1. Physical and meteorological characteristics of the selected catchments in Southern Quebec.  120 

Catchments 
Area 

(km2) 

Mean 

Elevation 

(m) 

Dominant Soil 

Type 

Dominant 

Land Use 

Annual 

Rainfall a 

(mm) 

Annual 

Snowfall a 

(mm) 

Annual 

Runoff 

(mm) 

Bonaventure 1910 356 Sandy Loam 
Coniferous 

forest 
753 446 675 

Matane 1650 284 Sandy Loam Mixed forest 789 480 722 

Ouelle 795 315 Sandy Loam Mixed forest 826 424 604 

Bécancour 919 305 Sandy Loam 
Deciduous 

forest 
1011 389 743 

Nicolet S-O 549 259 Sandy Loam Cropland 1057 341 719 

https://doi.org/10.5194/egusphere-2025-4450
Preprint. Discussion started: 18 September 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

Au Saumon 738 465 Loam 
Deciduous 

forest 
935 446 810 

Bras du 

Nord 
642 511 Sandy Loam Mixed forest 1034 444 952 

Du Loup 774 381 Sandy Loam Mixed forest 795 355 504 

Valin 746 441 Sandy Loam Mixed forest 922 436 988 

Godbout 1570 302 Sandy Loam 
Coniferous 

forest 
732 434 822 

a Values are derived from WaSiM simulations (1981–2020) using ERA5 data downscaled to 1000 m × 1000 m. Values represent 

the average across all catchment pixels. 
 

 

Figure 1. Locations of the selected catchments within Southern Quebec, Canada, outlined in red. The inset map provides the location 

of the study area within North America. 

2.2 Data 125 

2.2.1 Hydrometeorological data 

This study utilizes daily total precipitation and mean temperature data from the ECMWF Reanalysis v5 (ERA5) (Hersbach et 

al., 2020) for the period 1981 to 2020.  ERA5 was chosen due to its advanced features over previous reanalysis datasets, such 

as finer spatial resolution, hourly time step, and a more sophisticated data assimilation system that incorporates a wider range 
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of observational inputs. These features make ERA5 a suitable reference dataset for hydrological modeling, as demonstrated in 130 

Tarek et al. (2020), where ERA5-based hydrological simulations performed equivalently to observational data in most regions, 

including our study area. Additionally, ERA5 showed reduced biases in temperature and precipitation compared to the ERA-

Interim dataset, further justifying its use as a reliable and accurate source of climate data for climate change studies. While 

ERA5-Land offers finer resolution, ERA5 was deemed sufficient for this study since the region is not mountainous, and the 

focus is on long-term trends rather than specific events. The coarser resolution of ERA5 (31 km) still provides multiple grid 135 

points per catchment, allowing interpolation to match the model’s resolution, making it an appropriate choice for our analysis. 

Streamflow data was sourced from the Hydroclimatic Atlas of Southern Québec (MDDELCC, 2022), covering the period from 

1981 to 2010. This dataset provides daily measurements, though some catchments have minor gaps, primarily during winter 

months due to ice cover and ice jams. These periods were excluded from model calibration and analyses to maintain data 

accuracy. 140 

2.2.2 Elevation 

A hydrologically conditioned digital surface model (DEM) was derived from the NASA Shuttle Radar Topography Mission 

version 3.0 Global 1 arc second (SRTMGL1). Hydrological corrections ensured accurate representation of hydrological 

networks, with adjustments made using SAGA GIS software (Conrad et al., 2015). Basin delineation and analysis were 

conducted using QGIS and Tanalys software (Schulla, 2021) to extract essential topographic information for hydrological 145 

modeling. 

2.2.3 Soil type 

Soil data were sourced from the SIIGSOL 100-meter resolution database, which provides detailed descriptions of sand, clay, 

and silt proportions within the soil profile (Ministère des Ressources Naturelles et des Forêts, 2022; Sylvain et al., 2021). These 

proportions were converted to soil texture classes based on the USDA classification system (Soil Survey Division Staff, 2017). 150 

Soil hydraulic properties were imputed from established relationships between soil texture classes and hydraulic parameters. 

Elevation data were used to account for soil depth variability, by classifying raster cells into deep, normal, and shallow 

categories based on their relative elevation. 

2.2.4 Land use 

Land use data were obtained from the 2015 North American Land Change Monitoring System (NALCMS) 30-meter resolution 155 

dataset. These data were resampled using the nearest neighbor method to create land use maps, significantly impacting 

hydrological parameters such as root distribution, vegetation cover fraction (VCF), roughness length (Z0), and albedo. These 

parameters influence processes like evapotranspiration, runoff, and infiltration (2015 Land Cover of North America at 30 

meters, 2023; Latifovic et al., 2012). 
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2.2.5 Climate model data 160 

Projected daily temperature and precipitation data were sourced from the Coupled Model Intercomparison Project Phase 6 

(CMIP6) (O’Neill et al., 2016) for both the reference period (1981-2010) and future period (2070-2099). These datasets were 

accessed and processed through the PAVICS-Hydro platform (Arsenault et al., 2023). The Shared Socioeconomic Pathway 5-

8.5 (SSP5-8.5) scenario, which projects very high greenhouse gas emissions, was used to simulate future conditions (Calvin 

et al., 2023). To address uncertainties related to climate model selection, an ensemble of 18 climate models was employed as 165 

it was previously shown that, to ensure robustness, using multiple climate models is required (Arsenault et al., 2020; Lucas-

Picher et al., 2021; Minville et al., 2008; Tarek et al., 2021). This ensemble approach ensures a more robust representation of 

potential climate outcomes by capturing a range of possible future scenarios. Table A1 provides a list of GCMs along with 

their respective institutions and horizontal resolutions. 

To assess the reliability of the selected climate models, their ability to reproduce historical precipitation and temperature 170 

patterns was evaluated over the reference period (1981–2010). Tables A2 and A3 respectively present the monthly precipitation 

bias (%) and temperature bias (°C) for each model compared to ERA5, averaged across the 10 study catchments. These tables 

highlight seasonal discrepancies and allow the assessment of GCM performance. There is notable variability in precipitation 

biases among models. Some models, such as FGOALS-g3 and NorESM2-LM, exhibit consistently negative biases across most 

months (mean of bias of -16.4% for both models). In contrast, IPSL-CM6A-LR and INM-CM4-8 show persistent 175 

overestimations, with mean biases of +17.5% and +9.9%, respectively. Temperature biases also show systematic trends, with 

models like EC-Earth3-Veg-LR and EC-Earth3 exhibiting cold biases below -2°C, while MIROC6 and ACCESS-ESM1-5 

systematically overestimate temperatures (mean of +1.8% and +1.6% respectively), particularly in summer. Despite these 

biases, all models were retained to maintain consistency with broader climate impact assessments, ensuring a diverse ensemble 

that captures a range of potential climate outcomes. 180 

The resolution of the selected CMIP6 global climate models (GCMs) varies, with some models, such as IPSL-CM6A-LR, 

providing a finer resolution of 1.25° × 2.5°, while others, like CanESM5, retain a coarser resolution of 2.8° × 2.8°. Given that 

the hydrological model operates at a 1000-meter spatial resolution, a method was required to bridge the resolution gap between 

GCMs and WaSiM. To address this, WaSiM internally applies inverse distance weighting (IDW) interpolation, ensuring that 

the coarse-resolution GCM data is adjusted to match the finer hydrological grid. This approach ensures that all methods remain 185 

comparable by using climate models at the same spatial resolution. External statistical or dynamical downscaling methods 

were deliberately avoided to maintain methodological consistency between the three methods. Additionally, since this study 

focuses on 30-year climatological trends rather than individual events, the impact of finer-resolution climate inputs is expected 

to be minimal when averaged over long periods. Finally, this methodological choice streamlines the study by avoiding 

additional uncertainty and complexity associated with external downscaling techniques, which could introduce biases unrelated 190 

to the comparative evaluation of hydrological modeling methods. 
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2.3 Hydrological modeling 

2.3.1 Hydrological model 

WaSiM is a physically based, spatially distributed hydrological model designed to simulate water flow processes in 

catchments. It integrates a comprehensive suite of sub-models to capture key hydrological processes, including surface runoff, 195 

groundwater recharge, interflow, and baseflow, within a deterministic framework (Schulla, 2021). In this study, WaSiM was 

configured with a spatial resolution of 1000 meters and a temporal resolution of 24 hours. This setup allows for detailed spatial 

analysis while maintaining computational efficiency. The chosen spatial resolution ensures that the heterogeneity of the 

landscape is adequately captured, and the daily time step allows for accurate simulation of hydrological processes over time. 

WaSiM employs the Richards equation and the Van Genuchten parameters for simulating water flow in the unsaturated zone 200 

(van Genuchten, 1980; Richards, 1931). This equation provides a physically based representation of hydraulic head gradients 

and soil moisture dynamics, incorporating detailed soil physical properties. Groundwater flow is calculated conceptually within 

the unsaturated zone model. 

2.3.2 Conventional method 

The framework used to calibrate and validate the effectiveness of the conventional method rely on the split sample test (SST) 205 

approach, which is widely recognized for its effectiveness in evaluating model performance. This approach involves dividing 

the data into separate calibration and validation periods, allowing for an assessment of the model's ability to generalize beyond 

the calibration conditions. For this method, historical data from ERA5 were used for both calibration and validation. The 

calibration period spanned from 2000 to 2009, during which simulations were performed over a 15-year period (1995 to 2009), 

discarding the first 5 years to stabilize the initial conditions of the model. The validation period was set from 1990 to 1999, 210 

following the same approach of conducting simulations over a 15-year period (1985 to 1999) and discarding the initial 5 years.  

