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Abstract 23 

This study presents a systematic evaluation of China’s independently developed 24 

the EPICC-Model for regional PM2.5 and MDA8 O3 simulations against established 25 

international models, using unified WRF meteorological fields and a multi-source 26 

integrated emission inventory. Results highlight the strengths of the EPICC-Model in 27 

several aspects: it achieves relatively high spatial consistency for PM2.5, with an annual 28 

index of agreement (IOA) of 0.80, and accurately captures pollution patterns in heavily 29 

polluted North China. It also demonstrates improved performance in simulating 30 

summer O3 peaks, reducing maximum biases by more than 20 μg m-3, primarily through 31 

enhanced heterogeneous HONO formation and nitrate photolysis pathways that elevate 32 

OH concentrations, and it incorporates the CB6r5 mechanism to better represent 33 

biogenic VOC oxidation. The model exhibits the highest hit rate (45.6%) for identifying 34 

moderate PM2.5 and moderate O3 pollution events and successfully reproduces 35 

persistent compound pollution episodes. However, all models share common 36 

limitations, including insufficient capability in reproducing heavy pollution episodes, 37 

systematic underestimation of SO₄²⁻, and uncertainties in SOA-related OC simulations. 38 

Future improvements should focus on refining secondary aerosol chemistry, emission 39 

inventories, and boundary layer representations. This study has not only demonstrated 40 

the performance of the EPICC-Model against international benchmarks but also 41 
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provides guidance for improving regional and global air quality models. 42 

1 Introduction 43 

With rapid urbanization and industrialization, China faces increasingly severe 44 

multi-pollutant air quality challenges. Among them, fine particulate matter (PM2.5) and 45 

ozone (O3) are key threats to public health and ecosystems, and their coordinated 46 

control has become a priority. As a typical secondary pollutant, PM2.5 is influenced by 47 

primary emissions, secondary formation from SO2, NOx, and VOCs, regional transport, 48 

and meteorology (Zhang et al., 2012; Jing et al., 2020). Emission control policies have 49 

reduced population-weighted PM2.5 exposure by ~48% from 2013 to 2020 (Xiao et al., 50 

2022), yet severe winter haze episodes persist in regions like Beijing-Tianjin-Hebei. In 51 

contrast, O3 formation shows nonlinear dependence on NOₓ and VOCs and is highly 52 

sensitive to radiation, temperature, humidity, and the boundary layer dynamics (Li et 53 

al., 2019b; Gao et al., 2022). Despite PM2.5 reductions, O3 levels have risen steadily, 54 

with warm-season maximum daily 8-hour average (MDA8) O3 increasing by 1.2 ± 1.3 55 

ppb yr⁻¹ in major urban clusters during 2013-2022 (Wang et al., 2024).The combined 56 

pollution of PM2.5 and O3 exhibits complex spatiotemporal evolution patterns and 57 

formation mechanisms (Lyu et al., 2025; Zhu et al., 2023), posing significant challenges 58 

for sustained air quality improvement in China. 59 

To better understand the formation of complex air pollution and assess control 60 

strategies, Chemical Transport Models (CTMs) are widely used for regional air quality 61 

analysis and policy evaluation (Li et al., 2021; Gao and Zhou, 2024). Representative 62 

CTMs include the Community Multiscale Air Quality Modeling System (CMAQ) 63 

developed by the U.S. Environmental Protection Agency (EPA), the Comprehensive 64 

Air Quality Model with Extensions (CAMx) developed by ENVIRON Corporation, 65 

WRF-Chem for regional-scale simulations, and GEOS-Chem, which is widely applied 66 

for global-scale studies. However, current CTMs still exhibit significant uncertainties 67 

in simulating PM2.5 and O3 under specific pollution scenarios in China, primarily 68 

manifested as systematic biases in peak concentrations, spatiotemporal distribution 69 

errors, and inaccuracies in capturing seasonal variability (Bessagnet et al., 2016; Chen 70 

et al., 2019). Against this backdrop, China has independently developed the Emission 71 

and atmospheric Processes Integrated and Coupled Community Model (EPICC-Model) 72 

to enhance capabilities in simulating complex pollution processes. Supported by the 73 

National Natural Science Foundation of China (Major Program) and the Earth System 74 

Numerical Simulation Facility (EarthLab), the model was officially released on 75 

November 8, 2024 (EPICC-Model Working Group, 2025) (for detailed description, see 76 

Section 2.1).  77 

As a newly released CTM, the EPICC-Model has undergone preliminary single-78 

model performance evaluations (EPICC-Model Working Group, 2025; Wang et al., 79 

2025), but systematic multi-model comparisons under nationwide, multi-season 80 

conditions remain lacking. Multi-model intercomparison not only helps reveal 81 

structural differences among models in pollutant transport, chemical reactions, and 82 

meteorological feedbacks, but also serves as a key approach to quantifying simulation 83 

uncertainties and improving model robustness and reliability (Carmichael et al., 2008). 84 

Although substantial efforts have been made in evaluating CTMs over China and East 85 

Asia, such as the MICS-Asia phase studies on PM2.5 and O3 (Chen et al., 2019; Gong 86 

and Liao, 2019; Itahashi et al., 2020; Li et al., 2019a), regional comparisons in the Pearl 87 

River Delta (Wu et al., 2012), and recent multi-model analyses over eastern China (Gao 88 

et al., 2024), most focus on earlier-generation or established models. Likewise, large-89 

scale assessments within CMIP5/6 have consistently revealed systematic biases in 90 
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simulating PM2.5 and components across China (Li et al., 2020; Ren et al., 2024). Given 91 

the structural innovations and representations in the EPICC-Model, it is both timely and 92 

necessary to conduct a systematic comparison with established CTMs over China, in 93 

order to comprehensively assess its strengths and weaknesses and provide a scientific 94 

basis for subsequent model improvement and application. 95 

Therefore, this study implements a consistent model intercomparison framework 96 

to systematically compare the simulation performance of three models (EPICC-Model, 97 

CMAQ, and CAMx) for PM2.5 and O3 concentrations over China in 2021, based on a 98 

unified meteorological driving field and a multi-source integrated emission inventory.  99 

The objectives are to comprehensively assess the capabilities of the EPICC-Model, 100 

identify common issues and their potential causes across multiple models, and propose 101 

targeted improvements. The paper is structured as follows: Section 2 introduces the 102 

configuration schemes of the three models, emission data sources, the WRF-based 103 

meteorological forcing, and the evaluation of meteorological simulations. Section 3 104 

presents the research results, including comparative analyses of the spatiotemporal 105 

distribution simulations of PM2.5 and O3, PM2.5 chemical composition analysis, 106 

assessments of the Air Quality Index (AQI) and pollution forecast accuracy, as well as 107 

comparisons of model performance in simulating persistent pollution events. Section 4 108 

summarizes the key findings and discusses future directions for model improvements 109 

and prospects. 110 

2 Data and methods 111 

2.1 Overview of simulation domain, period, and CTM configurations 112 

This study employs a two-level nested grid configuration with the model domain 113 

centered at (35°N, 105°E). The outer domain covers East Asia with a 45 km horizontal 114 

resolution (228 × 165 grid cells), while the inner domain focuses on China at a 15 km 115 

resolution (465 × 300 grid cells), starting from grid point (36, 39) within the outer 116 

domain. All analyses and results are derived from the inner domain simulations. The 117 

simulation period extends from 12:00 UTC on 14 December 2020 to 18:00 UTC on 31 118 

December 2021, with the initial 17.25 days (until 18:00 UTC on 31 December 2020) 119 

dedicated to model spin-up. 120 

For a systematic intercomparison of models, this study employs consistent 121 

meteorological driving fields generated by the Weather Research and Forecasting 122 

