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Abstract. Soil moisture is a critical component of the hydrological cycle, but accurately predicting it 10 

remains challenging due to the nonlinearity of soil water transport, variability in boundary conditions, 

and the intricate nature of soil properties. Recently, deep learning has shown promise in this domain, 

typically by modeling temporal dependencies for soil moisture predictions. In this study, we propose 

non-local neural networks (NLNN) to convert this problem into a single-time-step, simultaneous multi-

depth soil moisture forecasting. By facilitating mutual compensation among different depths, this method 15 

enables a representation of vertical heterogeneity and inter-layer connectivity without physical 

assumptions, leading to precise and efficient predictions in diverse scenarios. Our non-local operation 

design includes the embedded Gaussian operations and disentangled physics-guided operations, resulting 

in two variants: the self-attention non-local neural network (SA-NLNN) and the physics-guided non-

local neural network (PG-NLNN). The models offer visual interpretability, providing insights into 20 

intricate mechanisms of soil moisture dynamics. Notably, the model guided by physics yields more stable 

and reasonable qualitative interpretations. With in-situ observations, we demonstrate that our proposed 

models perform satisfactorily. The physics-guided non-local operations significantly enhance accuracy 

and reliability. Additionally, our models adapt to diverse time-scale situations while maintaining high 

computational efficiency. Both models exhibit robust noise resistance, with physics guidance enhancing 25 

PG-NLNN’s noise resistance. In summary, our work addresses the soil moisture prediction challenge in 

a novel way, highlighting the potential of NLNN and the importance of incorporating physic guidance 

in data-driven models. 

https://doi.org/10.5194/egusphere-2025-4440
Preprint. Discussion started: 18 September 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

Keywords: soil moisture; deep learning; non-local neural networks; physics-guided; visual 

interpretability 30 

 

1.Introduction 

Soil moisture plays an important role in hydrological processes, governing the exchange of water and 

energy fluxes between the atmosphere and the land (Vereecken et al., 2008). Accurate simulations of soil 

moisture dynamics hold great significance in various domains, including effective water resources 35 

planning and management, agricultural production, and flood disaster monitoring (Entekhabi et al., 1996; 

Koster et al., 2004; Zhang et al., 2018). However, precisely forecasting soil moisture dynamics poses 

challenges due to the nonlinearity of soil water transport (Richards, 1931), randomness in boundary 

conditions (Guswa et al., 2002), and the intricate nature of soil properties, including soil structure and 

hydraulic parameters (Vereecken et al., 2022). These factors contribute to strong spatio-temporal 40 

variabilities in soil moisture dynamics (Heathman et al., 2012). Traditionally, the simulation of soil 

moisture dynamics has primarily relied on physically based models, such as the soil-plant-atmosphere-

water model (Saxton et al., 1974) and HYDRUS (Simunek et al., 2005). However, their implementation 

faces challenges in accurately estimating the required parameters (Bandai & Ghezzehei, 2021; Gill et al., 

2006). What’s more, the current methodology struggles to accurately characterize soil structure at 45 

spatially relevant scales (Romero‐Ruiz et al., 2018). This limitation complicates handling scenarios 

involving cracks, root water absorption, and other complexities, as illustrated in Figure 1. With 

advancements in technology and big data analysis capabilities, data-driven models have aroused 

increasing focus and appear to be more practical in soil moisture dynamics forecasting. For instance, 

researchers have discovered that both support vector regression and random forest show satisfactory 50 

results in soil moisture prediction while maintaining low computing costs (Gill et al., 2006; Prasad et al., 

2019). Furthermore, the extreme learning machine (Huang et al., 2006) has demonstrated its capability 

to precisely predict soil moisture trends (Y. Liu et al., 2014).  

In recent years, deep learning (Lecun et al., 2015) has gained considerable attention for its remarkable 

capabilities in fitting to complex data patterns. When predicting soil moisture, deep learning primarily 55 

relies on modeling temporal dependencies. The fundamental models handling sequential data fall into 
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three categories: Recurrent Neural Networks (RNNs) (Elman, 1990), Convolution Neural Networks 

(CNNs) (LeCun, 1989), and Transformers (Vaswani et al., 2017). RNNs exploit temporal dependencies 

through recurrent operations, with Long Short-Term Memory (LSTM) networks demonstrating accurate 

soil moisture predictions (Fang et al., 2019). CNNs capture dependencies with repetitive convolutional 60 

operations and also yield satisfactory results in soil moisture dynamics modeling (Severyn & Moschitti, 

2015; Shi et al., 2015). Both recurrent and convolutional operations process local neighborhoods in input 

data. Consequently, long-range dependencies are captured through repeated local operations, which is 

inefficient (L. Zhu et al., 2021). In contrast, Transformers process data in a more efficient way, owing to 

its core component – self-attention mechanisms. These mechanisms extract crucial long-range non-local 65 

information directly. For instance, Temporal Fusion Transformers with interpretable self-attention layers 

have shown significant improvements over existing benchmarks in multi-horizon time series forecasting 

(Lim et al., 2021). Furthermore, Transformers exhibit potential for effective soil moisture dynamics 

prediction with straightforward model structures (Y. Wang, Shi, Hu, Hu, et al., 2023). Researchers are 

increasingly recognizing the potential of Transformers. 70 

 However, it is worth noting that current deep learning models often lack physical laws and 

interpretability. To bridge the gap between data-driven approaches and physics, physical laws can be 

embedded into model architectures or loss functions. For instance, Jiang et al. (2020) integrated the 

physical processes from a conceptual hydrological model into an RNN for runoff modeling. De Bézenac 

et al. (2018) incorporated advection-diffusion principles into the kernel design of a CNN to predict sea 75 

surface temperature. Additionally, some researchers have added the residuals of the physical governing 

equations into the loss function, resulting in a novel approach known as Physics-informed Neural 

Networks (PINN). (M. Raissi et al., 2019; Maziar Raissi et al., 2017). This approach has been applied to 

soil moisture modeling (Bandai & Ghezzehei, 2021; Y. Wang, Shi, Hu, Song, et al., 2023). Although this 

integration enhances model credibility, developing appropriate training strategies to improve 80 

extrapolation accuracy remains challenging (Lu et al., 2021). Besides, the complex coupling of actual 

physical processes and the presence of unknown governing equations pose substantial challenges in 

practical applications. To date, most previous works have relied on traditional model structures, leaving 

a critical gap in reliable, physics-guided data-driven methods for soil moisture prediction. This 
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underscores the necessity of transitioning toward soil science-informed machine learning models that use 85 

the power of data-driven techniques while integrating soil science knowledge during the training process 

to enhance reliability and generalizability (Minasny et al., 2024).  

Considering that physical models calculate soil moisture content by iteratively using current soil 

profile states for step-by-step predictions, we incorporate the spatial interactions of soil moisture within 

the profile into our machine learning model, instead of modeling sequential dependencies. Temporal 90 

variations in surface soil moisture exhibit greater variability due to meteorological forcing, while subsoil 

moisture dynamics are influenced by soil water redistribution processes (Rosenbaum et al., 2012). When 

dealing with relationships between multiple variables, geometric deep learning (Bronstein et al., 2017) 

defines model invariances to enhance robustness and generalization. As an example, graph neural 

networks (Scarselli et al., 2008) utilize the adjacency matrix to aggregate node features and achieve local 95 

invariance. Inspired by this, we introduce a novel model -- the Non-local Neural Networks (NLNNs) (X. 

