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Abstract 12 

Traditional parameter calibration strategies that focus on a single optimal parameter set 13 

may lead to large uncertainties and biases in simulating internal hydrological processes because 14 

of parameter equifinality. This study used the semi-distributed Tsinghua Hydrological Model 15 

based on Representative Elementary Watershed (THREW) to investigate the influence of 16 

parameter equifinality on uncertainties in surface–subsurface runoff partitioning. The model 17 

was implemented in 63 catchments in southeastern China with high-quality rainfall and 18 

streamflow data. Behavioral parameter sets were selected based on KGE thresholds to quantify 19 

uncertainty in estimates of the contribution of subsurface runoff (Csub). Correlation analyses 20 

were conducted to investigate factors influencing these uncertainties. Results showed that: (1) 21 

the THREW model performed well across the 63 catchments, with an average optimal KGE 22 

(KGEopt) of 0.846. Csub varied widely among catchments, ranging from 1.0% to 74.1% (mean 23 

= 31.7%), and was below 50% in 84% of the catchments, indicating that surface runoff was the 24 

dominant runoff generation mechanism in the study area. (2) Substantial uncertainty in Csub can 25 

arise from small differences in KGE, with notable variability among catchments. The 26 

uncertainty in Csub was modest in most catchments, with mean Bias (difference between the 27 
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Csub estimated using the optimal set and the average across all behavioral parameter sets) and 28 

Range (max–min across behavioral sets) of 2.7% and 15.8%, respectively. However, the 29 

uncertainty can be large in some catchments, where reliance on a single optimal parameter set 30 

is likely inappropriate. (3) Runoff ratio was identified as an important catchment attribute 31 

significantly correlated with Csub and its uncertainty. In catchments with stronger runoff-32 

generation capacity, the model tended to be less sensitive and the simulation of internal runoff-33 

component partitioning tended to exhibit larger uncertainties. Such evidence can provide 34 

empirical a priori guidance on the likely magnitude of uncertainties and help inform calibration-35 

strategy selection. 36 

 37 

1. Introduction 38 

Hydrological models are useful tools for understanding hydrological processes and 39 

predicting variability in water resources. Parameter equifinality is a widely recognized issue in 40 

hydrological modelling, meaning that different parameter sets may yield similar model 41 

performance (Gupta et al., 2008). This can result in large uncertainties in the simulation of 42 

internal hydrological processes despite producing similar total hydrographs (Delavau et al., 43 

2017; Nan & Tian, 2024). Understanding the characteristics and mechanisms of uncertainty 44 

generation and propagation, systematically assessing uncertainty, and employing multiple 45 

approaches to reduce uncertainty are important tasks in the field of hydrological modelling. 46 

Parameter calibration is a necessary step in developing hydrological models. Streamflow 47 

is the most commonly used data type for calibration, and other variables—such as soil moisture, 48 

evapotranspiration, snow cover/depth, glacier mass balance, and isotopic tracers—are also 49 

employed by some researchers to better constrain uncertainties (Chen et al., 2017; He et al., 50 

2019; Ala-aho et al., 2017; He & Pomeroy, 2023). Regardless of the datasets and objective 51 

functions used (e.g., Nash–Sutcliffe efficiency, NSE; Kling–Gupta efficiency, KGE), 52 

calibration strategies can be broadly classified into two types. One seeks a single optimal 53 

parameter set that maximizes the chosen performance metric, which is often assumed to 54 

represent realistic hydrological behavior and is subsequently used for process inference or 55 
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scenario analysis, for example to assess runoff response to climate change (Su et al., 2023). The 56 

other approach employs an ensemble of parameter sets, typically obtained by applying a 57 

performance threshold to Monte Carlo realizations or to parameter sets sampled during 58 

calibration (Blasone et al., 2008; Nan et al., 2021).  59 

Ensemble-based strategies not only support investigation of hydrological processes but 60 

also allow for a systematic assessment of model sensitivity and uncertainty. In practice, the 61 

choice of calibration strategy often depends on research objectives: ensemble methods are more 62 

commonly applied in studies explicitly focused on uncertainties (He et al., 2019), while single–63 

optimal-parameter approaches remain the default in many applications (Beven & Binley, 2013; 64 

