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12 Abstract

13 Traditional parameter calibration strategies that focus on a single optimal parameter set
14 may lead to large uncertainties and biases in simulating internal hydrological processes because
15 of parameter equifinality. This study used the semi-distributed Tsinghua Hydrological Model
16  based on Representative Elementary Watershed (THREW) to investigate the influence of
17  parameter equifinality on uncertainties in surface—subsurface runoff partitioning. The model
18  was implemented in 63 catchments in southeastern China with high-quality rainfall and
19  streamflow data. Behavioral parameter sets were selected based on KGE thresholds to quantify
20 uncertainty in estimates of the contribution of subsurface runoff (Csw). Correlation analyses
21 were conducted to investigate factors influencing these uncertainties. Results showed that: (1)
22 the THREW model performed well across the 63 catchments, with an average optimal KGE
23 (KGEgp) of 0.846. Cyyp varied widely among catchments, ranging from 1.0% to 74.1% (mean
24 =31.7%), and was below 50% in 84% of the catchments, indicating that surface runoff was the
25  dominant runoff generation mechanism in the study area. (2) Substantial uncertainty in Cqyp can
26  arise from small differences in KGE, with notable variability among catchments. The
27  uncertainty in Cyp Was modest in most catchments, with mean Bias (difference between the
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28  Cyuw estimated using the optimal set and the average across all behavioral parameter sets) and
29  Range (max—min across behavioral sets) of 2.7% and 15.8%, respectively. However, the
30  uncertainty can be large in some catchments, where reliance on a single optimal parameter set
31 s likely inappropriate. (3) Runoff ratio was identified as an important catchment attribute
32 significantly correlated with Cqp and its uncertainty. In catchments with stronger runoff-
33 generation capacity, the model tended to be less sensitive and the simulation of internal runoff-
34 component partitioning tended to exhibit larger uncertainties. Such evidence can provide
35  empirical a priori guidance on the likely magnitude of uncertainties and help inform calibration-
36  strategy selection.

37

38 1. Introduction

39 Hydrological models are useful tools for understanding hydrological processes and
40  predicting variability in water resources. Parameter equifinality is a widely recognized issue in
41  hydrological modelling, meaning that different parameter sets may yield similar model
42 performance (Gupta et al., 2008). This can result in large uncertainties in the simulation of
43  internal hydrological processes despite producing similar total hydrographs (Delavau et al.,
44 2017; Nan & Tian, 2024). Understanding the characteristics and mechanisms of uncertainty
45  generation and propagation, systematically assessing uncertainty, and employing multiple
46  approaches to reduce uncertainty are important tasks in the field of hydrological modelling.

47 Parameter calibration is a necessary step in developing hydrological models. Streamflow
48  isthe most commonly used data type for calibration, and other variables—such as soil moisture,
49  evapotranspiration, snow cover/depth, glacier mass balance, and isotopic tracers—are also
50 employed by some researchers to better constrain uncertainties (Chen et al., 2017; He et al.,
51 2019; Ala-aho et al., 2017; He & Pomeroy, 2023). Regardless of the datasets and objective
52 functions used (e.g., Nash—Sutcliffe efficiency, NSE; Kling—Gupta efficiency, KGE),
53 calibration strategies can be broadly classified into two types. One seeks a single optimal
54  parameter set that maximizes the chosen performance metric, which is often assumed to

55  represent realistic hydrological behavior and is subsequently used for process inference or
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56  scenario analysis, for example to assess runoff response to climate change (Su et al., 2023). The
57  other approach employs an ensemble of parameter sets, typically obtained by applying a
58  performance threshold to Monte Carlo realizations or to parameter sets sampled during
59  calibration (Blasone et al., 2008; Nan et al., 2021).