A set of 17 parameters (Table 2) was selected for calibration based on model documentation. Table 2 was taken from Talbot 

et al. (2024a). 
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Table 2. Calibration parameters for the hydrological model WaSiM. 215 

No. Code Description Sub-Model Range 

1 kD Storage coefficient for surface runoff (h) Unsaturated zone [1, 25] 

2 kH Storage coefficient for interflow (h) Unsaturated zone [1, 25] 

3 KB Storage coefficient for base flow (m) Unsaturated zone [0.1, 8] 

4 Q0 Scaling factor for base flow (mm h-1) Unsaturated zone [0.1, 5] 

5 dr Drainage density for interflow (m-1) Unsaturated zone [1, 50] 

6 QDSnow Fraction of surface runoff on snow melt Unsaturated zone [0.1, 1] 

7 c0 Degree-Day factor (mm °C-1 d-1) Snow [0, 3] 

8 T0 Temperature limit for snow melt (°C) Snow [-4, 4] 

9 TR/S Transition temperature snow/rain (°C) Snow [-4, 4] 

10 CWH Water storage capacity of snow Snow [0.1, 0.3] 

11 Crfr Coefficient for refreezing Snow [0.1, 1] 

12 fi,summer Summer correction factors for PET Evapotranspiration [0.1, 2] 

13 fi,fall Fall correction factors for PET Evapotranspiration [0.1, 2] 

14 fi,winter Winter correction factors for PET Evapotranspiration [0.1, 2] 

15 fi,spring Spring correction factors for PET Evapotranspiration [0.1, 2] 

16 Krec Recession constant for hydraulic conductivity Soil table [0.1, 0.99] 

17 dz
a Soil layer thickness Soil table [0.8, 1.4] 

a Calibration coefficient, ranging from 0.8 to 1.4, is applied to adjust the total soil depth, which is predetermined to be 8 meters for 

shallow, 14 meters for normal, and 20 meters for deep soil conditions. 
 

These parameters were optimized based on a single objective function through the Dynamically Dimensioned Search (DDS) 

algorithm, developed by Tolson and Shoemaker (2007). This algorithm was chosen for its efficiency in handling complex 

optimization problems for compute-intensive hydrological models, as recommended by Arsenault et al. (2014).  

The objective function used for calibration was the Kling Gupta-Efficiency (KGE) (Kling et al., 2012). The KGE metric 

provides a balanced evaluation of model performance by considering simultaneously correlation, variability, and bias in the 220 

simulated streamflow relative to observed streamflow. The KGE is computed using Eq. (1): 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚/𝜇𝑠𝑖𝑚

𝜎𝑜𝑏𝑠/𝜇𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

,       (1) 

where r is the Pearson correlation coefficient between simulated and observed streamflow, 𝜎𝑠𝑖𝑚 is the standard deviation of 

simulated streamflow, 𝜎𝑜𝑏𝑠 is the standard deviation of observed streamflow, 𝜇𝑠𝑖𝑚 is the mean of the simulated streamflow, 

and 𝜇𝑜𝑏𝑠 is the mean of the observed streamflow. A KGE value of 1 indicates a perfect match between the simulated and 225 

observed streamflow, reflecting ideal performance across all three components: correlation, variance, and bias.  
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For the conventional method, the Multivariate Bias Correction algorithm (MBCn) developed by Cannon (2018) was used to 

correct biases in the climate model simulations. This method corrects biases in meteorological data while accounting for 

spatiotemporal interdependencies between variables and preserving changes in quantiles between the reference (1981-2010) 230 

and future (2070-2099) periods. The bias correction was applied to daily total precipitation and daily mean temperature using 

ERA5 data as the reference over the period 1981-2010 and was used to correct the climate models data for both the reference 

(1981-2010) and future periods (2070-2099). Climate change studies were subsequently conducted using bias-corrected 

climate model data. Hydrological simulations were carried out for each climate model over both the reference and future 

periods, using a hydrological model calibrated with raw data for each catchment.  235 

2.3.3 Fully asynchronous method 

The primary objective of the fully asynchronous method is to conduct climate change studies without relying on observed 

meteorological data (Ricard et al., 2019, 2020, 2023; Valencia Giraldo et al., 2023) and eliminate the need for bias-correction 

of climate variables. Instead, the calibration is performed using raw climate model data and observed streamflow, integrating 

the bias-correction in the calibration step. A significant challenge in this approach is the lack of synchronization between the 240 

timings of observed streamflows and those of raw climate model outputs (Ricard et al., 2019), as climate models are not 

temporally aligned with actual past events. This requires a departure from the conventional calibration framework, which aims 

to optimize the timing and amplitude of streamflow. To overcome this obstacle, the objective function optimizes the 

distribution of observed streamflow over an extended period rather than individual streamflow observations. This approach 

ensures that the hydrological model effectively preserves the streamflow distribution, rather than capturing day-to-day natural 245 

variability. 

Given the calibration objectives of the fully asynchronous method, the observed streamflow data from 1984 to 2009 was sorted 

and used to establish a reference distribution of streamflow. This sorted distribution provided a consistent target for both the 

calibration and validation of the hydrological model. In the context of the fully asynchronous method, where direct temporal 

alignment between climate model outputs and observed streamflow is not maintained, relying on the same observed 250 

distribution for both calibration and validation ensures that the model is evaluated against a stable and representative reference. 

Therefore, a 25-year period (1984–2009) of hydrometric station data was selected for calibration and validation to capture a 

wide range of hydrological conditions. This duration helps reduce the impact of short-term climate variability and minimizes 

biases associated with shorter time frames. A key hypothesis underlying this approach is the assumption of stationarity, that 

the hydrological model, with fixed parameters optimized during calibration, will continue to produce reasonable streamflow 255 

simulations under future climate conditions. This assumes that despite changing climatic conditions, the model will adequately 

respond to future scenarios as it did to past conditions. However, if future climate changes introduce conditions outside the 

model's calibrated range, such as new snow patterns or shifts in seasonal dynamics, the model's performance could be 

compromised. It is important to recall that the conventional method also relies on two stationarity assumptions, namely that 
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the calibrated parameters of the hydrological model remain valid under future conditions and that the bias correction applied 260 

to the climate data continues to hold under a changing climate. 

The calibration and validation periods are separated based on the total yearly precipitation from October to September. This 

separation ensures an equal distribution of wet and dry years between both periods. Simulations were performed for the years 

1984 to 2011, with the first two years discarded to allow for initial model stabilization. Out of the 26 years of simulations, 13 

years were used for calibration, selected based on total yearly precipitation, while all 26 years were utilized for model 265 

validation. 

To address biases in simulated streamflow resulting from biases in raw climate data, the simulated streamflow was adjusted 

by multiplying it by a factor equal to the ratio of the mean observed streamflow 𝑄𝑜𝑏𝑠 to the mean simulated streamflow 𝑄𝑠𝑖𝑚. 

This adjustment was applied only during the calibration process and not during the reference or future periods simulations. It 

ensures that the mean simulated streamflow matches the mean observed streamflow, effectively removing bias and allowing 270 

the optimization algorithm to focus on matching the shape of the streamflow distribution rather than its absolute magnitude. 

This means the simulated absolute streamflow values cannot be directly compared with observations, but changes between the 

reference and future period can be analyzed. 

An essential aspect of the fully asynchronous method is its focus on calibrating the model based on the distribution of 

streamflow rather than its temporal sequence. Given this objective, Root Mean Square Error (RMSE) was selected as the 275 

calibration metric due to its ability to emphasize overall distributional accuracy while penalizing large deviations between 

simulated and observed streamflow values. RMSE effectively captures the spread and magnitude of streamflow across different 

flow conditions, ensuring that extreme and median flows are well represented. Unlike correlation-based metrics, which 

prioritize timing accuracy, RMSE remains robust when applied to sorted streamflow values, aligning well with the fully 

asynchronous method’s goal of preserving statistical consistency rather than event-specific timing. Additionally, RMSE 280 

provides a straightforward optimization framework, allowing for efficient parameter tuning without introducing unnecessary 

complexity into the calibration process. The RMSE was computed on the flow duration curves of the simulated and observed 

flows using equation 2: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ ((𝑠𝑜𝑟𝑡(𝑄𝑠𝑖𝑚)𝑖 − (𝑠𝑜𝑟𝑡(𝑄𝑜𝑏𝑠)𝑖)

2𝑛
𝑖=1  ,       (2) 

where 𝑄𝑠𝑖𝑚 represents the simulated streamflow (mm), 𝑄𝑜𝑏𝑠 represents the observed streamflow (mm), sort() is the function 285 

that sorts the sequence in descending order, and 𝑛 is the number of simulated streamflow values. 

Each climate model was calibrated for each catchment, resulting in a total of 180 calibration parameter sets (18 climate models 

x 10 catchments). In contrast, the conventional method involves 10 calibration parameter sets (one per catchment) which is 

then applied to all climate models and their bias-corrected outputs. Consequently, the fully asynchronous method is 

considerably more computationally intensive than the conventional method in terms of parameter calibration.  290 

The calibration framework for the fully asynchronous method is similar to that of the conventional method (Section 2.3.2). It 

involves 1000 evaluations, uses the same 17 calibration parameters (Table 2), and employs the DDS optimization algorithm.  
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For the fully asynchronous method, climate change simulations were conducted using the calibrated model for each catchment 

and each projected climate model, but without relying on historical event timing. Raw projected climate data were utilized to 

perform simulations over both the reference and future periods. Figure 2 presents a workflow diagram of the fully asynchronous 295 

method, adapted from Ricard et al. (2023). 

 

Figure 2. Workflow diagram of the fully asynchronous method. 