Efstratiadis & Koutsoyiannis, 2010). From the perspective of model behavior, ensemble 65 

approaches should be preferable in regions where parameter equifinality is pronounced, 66 

whereas a single optimal parameter set may be adequate in catchments with limited equifinality. 67 

However, existing studies rarely provide an a priori assessment of the likely degree of 68 

equifinality for a given catchment, so researchers lack practical guidance for selecting the most 69 

appropriate calibration strategy. This prevailing preference for single–best solution has 70 

constrained advances in understanding model uncertainty to some extent. 71 

The contribution of runoff components to streamflow is an important hydrological 72 

characteristic that reflects runoff-generation mechanisms and is susceptible to parameter 73 

equifinality (He et al., 2021). Previous studies have shown that, in some catchments, the 74 

partitioning between surface and subsurface runoff can exhibit large uncertainty even when 75 

streamflow simulations are classified as behavioral. Analyzing uncertainties in runoff 76 

components and their controlling factors is essential for deepening our understanding of runoff-77 

generation processes and for improving the reliability of hydrological simulations and 78 

predictions (Cui & Tian, 2025; Tudaji et al., 2025a). However, among studies addressing 79 

uncertainties and sensitivities in hydrological models, the emphasis has primarily been on 80 

parameter uncertainty, model overall performance and the simulation of total runoff (Di Marco 81 

et al., 2021; Yang et al., 2019), whereas uncertainty in internal water partitioning has received 82 

comparatively little attention. This lack of focus likely arises because internal water states and 83 

fluxes are harder to observe than total runoff, making the validation of internal partitioning 84 

more difficult and less common (Nan et al., 2025). 85 
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Motivated by the above background, this study utilized a semi-distributed hydrological 86 

model to investigate the influence of parameter equifinality on internal water component 87 

partitioning. In specify, the objectives of this study are: (1) to quantify the uncertainty in the 88 

contribution of subsurface runoff (Csub) resulting from small changes in model performance 89 

metric (KGE), and (2) to identify factors that influence model uncertainty so as to provide 90 

potential a priori empirical guidance for assessing uncertainty and selecting calibration 91 

strategies. 92 

2. Materials and methodologies 93 

2.1 Catchment and data set 94 

This study utilized the catchment set established by Tudaji et al. (2025b) to analyze the 95 

hydrological simulation uncertainties. It included 63 small- to medium-scale catchments 96 

located in southeastern China (Figure 1), most of which fall within the Yangtze River Basin. 97 

The catchment attributes vary considerably (Table 1). The drainage areas of the catchments 98 

range from 91.5 to 5,266 km², with an average of 1,528 km². These catchments exhibit 99 

significant diversity in climate, topography, and rainfall–runoff relationships, with wide ranges 100 

of mean annual rainfall (647–2,593 mm), topographic slope (1.8–26.2°), and runoff ratios 101 

(0.31–0.96). 102 
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 103 

Figure 1. Geographic distribution of the study catchments (Adapted from Tudaji et al, 104 

2025b). 105 

Table 1. Statistical summaries of the catchment attributes 106 

Attribute Description Min Max Average Unit 

DRA Drainage area 92 5266 1528 km2 

MAR Mean annual rainfall 647 2593 1531 mm 

MAQ Mean annual runoff 356 1571 868 mm 

QR Runoff ratio 0.31 0.96 0.58 - 

TS Topographic slope 1.83 26.18 11.77 ° 

Hourly discharge and rainfall data from 1 January 2014 to 31 December 2015 were 107 

collected from the National Rainfall and Hydrological Database, established by the Information 108 

Center of the Ministry of Water Resources (http://xxfb.mwr.cn/sq_dtcx.html, last access: 10 109 

December 2023). Considering the variable quality of the raw data (mainly completeness and 110 

temporal resolution), 63 hydrological stations were selected based on high-quality standards. 111 

Specifically, the average temporal resolution—defined as the ratio of the time period to the 112 

number of measurements—exceeded 3,650 s. This threshold was slightly higher than 1 h, 113 

ensuring hourly resolution while allowing for individual missing data. In addition, to make full 114 

use of the water level data (which are generally more complete than discharge data) in the 115 
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database, the water level–discharge relationship was used to infer discharge values for periods 116 

with only water level data. To ensure the accuracy of these calculations, selected stations met 117 

the criteria that discharge data for more than 80% of the time steps also had water level data, 118 

and the coefficient of determination (R²) for the water level–discharge relationship exceeded 119 