(WRF) model and a harmonized multi-source emission inventory to drive year-long 123 

simulations using the EPICC-Model, CAMx, and CMAQ. The EPICC-Model is a three-124 

dimensional tropospheric CTM independently developed in China (EPICC-Model 125 

Working Group, 2025). Featuring highly modular architecture and parallel computing 126 

capabilities, it simulates key physical and chemical processes including emissions, 127 

transport, gas-phase and heterogeneous reactions, aerosol thermodynamics, and 128 

dry/wet deposition. CAMx (Anon, 2020) is a versatile photochemical grid model 129 

widely used for air quality scientific assessments and policy support. It follows the “one 130 

atmosphere” approach, accommodating pollution simulations from urban to regional 131 

scales (Emery et al., 2024). CMAQ (Anon, 2021) is a continuously evolving open-132 

source modeling platform featuring an open architecture and multi-processor parallel 133 

computing capabilities. It efficiently simulates air pollution processes including O3, 134 

particulate matter, toxic pollutants, and acid deposition (US EPA, 2021). 135 
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Table 1. Key configuration schemes of the EPICC-Model, CMAQ, and CAMx. 136 

 EPICC-Model CAMx CMAQ 

Model version v1.0 v7.0 v5.3.3 

Vertical layers 20𝜎𝑧 layers 14𝜎𝑝 layers 14𝜎𝑝 layers 

Horizontal advection 
Walcek (Walcek and 

Aleksic, 1998) 

PPM (Colella and 

Woodward, 1984) 
PPM 

Vertical advection Walcek PPM PPM 

Horizontal diffusion Multi-scale Multi-scale Multi-scale 

Vertical diffusion 
YSU (Hong et al., 

2006) 
YSU ACM2 (Pleim, 2007) 

Gas-phase 

mechanisms 

CB6r5 (Yarwood et al., 

2020) 

CB05 (Yarwood et 

al., 2005) 

CB6r3 (Emery et al., 

2015) 

Aqueous-phase 

chemistry 

RADM (Walcek and 

Taylor, 1986) 
RADM AQCHEM 

Aerosol processes 

ISORROPIA v2.2 

(Fountoukis and Nenes, 

2007) 

CF/ISORROPIA v1.7 

(Nenes et al., 1998) 

AE7/ISORROPIA 

v2.2 

Secondary organic 

aerosol 

Two-product model 

(Pandis et al., 1992; 

Odum et al., 1997) 

SOAP (Strader, 1999) AE7/VBS 

Dry deposition 
ZHANG03 (Zhang et 

al., 2001, 2003) 
ZHANG03 M3DRY 

Wet deposition 
Henry’s law (William, 

1803) 
Henry’s law AQCHEM 

Photolysis 
Streamlined TUV 

 (Emery et al., 2010) 
Streamlined TUV 

Fast-J (Wild et al., 

2000) 

Boundary conditions MORZART Default Default 

The key configuration parameters of the EPICC-Model, CAMx, and CMAQ are 137 

summarized in Table 1. The EPICC-Model employs a 20𝜎𝑧 layers coordinate system, 138 

demonstrating superior vertical resolution compared to the 14𝜎𝑝  layers coordinates 139 

used in other two models. Coupled with the YSU boundary layer scheme, this 140 

configuration enhances simulation accuracy for near-surface turbulent mixing and 141 

nocturnal stable layer structures. CMAQ utilizes the Asymmetric Convective Model, 142 

version 2 (ACM2) scheme, which exhibits stronger coupling with surface heat flux 143 

feedback mechanisms, particularly advantageous for simulating boundary layer 144 

evolution under environments with pronounced diurnal temperature gradients. CAMx 145 

retains the YSU scheme, maintaining an optimal balance between computational 146 

efficiency and precision (Jia and Zhang, 2020; Shi et al., 2021). In terms of chemical 147 

mechanisms, the EPICC-Model employs the CB6r5 gas-phase mechanism coupled with 148 

RADM aqueous-phase chemistry, allowing the representation of gas-aqueous reactions 149 

contributing to secondary organic aerosol (SOA) formation, particularly under high-150 

humidity conditions where aqueous-phase reactions can influence SOA production 151 

(Yarwood et al., 2020). CMAQ uses the CB6r3 mechanism in combination with the 152 

AE7/VBS module to represent SOA formation, and from version 5.2 onward, 153 
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incorporates additional parameterizations such as Potential Combustion SOA (PCSOA) 154 

to compensate for combustion-related SVOC and IVOC emissions not captured in 155 

current inventories (Murphy et al., 2017). CAMx uses the CB05 gas-phase chemical 156 

mechanism coupled with the SOAP module to parameterize SOA formation, simulating 157 

the oxidation of both anthropogenic and biogenic VOCs and their partitioning into the 158 

aerosol phase. For photolysis rate calculations, both the EPICC-Model and CAMx 159 

employ the Streamlined TUV scheme to reduce computational cost, whereas CMAQ 160 

utilizes the Fast-J scheme, which offers more detailed representation of radiative 161 

shielding under high aerosol loading conditions (Barnard et al., 2004). Regarding 162 

boundary conditions, the EPICC-Model incorporates MOZART outputs as the initial 163 

and lateral background fields, while CMAQ and CAMx rely on their respective default 164 

settings. These differences in physical parameterizations and chemical mechanisms 165 

constitute a critical foundation for interpreting the divergent simulation results of PM2.5 166 

and MDA8 O3 across the three models. 167 

2.2 WRF model configuration and meteorological simulation evaluation 168 

Key configuration parameters of the WRF model used in this study are 169 

summarized in Table 2. The simulations were conducted using WRF version 3.9.1, with 170 

initial and boundary conditions derived from the National Centers for Environmental 171 

Prediction (NCEP) Final 1° × 1° reanalysis data (FNL, ds083.2), featuring a temporal 172 

resolution of 6 hours. To enhance the accuracy of the WRF simulations, four-173 

dimensional data assimilation (FDDA) grid nudging was applied during the simulation 174 

process. 175 

Table 2. Key configuration parameters of the WRF model. 176 

WRF v3.9.1 

Horizontal resolution 45 km-15 km (one-way nested) 

Number of sigma levels 30𝜎𝑝 layers, with top layer at 50hPa 

Longwave Radiation RRTMG (Iacono et al., 2008) 

Shortwave Radiation RRTMG 

Microphysics Thompson (Thompson et al., 2008) 

Land-surface Model 
Unified Noah Land Surface Model (Tewari et 

al., 2004) 

Advection Monotonic transport 

Planetary boundary layer (PBL) scheme YSU (Hong et al., 2006) 

Cumulus option Kain-Fritsch Scheme (Kain, 2004) 

Nudging options FDDA 

This study systematically evaluated the performance of the WRF model in 177 

simulating surface meteorological fields over mainland China for the year 2021, based 178 

on comprehensive observational data. The evaluation utilized daily observations from 179 

representative stations in 335 cities nationwide (excluding Jiayuguan and Wujiaqu due 180 

to data unavailability), covering key meteorological variables such as 2 m air 181 

temperature, 2 m relative humidity, 10 m wind speed, 10 m wind direction, precipitation, 182 

and surface pressure. To ensure seasonal representativeness, January, April, July, and 183 
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October were selected to represent winter, spring, summer, and autumn, respectively, 184 

for comparative analysis (see Fig. S1- Fig. S24 and Supplementary Material for details, 185 

including the evaluation metrics). 186 

The evaluation results indicate that the WRF model accurately captures the diurnal 187 

variations of key meteorological variables across most regions. For 2 m temperature 188 

simulations, the Pearson correlation coefficient (R) exceeds 0.7 in January and October, 189 

with the Root Mean Square Error (RMSE) below 5 °C and the Mean Bias (MB) 190 

constrained within ±2 °C in North, East, and South China. Simulations of 2 m relative 191 

humidity also performed well, with R values generally above 0.7 and RMSE below 15% 192 

in April and July; MB values in East and South China were less than ± 9%. However, 193 

relatively large humidity biases were observed in parts of Southwest and Northwest 194 

China, where MB in the southwest exceeded 15% and RMSE surpassed 17%. Previous 195 

studies suggest that simulations can be considered reliable when R ≥ 0.6-0.7, RMSE 196 

for temperature ≤ 5 °C, and RMSE for humidity < 15% (Lou et al., 2025; Oyegbile et 197 

al., 2024). Therefore, the WRF model used in this study demonstrates high reliability 198 

in simulating temperature and humidity. Simulations of 10 m wind speed were generally 199 

stable, with R exceeding 0.7 and RMSE below 8 m/s in most regions. Nevertheless, 200 

systematic overestimations were observed in the Sichuan Basin, Xinjiang, and parts of 201 