60 Ensemble-based strategies not only support investigation of hydrological processes but
61  also allow for a systematic assessment of model sensitivity and uncertainty. In practice, the
62 choice of calibration strategy often depends on research objectives: ensemble methods are more
63  commonly applied in studies explicitly focused on uncertainties (He et al., 2019), while single—
64  optimal-parameter approaches remain the default in many applications (Beven & Binley, 2013;
65  Efstratiadis & Koutsoyiannis, 2010). From the perspective of model behavior, ensemble
66  approaches should be preferable in regions where parameter equifinality is pronounced,
67  whereas a single optimal parameter set may be adequate in catchments with limited equifinality.
68  However, existing studies rarely provide an a priori assessment of the likely degree of
69  equifinality for a given catchment, so researchers lack practical guidance for selecting the most
70  appropriate calibration strategy. This prevailing preference for single—best solution has
71  constrained advances in understanding model uncertainty to some extent.

72 The contribution of runoff components to streamflow is an important hydrological
73 characteristic that reflects runoff-generation mechanisms and is susceptible to parameter
74  equifinality (He et al., 2021). Previous studies have shown that, in some catchments, the
75  partitioning between surface and subsurface runoff can exhibit large uncertainty even when
76  streamflow simulations are classified as behavioral. Analyzing uncertainties in runoff
77  components and their controlling factors is essential for deepening our understanding of runoff-
78  generation processes and for improving the reliability of hydrological simulations and
79  predictions (Cui & Tian, 2025; Tudaji et al., 2025a). However, among studies addressing
80  uncertainties and sensitivities in hydrological models, the emphasis has primarily been on
81  parameter uncertainty, model overall performance and the simulation of total runoff (Di Marco
82  etal., 2021; Yang et al., 2019), whereas uncertainty in internal water partitioning has received
83  comparatively little attention. This lack of focus likely arises because internal water states and
84  fluxes are harder to observe than total runoff, making the validation of internal partitioning

85  more difficult and less common (Nan et al., 2025).
3
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86 Motivated by the above background, this study utilized a semi-distributed hydrological
87  model to investigate the influence of parameter equifinality on internal water component
88  partitioning. In specify, the objectives of this study are: (1) to quantify the uncertainty in the
89  contribution of subsurface runoff (Csuw) resulting from small changes in model performance
90  metric (KGE), and (2) to identify factors that influence model uncertainty so as to provide
91  potential a priori empirical guidance for assessing uncertainty and selecting calibration

92  strategies.

93 2. Materials and methodologies

94 2.1 Catchment and data set

95 This study utilized the catchment set established by Tudaji et al. (2025b) to analyze the
96  hydrological simulation uncertainties. It included 63 small- to medium-scale catchments
97  located in southeastern China (Figure 1), most of which fall within the Yangtze River Basin.
98  The catchment attributes vary considerably (Table 1). The drainage areas of the catchments
99  range from 91.5 to 5,266 km?, with an average of 1,528 km?. These catchments exhibit
100  significant diversity in climate, topography, and rainfall-runoff relationships, with wide ranges
101  of mean annual rainfall (647-2,593 mm), topographic slope (1.8-26.2°), and runoff ratios

102 (0.31-0.96).
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Figure 1. Geographic distribution of the study catchments (Adapted from Tudaji et al,
2025b).

Table 1. Statistical summaries of the catchment attributes

Attribute Description Min Max Average Unit
DRA Drainage area 92 5266 1528 km?
MAR Mean annual rainfall 647 2593 1531 mm
MAQ Mean annual runoff 356 1571 868 mm