Wang et al., 2018) to capture spatially invariant soil moisture relationships across depths, thereby 

modeling vertical heterogeneity and inter-layer connectivity without physical assumptions. Essentially, 

the non-local operation in NLNNs calculates responses at specific locations by aggregating features from 

all positions in the input feature map (X. Wang et al., 2018). This allows NLNNs to capture global 100 

dependencies directly and efficiently. According to the definition, NLNNs are flexible and easily 

customizable to suit specific requirements. Moreover, the weights computed through non-local 

operations provide qualitative interpretation for model learning mechanisms. NLNNs find wide 

application in image segmentation tasks and time series forecasting (P. Liu et al., 2019; Z. Zhu et al., 

2019). As a representative of NLNNs, the Transformer is adept at processing various types of data, 105 

including images and video-related challenges (Guo et al., 2022; Khan et al., 2022; Lim et al., 2021; Z. 

Liu et al., 2021; Xie et al., 2021). Furthermore, NLNNs can serve as auxiliary blocks to enhance context 

modeling abilities (X. Wang et al., 2018; Yin et al., 2020). With the flexibility of non-local operation 

modifications, we can envision using NLNNs to simulate the characteristics of soil water dynamics in 

spatial distribution while ensuring interpretability. 110 

In this study, we have integrated NLNNs to simulate in-profile soil moisture interactions and predict 

multi-depth soil moisture content without physical assumptions. Our aim is to achieve accurate and 

https://doi.org/10.5194/egusphere-2025-4440
Preprint. Discussion started: 18 September 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

effective forecasts under diverse real-world scenarios, as depicted in Figure 1, while also providing 

interpretability of intricate soil moisture dynamics, such as vertical heterogeneity and inter-layer 

connectivity. Specifically, we discard all assumptions on soil, root, or boundary conditions and instead 115 

attempt to learn the soil water dynamics directly from the data. Unlike traditional one-dimensional soil 

water flow models, our model considers real soil moisture interactions across various depths that happen 

in a three-dimensional soil column, enhancing predictions in complex scenarios. We introduce the Self-

Attention mechanism Non-local Neural Networks (SA-NLNN) to explore the potential of NLNN 

structures in soil moisture forecasting. Moreover, the Physics-Guided Non-local Neural Network (PG-120 

NLNN) that incorporates soil water transport guidance into the non-local operation is proposed. We 

examine the models’ interpretability using the synthetic data, while in-situ data is applied to assess the 

practicality and accuracy of the models. The key innovations of our study are as follows: First, unlike 

previous machine learning models that often focus on time series data processing, our study considers 

soil moisture interactions within the profile, converting it into a single-time-step problem involving 125 

multi-depth variables. This approach offers mutual compensation within the soil profile, enabling 

effective and precise soil moisture forecasts. The adaptability of NLNNs across various temporal and 

spatial scales is also demonstrated. Second, our NLNN models provide interpretable visualizations of 

non-local weights, offering qualitative descriptions of intricate soil properties derived from the soil 

moisture data. The model interpretability is investigated using synthetic soil moisture data, including 130 

virtual examples of homogeneous soil, heterogeneous soil, two-layered soil, and soil with root water 

uptake. Third, incorporating physics-inspired concepts enhances model accuracy and reliability. By 

integrating meteorological conditions and the spatial interactions of soil moisture within its four-part 

disentangled physics-guided operation framework, PG-NLNN demonstrates superior performance. 

Besides, it offers more reliable interpretations and exhibits robust resistance to noise. When evaluating 135 

practical performance, we utilize in-situ soil moisture data sourced from the International Soil Moisture 

Network (ISMN) and compare our models with the benchmark LSTM model (Datta & Faroughi, 2023; 

Semwal et al., 2021; Y. Wang, Shi, Hu, Hu, et al., 2023). To the best of our knowledge, this marks the 

first instance of employing NLNNs for interpretable soil moisture dynamics forecasting. 

 140 
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Figure 1. Examples of complex soil conditions related to soil texture and soil structure at the soil profile scale.SM3 

is more related to SM1 other than SM2 or SM4, due to the existence of wormholes. The proposed non-local neural 

network is designed to understand that SM3 is highly correlated with SM1 (caused by fast water migration in 

wormholes) and less correlated with SM2 (caused by slow seepage under gravity).  145 

 

In the remainder of this manuscript, Section 2 presents the NLNNs for soil moisture forecasting, 

including the SA-NLNN and PG-NLNN; Section 3 describes the synthetically generated soil moisture 

data and the in-situ data; Section 4 provides the model results and the interpretability analysis. Finally, 

the conclusion is drawn in Section 5. 150 

2. Methodologies 

2.1 Model structures 

In our soil moisture forecasts at multiple depths, we assume that the soil moisture within the profile at 

the next time step depends on both the current meteorological conditions and the soil moisture from the 

previous time step. The NLNN models are designed to capture the potential interactions of soil moisture 155 

at different depths within the vertical profile (Figure 1), thereby making predictions that are closer to 

reality. Figure 2 illustrates the NLNN structure proposed for soil moisture dynamics prediction. The input 

data for the NLNN model, denoted as 𝒔𝒎𝑡 = [𝑠𝑚0
𝑡 , 𝑠𝑚1

𝑡 , 𝑠𝑚2
𝑡 , … , 𝑠𝑚𝑛−1

𝑡 , 𝑠𝑚𝑛
𝑡 ]T  comprises a 

concatenation of soil moisture data at 𝑛 depths from the previous time step and the upper boundary 

condition factor 𝑠𝑚0
𝑡  obtained from meteorological conditions processing through an LSTM.  160 
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Within our framework, we employ two types of non-local operations. The first type utilizes Gaussian 

functions in the non-local operation, and the NLNNs composed of Gaussian functions are referred to as 

SA-NLNN. In the second model, PG-NLNN, the non-local operation is decoupled based on the soil water 

transport mechanisms. In the NLNN structure, following the non-local operation and a residual 

connection, a fully connected neural network is employed to generate predictions for the soil moisture at 165 

each corresponding depth. This yields predictions denoted as, 𝒔𝒎𝑡+1′
=

[𝑠𝑚0
𝑡+1′

, 𝑠𝑚1
𝑡+1′

, 𝑠𝑚2
𝑡+1′

, … , 𝑠𝑚𝑛−1
𝑡+1 ′

, 𝑠𝑚𝑛
𝑡+1′

]
T

. The ground truth is represented as 𝒔𝒎𝑡+1 =

[𝑠𝑚1
𝑡+1, 𝑠𝑚2

𝑡+1, … , 𝑠𝑚𝑛−1
𝑡+1 , 𝑠𝑚𝑛

𝑡+1]T.The model is trained by minimizing the error between predictions 

and the ground truth,  

 170 

Figure 2. Left: non-local neural network structure for soil moisture forecasting. Right: embedded Gaussian operation 

and physics-guided non-local operation. RPE: relative position encoding. SA/ PG score: non-local weights computed 

through embedded Gaussian operation and physics-guided operation. 