2.3.4 Semi-asynchronous method 

In addition to the conventional and fully asynchronous approaches, a semi-asynchronous method was developed and tested in 300 

this study. This method follows the same overall framework as the fully asynchronous approach but introduces an element to 

account for temporal dependencies in the objective function used during calibration. Specifically, rather than computing the 

RMSE over the entire streamflow distribution, the RMSE is calculated on the sorted streamflow separately for each calendar 

month, thereby capturing seasonal variations more explicitly. The overall objective function for the semi-asynchronous method 

is defined as a weighted average of monthly RMSE values, as shown in Equation (3): 305 

𝑅𝑀𝑆𝐸𝑠𝑎 =
1

12
∑ (𝛼𝑚 ∗ 𝑅𝑀𝑆𝐸𝑚)12

𝑚=1                          (3) 

In this equation,  𝑅𝑀𝑆𝐸𝑠𝑎 is the semi-asynchronous RMSE used as the objective function, and 𝑅𝑀𝑆𝐸𝑚 refers to the RMSE 

between the sorted simulated and observed streamflow values for calendar month m, from January to December, as detailed 

in equation 2. αm is equal to 1 and represents a weighting coefficient that determines the importance of that month in the overall 

calibration. By grouping streamflow values by month and comparing the corresponding sorted distributions, the semi-310 

asynchronous method introduces partial synchronicity into the calibration process. The proposed design preserves the 

underlying hypothesis of the fully asynchronous method in reproducing streamflow distributions, while also incorporating 

seasonal characteristics of key hydrological events. This is achieved through a mechanism that introduce a monthly structure, 
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aiming to better capture intra-annual dynamics such as snowmelt, runoff generation, and other seasonal processes without 

relying on full temporal alignment. 315 

2.4 Comparative analysis 

The analysis in this study is designed to compare the performance of the conventional, fully asynchronous, and semi-

asynchronous methods in simulating hydrological processes under both current and future climate conditions. To ensure a fair 

and unbiased comparison, all three methods employed the same WaSiM configuration, including identical calibration 

parameters, the number of evaluations, and the optimization algorithm. This was performed to ensure minimal calibration bias 320 

and to isolate the differences attributable solely to the methodological framework of each approach. 

The first step in the analysis involves assessing the calibration and validation performance of each method. Streamflow 

simulations were evaluated using the Kling-Gupta Efficiency (KGE) for the conventional method and the root mean square 

error (RMSE) between sorted simulated and observed streamflow values for both the fully asynchronous and semi-

asynchronous methods. These metrics were selected to highlight each method's respective strengths, with KGE capturing 325 

overall model performance and RMSE emphasizing accuracy in reproducing the streamflow distribution. 

Beyond streamflow, the relationships between various hydroclimatic variables, such as groundwater recharge, surface runoff, 

soil moisture, and snow water equivalent (SWE) were also examined. By comparing the simulated values from all three 

methods, the analysis seeks to understand how well each method captures the interactions between these variables. This serves 

to evaluate the internal consistency of the models and assess their ability to realistically simulate the physical processes within 330 

the catchments. 

The analysis extends to a comparison of the projected changes in hydroclimatic variables between the reference period (1981–

2010) and the future period (2070–2099). The magnitude and direction of these changes are assessed to determine how each 

method projects the impact of climate change on the catchment’s hydrological processes. This includes examining variables 

such as changes in snowmelt dynamics and the consequent effects on streamflow, surface runoff and groundwater recharge. A 335 

detailed spatial analysis is also conducted to evaluate the distribution of such key variables across the catchments. The 

comparative analysis employs several criteria to determine which method is most effective. These include the accuracy of 

streamflow simulation (both in terms of overall distribution and event timing), the internal consistency of hydroclimatic 

variable relationships and the realism of spatial distributions and projected changes under future climate scenarios.  

3 Results 340 

3.1 Streamflow representation  

For the conventional method, streamflow representation performance was assessed using the KGE metric for each catchment 

during both the calibration and validation periods.  
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During calibration, the conventional method achieves KGE values ranging from 0.817 to 0.906, with a mean of 0.863. 

Similarly, for the validation period, the KGE values ranged from 0.778 to 0.906, with a mean of 0.842. These results indicate 345 

that the conventional method maintains a consistent performance in simulating streamflow across different catchments. 

Detailed KGE results for each catchment are provided in the Appendix B (Table B1). 

For the fully asynchronous and semi-asynchronous methods, streamflow representation performance was evaluated using the 

RMSE calculated on sorted daily streamflow values. For the fully asynchronous method, the mean RMSE during calibration 

was 0.121 mm d-1, with an inter-model standard deviation of 0.031 mm d-1. In the validation period, the mean RMSE increased 350 

slightly to 0.179 mm d-1, with a standard deviation of 0.057 mm d-1. The semi-asynchronous method showed higher RMSE 

values overall, with a mean of 0.282 during calibration and 0.285 during validation. To enable direct comparison, the sorted 

RMSE was also computed for the conventional method, yielding values of 0.497 for calibration and 0.518 for validation. These 

results indicate that, in terms of streamflow distribution alone, the fully-asynchronous method performed best, followed by the 

semi-asynchronous method, and finally the conventional method. This ranking highlights the strengths of the distribution-355 

focused calibration used in the fully asynchronous approaches. Detailed RMSE results for all methods and catchments are 

provided in Appendix B (Table B2). 

Figure 3 presents hydrographs of streamflow for all three methods during the reference period across the ten catchments, along 

with observed streamflow for the same period. The fully asynchronous method shows greater variability between climate 

models, especially in the timing of peak flows, which often fails to align with the observed data, as expected. This variability 360 

suggests that the timing of streamflow events in the fully asynchronous method is highly sensitive to the specific climate model 

employed. For instance, in the Matane catchment, the observed and conventional method peak flow occurs at the beginning of 

May, while the fully asynchronous method shows a broader range of peak flow timings, extending from early May to late June. 

This discrepancy might be attributed to challenges in accurately simulating snowmelt processes with the fully asynchronous 

method, which are crucial for generating high flows in snowy catchment. Furthermore, in the same catchment, the fully 365 

asynchronous method overestimates summer flows compared to the observed data, indicating potential difficulties in capturing 

the seasonal dynamics of low-flow periods. Conversely, the semi-asynchronous and conventional methods both succeed in 

capturing the seasonal timing and magnitude of streamflow events, closely aligning with the observed hydrographs. The 

conventional method offers the most consistent performance across climate models, with peak flows and low-flow periods 

well synchronized with observations on the reference period. The semi-asynchronous method also accurately reproduces the 370 

overall seasonal streamflow pattern, including the timing of snowmelt-driven peak flows. Although it introduces slightly more 

inter-model variability than the conventional method, this variability remains lower than that observed in the fully-

asynchronous method. 
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Figure 3. Seasonal streamflow comparison between the fully asynchronous, semi-asynchronous and conventional methods and 375 
observed data across ten catchments during the reference period (1981–2010). The panels (a-j) represent the catchments of 

Bonaventure, Matane, Ouelle, Bécancour, Nicolet SO, Au Saumon, Bras du Nord, Du Loup, Valin, and Godbout, respectively.  

Figure 4 presents the relationship between sorted streamflow values and percentage bias for simulated versus observed 

streamflow using the three methods during the reference period (1981 to 2010) for the Matane catchment. The fully 

asynchronous method shows the lowest percentage bias across a wide range of streamflow conditions, particularly at the 380 

extremes, reflecting its strong ability to capture the full distribution of flows. This performance stems from its calibration 

strategy, which explicitly targets the statistical distribution of streamflow rather than the timing of individual events. 

The semi-asynchronous method offers intermediate performance between the fully asynchronous and conventional methods. 

It more accurately represents the streamflow distribution than the conventional approach, particularly for high and low flows, 

but shows slightly greater bias than the fully asynchronous method. This outcome suggests that the incorporation of monthly 385 

structure into the calibration helps preserve distributional accuracy while also improving the temporal realism of seasonal flow 

patterns. In contrast, the conventional method shows broader dispersion in bias and tends to underperform in reproducing 

extreme events, especially at high flows. While Figure 4 focuses on the Matane catchment, similar patterns are observed across 
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the other study catchments (Figures C1 to C9), reinforcing the generalizability of these results. Together, these findings 

highlight a key trade-off in hydrological modeling under climate change, where the fully asynchronous method excels in 390 

preserving streamflow distribution and extremes, the conventional method performs best in capturing temporal accuracy, and 

the semi-asynchronous method offers a promising compromise by balancing both aspects. 

 

Figure 4. Performance comparison between the conventional, fully asynchronous and semi-asynchronous methods for the Matane 

catchment during the reference period (1981–2010). The figure shows the percentage bias between observed and simulated 395 
streamflows, with the x-axis representing the observed daily streamflow and the y-axis displaying the percentage bias relative to the 

observed values. The shaded regions illustrate the variability among climate models around the mean bias for each method (solid 

lines). 

Figure 5 presents a comparative analysis of streamflow quantiles simulated by the three methods across the reference period 

(1981 to 2010) and the future period (2070 to 2099) for all ten catchments. When comparing the reference period simulations 400 

to observed streamflow, both the fully asynchronous and semi-asynchronous methods demonstrate closer alignment with the 

observed distribution, particularly for high flows (Q95). This confirms their ability to better capture streamflow extremes. 

Specifically, the absolute mean bias for Q95 is 2.7 % for the fully asynchronous method and 3.0 % for the semi-asynchronous 

method, compared to 5.2 % for the conventional method (Table D1). However, this improved accuracy comes with greater 

inter-model variability. For Q95 in the reference period, the standard deviation across climate models increases from 3.4 % 405 

with the conventional method to 4.8 % with the semi-asynchronous method and 6.2 % with the fully asynchronous method.  

