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Abstract. Knowledge about spatially distributed inundation depth and overland flow quantities, as well as related flow 

velocities, is critical information for establishing a pluvial flood forecasting system and the related disaster management. This 

kind of information is often derived from computationally demanding simulations with 2-dimensional hydrodynamic models, 

limiting the number of scenarios for which information can be provided and challenging real-time forecasting. To address this 

gap, we developed the model AccRo (Accumulation-based Runoff and Flooding), which is a computationally efficient method 10 

to derive maximum inundation depth, maximum flow velocity and maximum specific discharge of a flood event at larger 

spatial scales, based on an improved flow accumulation method to better represent the spatial extent of inundated areas. To 

assess the quality of AccRo, we compare the results from the AccRo model with the results of two different state-of-the-art 2-

dimensional hydrodynamic models for design cases as well as real-world pluvial flood examples. We find that AccRo is able 

to represent both, the analytical solution for the design cases and the simulations of the hydrodynamic models in the real-world 15 

example in high quality, well within the range of the two hydrodynamic models. In combination with the low computational 

requirements, we conclude that AccRo is a valuable tool for assessing pluvial flood hazards.  

1 Introduction  

Pluvial floods have large damage potential as is demonstrated by recent catastrophic events like the pluvial flooding in Texas 

in July 2025 or the floods in Spain from October 2024. They are supposed to become more frequent and more intense in the 20 

light of global change (e.g. Skougaard Kaspersen et al, 2017). So far, however, warning mechanisms for pluvial floods are 

rather limited. This is on one hand due to the random nature and fast build-up phase of extreme convective precipitation events 

(e.g. Li et al, 2021), although probabilistic ensemble forecasts might improve the forecast quality (e.g. Bouttier and Marchal, 

2024). On the other hand, there is also the issue of computational resources and adequate lead times connected with the 

identification of inundation areas. This is especially important for the real-time warning of pluvial floods in suburban and 25 

urban regions, often characterised by a relatively strong role of hydrological processes and relatively large accumulation areas, 

requiring a more holistic approach to include the impact of runoff generation and hydraulic effects into a warning.  

Because this is not yet available, a widely used concept to support pluvial flood risk assessment as well as a baseline for 

planning emergency management options are so-called pluvial flood maps (e.g. Wimmer and Hovenbitzer, 2025). These maps 

map potential inundation areas for certain design rainfall events based on the output of hydrological and/or hydrodynamic 30 
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models (Bulti and Abebe, 2020). A step towards issuing a real-time warning of pluvial floods was recently made with the 

concept for a mesoscale pluvial flood index (PFI) to depict the current hazard of a region being flooded (Weiler et al., 2025). 

The PFI builds on the spatial extent of flood hazard areas in a certain region. These are defined as areas where the flood poses 

a danger for people’s life. Key variables for most pluvial flood maps as well as the PFI are the maximum inundation depth and 

maximum surface flow velocity. The PFI also takes into account the maximum specific discharge. To accurately represent 35 

hazard areas, the spatial resolution of the data must be fine enough to represent important flow structures in urban areas (e.g., 

buildings, streets, underpasses, etc.) as well as in the surrounding areas (farm and forest roads, small creeks, etc.), which 

frequently deliver water into settlements. 

The above-mentioned variables are also a standard output of 2-dimensional (2d) hydrodynamic models. However, especially 

when targeting a larger regional scale (e.g. when focusing on sub-urban cases with large accumulation areas of 10-100 km2 or 40 

in the case of deriving the PFI) the high computation costs and integration times of 2d hydrodynamic models might become a 

bottle neck for real-time forecast. Although there are recent developments like GPU based 2d hydrodynamic models (e.g. 

RIM2D, Apel et al., 2024, or IBER-Plus, Moraru et al., 2023 or SCENARIFY, Buttinger-Kreuzhuber et al., 2022) or the use 

of ANN for instant forecasting (e.g. Berkhahn et al., 2019), both approaches are bound to huge computation efforts either for 

the real time simulation in the case of the GPU models or in the preparation of extensive training data for the ANN models. 45 

Especially for mixed regions with larger influence of non-urban areas and diverse hydrological responses, the training of ANN 

requires a very large dataset (e.g. Reinecke et al, 2024). 

On the other hand, there are computationally efficient GIS-based methods available to simulate the flow accumulation in a 

very reasonable time also for larger areas (Avila-Aceves et al., 2023). However, there are some shortfalls, which are mainly 

that the outputs of these methods do not fulfil the data requirements for estimating the pluvial flood maps, since they only 50 

provide accumulated flow amounts but no explicit measure for inundation depths or flow velocities. Furthermore, spatial 

structures of inundated areas extracted from flow accumulation methods are often much more spatially confined than the ones 

from 2d hydraulic models. Although accumulation-based methods exist that try to mimic the spatial extent of inundated areas 

depicted in hydraulic models (e.g. FastFlood, van den Bout et al., 2023) they do not yet provide the spatial details needed to 

define local flood hazard areas. 55 

In order to obtain a fast estimate of the spatial pattern of maximum water depth, maximum flow velocity and maximum specific 

discharge at a reasonable spatial resolution allowing us to represent important obstacles as buildings and preferential flow 

paths (e.g., roads and ditches), we developed the raster-based model AccRo (Accumulation-based Runoff and Flooding). In 

our study, we first describe the methodological details of the AccRo and the validation framework we used to compare the 