 

2.2 Non-local Operations 175 

The general form of a non-local operation in NLNNs can be defined as follows (X. Wang et al., 2018): 

𝒚𝑖 =
1

𝒞(𝒙)
∑ 𝑓(𝒙𝑖 , 𝒙𝑗)𝑔(𝒙𝑗)

∀𝑗

 
(1) 
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Here 𝑖 denotes the index of the output 𝒚 for which the output value is being calculated, while 𝑗 is 

the index that lists all conceivable positions in the input 𝒙. In this context, x represents the input data, 

and y denotes the corresponding output, sharing the same dimensions as x. In this work, x represents the 

concatenation of input soil moisture data and the upper boundary condition data, denoted as 𝒔𝒎𝑡. 𝒙𝑖 180 

and  𝒙𝑗  denote the 𝑖𝑡ℎ  and 𝑗𝑡ℎ  indexes in 𝒔𝒎𝑡 . In other words, 𝒙𝑖  and  𝒙𝑗  are the soil moisture 

content at the 𝑖𝑡ℎ and 𝑗𝑡ℎ depths, that is 𝑠𝑚𝑖
𝑡 and 𝑠𝑚𝑗

𝑡. y denotes the output, which corresponds to 

𝒔𝒎𝑡+1′
. 𝒚𝑖 represents the soil moisture content at 𝑖𝑡ℎ depth for the next time step 𝑠𝑚𝑖

𝑡′
, which needs 

to be predicted. The computation of a generic non-local operation involves three components: the 

pairwise function 𝑓, the unary function 𝑔, and the normalization sum 𝒞(𝒙). The function 𝑓 calculates 185 

a scalar (representing relationship such as affinity) between 𝑖 and all 𝑗, while the unary function 𝑔 

generates a representation of the input at position j. The response is then normalized by 𝒞(𝒙). We restrict 

the form of 𝑔 to a linear embedding: 𝑔(𝒙𝑗) = 𝑊𝑔𝒙𝑗, where 𝑊𝑔 is a weight matrix to be learned. The 

primary modification focuses on the pairwise function 𝑓. The 𝒞(𝒙) is contingent on the design of 𝑓. 

Following the definition of attention heads from previous work on self-attention mechanisms (Vaswani 190 

et al., 2017), our NLNN models employ several operation heads to enhance the model's feature extraction 

and representation capabilities. The number of operation heads is denoted as 𝑛ℎ𝑒𝑎𝑑 . Similar non-local 

operations are performed in each head, with some parameter matrices being unique. To form the output, 

results from each head are concatenated, and a parameterized linear transformation is applied. 

It is evident that non-local operations offer flexibility by assuming various forms and can adapt to 195 

specific problem designs. This provides potential solutions for many complex situations. In the following 

sections, we will introduce the classical embedded Gaussian operation, along with our physics-guided 

non-local operation designed for soil moisture dynamics. 

2.2.1 Embedded Gaussian Operation: 

Self-attention is a specific case of non-local operations within the embedded Gaussian version. It 200 

excels in processing data concisely and capturing intricate relationships, making it widely applied in 

various research areas (Devlin et al., 2019; Lim et al., 2021; Z. Liu et al., 2021). However, it overlooks 

the ordering of input, necessitating the incorporation of position information into the calculations to 

ensure accurate processing.  
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Common position encoding methods include absolute position encoding (Devlin et al., 2019; Gehring 205 

et al., 2017; Vaswani et al., 2017) and relative position encoding (Shaw et al., 2018). Absolute position 

encoding directly incorporates absolute position information pertaining to 𝑖 or 𝑗 and integrates it into 

the input. In contrast, relative position encoding focuses on the relative relationship between position 𝑖 

and 𝑗. Given the complexity of soil properties and the nature of soil moisture interactions, prioritizing 

the relative influence of soil moisture at each depth may prove more effective than relying on absolute 210 

position information in soil moisture analysis. In this approach, we utilize the relative position encoding 

similar to the method proposed by Shaw et al. (2018). The function 𝑓 encompasses a Gaussian function 

of two embeddings along with the relative position representation associated with  𝑖  and 𝑗. A self-

attention mechanism with relative position encodings in each head can be defined as follows: 

𝑓(𝒙𝑖 , 𝒙𝑗) = 𝑒((𝑊𝑘𝒙𝑗)
T

(𝑊𝑞𝒙𝑖)+𝑟_𝑠𝑐𝑜𝑟𝑒𝑖𝑗)/√𝑑𝑘 (2) 

𝒞(𝒙) = ∑ 𝑓(𝒙𝑖 , 𝒙𝑗)

∀𝑗

 
  (3) 

Here, 𝑊𝑞  and 𝑊𝑘  are the weight matrixes to be learned for embeddings. √𝑑𝑘  denotes the scale 215 

factor, where 𝑑𝑘 represents the dimension of the embeddings. 𝑟_𝑠𝑐𝑜𝑟𝑒𝑖𝑗  is the relative position score 

computed using relative position encoding. Then the 𝒚𝑖 can be calculated through Equation (1). The 

embedded Gaussian operation for soil moisture forecasts is illustrated in Figure 2.  

In the relative position encoding, each relationship between two arbitrary positions 𝑖  and 𝑗  is 

represented by a learnable vector. Then, the 𝑟_𝑠𝑐𝑜𝑟𝑒𝑖𝑗 is calculated as follows:  220 

𝑟_𝑠𝑐𝑜𝑟𝑒𝑖𝑗 = (𝒂𝑖,𝑗)
𝑇

(𝑊𝑞𝒙𝑖) (4) 

where  𝒂𝑖,𝑗  represents the relative position encoding utilized for 𝑟_𝑠𝑐𝑜𝑟𝑒𝑖𝑗  computing.  𝒂𝑖,𝑗  is a 

parameter vector that needs to be trained. In the proposed SA-NLNN model, our trainable relative 

position encoding matrix 𝐴 consists of (𝑛 + 1) × (𝑛 + 1) distinct elements. The matrix 𝐴 needs to 

be learned through training: 

𝐴 = (

𝒂0,0 ⋯ 𝒂0,𝑛

⋮ ⋱ ⋮
𝒂𝑛,0 ⋯ 𝒂𝑛,𝑛

) (5) 

In this model, all operation heads perform similar operations. 𝑊𝑞, 𝑊𝑘, and 𝑊𝑔 are unique in each 225 

head. However, the relative position encoding can be shared across non-local operation heads. 
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2.2.2 Disentangled Physics-Guided operation:  

In this work, PG-NLNN is specifically designed for soil moisture forecasting at multiple depths in the 

soil profile, as depicted in Figure 2. We have decoupled the non-local operations rooted in the 

characteristics of soil water transport mechanisms. Taking into account gravity, capillary action, and soil 230 

water retention, this physics-guided non-local operation comprises four factors that influence soil 

moisture at a fixed depth: upper boundary conditions, upper soil moisture, soil moisture within the same 

depth at the previous time step, and soil moisture at lower depths. These components collectively 

coordinate and contribute to the soil moisture prediction at the specific depth. 