In terms of future projections, all methods show a decrease in Q95 across most catchments. The fully asynchronous method 

estimates a smaller reduction in Q95 at 8.4%, while the semi-asynchronous and conventional methods project similar declines 

of 12.5% and 13.0%, respectively (Table D1). Despite the more moderate change, the semi-asynchronous method shows the 

highest inter-model variability, with a standard deviation of 17.1%, while the fully asynchronous and conventional methods 410 

display similar and lower variability, at 10.0% and 9.9%, respectively. 
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For median flows (Q50), the results are more varied. During the reference period, the semi-asynchronous method achieves the 

lowest absolute mean bias at 2.7 %, followed by the fully asynchronous method at 5.8 %, and the conventional method at 

11.3 % (Table D2). Under future conditions, all three methods project an increase in Q50, with the semi-asynchronous method 

projecting the largest rise at 27.6 %, followed by the conventional method at 18.0 % and the fully asynchronous method at 415 

14.4 %. The semi-asynchronous method also displays the highest inter-model spread, with a standard deviation of 29.2 %, 

compared to 18.4 % for the conventional method and 17.8 % for the fully asynchronous method. 

Low flows (Q5) reveal the largest discrepancies among methods. In the reference period, the fully asynchronous method shows 

the lowest absolute mean bias at 48.6 %, followed by the conventional method at 62.8 %, and the semi-asynchronous method 

at 95.4 % (Table D3). These results highlight the difficulty of all methods to accurately capture low-flow conditions. For future 420 

projections, Q5 increases by 21.9 % for the conventional method, 15,3% for semi-asynchronous and 13.8 % for the fully 

asynchronous method. Once again, the fully asynchronous and semi-asynchronous methods display higher variability, with 

standard deviations of 25.5 % and 25.3 % respectively, compared to 10.4 % for the conventional method. 

Overall, the quantile-based analysis highlights the strength of the fully asynchronous and semi-asynchronous methods in 

capturing flow distributions and extremes, while also emphasizing their increased sensitivity to climate model variability. 425 

Detailed results across all ten catchments are provided in Tables D1 to D3. 
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Figure 5. Comparison of streamflow distributions for the reference period (1981–2010) and projected changes in the future period 

(2070–2099) across 10 catchments. The plots show the percentage differences in streamflow quantiles between simulated and 

observed values during the reference period, and the projected changes represent the percentage differences between future and 430 
reference simulations for each method. Boxes indicate the interquartile range (25th to 75th percentiles), and central lines represent 

the median. 

3.2 Hydroclimatic variables 

In addition to streamflow, a key objective of this study is to evaluate how well the conventional, fully asynchronous, and semi-

asynchronous methods simulate a broader range of hydroclimatic variables. This allows for a more comprehensive comparison 435 

of the methods' ability to reproduce the underlying hydrological processes that govern catchment behavior under current and 

future climate conditions. 
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To explore these dynamics in greater detail, the Matane catchment was selected as a representative case study. Covering an 

area of 1650 km², Matane exhibited strong calibration and validation performance across all three methods and reflects the 

typical hydroclimatic and physiographic conditions found across the study region. This focused analysis enables a deeper 440 

examination of how each method influences key components of the water balance, including snowmelt, surface runoff, 

evapotranspiration, groundwater recharge, and soil moisture. 

Average monthly temperature and precipitation for the reference period (1981-2010) and the future period (2070-2099) before 

and after bias-correction using MBCn for the Matane catchment and the climate model ACCESS-ESM1-5 is provided as an 

example (Fig. 6).  445 

In the reference period, a noticeable gap exists between the ERA5 data and the raw climate model data, with the raw climate 

data showing higher temperatures and increased precipitation for all months except October. The effectiveness of the bias 

correction is evident, as the bias-corrected climate data closely aligns with the ERA5 data, significantly reducing discrepancies 

in temperature and precipitation. The same bias trend is observed in the future period, where raw climate model data predicts 

higher temperatures and increased precipitation compared to the bias-corrected data.  450 

Furthermore, Fig. 6 highlights the anticipated changes in precipitation and temperature between the reference and future 

periods. Temperatures are expected to increase significantly, with projected increases around 6 degrees Celsius across the 

study area. These projections are in line with the IPCC's forecasts based on SSP5-8.5, and suggest that northern latitudes will 

experience faster warming compared to the global average (Estrada et al., 2021). Projections consistently show an annual 

increase in precipitation ranging from 15 to 20%, with the most significant increases occurring between November and April, 455 

as well as in July. The anticipated increases in temperature and changes in precipitation patterns have profound implications 

for hydrological processes and water resource management. 
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Figure 6. Comparison of average monthly precipitation and temperature for the Matane catchment. This figure displays the average 460 
monthly temperature and precipitation for the Matane catchment during the reference period (1981-2010) and the future period 

(2070-2099) under the Shared Socioeconomic Pathway 5-8.5 (SSP585) scenario.  

Table 3 presents the annual averages of key hydroclimatic variables for both the reference period (1981 to 2010) and the future 

period (2070 to 2099). Results are provided for the conventional, fully asynchronous, and semi-asynchronous methods, along 

with the relative change between periods for each variable and method. All three methods, project similar directional changes 465 

under future climate conditions. Precipitation and ETa are projected to increase, while snowfall and SWE decline significantly. 

These changes are consistent with the expected response to warming, where higher temperatures reduce snow accumulation 

and increase atmospheric demand for water. For instance, SWE decreases by more than 50% across all methods, while ETa 

increases by approximately 31%-32%. 

Despite these common trends, notable differences are observed in the magnitude and representation of certain variables. 470 

Surface runoff stands out as the most divergent. The fully asynchronous method simulates more than twice the amount of 

surface runoff compared to the conventional method during the reference period, a pattern that persists in future projections. 

This discrepancy could be due to the fully asynchronous method’s misrepresentation of the timing of snowmelt, leading to 

amplified runoff responses. The semi-asynchronous method moderates this behavior, producing runoff values that are closer 

to those of the conventional method, although still elevated. This suggests that the inclusion of monthly calibration in the semi-475 

asynchronous method helps correct some of the temporal misalignments present in the fully asynchronous approach. 

Groundwater recharge also shows significant differences. The fully asynchronous method simulates a relatively large increase 

of 19% between the reference and future periods, compared to only 4% with the conventional method. The semi-asynchronous 

method again produces an intermediate value of 9%. Similar patterns are observed in other components of the water balance.  
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Streamflow values appear relatively consistent across methods and periods, with projected changes ranging from 1 to 2%. Soil 480 

moisture shows smaller differences between methods, although the semi-asynchronous method again occupies an intermediate 

position. 

Table 3. Comparison of hydroclimatic variables between the reference (1981–2010) and future (2070–2099) periods for the 

conventional, fully asynchronous and semi-asynchronous methods across 10 catchments and 18 climate models.  

Hydroclimatic 

Variables 
Unit 

Conventional Fully-asynchronous Semi-asynchronous 

Reference 

(1981-
2010) 

Future 

(2070-
2099) 

Relative 

Change 

Reference 

(1981-
2010) 

Future 

(2070-
2099) 

Relative 

Change 

Reference 

(1981-2010) 

Future 

(2070-2099) 

Relative 

Change 

Precipitation mm yr-1 1276 1463 15% 1328 1507 13% 1328 1507 13% 

Snowfall mm yr-1 409 273 -33% 362 214 -41% 392 243 -38% 

Streamflow mm yr-1 730 744 2% 771 778 1% 792 799 1% 

Surface Runoff mm yr-1 109 77 -29% 256 199 -22% 175 128 -26% 

Interflow mm yr-1 482 530 10% 400 460 15% 445 497 12% 

ETa  mm yr-1 554 727 31% 561 733 31% 541 714 32% 

Baseflow mm yr-1 140 137 -2% 113 117 3% 172 173 1% 

Groundwater 
Recharge 

mm yr-1 133 139 4% 118 141 19% 162 176 9% 

SWE  mm 281 131 -53% 252 106 -58% 276 108 -61% 

Soil Moisture - 0.188 0.180 -5% 0.203 0.200 -2% 0.193 0.188 -3% 

 485 

Figure 7 illustrates the annual cycle of key hydroclimatic variables in the Matane catchment for both the reference period 

(1981–2010) and the future period (2070–2099). The left column shows simulations during the reference period, the middle 

column corresponds to the future period, and the right column displays the absolute change between the two. Shaded areas 

represent the spread across the 18 climate models. Equivalent figures for the other catchments are available in Appendix F. 

Focusing first on the reference period, the fully asynchronous method stands out for its high inter-model variability, particularly 490 

in snow dynamics. The timing of maximum SWE varies widely, with some models showing snowmelt beginning as early as 

late April and extending into July. This prolonged melt period is unrealistic for the Matane region, where snow typically 

disappears by the beginning of June. Such an extended melt season in a 30-year average suggests a clear limitation of the fully 

asynchronous method in accurately capturing seasonal snow processes. 

This misrepresentation has cascading effects on other components of the hydrological cycle. Surface runoff, actual 495 

evapotranspiration, and groundwater recharge simulated by the fully asynchronous method also exhibit elevated variability 

and inconsistencies. In its effort to reproduce the observed streamflow distribution without aligning events temporally, the 

fully asynchronous method tends to distort internal processes, leading to simulations that lack physical plausibility and seasonal 

coherence. These shortcomings undermine confidence in the method’s use for climate change impact assessments in snow-

dominated regions. 500 

In contrast, the semi-asynchronous method substantially reduces the inter-model variability observed in the fully asynchronous 

approach, particularly for streamflow and SWE. Snowmelt timing is notably improved, aligning more closely with expectations 
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for the Matane catchment. This correction enhances the seasonal dynamics of streamflow and groundwater recharge, making 

the simulations more physically realistic. However, some issues remain. The semi-asynchronous method still shows greater 

variability in ETa compared to the conventional method. This is likely due to the use of raw, uncorrected climate model inputs 505 

in both asynchronous approaches, whereas the conventional method benefits from bias-corrected meteorological data. The 

model compensates for climate model biases by adjusting evapotranspiration to close the water balance, which can lead to 

unrealistic variability for this variable. The conventional method produces well-defined spring peaks in streamflow and 

interflow with lower inter-model variability. Its outputs are more consistent across models, enhancing confidence in its 

projections.  510 

For the future period, the semi-asynchronous and conventional methods produce similar results for SWE, streamflow, and 

groundwater recharge, though the semi-asynchronous method shows greater variability in surface runoff and ETa. The fully 

asynchronous method continues to exhibit the highest variability across climate models, further diminishing confidence in its 

outputs. 