AccRo output with 2d hydrodynamic models, followed by the validation of the results.  60 
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2 Method 

2.1 Relating accumulated runoff (As) to q, w and v 

Central element of AccRo is the flow accumulation function (FAF) of the Python module richDEM (Barnes, 2016). FAF is a 

very fast method yielding reliable results, for quantifying flow accumulation with a choice of several flow direction approaches 

like convergent methods, such as D8 (O'Callaghan and Mark, 1984) or divergent methods, like Quinn method (Quinn et al. 65 

1991). One major advantage in using FAF is that it allows the use of accumulated weights based, e.g., on area or in our case 

on surface runoff intensities (s). Applying FAF with s as a weighting factor yields to spatially distributed estimates of total 

surface runoff flowing through a raster cell depending on the input s and the flow paths, according to the digital elevation 

model (DEM). To use FAF to estimate maximum inundation or water depth (w), maximum flow velocity (v) and maximum 

specific discharge (q), cumulative surface runoff (As) must be translated into the appropriate target variables. Furthermore, the 70 

accumulation of s in FAF is only controlled by the DEM, ignoring the need to account for changing hydraulic conditions 

caused by varying water depths. As a result, the second critical element in AccRo is the decoupling of the accumulation from 

the DEM surface when hydraulic conditions and flow direction change due to varying water depth. 

As previously stated, using FAF with s as the weighting factor returns As. The temporal development of As in a specific cell, 

however, is not incorporated by FAF. Knowing the travel times is key to estimating q, w and v, thus we have to include the 75 

temporal perspective into AccRo. For a given raster cell, we can distinguish between the time a water parcel needs to flow 

though the cell (tc), the forward time i.e. the time the water parcel needs to reach another cell (typically the outlet), and the 

backward flow time (tb), which is the duration of flow in a single cell caused by delayed inflow from cells further uphill (see 

Fig. 1). In general, tb will be shorter on top of hills or convex structures (less cells accumulated) and larger in valleys and 

reaches the maximum value at the catchment outlet. The concepts for tb and tf are widely used in hydrology, e.g. tb for water 80 

age calculations (Benettin et al. 2015) and pollutant transport (Zhang et al. 2023) and tf for isochrones and hydrographs 

estimations (Olivera et al. 1999, Saghafian et al. 2002).  
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 85 

Figure 1: Scheme of the definitions of relevant times a water parcel travels in a catchment and the assumed initial relationship 

between water depth and area weighted flow accumulation. 

 

2.1.1 Spatially distributed estimation of backward flow time (tb) 

For a given water depth, the flow velocity (vc) and hence the flow time (tc) through a raster cell can be derived from the slope 90 

and hydraulic radius based on the Gauckler-Manning-Strickler (GMS) equation:  

 

𝑣𝑐 = 𝑘 × 𝑅
2

3 × 𝑖0.5   Equation 1 

𝑡𝑐 =
𝑙

𝑣𝑐
    Equation 2 

with  95 

k – Strickler surface roughness [L1/3/T] 

R – hydraulic radius [L] – in our case water depth in a cell 

i – slope [L/L] 

l – cell length [L] 

  100 

The slope is derived from the DEM and the roughness values can be estimated from spatially explicit landuse or surface cover 

information (e.g. LUBW, 2016). Adding up tc along a flow path from the top to the bottom (top-down approach) yields the 

backward flow time (tb) for each cell along this flow path, which represents the duration of flow in a cell caused by flow times 

from upslope cells finally draining through the given cell (see Fig. 1 for schematic). Since our method is designed for events 

with rather high s values (pluvial flood events), we initially estimate tc (and hence also tb) only for water depths between 2 cm 105 

and 15 cm. To assign an initial water depth (wc) for the calculation of tc, we developed a simple linear relationship (see Eq. 3) 

between the wc and area weighted flow accumulation (AA) derived from FAF using the Quinn Method, with an intercept equal 
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to 2 cm (wsf) and a slope of 1x10-5 m-1 (see inlet in Fig. 1). The reason for using the Quinn Method for area and runoff weighted 

accumulation is that it is a divergent method representing flow processes, which is more realistic than convergent methods on 

hillslopes and in valleys. Flow occurs to all downslope neighbours proportional to i and to the tangent of the angles. wsf is the 110 

water depth under which we assume sheet flow (HLNUG, 2020). The slope represents the quotient of a water depth (wr) above 

which we assume that roughness is independent of changes in water depth (i.e. larger than 10 cm) and a critical accumulation 

area of 10,000 m² (AAcrit). For AAcrit we consider that the entire area would generate runoff, the resulting water depth reaches 

values of 10 cm (wr) or more due to the accumulation. As previously stated, the maximum is set to 15 cm. The use of this 

linear equation yields only catchment or area-specific results that are unaffected by a specific runoff event. 115 

 