When analyzing the soil moisture at 𝑖𝑡ℎ depth, denoted as 𝒚𝑖, its dynamics are influenced by several 235 

factors: upper boundary conditions represented by 𝒙0, upper soil moisture state at the previous time step, 

𝒙𝑢, (where 𝑢 < 𝑖, primarily donated by gravity), lower soil moisture 𝒙𝑙, (where 𝑙 < 𝑖, mainly affected 

by capillary), and the soil moisture at the same depth from the previous time step, 𝒙𝑖. Since these four 

components are motivated by diverse physical mechanisms, they are defined in distinct forms within the 

non-local operation. 240 

Before proceeding to the subsections, we provide a brief introduction to fully-connected neural 

networks (FNNs) that are utilized in the following sections. A two-layer fully-connected neural network 

can be defined as follows: 

𝐹𝑁𝑁(𝒙𝑖𝑛𝑝𝑢𝑡) = 𝑎(𝑊2(𝑎(𝑊1𝒙𝑖𝑛𝑝𝑢𝑡 + 𝑏1) + 𝑏2)  (6) 

where 𝑎  denotes the activation function, and 𝑊𝐿  and 𝑏𝐿  represent the weight matrices and bias 

parameters to be learned in the 𝐿𝑡ℎ layer, respectively, where 𝐿 = 1,2. 𝒙𝑖𝑛𝑝𝑢𝑡 denotes the input vector 245 

of an FNN. This two-layer FNN is commonly used in our research. In this architecture, we adopt the 

hyperbolic tangent function as the activation function 𝑎. 

The effect of upper boundary conditions on soil moisture at depth 𝒛𝑖 is described by the function, 

𝑓0(𝒙𝑖 , 𝒙𝑗), which corresponds to three factors: 𝒙0, the meteorological factor; 𝒙𝑖, the soil moisture at 

depth 𝒛𝑖 from the previous time step; and 𝒛𝑖, the depth of the concerned soil moisture. 𝒛𝑖 denotes the 250 

𝑖𝑡ℎ depth in the depth vector 𝒛 = [𝑧0, 𝑧1, … , 𝑧𝑛]T, which corresponds to the input soil moisture data 

𝒔𝒎𝑡. We utilize a two-layer FNN to describe this relationship: 
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𝑓0(𝒙𝑖 , 𝒙𝑗) = 𝐹𝑁𝑁0(𝒙0, 𝒙𝑖 , 𝒛𝑖), 𝑗 = 0 (7) 

In considering the impacts of soil moisture in the upper layers and lower layers on soil moisture at 

depth 𝒛𝑖, we propose 𝑓𝑢(𝒙𝑖 , 𝒙𝑗) and 𝑓𝑙(𝒙𝑖 , 𝒙𝑗) to calculate the effects. Both functions are determined 

by the disparity in soil moisture content (𝒙𝑖 − 𝒙𝑗), the intrinsic soil moisture 𝒙𝑖 , and the distance 255 

between two positions (𝒛𝑖 − 𝒛𝑗). As previously stated, two two-layer FNNs are employed in this section: 

𝑓𝑢(𝒙𝑖 , 𝒙𝑗) = 𝐹𝑁𝑁𝑢(𝒙𝑖 − 𝒙𝑗 , 𝒙𝑖 , 𝒛𝑖 − 𝒛𝑗), 𝑖 > 𝑗 (8) 

𝑓𝑙(𝒙𝑖 , 𝒙𝑗) = 𝐹𝑁𝑁𝑙(𝒙𝑖 − 𝒙𝑗, 𝒙𝑖 , 𝒛𝑖 − 𝒛𝑗), 𝑖 < 𝑗 (9) 

Additionally, we utilize relative position encodings to describe the soil water retention effect: 

𝑓𝑟(𝒙𝑖 , 𝒙𝑗) = 𝑟_𝑠𝑐𝑜𝑟𝑒𝑖𝑗 , 𝑖 = 𝑗 (10) 

where the relative position score 𝑟_𝑠𝑐𝑜𝑟𝑒𝑖𝑗  is utilized for the water retention effect of soil moisture at a 

specific depth across two adjacent time steps. It can be calculated in Equation (4). Consequently, our 

position encoding matrix 𝐴𝑃𝐺
𝐾  is a diagonal matrix comprising (𝑛 + 1) distinct elements, which needs 260 

to be learned through training: 

𝐴𝑃𝐺 = (

𝒂0,0 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝒂𝑛,𝑛

) (11) 

According to the above, the impact on soil moisture at a fixed depth is harmoniously coordinated and 

integrated through the four components mentioned earlier, as illustrated in Figure 2. Therefore, the 

physics-guided non-local operation for soil moisture dynamics simulation can be defined as follows: 

𝑓(𝒙𝑖 , 𝒙𝑗) = 𝑒𝑓0(𝒙𝑖,𝒙𝑗)/𝑁+𝑓𝑢(𝒙𝑖,𝒙𝑗)/𝑁+𝑓𝑙(𝒙𝑖,𝒙𝑗)/𝑁+𝑓𝑟(𝒙𝑖,𝒙𝑗)/√𝑑𝑘  (12) 

𝒞(𝒙) = ∑ 𝑓(𝒙𝑖 , 𝒙𝑗)

∀𝑗

 
(13) 

where 𝑁 is the number of positions in 𝒙, √𝑑𝑘  denotes the scale factor. Then 𝒚𝑖  can be calculated 265 

using Equation (1). All operation heads execute similar operations in this model. 𝑊𝑞  utilized for 

𝑟_𝑠𝑐𝑜𝑟𝑒 computing and 𝑊𝑔 in 𝑔(𝒙𝑗) are still unique in each head. The parameters of the FNNs are 

shared across non-local operation heads. 

2.3 Boundary processing 
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In our soil moisture prediction task, the impact of the upper boundary conditions on soil moisture is 270 

partially simulated by an LSTM module (Hochreiter & Schmidhuber, 1997), as illustrated in Figure 2. 

We have selected six meteorological variables to characterize the influence of these upper boundary 

conditions: precipitation (P), air temperature (AT), long-wave radiation (LR), short-wave radiation 

(SR), relative humidity (RH), and wind speed (WS). These variables, denoted as 𝒖𝒃𝑡 =

[𝑃𝑡 , 𝐴𝑇𝑡 , 𝐿𝑅𝑡 , 𝑆𝑅𝑡 , 𝑅𝐻𝑡 , 𝑊𝑆𝑡]T , are closely associated with the infiltration and evapotranspiration 275 

processes. Accounting for the delayed effect of meteorology on soil moisture, the input of our LSTM 

comprises data from two time steps. Following LSTM processing, the impact of the upper boundary 

conditions takes the form of 𝑠𝑚0
𝑡 , which is subsequently utilized in non-local operations in conjunction 

with the input soil moisture data [𝑠𝑚1
𝑡 , 𝑠𝑚2

𝑡 , … , 𝑠𝑚𝑛−1
𝑡 , 𝑠𝑚𝑛

𝑡 ]T within the soil profile. The operation of 

an LSTM can be summarized as follows: 280 

𝒊𝑡 = 𝑎(𝑊𝑖 ∙ [𝒉𝑡−1, 𝒖𝒃𝑡] + 𝑏𝑖) (14) 

𝒇𝑡 = 𝑎(𝑊𝑓 ∙ [𝒉𝑡−1, 𝒖𝒃𝑡] + 𝑏𝑓)  (15) 

𝒐𝑡 = 𝑎(𝑊𝑜 ∙ [𝒉𝑡−1, 𝒖𝒃𝑡] + 𝑏𝑜)  (16) 

𝑪̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [𝒉𝑡−1, 𝒖𝒃𝑡] + 𝑏𝑐)  (17) 

𝒄𝑡 = 𝒇𝑡 ∙ 𝒄𝑡−1 + 𝒊𝑡 ∙ 𝑪̃𝑡  (18) 

𝒉𝑡 = 𝒐𝑡 ∙ 𝑡𝑎𝑛ℎ(𝒄𝑡)  (19) 

where 𝑊𝑖  and 𝑏𝑖 , 𝑊𝑓 and 𝑏𝑓, 𝑊𝑜 and 𝑏𝑜 denote the deep learning parameters for the input gate, 

forget gate, and the output gate, respectively; 𝑊𝑐 and 𝑏𝑐 are the parameters for cell state updating; in 

addition, 𝒊𝑡, 𝒇𝑡 and 𝒐𝑡 are the input gate, forget gate, and output gate at time 𝑡, respectively, and 𝒄𝑡 

is the memory cell state; 𝒉𝑡  represents the hidden state; 𝑎 is the sigmoid activation function.  