Tibet. Although the wind speed RMSE exceeds typical values reported in some studies 202 

(4-6 m s-1), it remains within an acceptable range given the seasonal variability at the 203 

national scale (Xu et al., 2020; Yu et al., 2022b). In contrast, the performance for 10 m 204 

wind direction was relatively poor, with R values below 0.4 in most areas, except for 205 

moderate improvement in the Beijing-Tianjin-Hebei region, East China, Central China, 206 

and South China. This finding aligns with previous research noting WRF’s general 207 

limitations in reproducing wind direction (Jiménez and Dudhia, 2013). For precipitation, 208 

correlation coefficients were generally above 0.4 nationwide. However, substantial 209 

errors were observed in parts of Southwest, Northwest, and South China, especially in 210 

regions with complex terrain, consistent with previous findings (Yu et al., 2022a). 211 

Surface pressure simulations showed strong stability, with R values exceeding 0.7 212 

across the country. While parts of Southwest and Central China exhibited slight 213 

underestimation (MB < 20 hPa), surface pressure was slightly overestimated in 214 

Guizhou and Chongqing. Overall, the WRF model provides reliable meteorological 215 

forcing fields for CTMs. 216 

2.3 Emission inventory and observational data sources 217 

The anthropogenic emissions data used in this study for China are derived from 218 

the Multi-resolution Emission Inventory for China (MEIC) developed by Tsinghua 219 

University, with a base year of 2019 (Geng et al., 2024). This inventory includes major 220 

source sectors such as transportation, industry, power generation, and residential 221 

combustion, and covers multiple pollutants including CO, SO2, NOx, VOCs, PM10, 222 

PM2.5, BC, and OC. Emissions of ammonia over China are obtained from the PKU-223 

NH3 inventory (Huang et al., 2012a; Kang et al., 2016), while emissions from biomass 224 

burning are taken from the “China Open Biomass Burning Emissions Inventory” with 225 

a base year of 2017 (Huang et al., 2012b; Song et al., 2009). The EDGAR v5.0 dataset 226 
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(Crippa et al., 2020), with a base year of 2015 and a spatial resolution of 0.1° × 0.1°, 227 

was used to represent anthropogenic emissions outside China. Biogenic emissions are 228 

simulated online using the MEGAN v3.2 model (Guenther et al., 2012). It should be 229 

noted that although the base years of the emission inventories do not exactly match the 230 

simulation year of this study, the use of inventories from adjacent years remains a 231 

common practice in regional air quality modeling, especially in the absence of globally 232 

consistent, high-resolution, multi-sector emission datasets for the target year. Under the 233 

assumption of no substantial changes in regional climate and socioeconomic activities, 234 

such inventories can reasonably represent the emission patterns of the study period 235 

(Amnuaylojaroen et al., 2014; Huang et al., 2023; Wang et al., 2023). 236 

All surface observational data used in this study were obtained from the China 237 

National Environmental Monitoring Center (CNEMC), including hourly PM2.5 and O3 238 

concentrations from 1,644 national monitoring stations across China in 2021 (station 239 

distribution shown in Fig. S25). Based on these data, daily average PM2.5 concentrations 240 

and MDA8 O3 values were calculated for 337 cities. Additionally, aerosol chemical 241 

composition data were obtained from the same source for ten representative cities: 242 

Beijing (116.41°E, 40.04°N), Tianjin (117.21°E, 39.17°N), Zhengzhou (113.73°E, 243 

34.77°N), Jinan (117.06°E, 36.66°N), Shanghai (121.53°E, 31.23°N), Nanjing 244 

(118.76°E, 32.07°N), Wuhan (114.37°E, 30.54°N), Fuzhou (119.31°E, 26.10°N), 245 

Chengdu (104.09°E, 30.64°N), and Chongqing (106.47°E, 29.62°N). 246 

3 Results and discussion 247 

3.1 Spatiotemporal distribution and statistical analysis of daily averages 248 

Figure 1 presents the performance of the EPICC-Model, CAMx, and CMAQ in 249 

simulating annual PM2.5 concentrations, evaluated against observations from 1,644 250 

national monitoring stations across China. Based on the time series analysis (Figure 1a), 251 

the year can be divided into three distinct phases. Phase I (January to mid-May): During 252 

this period, both the EPICC-Model and CAMx significantly underestimated PM2.5 253 

concentrations and failed to capture the three major pollution episodes at the beginning 254 

of the year, as indicated by the circles in the figure (with biases ranging from 25 to 52 255 

μg m-3). In contrast, CMAQ showed improved performance in capturing both the timing 256 

and intensity of pollution peaks. This was primarily attributed to its substantially higher 257 

simulated organic carbon (OC) levels relative to the other models and observations, 258 

which produced a compensatory effect on total PM2.5 (Figure 6). Additionally, CMAQ 259 

exhibited intermittent overestimations during certain periods, which may be related to 260 

the ACM2 vertical diffusion scheme it adopts, where the minimum turbulent diffusion 261 

coefficient (Kz_min) under stable boundary layer conditions is set too low (default 262 

nighttime Kz_min = 0.01 m² s-1) (Kim et al., 2024). The contrasting pattern within the 263 

rectangular box was attributed to a dust event. Phase II (mid-May to mid-October): 264 

During this period, PM2.5 concentrations were generally low and exhibited limited 265 

variability. This was primarily attributed to elevated planetary boundary layer heights, 266 

enhanced turbulent mixing, and frequent precipitation events during the summer, which 267 

collectively facilitated the dilution and wet deposition of near-surface particulate matter. 268 
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CAMx performed best in this phase. In contrast, both the EPICC-Model and CMAQ 269 

tended to overpredict pollutant levels, with CMAQ exhibiting a notably stronger 270 

positive bias. Phase III (mid-October to December): During the heating season, 271 

observed PM2.5 levels increased significantly, accompanied by greater spatiotemporal 272 

variability. CAMx maintained relatively good simulation accuracy during this period, 273 

with smaller biases. However, the overestimation by CMAQ became more pronounced, 274 

which might result from intrinsic biases in its chemical and physical parameterizations, 275 

rather than from differences in emissions or meteorological inputs. The performance of 276 

the EPICC-Model was intermediate between the two. 277 

 278 
Figure 1. Comparison of simulated and observed daily PM2.5 concentrations across China in 2021. 279 

(a) shows the time series of daily PM2.5, with the black line representing observations from 1,644 280 

national air quality monitoring stations and colored lines indicating different CTMs. (b) presents 281 

scatter plots of modeled versus observed PM2.5. All model outputs exclude dust aerosol 282 

contributions to isolate secondary particulate formation processes. 283 

Statistical validation analysis (Figure 1b) further corroborates the above findings. 284 

Although CMAQ exhibits the highest correlation coefficient (R=0.85), most of its data 285 

points lie above the 1:1 reference line, indicating a systematic overestimation. CAMx 286 

demonstrates the best overall statistical performance, with a Fraction of Predictions 287 

Within a Factor of Two (FAC2) value of 0.94 and a Normalized Mean Bias (NMB) of 288 

merely -2.86%. It is important to note that CAMx struggles to capture severe pollution 289 

episodes, markedly underestimating periods of high concentrations, which constrains 290 

its usefulness for evaluating pollution processes. In contrast, the EPICC-Model shows 291 

greater adaptability. Its simulations during spring and summer are more consistent with 292 

CAMx, reflecting its accuracy under lower background concentration conditions. 293 