𝑤𝑐 = {

0.02𝑚 𝑤𝑐 < 0.02𝑚
𝑤𝑟

𝐴𝑐𝑟𝑖𝑡
× 𝐴𝐴 + 𝑤𝑠𝑓 0.02𝑚 ≤ 𝑤𝑐 ≤ 0.15𝑚

0.15𝑚 0.15𝑚 < 𝑤𝑐

  Equation 3 

 

Having defined the cell-specific tc we now have to identify for each cell all upslope cells eventually draining into the cell of 

interest to calculate the backward flow time tb. For the top-down approach (starting with the highest DEM value), we use a 120 

sink-filled DEM (modified with the richDEM epsilon filling module, Barnes, 2014) as a baseline for an area-weighted D8 

accumulation. We use the convergent D8 method of FAF here, since we just want to select the upslope cell with the largest 

inflow and thus the most relevant tb value. tb in a cell is then the sum of tc in this cell and the relevant tb value upslope. To find 

the most relevant upward tb value of the neighbouring eight cells, we queried four criteria to select the relevant tb of the eight 

neighbouring cells:  125 

 

(1) DEM value is higher,  

(2) D8 accumulation is lower,  

(3) of all neighbours that fulfil criteria (1) and (2) D8 accumulation is maximal  

(4) of all neighbours that fulfil criteria (1) and (2) tb is maximal.  130 

Since not all 4 criteria are always fulfilled, the importance decreases from (1) to (4). If criterion (2) is not fulfilled, a D8 

accumulation weighted tb of all neighbours fulfilling (1) is used as a replacement. If even criterion (1) is not fulfilled, criteria 

(2) and (3) are applied to neighbours with equal DEM values. Figure 2 exemplarily shows for a small catchment (ca. 3 km²; 

see section 2.4 and Fig. 6 for more details) the spatial distribution of the variables used to calculate tb (panels a to c) as well as 

the resulting tb (Fig. 2d). 135 
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Figure 2: Example of spatially distributed variables to calculate backward flow time in a small catchment (see section 2.4). (a) Area 

flow accumulation (m²)  (b) Area specific water depth (m)  (c) cell flow time (sec)  (d) backward flow time (sec) 140 

2.1.2 From surface runoff accumulation to cell-specific maximum discharge using backward flow time  

In the previous section, we showed how to calculate for each raster cell an event-independent backward flow time tb. However, 

in order to determine the maximum specific discharge qmax at a particular cell, we must connect this data to the event-specific 

s response and the accumulated surface runoff As. In essence, the following principle guides the estimation of qmax: 

 145 

𝑞𝑚𝑎𝑥 = 𝐴𝑠 × 𝑙 × 𝐹 [L³/(T*L)]  Equation 4 

 

respectively surface discharge per cell 

 

𝑄𝑚𝑎𝑥 = 𝐴𝑠 × 𝑙2 × 𝐹 [L³/T]  Equation 5 150 
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where F [1/T] represents the factor to transfer As [L] to qmax [L³/T] and l [L] the cell size.  

The next section provides additional details concerning the estimation of F (see Fig. 3 for an example). We start with the most 

basic scenario: a raster cell with no inflows from neighbouring cells, such as the top of the hill at the watershed boundary. In 

this case, the temporal response of generated runoff s of the specified cell (see Fig. 3a) is equal to the response of surface 155 

runoff. The maximum s is equivalent to the maximum surface discharge. In this case, tb equals tc, with tc getting closer to zero 

as the cell size decreases (i.e., it is 0 for a point). In this scenario, F is the quotient of the cell-maximum value of s (smax) and 

the product of its discrete time unit (t) and its sum (∑𝑠) (see Eq. 6). 

 

𝐹 =
𝑠𝑚𝑎𝑥

∑𝑠×∆𝑡
  Equation 6 160 

 

However, the situation is different for cells that receive inflow from neighbouring cells. In this case, tb is greater than tc, and 

we obtain distinct overlapping s responses. The degree of overlap depends on the chosen time step of s (since s is an intensity). 

As a result, smax and ∑𝑠change for cells with tb > tc (Fig 3b). A particular cell's ∑𝑠 (and As) will increase with its tb, which 

essentially indicates that more cells will eventually inflow into the cell. For cells with larger tb, F gradually decreases because 165 

smax reaches a maximum at a specific tb and will not increase further due to the delayed runoff from the inflow cells. (Fig. 3c)  

 

 

Figure 3: Example of how F is developing in dependence of s and tb 

 170 

To visualise the evolution of smax, ∑𝑠 and F with increasing tb in Fig 3., we defined an exemplary flow path. In Fig. 3a, tb 

equals tc, smax = 1.45 mm/min and ∑𝑠 = 10𝑚𝑚 and so F = 0.145/min. In Fig. 3b-c we increase tb (2 minutes and 20 minutes) 

and the corresponding s response. The shift of overlap is defined by the underlying time step of the intensity. So in Fig. 3b, tb 

equals tc +2 min, smax = 4.18 mm/min and ∑𝑠 = 30𝑚𝑚 and so F = 0.14/min and in Fig. 3c, tb equals tc +20 min, smax = 

10 mm/min and ∑𝑠 = 210𝑚𝑚  and so F = 0.048/min. Calculating this for all possible tb in a catchment, we receive a 175 
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continuous curve for smax, ∑𝑠 (Fig. 3d) and F (Fig. 3e) in dependence of tb. Based on this explanation, it is evident that  F does 

not depend on the time unit of s. However, the F factor changes if the quantity and/or duration of the response varies. 