Through sequential processing, the last hidden state 𝒉𝑡  in the output [𝒉𝑡−1, 𝒉𝑡]  derived from 285 

input  [𝒖𝒃𝑡−1, 𝒖𝒃𝑡], which encodes the upper boundary effect over two time steps, is adopted as the 𝑠𝑚0
𝑡 . 

In this study, the lower boundary conditions are disregarded due to the obstacles in observation. 

2.4 Training Strategies 
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The objective of our model is to simultaneously predict soil moisture at multiple depths for the next 

time step. To achieve this, we define the loss function as the sum of squared errors between the model 290 

predictions and the corresponding ground truth of soil moisture content at different depths. The model is 

trained by minimizing this loss function: 

ℒ = ∑ ∑(𝑠𝑚𝑖
𝑡+1′

− 𝑠𝑚𝑖
𝑡+1)

2
𝑛

𝑖=1

𝐵

𝑡=0

 (20) 

where 𝑛 denotes the number of concerned soil moisture depths, and 𝐵 is the training batch size, which 

is set to 100 in this study.  

In this work, the collected data is divided into training, validation, and test sets in a time-ordered ratio 295 

of 6:2:2. For training, we employ the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001. 

The models are trained for a minimum of 2500 epochs, with 20 batches in each epoch. The validation set 

is utilized to select the best model and mitigate overfitting. Subsequently, the test set is then employed 

to evaluate the performance of the models. Each result is computed based on 10 replicates with different 

initializations. Regarding the model hyperparameter settings, in the non-local neural network, we set 300 

𝑑𝑘 = 10, 𝑑𝑣 = 16, and 𝑛ℎ𝑒𝑎𝑑 = 10, where 𝑑𝑘 and 𝑑𝑣 represents the dimensions of the key and query 

embeddings, respectively. 𝑛ℎ𝑒𝑎𝑑  denotes the number of non-local heads. The LSTM consists of two 

stacked blocks, each configured with a hidden layer of 20 neurons. In the FNN adopted for PG-NLNN, 

we utilize 10 neurons in each hidden layer. 

3. Data Descriptions 305 

In our study, synthetic soil moisture data is generated to investigate the interpretability of these NLNN 

models. Additionally, we utilize the selected in-situ soil moisture data to assess the accuracy and 

practicability of our models.  

3.1 Synthetic Data Description 

The synthetic data are generated using the ROSS method (P J Ross, 2003; Peter J Ross, 2006). The 310 

Ross method is a rapid, non-iterative numerical scheme for soil moisture forward modeling. In our 

simulation, we create soil moisture content data for a 100 cm soil column with 1 cm intervals. For 

boundary conditions, the daily reference evapotranspiration (ET0) is calculated with the FAO Penman-

Monteith method (Allen et al., 1998) in Wuhan coordinates to generate the synthetic data. The daily time 
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series data of precipitation and calculated evapotranspiration are shown in Figure 3. The lower boundary 315 

condition is set as free drainage, and the initial moisture content of the soil column is set as 0.10. We 

generate three years of time series soil moisture data for this research. 

In this section, we design four virtual cases of different configurations to investigate model 

interpretability, including homogeneous soil, heterogeneous soil, two-layered soil, and soil with root 

water uptake scenarios, as represented in Figure 4. When generating synthetic data in the case with root 320 

water uptake, the root depth is set to 50cm, and root density is vertically distributed evenly. Detailed soil 

property settings are given in Appendix A. Besides, we assess the adaptability across different time scales 

and observation locations using the available data. 

 

Figure 3. Daily time series precipitation and reference evapotranspiration data calculated at Wuhan coordinate for 325 

generating synthetic data. 

 

 

Figure 4. The virtual cases design, with homogeneous soil (a), heterogeneous soil (b), two-layered soil (c), and 

homogeneous soil with root water uptake (d). 330 
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3.2 In-situ Data Description  

To comprehensively evaluate the proposed NLNN models, we carefully select soil moisture content 

observations from twenty sites within the International Soil Moisture Network (ISMN) 

(https://ismn.geo.tuwien.ac.at/en/). These sites are chosen based on geographical locations, soil textures, 

and land cover types. Detailed information for the selected sites is presented in Table 1, and their spatial 335 

locations are illustrated in Figure 5. These carefully selected sites encompass 16 soil types and 6 land 

cover species, providing a diverse range to assess the model's performance and its ability to adapt to 

complex soil situations. At each site, in-situ observations are required to include soil moisture 

observations at 5 standard depths (0.05m, 0.10m, 0.20m, 0.50m, 1.00m). 

 340 

Table 1. Summary of main characteristics of twenty selected sites. 

Number Site Sand Silt Clay Land cover Period Lat. Lon. 

1 Kingston-1-W 85 10 5 Grassland 2012-2023 41.48 -71.54 

2 Monahans-6-ENE 83 6 11 Shrub cover 2010-2022 31.62 102.81 

3 Necedah-5-WNW 83 11 6 Grassland 2009-2022 44.06 -90.17 

4 Shadow Mtns 79 10 11 Shrub cover 2013-2017 35.47 -115.72 

5 Falkenberg 73 21 6 Cropland, rained 2003-2020 52.17 14.12 

6 Kenai-29-ENE 54 38 8 Shrub cover 2012-2023 60.72 -150.45 

7 AAMU-jtg 53 22 25 Grassland 2010-2022 34.78 -86.55 

8 Darrington-21-NNE 53 22 25 Tree cover 2013-2019 48.54 -121.45 

9 Palestine-6-WNW 49 27 24 Grassland 2009-2013 31.78 -95.72 

10 Cullman 49 27 24 Mosaic Cropland 2006-2022 34.20 -86.80 

11 Cape-Charles 49 27 24 Herbaceous cover 2011-2022 37.29 -75.93 

12 LittleRiver 47 30 23 Grassland 2005-2020 31.50 -83.55 

13 Montrose-11-ENE 43 35 22 Tree cover 2010-2023 38.54 -107.69 

14  Coshocton-8-NNE  41 39 20 Grassland 2009-2016 40.37 -81.78 

15 Bodega-6-WSW 39 38 23 Grassland 2011-2023 38.32 -123.08 

16 Goodwell-2-SE 36 41 23 Grassland 2010-2022 36.57 -101.61 

17 Riley-10-WSW 36 41 23 Shrub cover 2011-2021 43.47 -119.69 

18 Joplin-24-N 35 41 24 Grassland 2010-2020 37.43 -94.58 

19 Weslaco 34 45 21 Cropland, rained 2017-2021 26.16 -97.96 

20 UpperBethlehem 32 38 30 Herbaceous cover 2008-2010 17.72 -64.80 
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Figure 5. The spatial locations of twenty selected sites. The numbers on the sites correspond to the serial numbers 

in Table 1. 