QR Runoff ratio 0.31 0.96 0.58 -
TS Topographic slope 1.83 26.18 11.77 °

Hourly discharge and rainfall data from 1 January 2014 to 31 December 2015 were
collected from the National Rainfall and Hydrological Database, established by the Information
Center of the Ministry of Water Resources (http://xxfb.mwr.cn/sq_dtcx.html, last access: 10
December 2023). Considering the variable quality of the raw data (mainly completeness and
temporal resolution), 63 hydrological stations were selected based on high-quality standards.
Specifically, the average temporal resolution—defined as the ratio of the time period to the
number of measurements—exceeded 3,650 s. This threshold was slightly higher than 1 h,
ensuring hourly resolution while allowing for individual missing data. In addition, to make full

use of the water level data (which are generally more complete than discharge data) in the
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116  database, the water level—discharge relationship was used to infer discharge values for periods
117  with only water level data. To ensure the accuracy of these calculations, selected stations met
118  the criteria that discharge data for more than 80% of the time steps also had water level data,
119  and the coefficient of determination (R?) for the water level-discharge relationship exceeded
120 0.95.

121 Similar to the discharge data, 863 rainfall stations with hourly records were selected within
122 the spatial extent of the 63 catchments. The Thiessen polygon method (Han and Bray, 2006)
123 was employed to generate areal rainfall for each catchment. Each catchment was covered by 15
124 Thiessen polygons on average.

125 Other data used for model setup were collected from public datasets. The 90 m-resolution
126 Multi-Error-Removed Improved-Terrain Digital Elevation Model (MERIT DEM; Yamazaki et
127  al, 2017) was used for catchment extraction. Daily temperature and potential
128  evapotranspiration were sourced from ERA5-Land (Mufioz Sabater, 2019). Soil parameters
129  were estimated from the global high-resolution dataset of soil hydraulic and thermal parameters
130 (Daietal., 2019). The 8-day leaf area index (LAI) and 16-day normalized difference vegetation
131  index (NDVI) products from MODIS (MOD15A2H, Myneni et al., 2021; MOD13A1, Didan,

132 2021) were used to represent vegetation conditions.

133 2.2 THREW Hydrological model

134 The Tsinghua Hydrological Model Based on Representative Elementary Watershed
135 (THREW), developed by Tian et al. (2006), was employed in this study. The THREW model is
136  based on a set of balance equations for mass, momentum, and energy, along with constitutive
137  equations controlling fluxes among simulation units. Each catchment is first divided into
138  several Representative Elementary Watersheds (REWs) based on DEM data, and several sub-
139 zones are defined within each REW, serving as the elementary simulation units of the THREW
140  model (Figure 2). Specifically, each REW is divided into surface and subsurface layers. Six
141  sub-zones are defined in the surface layer based on underlying types: vegetation zone (v-zone),
142 bare soil zone (b-zone), snow zone (n-zone), glacier zone (g-zone), sub-stream network zone
143 (t-zone), and main channel reach zone (r-zone). Two sub-zones are defined in the subsurface
144 layer according to soil saturation conditions: unsaturated zone (u-zone) and saturated zone (s-

6
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zone). Considering the subtropical monsoon climate of the selected catchments—characterized
by high mean temperatures and the temporal coincidence of peak rainfall and temperature—the
influence of cryospheric processes on runoff is negligible; therefore, the snow and glacier
modules and the corresponding sub-zones were not activated in this study. The THREW model
has been described in our previous publications; for full model details see Tian et al. (2006).

This study primarily investigates uncertainties in runoff-component partitioning using the
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Figure 2. Schematic illustration of the THREW model (Adapted from Tudaji et al., 2025b)

2.3 Model calibration

The parameters to be calibrated are listed in Table 2. The Python Surrogate Optimization
Toolbox (pySOT; Eriksson et al., 2019) was employed for model calibration. The pySOT
algorithm utilizes radial basis functions (RBFs) as surrogate models to approximate model
simulations and reduce runtime per iteration. During each pySOT run, parameters were
generated using the symmetric Latin hypercube design (SLHD), and the optimization stopped
when the objective converged or the number of model runs reached a threshold (set to 3000 in

7
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161  this study). The Kling—Gupta efficiency (KGE) was used as the optimization objective to reflect

162 overall model performance in terms of correlation, variability, and bias (Eq. 1).