0.95. 120 

Similar to the discharge data, 863 rainfall stations with hourly records were selected within 121 

the spatial extent of the 63 catchments. The Thiessen polygon method (Han and Bray, 2006) 122 

was employed to generate areal rainfall for each catchment. Each catchment was covered by 15 123 

Thiessen polygons on average. 124 

Other data used for model setup were collected from public datasets. The 90 m-resolution 125 

Multi-Error-Removed Improved-Terrain Digital Elevation Model (MERIT DEM; Yamazaki et 126 

al., 2017) was used for catchment extraction. Daily temperature and potential 127 

evapotranspiration were sourced from ERA5-Land (Muñoz Sabater, 2019). Soil parameters 128 

were estimated from the global high-resolution dataset of soil hydraulic and thermal parameters 129 

(Dai et al., 2019). The 8-day leaf area index (LAI) and 16-day normalized difference vegetation 130 

index (NDVI) products from MODIS (MOD15A2H, Myneni et al., 2021; MOD13A1, Didan, 131 

2021) were used to represent vegetation conditions. 132 

2.2 THREW Hydrological model 133 

The Tsinghua Hydrological Model Based on Representative Elementary Watershed 134 

(THREW), developed by Tian et al. (2006), was employed in this study. The THREW model is 135 

based on a set of balance equations for mass, momentum, and energy, along with constitutive 136 

equations controlling fluxes among simulation units. Each catchment is first divided into 137 

several Representative Elementary Watersheds (REWs) based on DEM data, and several sub-138 

zones are defined within each REW, serving as the elementary simulation units of the THREW 139 

model (Figure 2). Specifically, each REW is divided into surface and subsurface layers. Six 140 

sub-zones are defined in the surface layer based on underlying types: vegetation zone (v-zone), 141 

bare soil zone (b-zone), snow zone (n-zone), glacier zone (g-zone), sub-stream network zone 142 

(t-zone), and main channel reach zone (r-zone). Two sub-zones are defined in the subsurface 143 

layer according to soil saturation conditions: unsaturated zone (u-zone) and saturated zone (s-144 
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zone). Considering the subtropical monsoon climate of the selected catchments—characterized 145 

by high mean temperatures and the temporal coincidence of peak rainfall and temperature—the 146 

influence of cryospheric processes on runoff is negligible; therefore, the snow and glacier 147 

modules and the corresponding sub-zones were not activated in this study. The THREW model 148 

has been described in our previous publications; for full model details see Tian et al. (2006). 149 

This study primarily investigates uncertainties in runoff-component partitioning using the 150 

THREW model. 151 

 152 

Figure 2. Schematic illustration of the THREW model (Adapted from Tudaji et al., 2025b) 153 

2.3 Model calibration 154 

The parameters to be calibrated are listed in Table 2. The Python Surrogate Optimization 155 

Toolbox (pySOT; Eriksson et al., 2019) was employed for model calibration. The pySOT 156 

algorithm utilizes radial basis functions (RBFs) as surrogate models to approximate model 157 

simulations and reduce runtime per iteration. During each pySOT run, parameters were 158 

generated using the symmetric Latin hypercube design (SLHD), and the optimization stopped 159 

when the objective converged or the number of model runs reached a threshold (set to 3000 in 160 
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this study). The Kling–Gupta efficiency (KGE) was used as the optimization objective to reflect 161 

overall model performance in terms of correlation, variability, and bias (Eq. 1). 162 

𝐾𝐺𝐸 = 1 − √(1 − 𝑟)2 + (1 − 𝛼)2 + (1 − 𝛽)2               (1) 163 

where, r represents the Pearson correlation coefficient between simulated and observed values, 164 