 345 

The meteorological inputs for our models include precipitation, atmospheric temperature, long-wave 

radiation, short-wave radiation, wind speed, and relative humidity, as mentioned above. These 

meteorological data are sourced from the NASA Prediction of Worldwide Energy Resources project 

(https://power.larc.nasa.gov/). Detailed information about this can be found at 

(https://power.larc.nasa.gov/docs/methodology/data/sources/). Unfortunately, due to challenges in 350 

obtaining groundwater level observations, changes in the lower boundary conditions are not considered 

in this study. 

4. Results and discussions  

In this study, we systematically examine and analyze our models from three perspectives. Initially, we 

assess the essential capabilities of models, including accuracy and uncertainty, using both synthetic data 355 

and in-situ observations. Subsequently, we apply simulated soil moisture data under diverse virtual 

scenarios to evaluate our model’s interpretability and its ability to provide qualitative interpretations 

depicting soil moisture interaction mechanisms across diverse depths within the profile. Finally, we 

investigate the impacts of varying temporal scales, noise levels, and observation locations on our non-

local neural networks.  360 
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To explore the forecasting ability of our models over time series, we examine predictions for 1, 3, and 

7 days ahead at selected sites, as well as 1, 3, 7, and 15 days ahead for simulated data. We generate 

predictions iteratively. The evaluation standards in this work comprise the mean absolute error (MAE) 

and the root mean square error (RMSE). Both MAE and RMSE quantify the deviation between the 

predictions and the ground truth. However, RMSE exhibits greater sensitivity to outliers due to its 365 

squaring of deviations, which amplifies the impact of extreme values, while MAE offers a smoother 

average error value. These metrics are calculated as follows: 

MAE =
∑ |𝑇𝑖 − 𝑇̂𝑖|

𝑁𝑠
𝑖=1

𝑁𝑠

 (21) 

RMSE = √
∑ (𝑇𝑖 − 𝑇̂𝑖)

2𝑁𝑠
𝑖=1

𝑁𝑠

 (22) 

 

where 𝑇̂𝑖  and 𝑇𝑖 represent the predictions and the ground truth, respectively; 𝑇̅𝑖 is the average of the 

ground truth; 𝑁𝑠 is the test sample size. Here, 𝑇 denotes the soil moisture content [%] which needs to 

be calculated.  370 

When conducting uncertainty analysis, evaluating confidence bounds becomes challenging because 

most deep learning neural networks are essentially deterministic models. To address this, many 

researchers utilize the bootstrap aggregating (bagging) method (Breiman, 1996) to analyze model 

predictive uncertainty (Kornelsen & Coulibaly, 2014). The bagging method involves training multiple 

neural network models using subsets of the training set, all with identical architecture. To create the 375 

training subset for each model, a statistical bootstrap approach is employed. For each subset, we 

randomly select individual input vectors from the entire training set with replacement, ensuring that each 

subset contains the same number of elements as the entire training set. After training, we obtain an 

ensemble of trained models, each trained with a unique training subset. The final output and uncertainty 

estimates are then derived from the mean and standard deviation of this ensemble. 380 

To explore the impact of noise on our models using the synthetic data, we apply the zero-mean 

Gaussian noise with a variance of 1: 

𝜃̇ = 𝜃 + 𝜂 ∗ 𝒩(0,1), (23) 
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where 𝜃̇ is the volumetric soil moisture content with noise [%], and 𝜃 is the synthetic volumetric 

soil moisture content. Three noise levels are tested (𝜂 = 0.5, 1.0, 2.0) in this work.  

In our investigation of model interpretability, the visualized non-local weight maps generated from the 385 

output play a crucial role as evaluation standards. These weight maps may provide qualitative 

interpretations depicting intricate mechanisms of soil water dynamics. The color brightness on the weight 

distribution map signifies the level of interaction strength among upper boundary conditions and soil 

moisture across different depths. Therefore, analyzing the weight matrix map is essential for gaining 

insights into the learning mechanisms of our NLNN models. 390 

4.1 Interpretability analysis 

Before the models can be applied to real-world scenarios, their stability and interpretability must first 

be analyzed. In this section, we explore the interpretability of the NLNN models by designing several 

scenarios that generate synthetic data. These simulated cases primarily involve variations in soil 

properties, including homogeneous soil, heterogeneous soil, two-layered soil, and soil with root water 395 

uptake scenarios. With the synthetic data, we investigate the model interpretability through the weight 

matrix maps and delve into their learning mechanisms across diverse scenarios.  

Table 2. The MAE [%] values for 1, 3, 7, and 15-day forecasts of the proposed PG-NLNN model and SA-NLNN 

model at 5 depths under four designed scenarios. 

Depth/m PG-NLNN 

SA 

PG 

homogeneous heterogeneous two-layered root water uptake 

 1d 3d 7d 15d 1d 3d 7d 15d 1d 3d 7d 15d 1d 3d 7d 15d 

0.05 0.235  0.327  0.433  0.539  0.259  0.372  0.510  0.652  0.449  0.680  0.945  1.170  0.494  0.698  0.938  1.212  

0.10 0.313  0.451  0.627  0.788  0.306  0.431  0.593  0.749  0.521  0.745  0.995  1.191  0.382  0.518  0.677  0.925  

0.20 0.342  0.533  0.776  1.016  0.305  0.488  0.736  0.971  0.433  0.649  0.901  1.179  0.565  0.795  1.031  1.208  

0.50 0.235  0.357  0.545  0.782  0.253  0.399  0.630  0.952  0.334  0.518  0.774  1.098  0.379  0.641  1.127  1.752  

1.00 0.203  0.312  0.445  0.647  0.244  0.397  0.618  0.934  0.368  0.625  0.969  1.329  0.278  0.470  0.788  1.288  

Depth/m SA-NLNN 

homogeneous heterogeneous two-layered root water uptake 

 1d 3d 7d 15d 1d 3d 7d 15d 1d 3d 7d 15d 1d 3d 7d 15d 

0.05 0.328  0.470  0.686  1.039  0.363  0.524  0.750  1.840  0.327  0.505  0.836  2.210  0.536  0.918  2.150  6.702  

0.10 0.249  0.375  0.580  0.957  0.220  0.314  0.477  0.851  0.390  0.569  0.808  1.465  0.322  0.447  0.675  1.480  

0.20 0.262  0.366  0.519  0.820  0.292  0.389  0.482  0.648  0.487  0.696  0.945  1.350  0.379  0.546  0.775  1.861  

0.50 0.209  0.291  0.414  0.566  0.265  0.337  0.431  0.623  0.327  0.483  0.708  1.018  0.344  0.485  0.687  1.502  

1.00 0.245  0.376  0.575  0.807  0.282  0.430  0.640  0.941  0.336  0.530  0.810  1.250  0.297  0.482  0.820  1.748  

 400 
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Table 2 summarizes the MAE values for 1, 3, 7, and 15-day forecasts across four simulated cases, 

while Figure 6 displays the RMSE results and their variance over ten trainings. According to the MAE 

results, the performance of both models is comparable. However, the physics-guided model PG-NLNN 

exhibits lower variance and maintains greater stability in RMSE, especially in the 15-day prediction task 

of soil moisture dynamics. This indicates that the PG-NLNN may be more effective in handling specific 405 

extreme situations. The integration of physics guidance proves crucial in ensuring model stability. To 

illustrate how forecasts diverge over time, we have plotted Figure 7, which shows the 30-day 

autoregressive soil moisture prediction. The results show that both our NLNN models closely match the 

observations from the synthetic data and remain stable over time, without incurring significant errors as 

time progresses. 410 

 

 

Figure 6. The RMSE results for 1, 3, 7, and 15-day for heterogeneous soil(a-e), and two-layered soil (f-j). The error 

bar indicates the standard deviations of the RMSE, which are computed via ten training replicates. 