As the spatial and temporal variability of s is relevant for deriving the F curve, the response of s should represent an average 

response over a specific area. This is usually not fulfilled anymore if the area is becoming too large since the variability in 

individual s responses will significantly vary due to different spatial factors influencing the runoff generation, such as 180 

vegetation, soil type, moisture, and precipitation. Hence, we target for a size of around 2x2 km² for which a specific response 

of F is valid. This area can be e.g. a small catchment, some part of a catchment or the area covered by a grid cell from radar-

based precipitation input. 

2.1.3 From maximum specific discharge to maximum water inundation to maximum flow velocity  

With the assumption that q, w and v are related to each other, it’s now possible to calculate w and v based on q using Gauckler-185 

Manning-Strickler equation for each cell (see Eq. 1). Since the hydraulic radius (R) is not known, we assume that the cross-

sectional width is large compared to water depth, and so we set R equal to w. On hillslopes this assumption is mostly given, 

but in channels this assumption might lead to higher velocities.  

By rearranging Eq. 1 we get  

 190 

𝑄 = 𝑣 × 𝐶 = 𝑘 × 𝑅
2

3 × 𝑖0.5 × 𝐶    Equation 7 

 

and with R = w and 

𝐶 = 𝑤 × 𝑙      Equation 8 

we get 195 

𝑤 = (
𝑄

1000

𝑖0.5×𝑘×𝑙
)

3 5⁄

     Equation 9 

 

with  

C – cross-sectional area of flow [L²] 

l – cell size [L] 200 

 

 

2.2 Representation of changing hydraulic conditions due to inundation 

As already introduced before, the use of FAF typically results in water accumulation, either adhering to the steepest descent 

in the D8 approach or encompassing all downward gradients for diverging methods, resulting in relatively small inundated 205 
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areas. Hydraulic models, on the other hand, attempt to simulate reality by allowing flowing water to initially fill structures 

such as channels, hollows and sinks before eventually overflowing banks or other structures, resulting in different flow 

pathways due to the adapting water depths as compared to the initial DEM structures. As a result, the flow accumulation 

analysis should take into account shifting hydraulic conditions in order to mimic more natural inundation processes. 

We use spatially distributed surface runoff (s) generated from a hydrological model as a weighting factor in the FAF. The 210 

quantity and location of computed accumulated runoff (As) are determined by the flow direction defined by the DEM and the 

spatial pattern of s. To allow for the expansion of flow pathways in AccRo to mimic the inundation processes, the accumulation 

is done iteratively by partitioning the total amount of s into n equal fractions (sfrac). Utilising the previously established 

methodology for calculating q (Eq. 4) from the generated As, we can calculate w for each cell based on q after each iteration. 

Adding w after each iteration to the elevation before the iteration, we can produce a modified DEM surface, with certain 215 

regions already inundated. This adjusted DEM is then the new reference for the FAF in the next iteration step. By repeating 

this procedure for multiple iteration steps, the accumulated surface runoff generates larger inundated areas and levels out the 

cross sections (see schematic example in Fig. 4), in contrast to calculating As only once without modifying the DEM (Fig. 4 

right column).  

 220 

 

 

Figure 4: Schematic illustration of the iterative process. Left: sfrac is accumulated in three iterations, altering the DEM with the 

resulting inundation and therefore changing the accumulation location of each iteration. Right: s is accumulated once without 

altering the DEM. 225 

 

 

Fig. 5 depicts the spatial effect of the iterative flow accumulation procedure for the example of a small test catchment (see Fig. 

6 for details). The maps show the maximum inundation after 72 iterations (left) and the setup where s is accumulated only 

once (right). Note that the sum of s is the same for both examples. Narrow structures become more extended structures and 230 

additional regions become flooded with more iterations. We additionally included the water depth at a specific cross section 
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(small inlet figures) to highlight the iteration setup and the resulting inundation, whereas in the case without iteration an 

unrealistic water hill builds up.  

 

 235 

Figure 5: Effects of the iterative approach. Left: inundation in meter when 72 iterations are applied, right inundation when one 

iteration is applied. The sum of s is the same for both simulations. The black line in the centre represents the location of the cross 

section.  

 

While q and w are calculated for each iteration step and then added up to determine the respective maximum values, v is not 240 

calculated throughout the iteration process. As a result, only one computation of v is performed after the iteration process using 

Eq. 1. To account for changes in slopes caused by inundated areas, we recalculate i by incorporating w, which means that the 

slope is now determined by the gradient of the water surface (DEM plus inundation depth). 