α is the ratio of the mean of simulated values to that of observed values, β is the ratio of the 165 

standard deviation of simulated values to that of observed values. 166 

Table 2. Descriptions of calibrated parameters in the THREW model (Adapted from Tudaji et 167 

al., 2025b) 168 

Symbol Unit Physical description Range 

WM cm Tension water storage capacity for saturation area calculation 0-10 

B - Shape coefficient for saturation area calculation 0-1 

KKA - Exponential coefficient for groundwater outflow calculation 0-6 

KKD - Linear coefficient for groundwater outflow calculation 0-0.5 

C1 - Coefficient for runoff concentration calculation using 

Muskingum method 

0-1 

C2 - Coefficient for runoff concentration calculation using 

Muskingum method 

0-1 

This study aimed to investigate model performance when the evaluation metric is 169 

relatively high. Consequently, for each catchment the pySOT algorithm was repeated 50 times, 170 

yielding 50 parameter sets. Parameter sets whose KGE exceeded a threshold were selected as 171 

behavioral parameters; the threshold was defined as 0.05 below the optimal KGE (KGEopt) 172 

obtained among the 50 sets. 173 

2.4 Quantification of surface-subsurface runoff partitioning and its uncertainty 174 

The surface–subsurface runoff partitioning in each catchment was analyzed based on 175 

THREW outputs of internal variables (Figure 2). Surface and subsurface runoff were defined 176 

as two runoff components based on runoff generation pathways as reviewed by He et al. (2021). 177 

Surface runoff includes rainfall occurring in areas where soils are saturated, where rainfall 178 

intensity exceeds infiltration capacity, or in impermeable areas such as river channels. 179 

Subsurface runoff is the outflow from the saturated zone. The contribution of subsurface runoff 180 
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to total runoff (Csub) was calculated to represent the surface–subsurface runoff partitioning 181 

characteristic (Eq. 2). 182 

𝐶𝑠𝑢𝑏 =
𝑄𝑠𝑢𝑏

𝑄𝑠𝑢𝑟+𝑄𝑠𝑢𝑏
×100%                          (2) 183 

where, Qsur and Qsub are the amount of surface and subsurface runoff, respectively, which can 184 

be obtained by the model outputs. 185 

The uncertainty of Csub was analyzed from two aspects. The first aspect is the 186 

representativeness of Csub estimated by the optimal parameter set, quantified by bias and relative 187 

bias (RBias) between the Csub estimated using the optimal set and the average Csub across all 188 

behavioral parameter sets (Eqs. 3 and 4). The second aspect is the variability of Csub across the 189 

behavioral parameter sets, quantified by the standard deviation (STD) and the range of Csub 190 

among those sets (Eqs. 5 and 6). To ensure adequate parameter set samples for uncertainty 191 

analysis, only the catchments where the number of behavioral parameter sets exceed 10 were 192 

selected for this analysis. 193 

𝐵𝑖𝑎𝑠 = |𝐶𝑠𝑢𝑏
𝑜𝑝𝑡

− 𝐶𝑠𝑢𝑏|                           (3) 194 

𝑅𝐵𝑖𝑎𝑠 =
𝐵𝑖𝑎𝑠

𝐶𝑠𝑢𝑏
× 100%                           (4) 195 

𝑆𝑇𝐷 = √∑ (𝐶𝑠𝑢𝑏,𝑖−𝐶𝑠𝑢𝑏)
2𝑛

𝑖=1

𝑛
                         (5) 196 

𝑅𝑎𝑛𝑔𝑒 = 𝐶𝑠𝑢𝑏
𝑚𝑎𝑥 − 𝐶𝑠𝑢𝑏

𝑚𝑖𝑛                          (6) 197 

where, 𝐶𝑠𝑢𝑏
𝑜𝑝𝑡

  is the Csub estimated by the optimal parameter set, 𝐶𝑠𝑢𝑏  is the average Csub 198 

estimated by the behavioral parameter sets, n is the number of behavioral parameter sets, 𝐶𝑠𝑢𝑏
𝑚𝑎𝑥 199 

and 𝐶𝑠𝑢𝑏
𝑚𝑖𝑛 are the maximum and minimum of Csub estimated by the behavioral parameter sets. 200 

3. Results 201 

3.1 Model performance 202 

Among the 63 catchments, 50 had more than 10 behavioral parameter sets producing KGE 203 

higher than KGEopt–0.05 (Figure 3a). The KGEopt in these 50 catchments ranged from 0.663 to 204 