 415 

 

Figure 7. The autoregressive 30-day predicted time series of PG-NLNN, SA-NLNN of soil moisture for 

heterogeneous soil at 5 depths: 0.05m(a), 0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e). The shaded region represents the 

confidence interval of the models, spanning 1 standard deviation. 
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 420 

 

Figure 8. The non-local weight maps in two-layered simulated stratified soil scenarios through PG-NLNN (a) loam 

above sand (b) sand above loam, and SA-NLNN (c) loam above sand (d) sand above loam. 

 

Figure 8 depicts the weight matrix maps generated by PG-NLNN and SA-NLNN models for two-425 

layered soil scenarios. The elements at position (𝑖, 𝑗) represent the impact of soil moisture at depth 𝒛𝑗 

at the previous time on soil moisture content at depth 𝒛𝑖. Notably, when 𝑗 = 0, it signifies the influence 

of upper boundary conditions on soil moisture across various depths. The brightness level corresponds 

to the strength of this influence, with higher brightness indicating a stronger impact. Specifically, we use 

the two-layered soil case and switch the soil properties of the upper and lower layers to observe the 430 

changes in the non-local weight matrices. The saturated hydraulic conductivity of the two soil types 

varies significantly, with distinct characteristics influencing water transport and drainage, as recorded in 

Appendix A. Figure 8 presents the weight matrix maps generated through PG-NLNN and SA-NLNN, 

which is the  
𝑓(𝒙𝑖,𝒙𝑗)

𝒞(𝒙)
 calculated through non-local operations. The PG-NLNN weight map reveals the 

interaction strength of soil moisture at different depths within the profile.  435 

Some soil structural information, such as stratification, can be reflected from the soil moisture 

interactions. In the scenario where sand is beneath loam, the upper loam layer gradually releases water, 

while the lower sand layer quickly absorbs it. The water released from the loam layer can quickly reach 

various depths of the sand layer below. Consequently, the soil moisture in the lower layers is primarily 

influenced by the upper loam layer. As shown in Figure 8(a), the moisture in the lower layer (0.10m, 440 
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0.20m, 0.5m, 1.0m) is notably influenced by the moisture at 0.05m. Conversely, when sand is above the 

loam, the upper sand layer rapidly drains water, and the lower loam layer more effectively absorbs and 

retains it. As a result, the water from the upper sand is absorbed and held by the lower loam. Therefore, 

soil moisture in the lower layer is mainly affected by the adjacent upper layer, as shown in Figure 8(b). 

However, the weight map of the SA-NLNN model appears slightly chaotic, as depicted in Figure 8(c) 445 

and (d). It indicates that the SA-NLNN model, lacking physical guidance, tends to learn the incorrect 

relationships. This highlights that incorporating a suitable structural design guided by physics laws can 

be a valuable addition. Enhancements in PG-NLNN not only improve adaptability and interpretability 

concerning soil properties but also contribute to overall stability.  

As a result, both NLNN models achieve satisfactory soil moisture forecasts in the simulated scenarios. 450 

Furthermore, the models have advanced the interpretability of machine learning through non-local weight 

matrix maps. Notably, PG-NLNN offers more reliable descriptions of soil properties via these 

visualizations, highlighting the importance of physics guidance. 

4.2 Performance evaluation 

In this section, we evaluate the performance of the SA-NLNN and PG-NLNN models using in-situ 455 

observations from twenty ISMN sites. We benchmark our soil moisture prediction tasks against the 

LSTM model, widely used in time series forecasting (Datta & Faroughi, 2023; Ding et al., 2019; Siami-

Namini et al., 2019). Specifically, the LSTM model takes two forms tailored for different data processing 

approaches: LSTM_4, which utilizes input data from the previous four time steps to predict soil moisture 

content at the next time step. It follows a configuration similar to that in previous work (Y. Wang, Shi, 460 

Hu, Hu, et al., 2023). These predictions rely on modeling temporal dependencies. In contrast, LSTM_1, 

aligned with our NLNN model structure depicted in Figure 2, replaces non-local operations with LSTM 

modules. It represents the predictive capabilities achievable by a single-time-step LSTM. The 

performance of all models is evaluated at five different depths (0.05m, 0.1m, 0.2m, 0.5m, 1.0m). Notably, 

our NLNN models predict soil moisture for all five depths simultaneously, whereas LSTM models each 465 

depth separately. When comparing our models with physical models, the inherent methodological 

differences between machine learning and physical models make fair and direct comparisons with 
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standard physics-based modeling particularly challenging. We therefore limit our comparison to a 

preliminary assessment in Appendix B. 

 470 

Figure 9. The average RMSE comparisons between LSTM_4, LSTM_1, SA-NLNN, and PG-NLNN across twenty 

research sites at 5 depths: 0.05m(a), 0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e).  

 

 

Figure 10. Scatter plots of the soil moisture observations and 7-day predictions generated from (a) LSTM_4, (b) 475 

LSTM_1, (c) SA-NLNN, and (d) PG-NLNN at UpperBethlehem. 

  

Table 3. The MAE [%] values for 1, 3, and 7-day forecasts across the four models across twenty research sites at 5 

distinct depths, based on ten repeated trainings. 

depth/m MAE 

SA-NLNN 

LSTM_4 

LSTM_1 

PG-NLNN SA-NLNN LSTM_4 LSTM_1 

 1d

d 

3d 7d 1d 3d 7d 1d 3d 7d 1d 3d 7d 

0.05 0.391  0.600  0.893  0.440  0.666  0.979  0.737  1.074  1.515  0.808  1.203  1.713  

0.10 0.392  0.603  0.900  0.431  0.659  0.972  0.498  0.726  1.027  0.506  0.771  1.113  

0.20 0.397  0.607  0.900  0.431  0.648  0.947  0.356  0.558  0.844  0.357  0.547  0.787  

0.50 0.392  0.601  0.896  0.432  0.648  0.962  0.405  0.632  0.955  0.403  0.620  0.909  

1.00 0.394  0.602  0.885  0.422  0.641  0.943  0.245  0.386  0.597  0.243  0.385  0.592  

 480 

Table 3 displays the MAE values across twenty selected sites, considering forecasts for 1, 3, and 7 

days from the four models at five distinct depths. These results are derived from ten repeated trainings, 

and the corresponding RMSE results are presented in Figure 9. From MAE results, we observe that both 
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LSTM_1 and LSTM_4 perform well in deep soil moisture predictions. Meanwhile, our proposed NLNN 

models consistently demonstrate superior accuracy at depths from 0.05m to 0.5m. Regarding RMSE, the 485 

PG-NLNN model stands out as the best model in most situations. This indicates that the PG-NLNN 

model is more adept at managing specific extreme conditions compared to LSTM-based models. Figure 

10 depicts the correlation between the 7-day soil moisture predictions and observations of the test set for 

LSTM-4, LSTM-1, SA-NLNN, and PG-NLNN. The density of scatter plots serves as an indicator of 

model reliability (Datta & Faroughi, 2023). The PG-NLNN model exhibits superior performance in soil 490 

moisture prediction compared to the other models, suggesting the stability of our model over longer 

prediction periods. Through the comparison of PG-NLNN and SA-NLNN, the importance of using soil 

water transport mechanisms to guide the design of decoupled non-local operations is evident. 