163 KGE=1-A-r)2+1-a)?+(1-p)? Q)
164 where, r represents the Pearson correlation coefficient between simulated and observed values,
165 o is the ratio of the mean of simulated values to that of observed values, £ is the ratio of the
166  standard deviation of simulated values to that of observed values.

167  Table 2. Descriptions of calibrated parameters in the THREW model (Adapted from Tudaji et

168 al., 2025b)
Symbol Unit Physical description Range
WM cm  Tension water storage capacity for saturation area calculation 0-10
B - Shape coefficient for saturation area calculation 0-1
KKA - Exponential coefficient for groundwater outflow calculation 0-6
KKD - Linear coefficient for groundwater outflow calculation 0-0.5
Cl - Coefficient for runoff concentration calculation using 0-1
Muskingum method
C2 - Coefficient for runoff concentration calculation using 0-1
Muskingum method
169 This study aimed to investigate model performance when the evaluation metric is

170  relatively high. Consequently, for each catchment the pySOT algorithm was repeated 50 times,
171  yielding 50 parameter sets. Parameter sets whose KGE exceeded a threshold were selected as
172 behavioral parameters; the threshold was defined as 0.05 below the optimal KGE (KGEqy)

173 obtained among the 50 sets.

174 2.4 Quantification of surface-subsurface runoff partitioning and its uncertainty

175 The surface—subsurface runoff partitioning in each catchment was analyzed based on
176 ~ THREW outputs of internal variables (Figure 2). Surface and subsurface runoff were defined
177  astwo runoff components based on runoff generation pathways as reviewed by He et al. (2021).
178  Surface runoff includes rainfall occurring in areas where soils are saturated, where rainfall
179  intensity exceeds infiltration capacity, or in impermeable areas such as river channels.

180 Subsurface runoff is the outflow from the saturated zone. The contribution of subsurface runoff
8
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181  to total runoff (Csw) was calculated to represent the surface—subsurface runoff partitioning
182 characteristic (Eq. 2).

183 Coup = ﬁx 100% )
184  where, Qur and Qqup are the amount of surface and subsurface runoff, respectively, which can
185  be obtained by the model outputs.

186 The uncertainty of Csw was analyzed from two aspects. The first aspect is the
187  representativeness of Cqyp, estimated by the optimal parameter set, quantified by bias and relative
188  bias (RBias) between the Cqyp, estimated using the optimal set and the average Cqup, across all
189  behavioral parameter sets (Eqs. 3 and 4). The second aspect is the variability of Csp across the
190  behavioral parameter sets, quantified by the standard deviation (STD) and the range of Csub
191  among those sets (Egs. 5 and 6). To ensure adequate parameter set samples for uncertainty
192 analysis, only the catchments where the number of behavioral parameter sets exceed 10 were
193 selected for this analysis.

194 Bias = |C2Ff — Coup| ?3)
195 RBias = 22 x 100% )
196 STD = Z?:l(csuii—m)z )
197 Range = CIi6* — CIuy (6)
198  where, Csozflf is the Ca estimated by the optimal parameter set, Cgyp is the average Caup
199  estimated by the behavioral parameter sets, n is the number of behavioral parameter sets, Ch&*
200 and CTM are the maximum and minimum of Cyy, estimated by the behavioral parameter sets.
201 3. Results

202 3.1 Model performance

203 Among the 63 catchments, 50 had more than 10 behavioral parameter sets producing KGE
204  higher than KGE,p—0.05 (Figure 3a). The KGEy in these 50 catchments ranged from 0.663 to
205 0.947, with an average of 0.846, and 30 catchments achieved KGE,: values above 0.85. The
206  comparisons of simulated and observed hourly streamflow in two typical catchments (with the
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207  highest and lowest KGE.) are presented in Figure 4, showing strong consistency between
208  model outputs and observations. These metrics and results indicate generally good model

209  performance in the study area.
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214 Figure 4. Comparison of simulated and observed hourly discharge in two typical catchments
215 with the highest and lowest KGE: (a) Xintian, (b) Yongshun

216 The number of behavioral parameter sets varied significantly among these 50 catchments
217  (Figure 3b). The average number was 24.28, and in 15 catchments this number fell in the range
218 11-15. In only one catchment were all 50 parameter sets obtained by the pySOT process
219  identified as behavioral. Considering the random generation of initial parameter sets within

220 each pySOT running, the number of behavioral parameter sets serve as a partial indicator of

221  model sensitivity.