0.947, with an average of 0.846, and 30 catchments achieved KGEopt values above 0.85. The 205 

comparisons of simulated and observed hourly streamflow in two typical catchments (with the 206 
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highest and lowest KGEopt) are presented in Figure 4, showing strong consistency between 207 

model outputs and observations. These metrics and results indicate generally good model 208 

performance in the study area. 209 

 210 

Figure 3. Summary of catchment counts with different (a) optimal KGE, (b) numbers of 211 

behavioral parameter sets, and (c) contributions of subsurface runoff 212 
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 213 

Figure 4. Comparison of simulated and observed hourly discharge in two typical catchments 214 

with the highest and lowest KGE: (a) Xintian, (b) Yongshun 215 

The number of behavioral parameter sets varied significantly among these 50 catchments 216 

(Figure 3b). The average number was 24.28, and in 15 catchments this number fell in the range 217 

11–15. In only one catchment were all 50 parameter sets obtained by the pySOT process 218 

identified as behavioral. Considering the random generation of initial parameter sets within 219 

each pySOT running, the number of behavioral parameter sets serve as a partial indicator of 220 

model sensitivity. 221 

3.2 Surface-subsurface runoff partitioning and its uncertainties 222 

For each catchment, the average Csub estimated across all behavioral parameter sets was 223 

taken as the final estimation. As shown in Figure 3c, Csub varied markedly among catchments, 224 

ranging from 1.0% to 74.1% with an average of 31.7%. In 42 of the 50 catchments, Csub was 225 

below 50%, indicating that surface runoff was the dominant runoff generation mechanism. This 226 

dominance can be attributed to the generally wet climate in the study area, which leads to high 227 

soil water saturation and extensive saturated areas. 228 

Figure 5 illustrates the uncertainty of Csub in two typical kinds of catchments. In the 229 

Heishui catchment (Figure 5a), Csub exhibited strong variability when KGE was within 0.05 of 230 

its optimal value. The bias between the Csub when the optimal KGE achieved (𝐶𝑠𝑢𝑏
𝑜𝑝𝑡

) and the 231 
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average Csub produced by the behavioral parameter sets (𝐶𝑠𝑢𝑏) was 13%, accounting for 23% 232 

of 𝐶𝑠𝑢𝑏. Moreover, the Csub estimated by each individual behavioral parameter set ranged from 233 

32% to 85%, and the difference between the maximum and minimum Csub was as high as 53%, 234 

indicating that different behavioral parameter sets may imply different dominant runoff 235 

generation mechanisms. By contrast, in the Shuikou catchment (Figure 5b), although Csub 236 

estimated by the original 50 parameter sets also spanned a wide range, the model performance 237 

was much more sensitive to Csub than in the Heishui catchment, as evidenced by a sharp decline 238 

in KGE when Csub deviated from 𝐶𝑠𝑢𝑏
𝑜𝑝𝑡

. As a result, only 13 parameter sets produced KGE 239 

higher than the behavioral threshold, yielding small values of Bias (0.6%) and Range (6%). 240 

 241 

Figure 5. Relation between KGE and contribution of subsurface runoff in two typical 242 

catchments: (a) Heishui, (b) Shuikou. Optimal parameter set (red triangle), ensemble mean 243 

(blue line), and range (gray shading) are shown, and associated uncertainty metrics are 244 

illustrated. 245 

Figure 6 shows the boxplot of Csub uncertainty metrics derived by behavioral parameter 246 

sets in 50 catchments. Regarding the representativeness of the optimal Csub, the Bias metric 247 

ranged from 0.1% to 19.8%, with an average of 2.7%. Bias was less than 3% in 40 of the 50 248 

catchments, indicating that the Csub obtained from the optimal parameter set was close to the 249 

mean across all behavioral parameter sets. However, Bias exceeded 10% in 3 catchments, 250 

indicating that relying solely on the optimal parameter set may still lead to misestimation of 251 

surface–subsurface runoff partitioning. The RBias metric exhibited a wider range, reaching a 252 

maximum of 75.5%, likely due to variations in average Csub (i.e., the denominator in Eq. 2). As 253 

for the variability of the behavioral results, the STD and Range of Csub varied from 0.3% to 254 
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16.2% and 1.1% to 54.1%, with average values of 4.0% and 15.8%, respectively. There was a 255 

strong linear correlation between STD and Range (slope = 3.5, R² = 0.914). In around one third 256 

of the catchments (16 of 50), the uncertainties of Csub were relatively small (STD < 2.5% and 257 