Regarding the absolute changes between the reference and future periods, the semi-asynchronous and conventional methods 515 

yield comparable trends for SWE and groundwater recharge. The semi-asynchronous method produces slightly smaller 

variations in absolute change for streamflow and interflow, but slightly larger variations for surface runoff. Due to the high 

variability observed in both the reference and future periods, the fully asynchronous method offers limited reliability in its 

estimates of absolute change. Taken together, these results confirm that while the semi-asynchronous method offers clear 

improvements over the fully asynchronous approach, particularly in representing snowmelt and reducing variability, it does 520 

not yet match the stability or reliability of the conventional method for detailed climate impact assessments. 
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Figure 7. Seasonal distribution of key hydroclimatic variables for the reference period (1981–2010), future period (2070–2099), and 525 
their average absolute changes across the Matane catchment.  

Figure 8 illustrates the spatial distribution of annual groundwater recharge rates in the Matane catchment for both the reference 

(1981–2010) and future (2070–2099) periods, based on simulations from the conventional, fully asynchronous, and semi-

asynchronous methods. All methods exhibit similar spatial patterns, with higher elevations showing reduced recharge rates 

and lower elevations demonstrating higher recharge rates. An elevation map of the Matane catchment is provided in the 530 

Appendix E (Fig. E1). The semi-asynchronous method, however, predicts a generally higher magnitude of recharge across the 

catchment.  

When examining the absolute difference between the future and reference periods, all methods project a similar spatial pattern 

of changes in groundwater recharge, with a noticeable decrease in recharge at lower elevations. However, the fully 
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asynchronous and semi-asynchronous methods project smaller increases in recharge in certain higher elevation areas, while 535 

the conventional method predicts a much more pronounced reduction, 3 to 4 times greater, at lower elevations. 

 

Figure 8. Spatial distribution of annual groundwater recharge in the Matane catchment for the reference period (1981–2010) and 

future period (2070–2099). 

Figure 9 illustrates the spatial distribution of soil moisture across the Matane catchment for both the reference period (1981–540 

2010) and the future period (2070–2099), comparing results from the conventional, fully asynchronous and semi-asynchronous 

methods. All three methods demonstrate that soil moisture distribution is heavily influenced by soil type, as indicated by the 

consistent spatial patterns observed (detailed soil type information is provided in the Appendix E, Fig. E1). The soil moisture 

maps show that areas with finer soils, such as loam, tend to have higher moisture retention, while coarser soils, such as sandy 

loams, exhibit lower moisture levels. 545 

The fully asynchronous method tends to generate slightly higher soil moisture values compared to the other two methods, 

particularly in areas with inherently higher moisture retention capacity. The fully asynchronous method also displays greater 

variability in soil moisture patterns. 

In terms of absolute changes between the reference and future periods, the conventional and semi-asynchronous methods 

project a general decrease in soil moisture, predominantly in regions with initially higher moisture values. The fully 550 

asynchronous method, while also projecting a decrease in soil moisture around high moisture areas, shows a more complex 

pattern with small regions exhibiting increases in soil moisture.  Finally, it is noteworthy that the patterns of groundwater and 

soil moisture during the reference and future periods are spatially consistent and exhibit similar trends. 
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Figure 9. Spatial distribution of soil moisture in the Matane catchment for the reference period (1981–2010) and future period (2070–555 
2099). 

4 Discussion 

The primary goal of this study was to evaluate the ability of the fully asynchronous and semi-asynchronous methods to 

reproduce key hydrological processes within catchments, in comparison to the conventional approach. By conducting detailed 

analyses across ten catchments and focusing on a representative case study in the Matane catchment, the study assessed whether 560 

these alternative methods could serve as robust options for hydrological modeling in climate change impact studies. Particular 

attention was given to understanding how the introduction of a semi-asynchronous method, designed to improved seasonal 

timing, could address the limitations of the fully asynchronous method while maintaining its key advantages. 

4.1 Hydroclimatic variable representation 

One benefit of the fully asynchronous method is its ability to better represent extreme higher values (Q95) compared to 565 

conventional approach. By aligning the flow distribution with observed data, the fully asynchronous method effectively 

reproduces the magnitude of these high flow events, which is critical for managing flood risks under future climate conditions.  

However, despite its strengths in representing streamflow distributions, this study's findings align with other research 

indicating that the fully asynchronous method struggles to accurately capture the timing of observed streamflow, particularly 

during spring high-flow events (Ricard et al., 2023). This issue contrasts with earlier findings by Ricard et al. (2020), who 570 
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reported that the fully asynchronous modeling approach provided a superior representation of the hydrologic regime compared 

to the conventional method. A key limitation of the current implementation of the fully asynchronous method arises from the 

use of RMSE as the objective function, which prioritizes matching the overall streamflow distribution rather than maintaining 

temporal coherence. While this approach successfully aligns streamflow percentiles with observed data, the lack of correlation 

between simulated and observed streamflow significantly affects the representation of key hydrological variables. Without 575 

proper synchronization, critical processes such as snowmelt timing and seasonal runoff contributions are misrepresented, 

leading to unrealistic hydrological dynamics. This discrepancy is particularly evident in snow-dominated catchments, where 

the fully asynchronous method tends to produce extended snowmelt periods and inconsistencies in peak flow timing. 

The semi-asynchronous method helped mitigate this limitation by introducing a temporal structure during the calibration 

process, which improved the representation of seasonal dynamics and snowmelt timing, while still preserving much of the 580 

fully asynchronous method's strength in reproducing flow distributions. 

The fully asynchronous and semi-asynchronous methods perform comparably to the conventional method when it comes to 

representing the spatial distribution of hydroclimatic variables such as soil moisture and groundwater recharge. This similarity 

is likely due to the strong correlation between these hydroclimatic variables and the physical properties of the catchment, such 

as elevation and soil type. The consistent representation of these variables across both methods suggests that the fundamental 585 

physical processes driving these patterns are well-captured, irrespective of the methodological differences in how streamflow 

is simulated. These conclusions are based on the spatial analysis of the Matane catchment. Future studies could extend this 

approach by analyzing multiple hydrological variables across multiple catchments to provide a broader understanding of spatial 

hydrological patterns. 

The fully asynchronous and semi-asynchronous methods show consistency with the conventional method in predicting the 590 

long-term change for several variables, such as increases in precipitation and ETa, as well as decreases in SWE and snowfall. 

These findings align with broader climate change projections for the region, which anticipate warmer temperatures leading to 

reduced snow accumulation and altered precipitation patterns (Aygün et al., 2022; Nolin et al., 2023; Valencia Giraldo et al., 

2023). However, while the overall trends may appear consistent, the underlying processes and the accuracy of the projections 

differ significantly between the fully asynchronous and conventional methods.  595 

Yet, a significant issue with the fully asynchronous method is its high sensitivity to variability in climate models. This problem 

comes from the biases inherent in climate models, which often lead to the simulation of hydrological processes occurring either 

too early or too late (Chen et al., 2021; Ricard et al., 2023). The fully asynchronous method, as currently implemented, adjust 

the calibration parameters to correct for biases, assuming that these biases remain constant over time. Consequently, if a climate 

model has significant or nonstationary biases, the fully asynchronous method will perpetuate these biases, leading to 600 

inaccuracies in the timing of peak flows and the representation of hydroclimatic variables. Ricard et al. (2023) also emphasize 

this vulnerability, noting that the fully asynchronous method is particularly prone to producing outlying projections due to the 

uncorrected biases in raw climate model outputs. They also suggest selecting climate models that exhibit the least hydrological 

bias to improve the reliability of fully asynchronous projections. 
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One of the most critical issues highlighted in this study is the concept of equifinality, where different models or methods 605 

achieve similar outcomes for different reasons (Mei et al., 2023; Yassin et al., 2017). In the case of the fully asynchronous 

method, it appears to replicate certain aspects of the conventional method’s projections, but it does so through potentially 

flawed mechanisms.  

By construction, the fully asynchronous method struggles to synchronize streamflow with the actual timing of hydrological 

events, particularly snowmelt. This lack of synchronization leads to a cascade of flawed mechanisms throughout the model. 610 

For instance, when snowmelt occurs too early or too late, the timing and magnitude of surface runoff are inaccurately 

represented, which can lead to unrealistic increases in surface runoff during inappropriate seasons. This misalignment also 

affects evapotranspiration and groundwater recharge, causing large, unrealistic variations, further skewing the model's output. 

Because the streamflow is not properly synchronized with the seasonal dynamics, the fully asynchronous method ultimately 

produces streamflow simulations that may match the overall distribution of the observations but do so for the wrong reasons. 615 

Equifinality becomes particularly problematic in this context because the fully asynchronous method may achieve similar 

projected changes in hydroclimatic variables as the conventional method, but for reasons that are not hydrologically sound. 

This brings into question the reliability of its projections, especially when the method demonstrates high variability among 

different climate models. Such variability, coupled with the method's inability to accurately replicate key hydrological 

processes, suggests that the fully asynchronous method, as implemented in this study, may not provide a robust framework for 620 

analyzing climate change impacts on hydroclimatic variables. 