222 3.2 Surface-subsurface runoff partitioning and its uncertainties

223 For each catchment, the average Csu, estimated across all behavioral parameter sets was
224 taken as the final estimation. As shown in Figure 3c, Cqp varied markedly among catchments,
225  ranging from 1.0% to 74.1% with an average of 31.7%. In 42 of the 50 catchments, Cqu, Was
226  below 50%, indicating that surface runoff was the dominant runoff generation mechanism. This
227  dominance can be attributed to the generally wet climate in the study area, which leads to high
228  soil water saturation and extensive saturated areas.

229 Figure 5 illustrates the uncertainty of Csuw in two typical kinds of catchments. In the
230  Heishui catchment (Figure 5a), Csp exhibited strong variability when KGE was within 0.05 of

231 its optimal value. The bias between the Cqp when the optimal KGE achieved (C Opt) and the

sub

11
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232 average Cap produced by the behavioral parameter sets (Cgyp) Was 13%, accounting for 23%
233 of Cgyp. Moreover, the Cup estimated by each individual behavioral parameter set ranged from
234 32% to 85%, and the difference between the maximum and minimum Csy, was as high as 53%,
235  indicating that different behavioral parameter sets may imply different dominant runoff
236  generation mechanisms. By contrast, in the Shuikou catchment (Figure 5b), although Cguw
237  estimated by the original 50 parameter sets also spanned a wide range, the model performance
238 was much more sensitive to Cqp than in the Heishui catchment, as evidenced by a sharp decline
239  in KGE when Cyy deviated from C;;f,f . As a result, only 13 parameter sets produced KGE
240  higher than the behavioral threshold, yielding small values of Bias (0.6%) and Range (6%).
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242 Figure 5. Relation between KGE and contribution of subsurface runoff in two typical
243 catchments: (a) Heishui, (b) Shuikou. Optimal parameter set (red triangle), ensemble mean
244 (blue line), and range (gray shading) are shown, and associated uncertainty metrics are
245 illustrated.
246 Figure 6 shows the boxplot of Csu uncertainty metrics derived by behavioral parameter

247  sets in 50 catchments. Regarding the representativeness of the optimal Cqw, the Bias metric
248  ranged from 0.1% to 19.8%, with an average of 2.7%. Bias was less than 3% in 40 of the 50
249  catchments, indicating that the Cqu, obtained from the optimal parameter set was close to the
250  mean across all behavioral parameter sets. However, Bias exceeded 10% in 3 catchments,
251  indicating that relying solely on the optimal parameter set may still lead to misestimation of
252 surface—subsurface runoff partitioning. The RBias metric exhibited a wider range, reaching a
253 maximum of 75.5%, likely due to variations in average Cqyp (i.€., the denominator in Eq. 2). As

254 for the variability of the behavioral results, the STD and Range of Cguw varied from 0.3% to
12
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255  16.2% and 1.1% to 54.1%, with average values of 4.0% and 15.8%, respectively. There was a
256  strong linear correlation between STD and Range (slope = 3.5, R =0.914). In around one third
257  of the catchments (16 of 50), the uncertainties of Csu, were relatively small (STD < 2.5% and
258  Range < 10%), but in four catchments STD and Range exceeded 10% and 35%, respectively.
259  Overall, although uncertainties in Cyp were modest in most catchments, they could be

260  extremely significant in some catchments.
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262 Figure 6. Boxplot of the uncertainty metrics of Cs produced by behavioral parameter sets in
263 the selected 50 catchments