Range < 10%), but in four catchments STD and Range exceeded 10% and 35%, respectively. 258 

Overall, although uncertainties in Csub were modest in most catchments, they could be 259 

extremely significant in some catchments. 260 

 261 

Figure 6. Boxplot of the uncertainty metrics of Csub produced by behavioral parameter sets in 262 

the selected 50 catchments 263 

Changes in Csub uncertainty with varying behavioral thresholds were further analyzed by 264 

adjusting the difference between KGEopt and the KGE threshold from 0.005 to 0.05 in 0.005 265 

increments (Figure 7). As expected, most metrics increased as the KGE threshold decreased, 266 

although some metrics showed non-monotonic extrema (e.g., the maximum RBias). Notably, 267 

uncertainty metrics could still be large even when the KGE threshold was set very close to 268 

KGEopt. For instance, in the Yongshun catchment (Figure 4b), Bias and Range reached 12.2% 269 
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and 38.8%, respectively, when the KGE threshold was set only 0.005 below KGEopt. However, 270 

the 90th percentiles of Bias and Range were below 5% and 10%, respectively, when the KGE 271 

threshold was set 0.01 below KGEopt, indicating that Csub estimation is robust in most 272 

catchments if the threshold is set sufficiently high. 273 

 274 

Figure 7. Changes in Csub uncertainty metrics with changing behavioral KGE thresholds with 275 

an interval of 0.005 276 

3.3 Influence factors of surface-subsurface runoff partitioning 277 

To further understand the variability of surface–subsurface runoff partitioning and its 278 

uncertainties, we analyzed their correlations with the catchment attributes listed in Table 1. 279 

Considering the strong correlation between uncertainty metrics STD and Range, STD was not 280 

included in the correlation analysis for simplify. The correlation coefficients and the 281 

corresponding statistical significance are shown in Table 3. For the contribution of subsurface 282 

runoff, runoff ratio (QR) was the only attribute showing a statistically significant correlation 283 

(p<0.01) with Csub, indicating greater subsurface contribution in catchments with stronger 284 

runoff generation capacity. Notably, Csub exhibited a positive correlation with topographic slope 285 

(TS), which is consistent with the global isotope-based study by Jasechko et al. (2016) that 286 

found the young-water fraction (associated with surface-runoff contribution) to be negatively 287 
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correlated with topographic gradient, although the correlation in our study was not statistically 288 

significant (p = 0.26). 289 

Table 3. Correlation coefficient among Csub, uncertainty metrics, and catchment attributes 290 

among 50 catchments. Bold values indicate p<0.05, with * and ** denoting 0.01<p<0.05 and 291 

p<0.01, respectively. 292 

 CSub Bias RBias Range 

DRA 0.055 0.167 0.025 0.031 

MAR -0.256 -0.387** -0.289* -0.244 

MAQ 0.199 -0.128 -0.374** 0.019 

QR 0.632** 0.434** -0.126 0.380** 

TS 0.162 0.064 -0.055 0.251 

CSub \ 0.074  -0.563**  0.217  

The uncertainty metrics were correlated with both climate conditions and runoff-293 

generation capacity. Bias and RBias were both significantly negatively correlated with mean 294 

annual rainfall (MAR) (p<0.01 and p<0.05, respectively). RBias was also significantly 295 

negatively correlated with mean annual runoff (MAQ) (p<0.01). These results suggest that Csub 296 

estimated from the optimal parameter set tended to be closer to the mean Csub across all 297 

behavioral sets in wetter catchments (Figure 8). As expected, RBias was strongly negatively 298 

correlated with Csub (r=-0.563), because Csub appears in the denominator of the RBias 299 

calculation. QR was significantly positively correlated with Bias (r=0.434, p<0.01). The 300 

correlations between Range and the examined catchment attributes were similar to those for 301 

Csub in both strength and statistical significance. QR was the only attribute significantly 302 

correlated with Range (r=0.380, p<0.01). 303 

It is worth noting that QR was significantly correlated with both surface–subsurface runoff 304 

partitioning and its uncertainties (Figure 9b–d). We also examined the relationship between 305 

model sensitivity—represented by the number of behavioral parameter sets obtained from 50 306 

pySOT calibrations—and QR, and found a strong, significant correlation (r=0.731, p<0.01; 307 