2.2.1 Sinks 

For handling sinks, we have developed two approaches. Sinks may be excluded by pre-filling them prior to the iteration, or 245 

they may be included and subsequently filled during the iterative process. For the latter, the locations and volumes of sinks are 

calculated by subtracting the non-filled from the filled DEM. To avoid redistributing of a too large amount of s inside a sink, 

only As of cells representing the local DEM minima in sinks for the relevant iteration step are considered. Redistribution of 

water within sinks is done by an internal sink iteration routine. This routine redistributes the water within the sinks to level out 

DEM plus water depth, ensuring that no cells outside of the sink are affected. Surplus water, or inundation that exceeds the 250 

sink depth, is added to sfrac in the subsequent iteration step. 
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2.2.2 Defining the number of iterations 

As shown in Fig. 4 and Fig. 5, the spatial expansion of the inundation area potentially increases with the number of iterations.  

The optimal number of iterations, however, is not a fixed value but depends on catchment and event characteristics. In order 255 

to produce realistic results in rather flat regions, more iteration steps are needed than in regions with greater topographical 

variation. Furthermore, higher runoff intensities require more iteration steps than lower intensities. To consider these aspects, 

AccRo initially estimates the portion of total runoff that would generate a maximum inundation of 10 cm in an accumulation 

area of 10 km² at one iteration. For this purpose, a single initial run with only one iteration of normalised total runoff s/max(s) 

is computed. To calculate the number of iterations n, the resulting (spatial) maximum inundation depth is divided by 0.1 m 260 

and multiplied by the maximum total runoff as shown in Eq. 9. 

 

𝑛 =
𝑚𝑎𝑥⁡(𝑤)

0.1
×𝑚𝑎𝑥⁡(𝑠)     Equation 10 

 

We evaluated this approach for different regions and various cases with different runoff intensities. We discovered that when 265 

n exceeds 100, the findings become quite identical. As a result, we set nmax to 120 and nmin to 12, allowing for some spatial 

expansion under low runoff amounts.  

2.3 Estimation of flood hydrographs 

As a by-product of our approach in AccRo, we can also derive the flood hydrograph at defined locations. We use the idea of 

the geomorphological instantaneous unit hydrograph (GIUH) (e.g., Rigon et al. 2016) and the estimated maximum flow 270 

velocity as well as the water volume stored in sinks to calculate the flood hydrograph. For this, we use v to calculate the 

forward flow time (tf) to a given location in the catchment (in general the outlet, but can be any) with the SAGA  module 

‘ta_hydrology” (Maximum Flow Path Length) (Conrad et al. 2015). The amount of water retained in sinks is used to reduce 

the response of s i.e. input into GIUH. As v is the maximum velocity of the underlying event, one can expect that the derived 

flood hydrograph is faster compared to a hydrograph of a 2d hydrodynamic model. 275 

2.4 Validation framework 

Since pluvial floods usually inundate areas outside streams and channels, measured data of flooding extent or flood 

hydrographs for different rainfall runoff events are rare. Instead of using real observations, we evaluate AccRo with model 

simulations of two hydrodynamic models: HydroAs version 6.2.2 (Hydrotec, 2025) and RIM2D (Apel et al. 2024, Version Jan 

2025). To evaluate the quality of AccRo results, we defined different scenarios, for which we conducted simulations with the 280 

three different models. First, we simulated artificially created hillslopes under steady-state situations (Fig. 6 a, b), where 

analytical solutions can be derived. Second, we simulated pluvial flooding in a real-world catchment (Fig. 6c). 
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For the artificial situations, we simulated overland flow on a planar hillside (1000 by 2000 m) with a constant slope of 0.03 

m/m (see Fig. 6a). For the second situation a channel of 2 m width is located between two declining surfaces (with a constant 

slope of 0.03 m/m) with an overall slope along the channel axis of 0.03 m/m. In both cases the cell size is 1x1 m², and a 285 

constant input of s was only applied along the uppermost rows (see blue lines in Fig. 6 a and b). For the channel experiment, 

the total input was set to 1 m³/s but distributed equally along the upper row. When steady state is reached, this value should be 

found in the channel. For the hillslope experiment, s was set to a constant value of 40 l/s per cell for a width of 500 m on the 

top of the hillslope. The simulation time was long enough so that steady-state conditions could be reached. In both cases, a 

constant roughness over the entire domain was assumed; however, we repeated the simulation using different roughness 290 

estimates. 

 

 

 

Figure 6: Overview of the setups used in the validation framework. The two panels on the left depict the design setup with a hillslope 295 

(a) and channel (b) case. The blue lines on the top represent the location of constant s input, the arrows indicate predominant flow 

directions. The real-world catchment Riedgraben is depicted on the right-hand side (c). Here the colours indicate the Strickler 

roughness values.  

  

For the real-world scenario, we used the catchment Riedgraben, which is located in southwestern Germany. The catchment 300 

area is approximately 3 km², of which 0.67 km² is urban (Bretten-Diedelsheim) and the rest is divided into agricultural and 

forest areas. The assigned roughness values based on the land use are shown in Fig. 6c. The hydrological input s was calculated 

with the model RoGeR (Steinbrich, 2016) for an observed extreme rainfall event as well as for three design events. These were 

defined based on the 1h extreme rainfall event with a return period of 30 and 100 years and defined probable maximum 

precipitation PMP for this area (LUBW, 2016) (Tab. 1). The spatial and temporal distributed runoff intensities were then used 305 

as input into the three different models. The spatial resolution for RIM2D and AccRo was set to 2x2 m². The DEM and 

hydraulic roughness were obtained from the TIN data used by HydroAs. HydroAs results were rasterized with the HydrAS 
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tool ha2raster (Hydrotec, 2025) so that a one-to-one comparison of the three models was possible. The focus of the evaluation 

was on the spatial pattern of maximum water depth, maximum specific discharge and maximum flow velocity.  