264 Changes in Cqyp uncertainty with varying behavioral thresholds were further analyzed by
265  adjusting the difference between KGE,: and the KGE threshold from 0.005 to 0.05 in 0.005
266  increments (Figure 7). As expected, most metrics increased as the KGE threshold decreased,
267  although some metrics showed non-monotonic extrema (e.g., the maximum RBias). Notably,
268  uncertainty metrics could still be large even when the KGE threshold was set very close to

269  KGEy. For instance, in the Yongshun catchment (Figure 4b), Bias and Range reached 12.2%

13
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270  and 38.8%, respectively, when the KGE threshold was set only 0.005 below KGE,,.. However,
271  the 90th percentiles of Bias and Range were below 5% and 10%, respectively, when the KGE
272 threshold was set 0.01 below KGEy, indicating that Cgp estimation is robust in most

273 catchments if the threshold is set sufficiently high.
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275 Figure 7. Changes in Cqu, uncertainty metrics with changing behavioral KGE thresholds with

276 an interval of 0.005

277 3.3 Influence factors of surface-subsurface runoff partitioning

278 To further understand the variability of surface—subsurface runoff partitioning and its
279  uncertainties, we analyzed their correlations with the catchment attributes listed in Table 1.
280  Considering the strong correlation between uncertainty metrics STD and Range, STD was not
281  included in the correlation analysis for simplify. The correlation coefficients and the
282  corresponding statistical significance are shown in Table 3. For the contribution of subsurface
283  runoff, runoff ratio (QR) was the only attribute showing a statistically significant correlation
284  (p<0.01) with Cqw, indicating greater subsurface contribution in catchments with stronger
285  runoff generation capacity. Notably, Cq, exhibited a positive correlation with topographic slope
286  (TS), which is consistent with the global isotope-based study by Jasechko et al. (2016) that
287  found the young-water fraction (associated with surface-runoftf contribution) to be negatively

14
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288  correlated with topographic gradient, although the correlation in our study was not statistically
289  significant (p = 0.26).

290  Table 3. Correlation coefficient among Csuw, uncertainty metrics, and catchment attributes
291  among 50 catchments. Bold values indicate p<0.05, with * and ** denoting 0.01<p<0.05 and

292 p<0.01, respectively.

Csub Bias RBias Range
DRA 0.055 0.167 0.025 0.031
MAR -0.256 -0.387%* -0.289* -0.244
MAQ 0.199 -0.128 -0.374%* 0.019
QR 0.632%* 0.434%* -0.126 0.380**
TS 0.162 0.064 -0.055 0.251
Csub \ 0.074 -0.563** 0.217
293 The uncertainty metrics were correlated with both climate conditions and runoff-

294  generation capacity. Bias and RBias were both significantly negatively correlated with mean
295  annual rainfall (MAR) (p<0.01 and p<0.05, respectively). RBias was also significantly
296  negatively correlated with mean annual runoff (MAQ) (p<0.01). These results suggest that Cup
297  estimated from the optimal parameter set tended to be closer to the mean Cgy across all
298  behavioral sets in wetter catchments (Figure 8). As expected, RBias was strongly negatively
299  correlated with Cap (r=-0.563), because Csp appears in the denominator of the RBias
300  calculation. QR was significantly positively correlated with Bias (r=0.434, p<0.01). The
301  correlations between Range and the examined catchment attributes were similar to those for
302  Caw in both strength and statistical significance. QR was the only attribute significantly
303  correlated with Range (r=0.380, p<0.01).

304 It is worth noting that QR was significantly correlated with both surface—subsurface runoff
305  partitioning and its uncertainties (Figure 9b—d). We also examined the relationship between
306  model sensitivity—represented by the number of behavioral parameter sets obtained from 50
307  pySOT calibrations—and QR, and found a strong, significant correlation (r=0.731, p<0.01;
308  Figure 9a). This suggests the model was less sensitive (i.e., produced a larger number of

309  behavioral parameter sets) in catchments with higher QR. The positive correlation between Cgup
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and QR likely reflects that a high QR implies a smaller fraction of rainfall lost to

evapotranspiration, favoring larger subsurface water storage and lateral subsurface flow.