Figure 9a). This suggests the model was less sensitive (i.e., produced a larger number of 308 

behavioral parameter sets) in catchments with higher QR. The positive correlation between Csub 309 
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and QR likely reflects that a high QR implies a smaller fraction of rainfall lost to 310 

evapotranspiration, favoring larger subsurface water storage and lateral subsurface flow. 311 

Additionally, higher QR implies more runoff generation via multiple pathways, which may 312 

increase variability and consequently the uncertainty in Csub. 313 

 314 

Figure 8. Scatter diagram of (a) Bias and MAR, and (b) RBias and MAQ. Blue dashed lines 315 

represent the regression fit. 316 

 317 

Figure 9. Scatter diagram of QR and (a) number of behavioral parameters, (b) Csub, (c) Bias 318 

and (d) Range. Blue dashed lines represent the regression fit. 319 
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4. Discussions 320 

4.1 Implications on hydrological modelling in various conditions 321 

This study questions the reasonableness of commonly used hydrological model calibration 322 

strategies. Results show that in some catchments model performance is insensitive to internal 323 

process representation — a very small change in an evaluation metric (for example, a 0.005 324 

change in KGE) can correspond to very large differences in the estimated contribution of 325 

subsurface runoff. Similar phenomena were also reported for other runoff components, such as 326 

snowmelt and glacier melt runoff (He et al., 2019; Nan et al., 2025). In such cases, the optimal 327 

parameter set may not adequately represent the range of plausible hydrological behaviors, and 328 

analyses based on a single parameter set may therefore yield substantially biased estimates. 329 

Conversely, in a substantial proportion of catchments (approximately one-third in this study), 330 

uncertainties among behavioral parameter sets were relatively small, and the optimal parameter 331 

set can adequately represent the parameter sets that produced sufficiently high KGE. 332 

The correlation analysis provides potential guidance for choosing appropriate calibration 333 

strategies under different catchment conditions. The runoff ratio (QR) emerged as a 334 

representative index for a priori assessment of potential modeling uncertainties: catchments 335 

with higher QR tended to exhibit greater uncertainties. In such cases, a systematic evaluation 336 

of model uncertainty, such as adopting Generalized Likelihood Unvertainty Estimation (GLUE) 337 

framework, is recommended. Uncertainties can be further reduced by assimilating multiple 338 

datasets (e.g., Tong et al., 2021). Conversely, in catchments with lower QR the model was more 339 

sensitive to parameterization, so a single parameter set that yields the optimal performance 340 

metric is more likely to credibly represent the underlying hydrological processes. In those cases, 341 

calibration that targets a single optimal parameter set may be acceptable. 342 

Mean annual rainfall (MAR) was identified as a secondary representative index for a priori 343 

assessment of modeling uncertainties. MAR had a significant negative correlation with Bias 344 

(Figure 8a), and a negative (but not statistically significant) correlation with Range (r = −0.244, 345 

p = 0.087; Table 3). Meanwhile, the number of behavioral parameter sets was significantly 346 

negatively correlated with MAR (r = −0.379, p<0.01), although its absolute correlation 347 

coefficient was smaller than that with QR (r = 0.731; Figure 9a). 348 
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These results indicate that modeling uncertainties tend to be lower in catchments with 349 

lower runoff generation capacity and wetter climates. However, it is difficult to derive a reliable 350 

equation to predict potential modeling uncertainty from catchment attributes, or to define a 351 

MAR/QR threshold above or below which a single optimal parameter set can be judged 352 

sufficiently credible. For example, among the five catchments with MAR>1500 mm and 353 

QR<0.55, one still has a large Range of 37% (Figure 10b). Consequently, our results offer an 354 

empirical criterion for anticipating model uncertainty, but complementary sensitivity and 355 

robustness tests are always advisable (Song et al., 2015). 356 

 357 

Figure 10. The interrelation among the QR, MAR, and (a) Bias and (b) Range 358 

4.2 Limitations 359 

This study used the contribution of subsurface runoff (Csub) estimated by the THREW 360 

model as a representative hydrological characteristic to analyze hydrological-model uncertainty 361 

and its influencing factors. The main limitation of this study lies in the reliability of the 362 

estimated Csub and in the representativeness of the THREW model. Because of deficiencies in 363 

observational data for multiple runoff components, it is difficult to directly validate the Csub 364 

estimates in this study, which consequently raises doubts about conclusions related to Csub. 365 