  310 

Table 1: Summary of selected rainfall and runoff event characteristics.  

Event Duration (min) Precipitation (mm) Total runoff (mm) 

moderate (T=30 years) 60 28.5 3.4 

heavy (T=100 years) 60 45.7 10.0 

extreme (PMP) 60 117.6 67.0 

observed (measured P) 135 67.7 19.5 

3. Results 

3.1 Steady-state simulations 

Tables 2 and 3 show a comparison of the Gauckler-Manning-Strickler (GMS) solutions and the three model results. To avoid 

boundary effects, the values were taken at the centre of the row 10 metres above the end of the hillslope or channel. For the 315 

steady-state situation of the hillslope scenario (Tab. 2), AccRo and HydroAs match the expected values, independent of the 

roughness conditions. RIM2D results were only stable for the high roughness values, and lateral dispersion seems to be rather 

large in RIM2D (see Fig. 7a). This and the fact that some water is already lost through the left/right boundaries before reaching 

the bottom of the slope leads to a lower water depth in the middle of the hillslope. Therefore, RIM2D underestimated wmax, 

qmax and vmax. 320 

 

Table 2: Model results of the hillslope scenario; specific discharge at steady state is 40 l/(s*m). w and v are calculated with Gauckler-

Manning-Strickler with i =0.03, k = 50, 26.5, 10 m1/3/s and q =40 l/s (cross-sectional flow width >> water depth). Unstable simulations 

are identified with n.s.* 

 Roughness 

 [m1/3/s] 

Calculated  

with GMS  

AccRo RIM2D HydroAs 

 wmax [m] 

50 0.04 0.04 n.s.* 0.04 

26.5 0.06 0.06 n.s.* 0.06 

10 0.1 0.1 0.08 0.1 

qmax [l/(s*m)] 

50 40 40 n.s.* 40 

26.5 40 40 n.s.* 40 

10 40 40 25 40 

vmax [m/s] 

50 1.0 1.0 n.s.* 1.0 

26.5 0.69 0.69 n.s.* 0.67 

10 0.38 0.38 0.17 0.39 
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 325 

For the channel scenario (Tab. 3), HydroAS results are slightly closer to the expected values than the values of AccRo for 

roughness values of 10 and 26.5 m1/3/s. Here water depths of AccRo are less than expected. As mentioned before, AccRo 

calculates wmax and vmax without any knowledge of a structure like channel width (i.e. 2 m or 2 cells). Instead of using the ‘real’ 

hydraulic radius, it uses water depth (see section 2.1.2). The specific discharge of 0.5 m³/(s*m) (1 m³/s distributed in a 2 m 

wide channel) is equal to the GMS results. RIM2D results are again only stable for the high roughness values. wmax of RIM2D 330 

is equal to AccRo, but vmax of RIM2D is lower than vmax of the other two models.  

 

Note that for RIM2D the relation q = w * v is not fulfilled under stationary conditions, since v in RIM2D is a secondary variable 

only, while q and w are numerically calculated.   

 335 

Table 3: Model results of the designed channel situation; specific discharge at steady state is 1 m³/(s*m). w and v are calculated with 

GMS equation with i =0.03, k = 50, 26.5, 10 m1/3/s and q =1 m³/s (cross-sectional flow width = channel width = 2 m). Cell size is 1x1 m². 

Unstable simulations are identified with n.s.* 

 Roughness 

 [m1/3/s] 

Calculated  

with GMS  

AccRo RIM2D HydroAs 

 wmax [m] 

50 0.194 0.18 n.s.* n.s.* 

26.5 0.293 0.26 n.s.* 0.287 

10 0.57 0.47 0.47 0.502 

qmax [l/(s*m)] 

50 500 500 n.s.* n.s.* 

26.5 500 500 n.s.* 500 

10 500 500 500 500 

vmax [m/s] 

50 2.578 2.77 n.s.* n.s.* 

26.5 1.707 1.89 n.s.* 1.745 

10 0.88 1.05 0.65 0.995 

 

Figure 7a compares the cross-sectional values of the inundation depth along the hillslope case for a roughness of 10 m1/3/s. 340 

The inundation depth in the middle of the hillslope (x = 500 m) is equal to the values in Tab. 2 for HydroAs and AccRo.  