Additionally, higher QR implies more runoff generation via multiple pathways, which may

increase variability and consequently the uncertainty in Cgyp.
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320 4. Discussions

321 4.1 Implications on hydrological modelling in various conditions

322 This study questions the reasonableness of commonly used hydrological model calibration
323  strategies. Results show that in some catchments model performance is insensitive to internal
324  process representation — a very small change in an evaluation metric (for example, a 0.005
325  change in KGE) can correspond to very large differences in the estimated contribution of
326  subsurface runoff. Similar phenomena were also reported for other runoff components, such as
327 snowmelt and glacier melt runoff (He et al., 2019; Nan et al., 2025). In such cases, the optimal
328  parameter set may not adequately represent the range of plausible hydrological behaviors, and
329  analyses based on a single parameter set may therefore yield substantially biased estimates.
330  Conversely, in a substantial proportion of catchments (approximately one-third in this study),
331  uncertainties among behavioral parameter sets were relatively small, and the optimal parameter
332 set can adequately represent the parameter sets that produced sufficiently high KGE.

333 The correlation analysis provides potential guidance for choosing appropriate calibration
334  strategies under different catchment conditions. The runoff ratio (QR) emerged as a
335  representative index for a priori assessment of potential modeling uncertainties: catchments
336  with higher QR tended to exhibit greater uncertainties. In such cases, a systematic evaluation
337  of model uncertainty, such as adopting Generalized Likelihood Unvertainty Estimation (GLUE)
338  framework, is recommended. Uncertainties can be further reduced by assimilating multiple
339  datasets (e.g., Tong et al., 2021). Conversely, in catchments with lower QR the model was more
340  sensitive to parameterization, so a single parameter set that yields the optimal performance
341  metric is more likely to credibly represent the underlying hydrological processes. In those cases,
342 calibration that targets a single optimal parameter set may be acceptable.

343 Mean annual rainfall (MAR) was identified as a secondary representative index for a priori
344  assessment of modeling uncertainties. MAR had a significant negative correlation with Bias
345  (Figure 8a), and a negative (but not statistically significant) correlation with Range (r =—0.244,
346  p = 0.087; Table 3). Meanwhile, the number of behavioral parameter sets was significantly
347  negatively correlated with MAR (r = —0.379, p<0.01), although its absolute correlation
348  coefficient was smaller than that with QR (r = 0.731; Figure 9a).
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349 These results indicate that modeling uncertainties tend to be lower in catchments with
350  lower runoff generation capacity and wetter climates. However, it is difficult to derive a reliable
351  equation to predict potential modeling uncertainty from catchment attributes, or to define a
352 MAR/QR threshold above or below which a single optimal parameter set can be judged
353  sufficiently credible. For example, among the five catchments with MAR>1500 mm and
354 QR<0.55, one still has a large Range of 37% (Figure 10b). Consequently, our results offer an
355  empirical criterion for anticipating model uncertainty, but complementary sensitivity and

356  robustness tests are always advisable (Song et al., 2015).
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358 Figure 10. The interrelation among the QR, MAR, and (a) Bias and (b) Range
359 4.2 Limitations
360 This study used the contribution of subsurface runoff (Cqw) estimated by the THREW

361  model as a representative hydrological characteristic to analyze hydrological-model uncertainty
362  and its influencing factors. The main limitation of this study lies in the reliability of the
363  estimated Cqyp and in the representativeness of the THREW model. Because of deficiencies in
364 observational data for multiple runoff components, it is difficult to directly validate the Csub
365  estimates in this study, which consequently raises doubts about conclusions related to Ciup.
366  Nonetheless, some indirect evidence supports the Csu estimates to some extent. On the one
367  hand, in our previous studies the Cqyp, estimates produced by the THREW model in two typical
368  catchments were independently validated by other methods, such as an end-member mixing
369  model and a groundwater model (Nan et al., 2021; Nan et al., 2023; Yao et al., 2021; Li et al.,
370  2020), demonstrating the THREW model’s ability to simulate surface—subsurface runoff