During the autumn and winter pollution seasons, its simulation trends align more 294 

closely with CMAQ, capturing pollution accumulation processes more effectively. This 295 

ability to respond to seasonal variations allows the EPICC-Model to strike a better 296 

balance between accurately simulating extreme pollution events and sustaining strong 297 

overall annual performance.  298 
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Figure 2 presents the performance of the EPICC-Model, CAMx, and CMAQ in 299 

simulating MDA8 O3 concentrations, evaluated against observations from 1,644 300 

national monitoring stations across China. Observational data reveal a typical 301 

photochemically-driven seasonal pattern in O3 concentrations: summer months exhibit 302 

peak levels due to enhanced VOC-NOx chain reactions under intense solar radiation 303 

and elevated temperatures (Seinfeld and Pandis, 2016; Sillman, 1999), while winter and 304 

spring maintain background concentrations resulting from reduced reaction activity 305 

associated with decreased O3 photolysis rates (𝐽𝑂3) and lower OH radical concentrations 306 

(Wang et al., 2019). The time series analysis (Figure 2a) shows that all three models 307 

reasonably reproduced the seasonal variation of O3 concentrations, yet notable 308 

differences emerged across concentration levels. The EPICC-Model performed 309 

particularly well during high-concentration episodes, effectively capturing the peak 310 

levels of O3 pollution. In contrast, both CAMx and CMAQ, while capable of 311 

reproducing high-concentration trends, systematically underestimated peak magnitudes 312 

with maximum negative biases reaching -20 μg m-3. This discrepancy mainly stems 313 

from differences in the treatment of photolysis and chemical mechanisms among the 314 

models. The EPICC-Model incorporated heterogeneous HONO formation and nitrate 315 

photolysis pathways that produce HONO, significantly enhanced the initial 316 

concentration of OH radicals. This accelerated the oxidation of VOCs and promoted 317 

rapid O3 formation, thereby improving model performance during high-concentration 318 

periods (EPICC-Model Working Group, 2025; Wang et al., 2025; Zhang et al., 2022). 319 

In addition, the EPICC-Model employed the CB6r5 chemical mechanism, which 320 

offered more comprehensive representation of BVOC oxidation (especially isoprene) 321 

compared to CB6r3 (used in CMAQ) and CB05 (used in CAMx), thereby increasing 322 

O3 formation potential (Yarwood et al., 2020). Under low concentration background 323 

conditions, CMAQ captured the general trend reasonably well but exhibited a 324 

systematic positive bias, which may be attributed to its use of the ACM2 vertical mixing 325 

scheme that tends to produce an overly deep boundary layer and enhanced NO2 326 

photolysis radical production (Hu et al., 2010). The EPICC-Model showed the smallest 327 

absolute bias but with a slightly weaker trend correlation. 328 

 329 
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Figure 2. Comparison of simulated and observed daily MDA8 O3 concentrations across China in 330 

2021. 331 

Statistical analysis indicates that CAMx exhibited the highest correlation 332 

coefficient (R=0.94) with well-controlled absolute bias despite its systematic 333 

underestimation. CMAQ showed a slight overestimation throughout the year but 334 

maintains a strong temporal correlation (R=0.93), demonstrating good capability in 335 

capturing temporal variations. Notably, the EPICC-Model not only accurately captured 336 

peak concentrations but also achieved the lowest annual NMB, reflecting a more 337 

balanced and stable performance overall. The scatter plot (Figure 2b) further 338 

corroborates these findings: all three models show excellent FAC2 values with well-339 

clustered data points. CMAQ data points predominantly lie above the 1:1 reference line, 340 

indicating a tendency to overestimate; CAMx points mostly fall below the line, 341 

indicating underestimation; whereas the EPICC-Model achieves a better balance 342 

between overestimation and underestimation, delivered the best overall simulation 343 

performance. 344 

Figure 3 compares the simulated spatial distributions of PM2.5 for the four seasons 345 

of 2021 produced by the EPICC-Model, CAMx, and CMAQ, revealing notable 346 

differences in regional simulation consistency and bias characteristics among the three 347 

models. As shown in 错误!未找到引用源。, the Index of Agreement (IOA) values 348 

vary across models and seasons, exhibiting clear seasonal patterns that quantitatively 349 

support the spatial distribution differences. 350 

 351 

Figure 3. Seasonal spatial distributions of simulated PM2.5 concentrations, with spring (March-352 

May), summer (June-August), autumn (September-November), and winter (December-February). 353 
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Table 3. IOA for the spatial distribution of PM2.5 simulated by different models.  354 

 Spring Summer Autumn Winter Year 

EPICC-Model 0.63 0.62 0.60 0.81 0.80 

CAMx 0.60 0.64 0.68 0.76 0.78 

CMAQ 0.72 0.58 0.54 0.73 0.77 

In spring, under the influence of northwesterly winds, dust transport combined 355 

with local industrial emissions led to high PM2.5 concentrations mainly distributed over 356 

North China, Northwest arid basins, and the Sichuan-Yunnan region. All three models 357 

effectively reproduced the pollution pattern, with IOA values exceeding 0.60, and 358 

CMAQ achieved the highest IOA of 0.72. Since dust concentrations were excluded 359 

from the particulate matter assessment in this study, all three models consistently 360 

underestimated PM2.5 levels in the arid Northwest and southwestern plateau regions. In 361 

summer, influenced by the southeastern monsoon and intensive precipitation, PM2.5 362 

remain generally low across China with reduced regional variability. The three models 363 

exhibited similar spatial consistency nationwide, with IOA values ranging between 0.58 364 

and 0.64. However, in the high-humidity coastal regions of South China, the EPICC-365 

Model and CMAQ demonstrated slight advantages over CAMx in simulation accuracy. 366 

In autumn, the nationwide PM2.5 concentrations rebounded due to an increase in 367 

stagnant weather conditions and a reduced boundary layer height. All three models 368 

showed varying degrees of overestimation in North China and the Sichuan Basin, likely 369 

related to ACM2/YSU schemes underestimating mixing layer height and weakening 370 

vertical diffusion at night (Jia et al., 2023). During this period, CAMx achieved the 371 

highest IOA value of 0.68, the EPICC-Model scores 0.60, while CMAQ dropped to its 372 

annual minimum of 0.54. In winter, PM2.5 concentrations reached their annual peak 373 

driven by low temperatures, temperature inversions, subsidence, and heating emissions. 374 

All three models successfully reproduced the pollution patterns in polluted regions like 375 

North and Central China. The EPICC-Model demonstrated exceptional performance 376 

with an IOA of 0.81, while CMAQ and CAMx maintained strong consistency at 0.73 377 

and 0.76, respectively. However, all models unrealistically simulate higher PM2.5 378 

concentrations in the Sichuan Basin compared to Henan Province. This discrepancy 379 

may have resulted from differences in emission estimates between the two regions: 380 

anthropogenic emissions in the Sichuan Basin are likely overestimated in the models, 381 

whereas frequent agricultural activities in Henan may lead to underestimation of NH3 382 

emissions, thereby suppressing nitrate aerosol formation. Previous studies have 383 

demonstrated that spatial errors in NH3 emissions significantly impact nitrate-driven 384 

heavy pollution events (Kang et al., 2016; Kong et al., 2019; Liu et al., 2021).  385 

Overall, all three models reliably simulate PM2.5 spatial distributions, with annual 386 

mean IOA values above 0.77. the EPICC-Model performs best (IOA=0.80), showing 387 

highest consistency in winter and heavily polluted North China. CAMx is stable 388 

(IOA=0.78) and suitable for multi-seasonal averages but underestimates high-humidity 389 

regions and responds weakly to severe pollution. CMAQ shows slightly lower 390 

consistency (IOA=0.77), performs better in spring and winter, declines in summer and 391 

autumn, and exhibits a general positive bias, particularly in winter. 392 

Figure 4 shows the seasonal spatial distribution of MDA8 O3 in 2021 from the 393 
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three models. Given the strong seasonal variability of O3, model performance was 394 

quantitatively evaluated using the IOA metric, with detailed results provided in Table 395 

4.  396 

 397 

Figure 4. Seasonal spatial distributions of simulated MDA8 O3 concentrations, with spring (March-398 

May), summer (June-August), autumn (September-November), and winter (December-February). 399 

Table 4. IOA for the spatial distribution of MDA8 O3 simulated by different models.  400 
 