In any case, comparing the input's dispersion downslope reveals that the 500 m wide rectangular input spreads along the flow 

path. The inundation depth of HydroAs and AccRo remains equal in the middle of the hillslope, and the spatial extension 

downward is comparable. After 1500 m, the inundated area extended on both sides by approximately 100 m for HydroAs and 

120 m for AccRo. The RIM2D dispersion is much more pronounced, and after 1500 m flow distance, the inundated area 345 

reaches the limits of the hillslope. Actually, RIM2D hits the left and right boundaries after around 1040 m, but the other models 

do not reach them until 2000 m. Figure 7b depicts the cross section of the channel after 1500 metres. As shown in Tab. 3, the 

water depths of AccRo and RIM2D are equal, hence AccRo's profile is below HydroAS. 
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 350 

  

Figure 7: Cross section of inundation depths at top of the hillslope (2 m) and after 1500 m of the hillslope scenario under stationary 

conditions (a). Cross section of the channel scenario at 1500 m (b) showing the DEM plus inundation depth. 

 

3.2 Catchment simulations 355 

The simulations of the real catchment differ from the scenarios described in section 3.1 due to temporal and spatial non-

stationary input and due to a much more complex hydraulic situation. We evaluate and compare the three target values wmax, 

qmax and vmax in three ways: their distributions to evaluate the overall probabilities of exceedance without spatial explicit 

comparisons, visually through maps and direct grid-cell to grid-cell comparison, including the slope of a linear regression and 

the correlation coefficient. In addition, we compare the hydrographs of the hydraulic models to those generated using the 360 

GIUH approach.  
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Figure 8: Comparison of the exceedance probability distribution of wmax, qmax and vmax for the four different s  

 

In Fig. 8 the exceedance probability distributions of catchment area with wmax, qmax and vmax (rows) are shown for the 4 different 365 

events (columns). To highlight the most relevant inundation area, only the upper 10 percent is shown. For all variables and 

cases the 3 models show rather similar results. Only for the extreme design event (PMP) does AccRo have slightly higher qmax 

and vmax values and slightly lower wmax values than the other two hydraulic models. The high agreement between the three 

models' results is also visible in the spatial patterns of inundation depth for the observed event (see Fig. 9 and Supplementary 

material Figs. S1 to S3 for other parameters and cases), where all three methods provide extremely similar spatial patterns of 370 

maximum inundation depths, particularly for the observed event. 
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Figure 9: Visual comparison of wmax for s input ‘event’ as simulated by AccRo (a), HydroAs (b) and RIM2D (c) 

 375 

To assess a stricter metric, we examined the simulation results of the three models for the parameters wmax, qmax and vmax for 

all four cases on a grid-cell by grid-cell basis (see Fig. 10 for the observed event and the supplemental materials for the three 

other scenarios). For wmax (Fig. 10, upper row), AccRo matches the two hydraulic models very well, with the vast majority of 

cells plotting close to the one-to-one line and only a slight tendency for underestimating the inundation depth. For qmax and 

vmax, AccRo generally simulates larger values than HydroAs and RIM2D, which is most pronounced in the case of qmax (Fig. 380 

10, central row). However, the correlation between the two hydraulic models is not as strong for qmax and vmax as it is for wmax. 

Especially for vmax, RIM2D appears to have significantly slower maximum flow velocities than HydroAs (Fig. 10, bottom 

row), which is in the same order of magnitude as the differences between AccRo and the hydraulic models. If we apply the 

same analysis for the 3 scenarios (see Supplementary material), we find the same patterns as for the observed event case. In 

general, AccRo and HydroAs show a better comparison than these two models with RIM2D. 385 
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Figure 10: Scatterplot of the three models. First row wmax (m), second row qmax (m³/(m*s) and third row vmax (m/s) for the real event. 

In addition, the linear regression (grey) and 1:1 line (dashed black) as well as the slope of the linear regression (m) and the Pearson 390 

correlation coefficient (r) are shown. 

 

Figure 11 shows the hydrographs for the four events. Compared to the hydraulic models, the hydrographs at the catchment 

outlet of AccRo show an earlier rise and faster drop. The overall response and total discharge are always lower for hydraulic 
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models, most likely because the simulations of the hydraulic models are stopped before the catchment is completely dry and 395 

they also typically retain some water in the catchment as the flow velocities decrease for very low inundation depths. Under 

more extreme conditions (event and extreme case), the three models produce more similar hydrograph responses. 

 

 

 400 

Figure 11: Hydrographs at the catchment outlet for the four simulated events 

 

4. Discussion  

The validation experiment shows that for the design cases, AccRo is able to reproduce the ‘hard facts’ of the analytical 

solutions. For the real world case, however, hard facts are not available, since there is neither a database of systematically 405 

observed inundation areas available nor analytical solutions producible. Hence, we use the output of two state-of-the art 
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hydrodynamic models as reference cases, acknowledging that differences in the outcome of the different methods could be 

attributed to both shortcomings in AccRo and shortcomings in the hydrodynamic models. Hence, we do not aim for a perfect 

match of AccRo and the hydrodynamic models, but rather at a ‘realistic’ outcome of AccRo. 