The semi-asynchronous method offers an innovative compromise that addresses key limitations of the fully asynchronous 

approach by integrating a monthly calibration strategy. This modification significantly improves the temporal alignment of 

key hydrological processes, particularly snowmelt timing, leading to a more coherent and physically realistic seasonal 

representation of streamflow and water balance components. Compared to the fully asynchronous method, the semi-625 

asynchronous configuration exhibits reduced intermodel variability and avoids the pronounced misalignments seen in the 

representation of hydroclimatic variables. 

Despite these improvements, the semi-asynchronous method remains sensitive to the biases inherent in raw climate model 

projections. Unlike the conventional method, which benefits from bias corrected climate model data, the semi asynchronous 

approach uses uncorrected data and must compensate internally for systemic errors. This contributes to a slightly higher 630 

variability in the reference period, although interestingly, the semi-asynchronous method maintains consistent variability 

between the reference and future periods. In contrast, the conventional method, while more stable in the reference period, 

shows an increase in intermodel variability in the future, likely due to differences between climate models in the magnitude of 

projected changes. This result suggests that preserving the original climate signal, as done in the semi-asynchronous method, 

may help maintain the ensemble’s diversity, which can be advantageous for representing a broader range of possible futures, 635 

especially in the context of extremes. 

Our findings show that introducing a mechanism to enforce temporal coherence between simulated and observed hydrological 

events, such as monthly calibration in the semi-asynchronous method, can lead to significant improvements in the simulation 
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of key hydrological processes. Without such a constraint, as in the fully asynchronous method, calibration retains excessive 

flexibility, often leading to physically implausible representations of hydrological processes and inconsistent seasonal 640 

behaviors. The semi-asynchronous method therefore represents a clear advancement over the fully asynchronous approach. It 

combines the benefit of preserving the raw climate model signal with improved process realism, making it a promising and 

innovative tool for climate change impact assessments. Furthermore, it stands as a legitimate alternative to the conventional 

method, offering a different trade-off between realism, variability, and the ability to capture extremes. By retaining the full 

spread of climate projections, unlike bias correction techniques that tend to smooth out extremes, it may provide a robust 645 

framework for evaluating the hydrological impacts of future extreme events. 

4.2 Limitations and future directions 

All three methods present distinct advantages and limitations. One of the most notable distinctions between the methods lies 

in how they handle extremes. The Multivariate Bias Correction (MBCn) approach, typically used in the conventional method, 

tends to dampen the extremes, smoothing out the peaks. In contrast, the fully asynchronous and semi-asynchronous methods, 650 

which calibrate directly on the distribution of streamflow without bias correction, preserve (or attempt to preserve) these 

extremes (Ricard et al., 2023). Maintaining extreme values may provide a more realistic representation of potential high-impact 

events. 

Additionally, the selection of a bias correction method introduces another layer of uncertainty in hydrological projections. 

Studies have demonstrated that different correction techniques can significantly influence streamflow estimates, leading to 655 

variations in the magnitude and direction of projected hydrological impacts (Senatore et al., 2022; Chae and Chung, 2024). 

This added uncertainty highlights the challenge of determining the most appropriate correction approach, further emphasizing 

the importance of exploring alternative methods, such as asynchronous approaches, which eliminates the need for explicit bias 

correction. 

One technical limitation of both the fully asynchronous and semi-asynchronous methods is the use of a scaling parameter 660 

during calibration, which adjusts the simulated streamflow by applying a constant ratio to match the observed mean. While 

these methods preserve the streamflow distribution and focus on relative changes, the use of a scaling adjustment prevents 

direct interpretation of absolute values of hydrological variables. As a result, these methods are primarily suited for evaluating 

relative changes over time rather than assessing the magnitude of future flows, which can be limiting for impact-based decision-

making. 665 

Another limitation of this study is the choice of meteorological data used to drive the hydrological simulations. While ERA5 

was selected for its consistency and demonstrated reliability in previous studies, alternative datasets such as ERA5-Land or 

direct observations from weather stations could have influenced the results in terms of absolute values of change. 

Another critical consideration is the computational demand of the fully asynchronous and semi-asynchronous methods. Due 

to their reliance calibration on every climate model, these methods require significantly more computational time in the 670 

calibration process. This increased computational cost must be weighed against the benefits of using the fully asynchronous 
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and semi-asynchronous methods, particularly when the conventional method might achieve similar results with less 

computational effort and more established reliability. Future work could explore strategies to reduce this computational burden, 

such as developing approaches specifically designed to optimize calibration time for the asynchronous framework. 

The performance of the fully asynchronous method in snow-dominated catchments has proven to be problematic in this study. 675 

The method's inability to accurately capture snowmelt processes, as evidenced by the unrealistic snow retention and melt 

timing, casts doubt on its utility in regions where snow dynamics play a critical role in the hydrological cycle. Additionally, 

the high variability observed between climate models when using the fully asynchronous method suggests that the approach 

may be overly sensitive to the inherent uncertainties present in raw climate data. This variability complicates the interpretation 

of results and diminishes confidence in the method’s projections, particularly in scenarios where precise predictions are 680 

required for decision-making. 

The key takeaway from this study is that while the fully asynchronous method successfully preserves the distribution of 

streamflow and captures extreme events, it does so at the cost of increased intermodel variability and reduced accuracy in 

simulating critical hydrological processes, particularly those related to snow dynamics. These limitations make the fully 

asynchronous method less suitable for snow-dominated catchments, where precise representation of snowmelt timing and 685 

seasonal runoff is essential. In contrast, the semi-asynchronous method presents a clear improvement over the fully 

asynchronous approach by restoring temporal coherence and reducing inconsistencies in process representation. It also offers 

a legitimate alternative to the conventional method, preserving the raw climate model signal while delivering physically 

realistic hydrological simulations, which is particularly valuable for assessing the impacts of climate change on water 

resources.  690 

Ultimately, these findings aim to inform decision-making in critical sectors such as agriculture, water resource management, 

urban planning, and environmental conservation. For example, soil moisture data is essential in agriculture for optimizing 

irrigation and improving crop yields, as well as in environmental management for maintaining wetlands and forest ecosystems. 

Groundwater recharge data supports sustainable management of aquifers, which is crucial for drinking water supplies, 

agriculture, and industrial use, while also guiding urban planning to avoid flooding or subsidence. Surface runoff modeling is 695 

vital for flood prevention and urban infrastructure design, ensuring stormwater systems can handle heavy rainfall. Lastly, 

streamflow data is key to water resource management, enabling efficient allocation for agriculture and industry, flood 

forecasting, and optimizing hydroelectric power generation. By providing detailed projections of these key hydroclimatic 

variables, this study supports adaptive management strategies across a wide range of sectors impacted by climate change. 

Looking forward, further improvements could be made to the semi-asynchronous method by refining its monthly weighting 700 

strategy. Specifically, the αₘ parameter, which controls the contribution of each month to the objective function, could be 

adjusted to assign different weights to different months. This would allow greater emphasis on critical periods, such as spring 

snowmelt or low-flow seasons, thereby improving the calibration's sensitivity to seasonal dynamics. 

Future studies could also explore alternative calibration techniques, such as the Multiscale Parameter Regionalization (MPR) 

approach (Samaniego et al., 2010), which focuses on seamless parameter estimation across different spatial scales. Applying 705 
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MPR to WaSiM could improve parameter transferability and reduce the need for extensive calibration, potentially enhancing 

model robustness. 

In parallel, ongoing advancements in climate modeling provide an opportunity to further refine the semi-asynchronous 

approach. As climate models become more accurate, with fewer biases and enhanced temporal precision, it would enable the 

semi-asynchronous method to offer more robust and reliable simulations of hydrological processes under future climate 710 

scenarios, positioning it as a more versatile tool for climate impact assessments.  

5 Conclusion 

This study evaluated the fully asynchronous and semi-asynchronous methods against the conventional method for assessing 

the impacts of climate change on hydrology, in order to simulate key hydrological variables under future climate scenarios. 

While the fully asynchronous method proved effective in preserving extreme streamflow values, it consistently struggled to 715 

capture the timing of hydrological events, particularly snowmelt. These timing mismatches led to unrealistic seasonal dynamics 

and introduced considerable variability across climate model outputs, limiting the method’s reliability in regions where 

seasonal processes are critical.  

The semi-asynchronous method proposed in this study was designed to address these shortcomings by introducing a monthly 

structure into the calibration process, aiming to balance the distributional strengths of the fully asynchronous approach with 720 

improved temporal coherence. As a result, it offers a more physically realistic representation of seasonal dynamics and reduces 

some of the inconsistencies observed in the fully asynchronous framework. While it still shows sensitivity to biases in 

uncorrected climate inputs and exhibits notable intermodel variability, the semi-asynchronous method stands as a promising 

and novel alternative to the conventional approach. It provides a different yet valuable trade-off between realism, ensemble 

diversity, and the ability to represent extreme events, making it a legitimate option for climate change impact assessments. 725 

The conventional method delivered stable and hydrologically consistent simulations across catchments. Its reliance on bias-

corrected climate data helps ensure a better alignment with observed seasonal dynamics. However, this robustness comes with 

certain limitations. By smoothing out variability and extremes through bias correction, the conventional method may limit the 

exploration of a wider range of plausible future scenarios. As a result, it offers less flexibility in representing the full diversity 

of climate model projections, which can be particularly important for assessing the risks associated with extreme events under 730 

climate change. 

Future work should continue refining the semi-asynchronous method to improve its stability and applicability. In particular, 

adjusting the monthly weighting parameter (αₘ) could allow the calibration process to focus more effectively on key periods 

such as snowmelt or low-flow seasons. Another important avenue for improvement lies in addressing the limitations introduced 

by the use of a scaling parameter, which constrains the interpretation of absolute values and restricts the method to relative 735 

change analysis. Exploring calibration strategies that remove the need for this scaling adjustment could enhance the semi-

asynchronous method’s utility for impact-based decision-making. 
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Appendix A 

Table A1. List of GCMs along with their respective institutions and horizontal resolutions. 