Spring Summer Autumn Winter Year 

EPICC-Model 0.56 0.79 0.74 0.77 0.85 

CAMx 0.53 0.85 0.70 0.76 0.87 

CMAQ 0.33 0.85 0.78 0.75 0.84 

In spring, O3 pollution exhibits a multi-centered and scattered distribution pattern. 401 

The EPICC-Model reproduced this pattern well (IOA = 0.56) and outperforms CAMx 402 

and CMAQ, particularly in the high-concentration areas like Yunnan. CAMx generally 403 

underestimated O3 nationwide, likely due to limitations of the CB05 mechanism and its 404 

coarse 14𝜎𝑝 vertical resolution, which reduces mixing between near-surface precursors 405 

and O3. (Ren et al., 2022; Tang et al., 2011). CMAQ, in contrast, produced an unrealistic 406 

high-O3 belt over the Yangtze River plain with a much lower IOA of 0.33. In summer, 407 

a high O3 concentration belt forms over the mid-latitudes (30° N ~40° N), and all three 408 

models successfully reproduced the enhanced O3 levels with the highest spatial 409 

consistency observed throughout the year. The summer IOA values for the EPICC-410 

Model, CAMx, and CMAQ reach 0.79, 0.87, and 0.85, respectively. Given the use of 411 

identical meteorological fields, regional O3 levels are primarily controlled by 412 

photochemical production rather than constrained by boundary inputs (Li et al., 2019a). 413 
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In autumn, national O3 declines as solar radiation weakens, with pollution centers 414 

shifting to eastern and southeastern coasts. All three models performed similarly (IOA 415 

0.70–0.74). CMAQ performed best in the Pearl River Delta, accurately reproducing 416 

localized high concentrations, as supported by previous studies (Jiang et al., 2010; 417 

Wang et al., 2010). The EPICC-Model ranks second with slight overestimation in 418 

northern Jiangxi, and CAMx continues to underestimate O3. In winter, due to extremely 419 

weak solar radiation, reduced stratosphere-troposphere exchange, high NOx emissions, 420 

and limited boundary layer height, nationwide O3 concentrations drop to their annual 421 

minimum and shift southward. All models perform steadily (IOA 0.75–0.77). The 422 

EPICC-Model captured accumulation over the coastal areas of southern China but 423 

slightly overestimates, CAMx shifted high concentrations southwest, and CMAQ 424 

overestimated in northern regions while missing the southward O3 shift. 425 

Comprehensive evaluation indicates that the EPICC-Model shows stable seasonal 426 

MDA8 O3 performance with an annual IOA of 0.85, capturing O3 distribution across 427 

China. CAMx has slightly higher consistency (IOA 0.87) but systematically 428 

underestimates in spring, autumn, and winter and misses localized peaks. CMAQ 429 

performs well in summer and autumn, especially over the Pearl River Delta, but IOA 430 

drops to 0.33 in spring and overestimates in winter, indicating a need to improve 431 

boundary layer and dry deposition schemes. 432 

To comprehensively evaluate model performance, this study uses Taylor diagrams 433 

to compare the EPICC-Model, CAMx, and CMAQ simulations with observations on 434 

both annual and seasonal scales. The annual results (Figure 6a) show that all three 435 

models perform satisfactorily in simulating PM2.5 and MDA8 O3, with particularly 436 

strong performance for MDA8 O3. Correlation coefficients exceed 0.75 for all models, 437 

while RMSE and STD remain relatively low, indicating higher stability and accuracy 438 

in MDA8 O3 simulations compared to PM2.5. 439 

 440 

Figure 5. Taylor diagrams of PM2.5 and MDA8 O3 for the three models on annual and seasonal 441 

scales. The angle represents R, the dashed arcs indicate RMSE, and the x and y axes represent STD. 442 

The “REF” point denotes the reference standard derived from observations. 443 

Seasonally, PM2.5 simulation accuracy exhibits marked variations: during winter 444 

and spring high-concentration periods, all three models show comparable performance, 445 
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with CMAQ demonstrating greater sensitivity to pollution peaks (STD≈1, closest to 446 

observations). Model performance declines significantly under summer’s low-447 

background conditions (R<0.55, elevated RMSE/STD), indicating enhanced error 448 

sensitivity. Autumn sees performance recovery, with CAMx achieving R=0.97. In 449 

contrast, MDA8 O3 simulations show more robust seasonal consistency: while spring 450 

remains the weakest season (R>0.7), the EPICC-Model and CMAQ maintain low errors. 451 

The EPICC-Model excels during summer O3 peaks (R≈0.95, lowest RMSE/STD), 452 

CMAQ leads in autumn, and all models converge in winter (R=0.8-0.9), effectively 453 

capturing O3 spatiotemporal patterns. 454 

Overall, the EPICC-Model demonstrates strong robustness in seasonal O3 455 

simulations, maintaining consistently low standard deviations and showing clear 456 

advantages during the summer pollution peak. In contrast, CAMx and CMAQ exhibit 457 

relative strengths in PM2.5 simulations: CAMx performs particularly well under the 458 

complex meteorological conditions of autumn, while CMAQ better captures pollutant 459 

accumulation processes during the stable boundary layer conditions in winter, reflecting 460 

their respective adaptability. 461 

3.2 Evaluation of PM2.5 chemical composition simulations 462 

Based on the spatiotemporal variations of PM2.5 total concentrations simulated by 463 

each model, the performance of the EPICC-Model, CAMx, and CMAQ in simulating 464 

major chemical components was further evaluated. Figure 6 presents the average 465 

relative contributions and absolute concentrations of key PM2.5 components in ten 466 

representative cities across urban clusters, including the Beijing-Tianjin-Hebei, Yangtze 467 

River Delta, Chengdu-Chongqing, and the Middle Reaches of the Yangtze River 468 

regions. Overall, all three models reasonably reproduced the observed chemical 469 

composition structure characterized by a predominance of nitrate (NO3⁻), which is 470 

consistent with previous findings (Huang et al., 2021). Observations indicated that 471 

NO3⁻ accounted for approximately 31.2% to 42.4% of PM2.5 mass in most cities. This 472 

dominant feature was reproduced by all models, although the simulated concentrations 473 

tended to be overestimated to varying degrees. 474 

Meanwhile, all three models consistently underestimated sulfate (SO₄²⁻), a bias 475 

consistent with existing research findings (Shao et al., 2019), which may stem from 476 

underestimating SO2 oxidation rates or uncertainties in intra-cloud aqueous-phase 477 

chemical mechanisms. The insufficient formation of SO₄²⁻ not only limits the 478 

production of ammonium sulphate [(NH4)2SO4] but also reduces the consumption 479 

potential of NH3 (Gao et al., 2018), thereby suppressing the simulated concentration of 480 

ammonium (NH4
+). 481 

For OC, although certain deviations are observed in individual cities, the overall 482 

simulation performance of the three models remains within an acceptable range (Miao 483 

et al., 2020). Among them, the EPICC-Model and CAMx produced results that are 484 

closer to observations, while CMAQ tends to systematically overestimate OC 485 

concentrations. This systematic bias may stem from the introduction of Potential 486 

Combustion SOA (PCSOA) species starting from CMAQv5.2. PCSOA serves as a 487 

surrogate secondary organic aerosol species to compensate for the lack of combustion-488 
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related SVOC and IVOC emissions in current inventories. However, the model 489 

estimates PCSOA concentrations through parameterized precursor emissions and 490 

simplified processes including OH oxidation and gas-particle partitioning. The 491 

associated uncertainties may result in regional and temporal discrepancies, failing to 492 

reflect the real-world variations in PCSOA and consequently leading to simulation 493 

biases (Murphy et al., 2017; Pennington et al., 2021). Overall, all three models share 494 

substantial uncertainties in SOA-related mechanisms, representing a common 495 

limitation. 496 

Black carbon (BC) is the least abundant component of PM2.5, with observed 497 

concentrations ranging from 0.7 to 2.1 μg m-3. All models exhibit generally consistent 498 

performance in simulating its relative contribution, with slight overestimations 499 

observed in Beijing, Tianjin, and Zhengzhou. These biases are primarily attributed to 500 

uncertainties in BC emission inventories, particularly from biomass burning and motor 501 

vehicle sources (Hong et al., 2017). Due to its low chemical reactivity in the atmosphere 502 

and limited removal through secondary processes, BC simulations are highly sensitive 503 

to emission inputs. 504 

 505 

Figure 6. Comparison of simulated and observed aerosol components in representative Chinese 506 

cities. ASO4, ANO3, ANH4, OC, and BC denote sulfate, nitrate, ammonium, organic carbon, and 507 

black carbon in PM2.5, respectively. The locations of monitoring sites are as follows: BJ (Beijing; 508 