Given the results for the event and scenario simulations for the Riedgraben catchment we see that AccRo tends to have higher 410 

q amounts then the hydrodynamic models. In AccRo this value depends on the one hand on the accumulated surface runoff as 

well as the empirically derived function F.  F represents a combination of area specific (DEM and roughness) and event 

(surface runoff response) specific characteristics. The latter takes account of the fact that for the same precipitation amounts, 

different areas generate different runoff but also that the same area can react differently due to different preconditions, such as 

moisture conditions. Investigating the behaviour of F for different types of events we find that F indeed is varying quite 415 

substantially (not shown), however it becomes evident that after a specific tb (twice the duration of the event), the values for F 

are converging. 

In the case of the two hydrodynamic models, maximum specific discharge is calculated as the temporal maximum of the 

product of w and v at each time step, which means that it accumulates potential errors in both variables and therefore might be 

not so robust than the individual parameters. Given the fact that w is rather similar in all three models, also enhances the 420 

confidence in the qmax output of AccRo, since in AccRo wmax is directly calculated from qmax. Differences in vmax are mainly 

obvious when compared to RIM2D and for the case of the hydrograph. While vmax in RIM2D is known to be generally to slow, 

due to the inclusion of a numerical diffusion term to enhance model stability (Bates et al., 2010), the fast buildup and decrease 

of the hydrograph peak in AccRo is immanent, since max wmax is used to calculate forward flow time (tf) for each raster cell 

through the entire runoff event.  425 

 

Like every model AccRo is based on a series of assumptions and empirical approaches, not all to be justifiable by hand. 

Examples for these are e.g. the approach to estimate the ideal number of iterations or exact size and definition of the area F is 

representative for. A major advantage of AccRo, when compared to the hydrodynamic models, however, is the numerical 

stability of the approach since it is independent of a model's internal time step (see the design test cases, where both 430 

hydrodynamic models had stability issues). This is also beneficial when it comes to computational efficiency. On top of the 

number of grid boxes, computation time in AccRo mainly depends on the number of iterations, while in hydrodynamic models 

the duration of the event – and more importantly – the adaptation of the model's internal time step to the horizontal resolution 

or to stability criteria is required. For the test case of the Riedgraben (~0.75Mio grid boxes), AccRo and RIM2D both simulated 

the event in less than 2 minutes (real time) what is fast if compared to HydroAs simulation time of ca 2 hours. However, AccRo 435 

and HydroAs were running on standard CPUs, whereas RIM was iterated on a high-efficiency GPU (NVIDIA H100). The 

downside of this is that AccRo only can model the maximum states of w, q, and v and not the temporal evolution of these 

variables. 

In the light of using AccRo as a tool for the generation of local pluvial flood maps or real-time inundation forecasting, it 

certainly would be beneficial to include processes into the model so far not tackled. Especially the representation of the capacity 440 
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of culverts or road passages would be aspects that should be tackled when further developing AccRo. In this turn, also focusing 

on computational efficiency and parallelization would increase the suitability of AccRo for forecasting even further. 

5. Conclusion 

In conclusion, this paper describes an alternative method to hydraulic models to derive critical variables wmax, qmax and vmax 

caused by pluvial flooding. The comparison with analytical solutions and hydraulic models shows good agreement (also for 445 

other events and test cases not included in this study). Given this finding and keeping in mind its computational efficiency 

demonstrates the suitability of AccRo for operational use cases. Still AccRo has some limitations. On top to still missing 

processes, AccRo cannot show the temporal development of the variables. So a meaningful application of AccRo depends on 

the issue. With the use of the GIUH method, the temporal aspect can be included in the simulation, but the assumption of a 

constant velocity for one cell over the entire runoff event is not realistic. So here again, if the focus of the simulation is mainly 450 

the height of peak discharge, it might be justified. Otherwise a hydraulic simulation should be preferred.  
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6. Appendices 

 

Table A1: List of variables 455 

Variable name Description 

AA Area weighted Flow Accumulation (L²) 

AAcrit Constant (critical accumulation = 10.000 m²) 

As Runoff weighted Flow Accumulation (L) 

C Cross sectional area of flow [L²] 

DEM Digital Elevation Model [L] 

F Factor to transfer As to q [1/T] 

i Slope [L/L] 

k Strickler coefficient for determining surface roughness [L1/3/T] 

l Cell size [L] 

L, T Dimensions Length, Time 

p Precipitation rate [L/T] 

Q Discharge [L³/T] 

q Specific discharge [L³/(T*L)] 

R Hydraulic radius [L] 

s Surface runoff intensity [L/T] 

smax, wmax, qmax, vmax Represents maximum value of parameters 

Sr Sinks [L] 

tb 
Backward flow time [T]. Overall duration of flow through a cell caused by transit 

times from upslope cells [T] 

tc Flow time of a cell based on flow velocity [T] 

v Flow velocity [L/T] 

w Inundation depth [L] 

wr Water depth above roughness is independent of w [L] 

wsf Upper limit of water depth for sheet flow [L] 
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7. Code and data availability 460 

The manuscript describes the latest version of AccRo. This version of the model is available at Zenodo under 

https://doi.org/10.5281/zenodo.17153807 (Leistert, 2025), as are input data and scripts to run the model. All primary data and 

scripts to produce the plots for all the simulations presented in this paper are also available at Zenodo under 

https://doi.org/10.5281/zenodo.17154005 (Leistert et al., 2025).   
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