371  partitioning. On the other hand, the positive correlation between Cqu, and topographic slope and
18
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372 the negative correlation between Cqb» and mean annual rainfall are consistent with patterns
373 reported in previous studies (Jasechko et al., 2016; Nan et al., 2025), which provides additional
374  support to the reasonableness of our results.

375 Another limitation is the use of a single THREW model, which raises questions about the
376  generalizability of the conclusions. However, the structure and core equations of THREW
377  model are broadly similar to those of many commonly used semi-distributed hydrological
378 models, such as SWAT and HBV (Gassman et al., 2007; Lindstrom et al., 1997). Specifically,
379  the basic simulation units of THREW are subzones of the representative elementary watershed
380  (REW), defined by topography and land-surface type — analogous to the hydrological response
381  unit (HRU) concept in other models. Hydrological processes are computed within each unit,
382  including surface runoff, infiltration, subsurface flow, evapotranspiration, and changes in water
383  storage. We therefore expect qualitatively similar findings across semi-distributed models,
384  although specific quantitative outcomes may differ depending on parameterizations (Beck et
385 al, 2016), data conditions (Seibert & Beven, 2009), process representations (Knoben et al.,
386  2020), spatiotemporal resolution (Zhang et al., 2025), and calibration strategy (Sun et al., 2020).
387  Future work could include multi-model comparisons or ensemble simulations to assess how

388 model structural differences affect the robustness of the conclusions.

389 5. Conclusion

390 This study used the semi-distributed THREW model to investigate the influence of
391  parameter equifinality on runoff component partitioning. The model was implemented in 63
392 catchments in southeastern China with high-quality rainfall and streamflow records. Behavioral
393 parameter sets were selected using a KGE threshold (KGE,—0.05) to quantify uncertainty in
394 estimates of the contribution of subsurface runoff (Csw). Correlation analyses were conducted
395  among Cqw, uncertainty metrics, and catchment attributes to identify influence factors. Our
396  main findings are as follows:

397 1. The THREW model showed generally good performance across the 63 catchments, with
398  KGEoy ranging from 0.663 to 0.947 (mean = 0.846). Cq varied widely among catchments,

399  from 1.0% to 74.1% (mean = 31.7%). Csp was lower than 50% in 84% of the catchments,
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400  reflecting dominant surface runoff in the study area.

401 2. Small differences in KGE can produce substantial uncertainty in Csu,, and the magnitude
402  of that uncertainty varied markedly among catchments. Bias (difference between the Cgup
403  estimated using the optimal set and the average across all behavioral parameter sets) ranged
404  from 0.1% to 19.8% (mean = 2.7%), and Range (difference between the maximum and
405  minimum Csu, among behavioral parameter sets) ranged from 1.1% to 54.1% (mean = 15.8%).
406  In catchments with larger uncertainty metrics, the calibration strategy focusing on a single
407  optimal parameter set is likely to result in misestimation of internal hydrological processes.
408 3. Runoffratio (QR) was identified as the primary catchment attribute associated with both
409  surface-subsurface runoff partitioning and its uncertainty. QR was significantly correlated with
410  Cqw, Bias and Range (p<0.01), and also had a strong correlation with model sensitivity
411  represented by the count of behavioral parameter sets (r=0.731, p<0.01). This finding indicates
412 that catchments with higher QR tend to have higher contributions of subsurface runoff and
413  larger uncertainties. Such evidence can provide an empirical priori assessment of the likely
414  magnitude of uncertainties and help inform calibration strategy selection.
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