116.41° E, 40.04° N), TJ (Tianjin; 117.21° E, 39.17° N), ZZ (Zhengzhou; 113.73° E, 34.77° N), JN 509 

(Jinan; 117.06° E, 36.66° N), SH (Shanghai; 121.53° E, 31.23° N), NJ (Nanjing; 118.76° E, 32.07° 510 

N), WH (Wuhan; 114.37° E, 30.54° N), FZ (Fuzhou; 119.31° E, 26.10° N), CD (Chengdu; 104.09° 511 

E, 30.64° N), and CQ (Chongqing; 106.47° E, 29.62° N). 512 

As shown in the stacked bar charts of PM2.5 absolute concentrations in Figure 6e-513 

7h, Tianjin exhibits the highest levels among the selected cities, followed by Wuhan, 514 

while Fuzhou shows the lowest. This spatial pattern is closely related to regional 515 

emission intensity and meteorological conditions. The three models reasonably 516 

reproduce these concentrations in most cities, particularly in Nanjing. However, 517 

systematic biases exist in certain locations. Simulated concentrations in Tianjin are 518 

substantially lower than observations, primarily due to underestimation of OC 519 
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associated with uncertainties in SOA formation mechanisms. In contrast, 520 

concentrations in Chengdu and Chongqing are consistently overestimated across all 521 

models, indicating an amplified model response to pollution episodes in central China. 522 

Overall, while the models capture the major chemical composition features, their ability 523 

to accurately reproduce absolute concentrations and regional variability remains limited, 524 

highlighting the need for refined emission inventories and improved representation of 525 

meteorological processes. 526 

 527 

Figure 7. Performance metrics of aerosol component simulations across models in representative 528 

Chinese cities. 529 

Figure 7 presents boxplots of statistical evaluation metrics (R, RMSE, and NMB) 530 

based on ten representative cities to quantify the simulation accuracy and systematic 531 

biases of each model. Regarding the overall distribution of R values, a clear “stepwise” 532 

difference is observed among the three models. CMAQ generally exhibits higher R 533 

values across PM2.5 components than the EPICC-Model and CAMx, indicating stronger 534 

capability in reproducing spatiotemporal variability. Among individual components, 535 

NO3⁻ shows the highest correlation (median R > 0.6) with no outliers, suggesting robust 536 

representation. NH4⁺ and OC display slightly lower R values, reflecting moderate 537 

uncertainty but acceptable overall performance. SO4²⁻ shows dispersed correlations and 538 

some low R values, indicating substantial simulation errors, likely due to insufficient 539 

representation of regional secondary aerosol formation. BC exhibits the most compact 540 

R distribution, with low inter-city variability, reflecting stable and consistent simulation 541 

by all models. The RMSE analysis shows larger errors for NO3⁻ and OC, with some 542 
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cities reaching 12 μg m-3 and median values above 6 μg m-3, reflecting sensitivity to 543 

meteorology, secondary processes, and SOA-related uncertainties. The EPICC-Model 544 

performs well in this aspect. SO4²⁻ and NH4⁺ exhibit moderate RMSE, indicating 545 

relatively stable simulations, while BC shows the lowest RMSE and most compact 546 

distribution, suggesting high accuracy. The NMB results show that the deviations of 547 

NO3⁻, SO4
2⁻, and NH4⁺ are relatively constrained, although overestimations or 548 

underestimations still occur in some cities. In contrast, the NMB boxplots for OC and 549 

BC exhibit significant elongation, with deviations ranging from -50% to +150% in 550 

certain locations. The high bias of OC is mainly attributed to inaccuracies in the 551 

representation of SOA formation and precursor emissions, while the large relative 552 

deviations of BC are likely due to its low ambient concentrations, where even minor 553 

absolute errors can lead to amplified relative discrepancies. 554 

A cross-model comparison reveals that CMAQ exhibits the highest correlation 555 

coefficients, particularly excelling in reproducing the spatial and temporal patterns of 556 

NO3⁻ and NH4⁺. However, it shows a tendency to overestimate OC concentrations. 557 

CAMx shows intermediate performance across most components. While the EPICC-558 

Model demonstrates relatively lower consistency in species simulation, yet maintains 559 

more stable performance in terms of RMSE and NMB. 560 

3.3 AQI and pollution forecast accuracy 561 

To comprehensively evaluate the applicability of the three CTMs in graded air 562 

quality forecasting, this study systematically assesses the performance of the EPICC-563 

Model, CAMx, and CMAQ in the Air Quality Index (AQI) level prediction based on 564 

the Technical guideline for numerical forecasting of ambient air quality (HJ1130-2020). 565 

According to the evaluation criteria defined in the Technical Regulation for the 566 

Assessment of Urban Ambient Air Quality Index (AQI) Forecasting (Trial) (China 567 

National Environmental Monitoring Center, 2020), and considering the needs of 568 

operational forecasting, a prediction is deemed accurate if the observed AQI falls within 569 

±25% of the forecasted value. It should be noted that, as dust events were not included 570 

in the simulations, the “heavy pollution” and “severe pollution” categories were 571 

combined in the subsequent analysis. Based on this criterion, all three models exhibit a 572 

consistent pattern across different pollutants and pollution levels: the higher the 573 

pollution level, the lower the forecasting accuracy. The algorithms and definitions of 574 

AQI and IAQI are provided in the Supplementary Material for reference.  575 

In terms of overall forecasting accuracy, CAMx performes best in predicting AQI 576 

(84%), PM2.5 (81%), and MDA8 O3 (89%) levels, primarily attributed to its detailed 577 

representation of gas-phase precursor reaction chains under low concentration 578 

conditions. The EPICC-Model shows stable performance in forecasting good to 579 

moderate pollution levels, indicating strong capability in simulating regional pollution 580 

transformation and the early evolution stages of pollution processes. This is largely due 581 

to the EPICC-Model’s incorporation of key heterogeneous reaction mechanisms that 582 

critically influence the rapid growth of secondary inorganic aerosols during heavy 583 

pollution episodes (EPICC-Model Working Group, 2025), including SO2 manganese-584 

catalyzed oxidation (Wang et al., 2021), N2O5 heterogeneous hydrolysis (Yang et al., 585 
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2024), and HONO heterogeneous formation (Zhang et al., 2022). CMAQ demonstrates 586 

superior performance in identifying moderate and higher pollution levels, particularly 587 

exhibiting notably higher accuracy than CAMx and the EPICC-Model for moderate to 588 

heavy and severe PM2.5 levels. This advantage is attributed to its comprehensive 589 

aerosol-radiation-cloud feedback mechanisms, such as the AERO6 module, which 590 

provide detailed representation of pollutant accumulation and regional transport 591 

processes. However, all three models show generally low accuracy under extreme 592 

pollution scenarios, highlighting limitations in current chemical transport models for 593 

simulating nonlinear pollution buildup and the synergistic effects of extreme weather 594 

and pollution. 595 

Table 5. Comparison of AQI level forecast accuracy for 337 Chinese cities. 596 

Model Excellent Good 
Light 

Pollution 

Moderate 

Pollution 

Heavy and 

Severe Pollution 
Accuracy 

EPICC-Model 85% 85% 62% 39% 23% 82% 

CAMx 90% 87% 57% 31% 11% 84% 

CMAQ 83% 88% 63% 41% 36% 82% 

Table 6. Comparison of PM2.5 IAQI level forecast accuracy at 1,644 monitoring sites in China with 597 