GCM Name Institution 

Resolution 

 (lat. x lon.) 

ACCESS-ESM1-5 Australian Community Climate and Earth System Simulator, Australia  1.25° x 1.875° 

CMCC-ESM2 Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 0.9° x 1.23° 

CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 2.8° x 2.8° 

EC-Earth3 
European consortium of national meteorological services and research institutes; 

Spain, Denmark, Italy, Finland, Germany, Ireland, Portugal, Netherlands, 

Sweden, Norway, and Belgium. 

~ 80 km 

EC-Earth3-CC ~ 80 km 

EC-Earth3-Veg-

LR 
~ 125 km 

FGOALS-g3 Chinese Academy of Sciences, China 2.25° x 1.875° 

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, USA 1° x 1.25° 

INM-CM4-8 
Institute for Numerical Mathematics, Russia 

1.5° x 2° 

INM-CM5-0 1.5° x 2° 

IPSL-CM6A-LR Institut Pierre Simon Laplace, France 1.26° x 2.5° 

MIROC6 Japan Agency for Marine-Earth Science and Technology, Japan 1.4° x 1.4° 

MPI-ESM1-2-HR 
Max Planck Institute for Meteorology, Germany 

0.9375° x 0.9375° 

MPI-ESM1-2-LR 1.875° x 1.875° 

MRI-ESM2-0 Meteorological Research Institute, Japan 1.125° x 1.125° 

NESM3 Nanjing University of Information Science and Technology, China 1.875° x 1.875° 

NorESM2-LM 
Norwegian Climate Centre, Norway 

1.875° x 2.5° 

NorESM2-MM 0.9375° x 1.25° 

 740 
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Table A2. Monthly precipitation bias (%) between 18 global climate models (GCMs) and ERA5 reanalysis data for the reference 

period (1981-2010). Values represent the average bias across the 10 catchments included in the study. Monthly biases are shown for 

January (J) through December (D), with the final column indicating the annual mean bias for each model. 

GCM 

Monthly precipitation bias (%) 

J F M A M J J A S O N D Mean 

ACCESS-ESM1-5 14.1 22.1 29.6 2.5 13.7 12.6 23.4 11.2 -16.2 -16.3 -1.8 8.2 8.6 

CMCC-ESM2 -12.1 7.3 -6.8 -14.7 -12.8 -11.1 -0.9 -14.9 -16.4 -11.0 -2.1 -9.2 -8.7 

CanESM5 -10.3 0.6 -2.0 -6.6 16.5 23.9 36.2 26.6 22.0 5.4 -4.8 -23.4 7.0 

EC-Earth3 -1.3 26.1 26.7 -2.6 1.6 8.3 0.7 -6.9 -7.5 3.6 3.0 -2.4 4.1 

EC-Earth3-CC -0.5 37.2 18.3 5.0 11.3 8.5 0.4 -9.5 13.8 11.7 7.4 -0.5 8.6 

EC-Earth3-Veg-LR -2.0 10.6 11.1 -11.3 4.6 -0.4 -3.6 -12.4 1.1 6.0 -2.1 -4.3 -0.2 

FGOALS-g3 -3.8 -11.8 -7.3 -29.0 -38.9 -32.5 -22.1 -17.1 -23.0 -13.9 -1.5 3.7 -16.4 

GFDL-ESM4 -5.9 12.2 3.2 -0.7 1.5 18.5 11.1 0.7 7.3 7.8 -1.0 -16.4 3.2 

INM-CM4-8 20.5 22.6 26.0 -5.6 11.0 9.0 13.6 9.3 -18.3 -0.6 11.2 20.1 9.9 

INM-CM5-0 18.1 18.7 16.0 -0.8 9.7 12.5 23.5 11.2 -8.2 -16.1 15.2 6.6 8.9 

IPSL-CM6A-LR 27.2 39.6 31.4 0.3 8.4 16.2 34.5 28.4 10.7 -1.7 3.1 12.1 17.5 

MIROC6 17.2 17.2 3.9 -13.5 16.9 27.8 22.1 10.1 -4.7 9.2 3.3 -4.6 8.7 

MPI-ESM1-2-HR -4.3 14.4 24.9 22.9 20.2 13.3 12.9 1.2 1.4 9.8 4.6 -18.7 8.5 

MPI-ESM1-2-LR -4.0 11.9 15.5 -0.8 6.9 10.5 22.0 -12.0 8.0 -10.1 -6.4 -17.9 2.0 

MRI-ESM2-0 -8.7 2.6 -3.0 -10.0 -0.1 8.3 10.3 -6.5 0.3 0.6 -4.6 5.8 -0.4 

NESM3 0.7 38.6 36.1 10.1 8.0 7.9 17.9 5.5 -9.5 -8.9 1.2 -13.4 7.8 

NorESM2-LM -16.5 1.7 -9.3 -25.1 -22.8 -10.9 -23.9 -23.2 -12.2 -15.9 -18.5 -20.1 -16.4 

NorESM2-MM -10.9 -6.5 -3.3 -23.7 -20.2 -7.4 -15.4 -26.1 -20.0 -18.4 -5.0 -5.8 -13.5 
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Table A3. Monthly temperature bias (°C) between 18 global climate models (GCMs) and ERA5 reanalysis data for the reference 

period (1981-2010). Values represent the average bias across the 10 catchments included in the study. Monthly biases are shown for 

January (J) through December (D), with the final column indicating the annual mean bias for each model. 

GCM 

Monthly temperature bias (°C) 

J F M A M J J A S O N D Mean 

ACCESS-ESM1-5 4.4 2.3 2.6 1.3 -0.3 0.1 0.6 0.4 0.9 1.5 1.4 4.1 1.6 

CMCC-ESM2 0.0 -0.2 0.6 0.5 0.0 -0.3 0.3 0.2 0.7 1.2 0.7 0.3 0.3 

CanESM5 0.1 -0.3 0.9 1.6 2.6 2.0 1.4 1.9 1.4 0.8 -0.2 -0.4 1.0 

EC-Earth3 -2.2 -1.7 -2.2 -3.5 -4.6 -3.0 -2.2 -1.0 -0.2 -0.7 -0.9 -1.5 -2.0 

EC-Earth3-CC -1.3 0.2 -1.5 -2.3 -3.1 -2.1 -1.2 -0.4 0.4 0.6 -1.0 -1.2 -1.1 

EC-Earth3-Veg-LR -3.2 -4.1 -2.7 -3.5 -4.3 -3.4 -1.4 -0.6 0.5 0.0 -1.6 -2.6 -2.2 

FGOALS-g3 -1.2 -2.0 -0.7 0.0 -1.1 -0.6 0.2 0.1 -0.9 -0.3 -0.2 -0.4 -0.6 

GFDL-ESM4 -0.6 0.1 -1.3 -2.0 -2.6 -1.9 -1.9 -1.9 -1.5 -1.0 -1.8 -0.6 -1.4 

INM-CM4-8 -1.2 -0.7 -1.2 -0.3 1.5 0.8 0.7 0.6 0.7 1.8 1.8 0.5 0.4 

INM-CM5-0 -2.4 -3.1 -3.6 -2.9 0.3 0.5 0.5 0.1 0.1 1.8 1.4 -0.8 -0.7 

IPSL-CM6A-LR -2.0 -1.5 -1.7 -1.9 -0.4 1.0 2.0 2.7 1.4 0.2 -1.2 -1.8 -0.3 

MIROC6 2.5 1.1 0.0 0.1 1.9 2.5 2.7 2.3 2.4 2.3 1.7 1.7 1.8 

MPI-ESM1-2-HR 0.3 -1.1 -1.8 -1.0 -0.1 0.0 -0.4 -0.4 0.0 -0.2 -0.6 0.2 -0.4 

MPI-ESM1-2-LR -1.1 -2.1 -2.4 -1.3 0.0 -0.4 -0.5 -0.8 -0.3 -0.1 -1.5 -1.0 -1.0 

MRI-ESM2-0 -0.5 -0.4 -0.2 -0.4 -0.8 -0.3 0.5 0.3 0.1 -0.6 -1.0 0.0 -0.3 

NESM3 -1.1 -1.8 -2.0 -1.3 -0.2 0.4 1.4 1.5 1.9 0.5 -1.7 -1.5 -0.3 

NorESM2-LM 1.3 -0.8 -1.0 -1.3 -2.7 -2.0 0.3 1.5 1.1 0.9 1.0 1.7 0.0 

NorESM2-MM -0.3 -1.0 -0.8 -1.8 -2.6 -1.3 0.6 0.4 0.6 0.7 0.5 0.4 -0.4 
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Appendix B 

Table B1. Kling-Gupta Efficiency (KGE) values for the conventional method during the calibration and validation periods across 

ten catchments. The mean KGE values for calibration and validation are also provided. 

Conventional Method KGE 

Name Area (km2) Calibration Validation 

 
Bonaventure 1910 0.847 0.889  

Matane 1650 0.906 0.906  

Ouelle 795 0.894 0.834  

Bécancour 919 0.850 0.807  

Nicolet Sud-Ouest 549 0.817 0.786  

Au Saumon 738 0.831 0.778  

Bras du Nord 642 0.873 0.872  

Du Loup 774 0.838 0.804  

Valin 746 0.902 0.885  

Godbout 1570 0.869 0.863  

Mean 0.863 0.842  

Table B2. Root Mean Square Error (RMSE) values calculated using sorted simulated and observed streamflow during the 755 
calibration and validation periods across ten catchments. The mean RMSE values for calibration and validation are also provided. 

