Accumulation-based Runoff and Pluvial Flood Estimation Tool

Supplementary Material

Figure S1: Scatterplot of the three models for the extreme scenario. First row w_{max} (m), second row q_{max} (m*s) and third row v_{max} (m/s) for the extreme event. In addition, the linear regression (grey) and 1:1 line (dashed black) as well as the slope of the linear regression (m) and the Pearson correlation coefficient (r) are shown.

Figure S2: Scatterplot of the three models for the heavy scenario. First row w_{max} (m), second row q_{max} (m³/(m*s) and third row v_{max} (m/s) for the heavy event. In addition, the linear regression (grey) and 1:1 line (dashed black) as well as the slope of the linear regression (m) and the Pearson correlation coefficient (r) are shown.

Figure S3: Scatterplot of the three models for the moderate scenario. First row w_{max} (m), second row q_{max} (m*s) and third row v_{max} (m/s) for the moderate event. In addition, the linear regression (grey) and 1:1 line (dashed black) as well as the slope of the linear regression (m) and the Pearson correlation coefficient (r) are shown.