observations. 598 

Model Excellent Good 
Light 

Pollution 

Moderate 

Pollution 

Heavy and 

Severe Pollution 
Accuracy 

EPICC-Model 85% 69% 51% 35% 25% 79% 

CAMx 90% 68% 46% 26% 11% 81% 

CMAQ 83% 68% 50% 40% 41% 77% 

Table 7. Comparison of MDA8 O3 IAQI level forecast accuracy at 1,644 monitoring sites in China 599 

with observations. 600 

Model Excellent Good 
Light 

Pollution 

Moderate 

Pollution 

Heavy and 

Severe Pollution 
Accuracy 

EPICC-Model 91% 84% 57% 23% 6% 87% 

CAMx 96% 84% 56% 23% 12% 89% 

CMAQ 85% 92% 60% 14% 6% 86% 

Given the high sensitivity and risk posed by polluted weather and severe pollution 601 

events to public health and environmental management, this study further focuses on 602 

the forecasting performance of PM2.5 and MDA8 O3 pollution events. Based on metrics 603 

such as hit rate, false alarm rate, and the distance from the random operating 604 

characteristic (DROC) (definitions and calculation methods are provided in the 605 

Supplementary Material), the forecast effectiveness for general pollution conditions 606 

(PM2.5 > 75 μg m-3 and MDA8 O3 > 160 μg m-3) and severe pollution conditions (PM2.5 > 607 

150 μg m-3) is thoroughly analyzed to elucidate the applicability and potential 608 

limitations of each model under extreme pollution scenarios. 609 
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 610 

Figure 8. Comparison of CTMs performance based on hit rate and false alarm rate. Scatter points 611 

represent the performance of three models (EPICC-Model: circles, CAMx: diamonds, CMAQ: 612 

squares) under different pollution event thresholds: PM2.5 > 75 μg m-3, PM2.5 > 150 μg m-3, and 613 

MDA8 O3 > 160 μg m-3. The red dashed line indicates the random forecast reference line. The 614 

DROC metric, which quantifies model skill, is provided in the lower-right corner, with higher values 615 

indicating better model performance. 616 

Figure 8 visually compares the forecast performance of three models under 617 

different pollution thresholds using scatter points in ROC space. For general pollution 618 

scenarios (PM2.5 > 75 μg m-3), CMAQ shows the highest hit rate (64.7%) but is 619 

accompanied by a relatively high false alarm rate (9.6%), indicating a tendency toward 620 

systematic overestimation. CAMx achieves the lowest false alarm rate (4.9%), 621 

demonstrating stronger robustness, though its hit rate is also relatively low (45.0%), 622 

reflecting a conservative forecasting tendency. The EPICC-Model strikes a balance 623 

between hit rate (55.0%) and false alarm rate (7.6%), suggesting an optimized trade-off 624 

between accuracy and reliability. Under the more severe pollution condition (PM2.5 > 625 

150 μg m-3), the hit rates of all models decrease significantly. While CMAQ still 626 

maintains the highest hit rate (26.8%), its miss rate reaches 73.2%. The EPICC-Model 627 
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and CAMx show hit rates of only 12.3% and 5.4%, respectively, indicating limited 628 

responsiveness of current models to extreme pollution events. Nevertheless, all models 629 

maintain false alarm rates below 2%. This reflects a conservative strategy that 630 

prioritizes avoiding false positives under extreme pollution conditions. For O3 pollution 631 

events (MDA8 O3 > 160 μg m-3), the EPICC-Model achieves the highest hit rate 632 

(45.6%), significantly outperforming CAMx (43.0%) and CMAQ (38.4%), while also 633 

maintaining a low false alarm rate (3.8%). This suggests advantages in its 634 

representation of O3 precursor transport, photochemical mechanisms, and boundary 635 

layer feedback processes. The DROC values provided in the lower-right table 636 

quantitatively reflect the above observations: CMAQ has the highest DROC (0.39) for 637 

general PM2.5 pollution events, while the EPICC-Model performs best for O3 events 638 

(DROC=0.30). CAMx exhibits relatively low DROC across all thresholds, consistent 639 

with its conservative simulation style. 640 

3.4 Capability in capturing regional persistent pollution events 641 

To further evaluate the capability of the EPICC-Model, CAMx, and CMAQ in 642 

simulating trans-regional and long-duration pollution episodes, this study selects 643 

typical persistent PM2.5 and O3 events in 2021, and conducts a dedicated analysis 644 

incorporating pollutant transport pathways and the stability of meteorological fields.645 

 646 

Figure 9. Spatiotemporal distribution of the persistent PM2.5 pollution event. Dots represent 647 

observed concentrations in 377 cities. 648 
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As shown in Figure 9, a persistent PM2.5 pollution event occurred in eastern and 649 

central China from January 20 to 28, 2021. Initially, pollution was concentrated 650 

between 30° N and 40° N, forming a “dual-core” pattern over the North China Plain 651 

and the Sichuan Basin. By January 24, PM2.5 concentrations peaked, with the pollution 652 

belt extending southeastward to the middle and lower Yangtze River regions and 653 

northeastward to the Songnen Plain. On January 28, under cold air influence, 654 

concentrations dropped below 75 μg m-3 in most areas, leaving only isolated hotspots. 655 

All three models captured the temporal evolution from initiation to dissipation. The 656 

EPICC-Model showed superior performance in reproducing spatial gradients and 657 

temporal patterns, particularly in the centre of the North China Plain and Yangtze River 658 

Middle-Reach corridor. CAMx reproduced the northeastward transport path but 659 

underestimated pollution intensity, failing to capture the strong core in Henan during 660 

the peak. CMAQ systematically overestimated concentrations, likely due to chemical 661 

and physical parameterizations enhancing pollutant production and mix. 662 

 663 

Figure 10. Time series of PM2.5 concentrations in key cities along the pollution belt. 664 

As shown in Figure 10, Zhengzhou recorded the first PM2.5 peak (>150 μg m-3) on 665 

January 21, with the pollution plume spreading northeastward and causing a delayed 666 

concentration rise in Shenyang. All four cities (Zhengzhou, Shenyang, Shijiazhuang, 667 

and Beijing) reached their maxima, though peak timings varied. During the clearing 668 

phase, driven by southward cold air intrusion, concentrations declined across all cities, 669 

with faster removal in Zhengzhou and Shijiazhuang than in Shenyang and Beijing. All 670 

three models reproduced the overall process but showed systematic timing biases, with 671 

peaks in Shenyang and Zhengzhou simulated 24-48 hours earlier than observed. Such 672 

deviations may result from inaccuracies in the simulated wind field evolution within 673 

the meteorological models. In terms of magnitude, CAMx underestimated and CMAQ 674 

overestimated concentrations, while the EPICC-Model produced comparatively robust 675 

results. 676 
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 677 

Figure 11. Spatiotemporal distribution of the persistent O3 pollution event. 678 

As shown in Figure 11, a persistent O3 pollution episode occurred in China from 679 

June 3 to 14, 2021. The event began on June 3 with scattered pollution over the North 680 

China Plain and parts of Guangdong Province. By the peak stage on June 6, pollution 681 

intensity increased significantly, spreading to central, southeastern, and southern 682 

regions. By June 10, the pollution weakened and became more localized in North China 683 

and its western areas, while southern regions began clearing. By June 14, MDA8 O3 684 

concentrations dropped below 100 μg m-3 across most areas, leaving only a few 685 

localized hotspots in Northeast China and Inner Mongolia. Elevated temperatures, 686 

strong solar radiation, and stagnant atmospheric conditions favored O3 formation, 687 

whereas cold air intrusions promoted dispersion and removal. 688 

During this persistent pollution event, all three models captured the full process of 689 

occurrence, development, and removal. Among them, the EPICC-Model best 690 

reproduced the spatial progression from central China to southeastern and southern 691 

regions and subsequent clearing toward the North China Plain and northeastern areas, 692 

although local overestimation occurred during the peak phase in the southeastern region, 693 

likely due to an excessively strong aerosol-radiation feedback. In contrast, CAMx and 694 