RMSE Asynchronous Semi-Asynchronous Conventional 

Name 
Calibration Validation Calibration Validation 

Calibration Validation 
Mean Std Mean Std Mean Std Mean Std 

Bonaventure 0.108 0.030 0.151 0.045 0.276 0.070 0.256 0.062 0.465 0.296 

Matane 0.124 0.021 0.180 0.034 0.319 0.089 0.334 0.130 0.439 0.279 

Ouelle 0.125 0.027 0.167 0.043 0.315 0.085 0.308 0.092 0.180 1.362 

Bécancour 0.095 0.019 0.158 0.048 0.252 0.055 0.255 0.072 0.976 0.295 

Nicolet Sud-Ouest 0.125 0.034 0.200 0.097 0.297 0.048 0.263 0.073 0.320 0.925 

Au Saumon 0.156 0.054 0.209 0.053 0.390 0.078 0.385 0.075 0.824 0.614 

Bras du Nord 0.175 0.044 0.243 0.063 0.283 0.105 0.314 0.151 0.425 0.361 

Du Loup 0.085 0.019 0.165 0.091 0.201 0.037 0.228 0.066 0.360 0.232 

Valin 0.109 0.036 0.162 0.055 0.258 0.046 0.264 0.062 0.333 0.325 

Godbout 0.110 0.032 0.157 0.037 0.231 0.042 0.239 0.036 0.645 0.493 

Mean 0.121 0.031 0.179 0.057 0.282 0.065 0.285 0.082 0.497 0.518 
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Appendix C 

 

Figure C1. Performance comparison between the conventional, fully asynchronous and semi-asynchronous methods for the 760 
Bonaventure catchment during the reference period (1981–2010). The figure shows the percentage bias between observed and 

simulated streamflows, with the x-axis representing the observed daily streamflow and the y-axis displaying the percentage bias 

relative to the observed values. The shaded regions illustrate the variability among climate models around the mean bias for each 

method. 

 765 

Figure C2. Same as Fig. C1, but for Ouelle catchment.  
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Figure C3. Same as Fig. C1, but for Bécancour catchment. 

 

Figure C4. Same as Fig. C1, but for Nicolet Sud-Ouest catchment. 770 
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Figure C5. Same as Fig. C1, but for Au Saumon catchment. 

 

Figure C6. Same as Fig. C1, but for Bras du Nord catchment. 
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 775 

Figure C7. Same as Fig. C1, but for Du Loup catchment. 

 

Figure C8. Same as Fig. C1, but for Valin catchment. 
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Figure C9. Same as Fig. C1, but for Godbout catchment. 780 
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Appendix D 

Table D1. Analysis of Q95% streamflow distribution across 10 catchments for the reference and future periods. Metrics 

include the median (med) and standard deviation (std) of Q95% values (%). 
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Absolute 

Mean 

Reference 

Period Conv. 
med (%) 4.5 -4.2 6.8 -11.7 -3.4 4.8 -6.1 1.1 -6.7 2.5 5.2 

std (%) 4.1 3.2 3.3 3.1 2.7 4.5 2.3 3.1 3.4 3.9 3.4 

Fully-

asyn. 

med (%) 0.3 -0.3 1.6 -0.6 4.1 2.3 -12.8 -0.1 1.6 -3.0 2.7 

std (%) 4.1 4.1 3.0 3.4 7.2 4.0 25.4 3.2 3.4 3.9 6.2 

Semi-

asyn. 

med (%) 2.2 -5.1 -5.5 -3.7 0.2 4.6 2.4 -3.2 1.7 1.4 3.0 

std (%) 4.1 5.1 5.6 5.2 4.2 4.4 5.0 4.9 4.4 4.7 4.8 

Projected 

Change Conv. 
med (%) -15.8 -16.7 -20.0 -7.2 -17.6 -16.6 -12.4 -8.3 -9.8 -6.0 13.0 

std (%) 10.4 13.7 11.1 9.1 7.3 9.0 8.9 7.9 10.9 10.9 9.9 

Fully-

asyn. 

med (%) -15.0 -11.0 -8.7 -6.2 -10.2 -14.1 -3.1 -6.7 -3.3 -5.0 8.4 

std (%) 8.0 7.9 12.7 7.3 11.2 10.9 9.3 11.6 10.0 11.1 10.0 

Semi-

asyn. 

med (%) -9.6 -22.6 -1.7 -8.2 10.8 -1.3 -23.4 25.3 -13.4 -9.0 12.5 

std (%) 19.8 11.6 25.0 18.8 26.6 20.2 9.5 19.5 8.8 10.9 17.1 

 800 

Table D2. Same as D1, but for Q50%.  

Q50% 
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Absolute 

Mean 

Reference 

Period Conv. 
med (%) 12.8 -11.3 -15.0 -3.3 -20.5 -9.0 -13.9 -1.5 -23.4 2.4 11.3 

std (%) 3.6 3.3 4.0 4.7 4.5 4.5 2.5 2.6 2.3 2.7 3.5 

Fully-

asyn. 

med (%) 2.2 -5.0 -5.3 -3.2 -7.1 6.1 -24.3 -2.1 -1.0 1.4 5.8 

std (%) 6.6 6.0 6.5 7.1 6.5 7.1 28.8 10.0 7.9 10.9 9.7 

Semi-

asyn. 

med (%) 2.2 2.4 6.5 1.8 -2.9 4.5 -2.5 0.7 2.1 1.2 2.7 

std (%) 6.1 4.8 10.6 5.3 6.6 7.7 5.5 5.6 5.3 5.0 6.2 

Projected 

Change Conv. 
med (%) 15.8 18.7 25.2 18.4 18.2 13.0 17.8 14.9 23.5 14.6 18.0 

std (%) 16.6 25.3 24.1 16.7 20.2 15.7 15.1 15.8 18.5 16.0 18.4 

Fully-

asyn. 

med (%) 3.9 11.0 20.7 20.5 9.0 3.3 17.2 16.3 19.0 22.8 14.4 

std (%) 29.9 16.0 16.3 13.8 17.6 18.4 15.2 19.4 13.8 17.9 17.8 

Semi-

asyn. 

med (%) 53.9 17.4 30.9 15.3 40.6 8.0 -3.1 66.4 5.6 35.0 27.6 

std (%) 41.3 24.9 36.3 31.1 32.3 31.4 19.2 34.2 17.2 24.1 29.2 
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Table D3. Same as D1, but for Q5%.  

Q5% 

Catchment Name 
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Absolute 

Mean 

Reference 

Period Conv. 
med (%) 39.3 4.9 158.4 26.5 66.1 61.2 3.2 129.8 53.4 85.3 62.8 

std (%) 5.4 3.9 12.7 5.7 8.1 5.6 2.7 5.6 2.0 1.0 5.3 

Fully-

asyn. 

med (%) 12.0 34.2 137.6 42.5 109.9 31.7 -12.5 60.8 27.2 17.3 48.6 

std (%) 15.3 17.6 81.3 18.5 48.1 41.1 45.0 20.0 11.6 10.8 30.9 

Semi-

asyn. 

med (%) 42.4 45.6 275.4 103.8 160.7 93.6 24.4 117.1 49.5 41.5 95.4 

std (%) 14.9 18.1 72.8 25.8 36.6 46.0 10.2 15.1 14.9 8.4 26.3 

Projected 

Change Conv. 
med (%) -25.1 -32.5 -40.1 -25.2 -55.9 -26.3 3.7 -4.0 0.1 6.2 21.9 

std (%) 8.6 13.1 11.2 6.0 17.1 19.2 10.9 7.5 5.6 5.1 10.4 

Fully-

asyn. 

med (%) -17.6 -8.4 1.3 14.4 -19.5 -24.1 -11.3 11.4 -12.2 17.2 13.8 

std (%) 30.5 20.9 21.5 19.1 27.4 28.8 19.1 22.6 27.7 37.8 25.5 

Semi-

asyn. 

med (%) -0.4 -16.5 -17.9 -4.2 3.7 -34.3 -19.6 36.2 6.8 13.3 15.3 

std (%) 27.7 19.8 29.6 24.0 36.3 31.2 19.6 24.5 18.1 22.5 25.3 
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Appendix E 810 

 

Figure E1. Topographic and soil type characteristics of the Matane catchment. Panel (a) shows the elevation map, with elevations 

ranging from 100 to 800 meters above sea level. Higher elevations are indicated in warmer colors (reds and oranges), while lower 

elevations are shown in cooler colors (blues and greens). Panel (b) displays the distribution of soil types within the catchment, with 

sandy loam covering 56% of the area (dark blue), loam covering 41% (light blue), and sandy clay occupying 3% (yellow). 815 
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Appendix F 

 

Figure F1. Seasonal distribution of key hydroclimatic variables for the reference period (1981–2010), future period (2070–2099), 

and their average absolute changes across the Bonaventure catchment. 
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 820 

Figure F2. Same as F1, but for Ouelle catchment. 
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Figure F3. Same as F1, but for Bécancour catchment. 
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Figure F4. Same as F1, but for Nicolet Sud-Ouest catchment. 825 
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Figure F5. Same as F1, but for Au Saumon catchment. 
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Figure F6. Same as F1, but for Bras du Nord catchment. 
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 830 

Figure F7. Same as F1, but for Du loup catchment. 

https://doi.org/10.5194/egusphere-2025-4450
Preprint. Discussion started: 18 September 2025
c© Author(s) 2025. CC BY 4.0 License.



50 

 

 

Figure F8. Same as F1, but for Valin catchment. 
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Figure F9. Same as F1, but for Godbout catchment. 835 

Code and data availability 

The calibrated WaSiM model and all simulations for all catchments discussed in this study is publicly accessible at 

https://osf.io/n87ey/ (Talbot et al., 2024b). 
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