Nonetheless, some indirect evidence supports the Csub estimates to some extent. On the one 366 

hand, in our previous studies the Csub estimates produced by the THREW model in two typical 367 

catchments were independently validated by other methods, such as an end-member mixing 368 

model and a groundwater model (Nan et al., 2021; Nan et al., 2023; Yao et al., 2021; Li et al., 369 

2020), demonstrating the THREW model’s ability to simulate surface–subsurface runoff 370 

partitioning. On the other hand, the positive correlation between Csub and topographic slope and 371 
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the negative correlation between Csub and mean annual rainfall are consistent with patterns 372 

reported in previous studies (Jasechko et al., 2016; Nan et al., 2025), which provides additional 373 

support to the reasonableness of our results. 374 

Another limitation is the use of a single THREW model, which raises questions about the 375 

generalizability of the conclusions. However, the structure and core equations of THREW 376 

model are broadly similar to those of many commonly used semi-distributed hydrological 377 

models, such as SWAT and HBV (Gassman et al., 2007; Lindström et al., 1997). Specifically, 378 

the basic simulation units of THREW are subzones of the representative elementary watershed 379 

(REW), defined by topography and land-surface type — analogous to the hydrological response 380 

unit (HRU) concept in other models. Hydrological processes are computed within each unit, 381 

including surface runoff, infiltration, subsurface flow, evapotranspiration, and changes in water 382 

storage. We therefore expect qualitatively similar findings across semi-distributed models, 383 

although specific quantitative outcomes may differ depending on parameterizations (Beck et 384 

al., 2016), data conditions (Seibert & Beven, 2009), process representations (Knoben et al., 385 

2020), spatiotemporal resolution (Zhang et al., 2025), and calibration strategy (Sun et al., 2020). 386 

Future work could include multi-model comparisons or ensemble simulations to assess how 387 

model structural differences affect the robustness of the conclusions. 388 

5. Conclusion 389 

This study used the semi-distributed THREW model to investigate the influence of 390 

parameter equifinality on runoff component partitioning. The model was implemented in 63 391 

catchments in southeastern China with high-quality rainfall and streamflow records. Behavioral 392 

parameter sets were selected using a KGE threshold (KGEopt–0.05) to quantify uncertainty in 393 

estimates of the contribution of subsurface runoff (Csub). Correlation analyses were conducted 394 

among Csub, uncertainty metrics, and catchment attributes to identify influence factors. Our 395 

main findings are as follows: 396 

1. The THREW model showed generally good performance across the 63 catchments, with 397 

KGEopt ranging from 0.663 to 0.947 (mean = 0.846). Csub varied widely among catchments, 398 

from 1.0% to 74.1% (mean = 31.7%). Csub was lower than 50% in 84% of the catchments, 399 
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reflecting dominant surface runoff in the study area. 400 

2. Small differences in KGE can produce substantial uncertainty in Csub, and the magnitude 401 

of that uncertainty varied markedly among catchments. Bias (difference between the Csub 402 

estimated using the optimal set and the average across all behavioral parameter sets) ranged 403 

from 0.1% to 19.8% (mean = 2.7%), and Range (difference between the maximum and 404 

minimum Csub among behavioral parameter sets) ranged from 1.1% to 54.1% (mean = 15.8%). 405 

In catchments with larger uncertainty metrics, the calibration strategy focusing on a single 406 

optimal parameter set is likely to result in misestimation of internal hydrological processes. 407 

3. Runoff ratio (QR) was identified as the primary catchment attribute associated with both 408 

surface-subsurface runoff partitioning and its uncertainty. QR was significantly correlated with 409 

Csub, Bias and Range (p<0.01), and also had a strong correlation with model sensitivity 410 

represented by the count of behavioral parameter sets (r=0.731, p<0.01). This finding indicates 411 

that catchments with higher QR tend to have higher contributions of subsurface runoff and 412 

larger uncertainties. Such evidence can provide an empirical priori assessment of the likely 413 

magnitude of uncertainties and help inform calibration strategy selection. 414 
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