CMAQ systematically underestimated pollution intensity, particularly during the peak 695 

on June 6 and the initial clearing stage on June 10, failing to reproduce the strong 696 

pollution exceeding 160 μg m-3 across Henan Province. This discrepancy may result 697 

from insufficient temporal resolution of emission inventories or limited photochemical 698 

sensitivity to precursors. Overall, the EPICC-Model outperformed the other two models 699 

in capturing spatiotemporal patterns, while CAMx and CMAQ showed deficiencies in 700 

reproducing peak concentrations. 701 
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 702 

Figure 12. Time series of O3 concentrations in key cities along the pollution belt. 703 

The pollution event occurred over central and eastern China between 30° N and 704 

40° N. Qingdao first entered O3 pollution on June 4, with MDA8 O3 exceeding 160 μg 705 

m-3. The pollution then maintained high concentrations and expanded northward and 706 

southward, reaching Qingdao, Wuhan, Beijing, and Guangzhou by June 6. After June 707 

9, the first clearing phase began from south to north, with Guangzhou improving first, 708 

followed by Wuhan and Qingdao, while the pollution center shifted to the North China 709 

Plain and northeastern regions, causing a sharp rise in Beijing around June 12. By June 710 

14, most regions had cleared, with Beijing showing the fastest decline, likely due to 711 

enhanced cold air activity and higher boundary layer. All three models captured the full 712 

progression in Beijing and Qingdao accurately. For Wuhan and Guangzhou, where peak 713 

concentrations persisted, model predictions showed approximately one-day deviations, 714 

likely due to limited responses to abrupt meteorological changes. 715 

4 Conclusions 716 

This study presents a systematic evaluation of three CTMs (EPICC-Model, CAMx, 717 

and CMAQ) for PM2.5 and MDA8 O3 simulations over China in 2021, using unified 718 

WRF meteorological fields and multi-source emission inventories. The work fills a 719 

critical research gap by providing the first comprehensive comparison of the EPICC-720 

Model against established CTMs. The results indicate that all three models can 721 

effectively reproduce the spatiotemporal evolution characteristics of PM2.5 and MDA8 722 

O3 (PM2.5: R = 0.79-0.85, MDA8 O3: R = 0.91-0.94). In PM2.5 simulations, the EPICC-723 

Model shows seasonal turning points, with spring and summer results tending toward 724 

the underestimation trend of CAMx, while autumn and winter results align more closely 725 

with the overestimation tendency of CMAQ. Spatially, it exhibits higher consistency 726 

(annual IOA = 0.80), particularly in winter and over heavily polluted North China, 727 

effectively capturing pollution patterns and peaks. For O3, the EPICC-Model performs 728 
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well during high-concentration summer episodes, accurately reproducing extremes, 729 

thanks to enhanced heterogeneous HONO formation and nitrate photolysis, which 730 

increase OH radicals and accelerate VOC oxidation, and the CB6r5 chemical 731 

mechanism that better represents biogenic VOC oxidation. Furthermore, the EPICC-732 

Model produces particularly accurate O3 simulations over the eastern, central, and 733 

Chengdu-Chongqing regions. Notably, all three models share common deficiencies in 734 

PM2.5 simulations. Systematic underestimations occur in arid northwestern China due 735 

to unaccounted dust processes, highlighting the critical influence of natural emissions 736 

on model accuracy. Conversely, autumn-winter overestimations prevail in North China 737 

and the Sichuan Basin, attributable to the ACM2/YSU boundary layer schemes 738 

underestimating mixing layer height and weakening nocturnal vertical diffusion, 739 

thereby inadequately reproducing inversion layers and pollution accumulation. 740 

Uncertainties in emission inventories further exacerbate regional biases, such as 741 

potential overestimation of anthropogenic emissions in the Sichuan Basin and 742 

underestimation of agricultural NH3 emissions in Henan, which affects nitrate aerosol 743 

formation. Future improvements should incorporate dust processes, refine boundary 744 

layer parameterizations to better simulate pollutant accumulation under stable 745 

meteorological conditions, and employ higher-resolution emission inventories with 746 

improved temporal variability characterization. 747 

In terms of PM2.5 component simulations, the EPICC-Model, CAMx, and CMAQ 748 

all reasonably reproduce the chemical composition characterized by NO3⁻ dominance 749 

and associated regional variations. Compared with CAMx and CMAQ, the EPICC-750 

Model exhibits smaller biases in SO4²⁻ and NH4⁺, with more robust control of absolute 751 

concentrations as reflected in RMSE and NMB, indicating a relatively consistent 752 

overall performance, although its correlation metrics are slightly lower than the other 753 

two models. Nevertheless, all three models share common limitations: SO4²⁻ is 754 

generally underestimated, leading to insufficient formation of (NH4)2SO4 and lower 755 

NH4⁺ concentrations; SOA formation remains highly uncertain, influenced by precursor 756 

VOC emissions, oxidation pathways, and gas-particle partitioning parameterizations, 757 

resulting in spatial deviations in OC; BC simulations are highly sensitive to emission 758 

inventories, occasionally leading to slight overestimations in certain cities. Addressing 759 

these issues in future work should focus on optimizing secondary inorganic aerosol 760 

chemistry, improving SOA formation mechanisms and precursor emissions, and 761 

enhancing the resolution and accuracy of emission inventories to improve the models’ 762 

capability in reproducing PM2.5 chemical composition. 763 

Regarding AQI level classification ability, CAMx achieved the highest overall 764 

accuracy (84%), demonstrating particular strengths in distinguishing “excellent” and 765 

“good” air quality levels. CMAQ is relatively accurate in pollution level identification, 766 

with the highest hit rate (64.7%) in identifying general pollution where PM2.5 > 75 μg 767 

m-3, but it has a high false alarm rate (9.6%), indicating a tendency toward over-768 

forecasting. The EPICC-Model performs exceptionally well in identifying PM2.5 light 769 

to moderate pollution levels and MDA8 O3 general pollution, with a hit rate of 45.6% 770 

for MDA8 O3 > 160 μg m-3, higher than CAMx (43.0%) and CMAQ (38.4%). 771 

Furthermore, the forecast accuracy of all three models for single extreme pollution 772 
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events was less than 2%, indicating that the response capability of existing models to 773 

sudden pollution events still needs further improvement. Notably, the EPICC-Model 774 

demonstrated relatively balanced false alarm rates across all pollution types, indicating 775 

its capability to simulate pollution processes comparable to mainstream models, 776 

particularly showing strong potential in responding to light to moderate pollution and 777 

O3 pollution. 778 

In the simulation analysis of typical persistent PM2.5 and O3 pollution events in 779 

2021, the EPICC-Model demonstrated strong capabilities, particularly outperforming 780 

CAMx and CMAQ in reproducing spatial distributions and pollution evolution. The 781 

EPICC-Model successfully captured the entire process of pollution occurrence, 782 

development, and clearance, particularly in the core area of the North China Plain and 783 

the diffusion zone of the middle Yangtze River, where the simulation results were in 784 

close agreement with observational data. CAMx and CMAQ, however, performed less 785 

effectively in capturing persistent pollution events, both exhibiting significant 786 

deviations during the simulation of severe pollution phases. CAMx underestimated 787 

pollution intensity during severe pollution events, while CMAQ responded too rapidly 788 

during the dissipation phase, leading to premature pollution decay (the average duration 789 

of the pollution process was underestimated by 12-18 hours). 790 

This study establishes a multi-model evaluation framework to systematically 791 

compare the applicability and robustness of the EPICC-Model against internationally 792 

established models over China. By identifying both model-specific limitations and 793 

common challenges shared across different models, this work provides a clear pathway 794 

for improving the next generation of atmospheric CTMs. The results not only offer 795 

critical scientific support for air pollution control and policy-making in China, but also 796 

serve as a valuable reference for other developing countries facing similar 797 

environmental challenges. This study contributes to promoting the collaborative 798 

development of global air quality modeling techniques and advancing sustainable 799 

environmental governance. 800 
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