Nevertheless, a limitation of the proposed NLNN models lies in their forecasts for moisture content at 

1.0m. This limitation could be attributed to the absence of consideration for lower boundary conditions 495 

in our study.  

Regarding how NLNN model predictions change over time, Figure 11 displays the autoregressive 24-

day predicted time series soil moisture data for the NLNN models across three sites: Falkenberg, Cape-

Charles, and Goodwell. The shaded region represents the confidence interval of the NLNN models, 

spanning 1 standard deviation. The LSTM-based models exhibit relatively greater uncertainty in 500 

predictions. However, it is evident that both models perform satisfactorily and stably, with the proposed 

PG-NLNN model being closer to the observations. Considering the temporal accumulation of 

autoregressive errors in extended soil moisture forecasting, we provide additional long-term prediction 

results in Appendix B for comprehensive evaluation.  

 505 
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Figure 11. The autoregressive 24-day predicted soil moisture time series of 5 depths with LSTM_1, LSTM_4, PG-

NLNN and SA-NLNN at Falkenberg (a-e), Cape-Charles (f-j), and Goodwell (k-o). The shaded region represents 

the confidence interval of the models, spanning 1 standard deviation. 

 510 

According to section 4.1, the non-local weight maps can be related to the soil properties, demonstrating 

the interpretability of the model. In real-world cases, even with limited soil information from the site in 

Table 1, we can combine the weight maps with the measured soil texture data for our analysis. Figure 12 

illustrates the non-local weight matrix maps for the Falkenberg, Cape-Charles, and UpperBethlehem sites, 

generated by the PG-NLNN model. These maps remain stable during repeated training, with discernible 515 

variations among the three sites. They offer qualitative interpretations related to soil properties. In Figure 

12(a), it is seen that at Falkenberg site, soil moisture at different depths is primarily influenced by upper 

boundary conditions and upper layer soil moisture. Figure 12(b) shows that at Cape-Charles site, soil 

moisture is mainly affected by upper boundary conditions and soil moisture at the same depth from the 

previous time step. Figure 12(c) depicts the strong soil water retention effect at UpperBethlehem site, 520 

soil moisture is mainly related to its own state at the previous time step. By combining Table 1, we can 

see that the non-local weight maps are consistent with the soil texture information. From Falkenberg to 

UpperBethlehem site, as the soil texture changes from sandy to clay, the learnt water retention capacity 

in Figure 12 increases from low to high. Consequently, the non-local weight maps are able to capture 

different physical mechanisms of different sites from the measurement data.  525 
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Figure 12. The non-local weight maps through the PG-NLNN at three typical sites, (a) Falkenberg, (b) Cape-Charles, 

and (c) UpperBethlehem. 

 530 

In summary, based on comparisons with LSTMs using in-situ observations, our models achieve precise 

and efficient soil moisture predictions across diverse scenarios. Simultaneously modeling soil moisture 

at different depths in our NLNN models allows for complementary interactions, thereby improving 

overall accuracy. The proposed PG-NLNN model excels with satisfactory predictions and limited 

uncertainty, while also providing qualitative descriptions of the intricate soil properties. The advantages 535 

of incorporating physics guidance in non-local operation design are obvious.  

4.3 Effects of the time scales, observation positions, and noise levels 

In addition to model accuracy and interpretability, our non-local neural network exhibits adaptability 

in prediction tasks across different time scales. In this section, we have conducted tests involving various 

time intervals, observation positions, and noise levels. When investigating the PG-NLNN model’s 540 

performance at the 0.2-day, 0.5-day, and 1-day time intervals within homogenous soil, a subtle difference 

emerges in the weight map generated by the PG-NLNN model, as illustrated in Figure 13. Despite a 

decrease in accuracy with longer time intervals, the model consistently achieves satisfactory results. The 

results reflect the adaptability of the model to diverse time scales. 

When the number of observation locations increases to 10 (at depths of 0.05m, 0.1m, 0.2m, 0.3m, 545 

0.4m, 0.5m, 0.6m, 0.7m, 0.8m, 0.9m), the MAE values for soil moisture 1, 3, 7, and 15-day forecasts of 

the NLNN models across five depths are summarized in Table 4. The uniform augmentation of 

measurements significantly enhances the prediction accuracy of SA-NLNN, while having minimal 

impact on the performance of PG-NLNN. This suggests that the physics guidance allows for lower 
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requirements on soil moisture measurements. In scenarios with uniformly augmented observations, SA-550 

NLNN may prove more efficient. 

In Figure 14, we present the RMSE results for soil moisture predictions at depths of 0.05m, 0.2m, and 

1.0m under increasing noise levels. It's worth noting that noise has a more pronounced impact on the soil 

moisture predictions in the surface layer. Despite the higher predicted RMSE with increasing noise levels, 

both NLNN models display robustness. The PG-NLNN model, in particular, shows greater resistance to 555 

noise levels, consistent with its performance on in-situ soil moisture data.  

In conclusion, both the NLNN models achieve accurate and reliable soil moisture predictions under 

diverse scenarios. They can adapt to tasks across different time scales. The SA-NLNN performs better 

under uniformly distributed observations, while the PG-NLNN demonstrates stronger noise resistance. 

 560 

Figure 13. The non-local weight maps of the PG-NLNN model at different time scales at 0.2-day (a), 0.5-day (b), 

and 1.0-day (c) in the homogenous soil. 

 

Table 4. The MAE [%] values for 1, 3, 7, and 15-day forecasts of the proposed PG-NLNN model and SA-NLNN 

model at 5 depths with 10 depth measurements under the homogenous soil scenario. 565 

Depth/m Homogeneous soil 

PG-NLNN SA-NLNN 

 1d 3d 7d 15d 1d 3d 7d 15d 

0.05 0.327  0.470  0.645  0.817  0.394  0.588  0.906  1.657  

0.10 0.280  0.407  0.602  0.825  0.250  0.350  0.535  0.892  

0.20 0.331  0.564  0.979  1.419  0.221  0.300  0.418  0.604  

0.50 0.174  0.258  0.380  0.581  0.148  0.204  0.302  0.502  

1.00 0.108  0.180  0.300  0.493  0.118  0.174  0.259  0.460  
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Figure 14. The RMSE results for 1, 3, 7, and 15-day at 0.05m(a-d), 0.20m(e-h), and 1.0m(i-l) in the homogenous 

soil under increasing noise levels. The error bar indicates the standard deviations of the RMSE, which are computed 

via ten training replicates.  570 

 

5. Conclusions 

In this study, we employ the deep learning model NLNNs to achieve precise and efficient soil moisture 

predictions under diverse scenarios without relying physical assumptions., while providing qualitative 

interpretation for complex soil moisture dynamics, such as vertical heterogeneity and inter-layer 575 

connectivity. In light of the accuracy and parameter estimation challenges in physical models, and the 

credibility concerns in machine learning models, we have introduced a framework that integrates both 

accuracy and mechanistic insight. Our method leverages in-profile soil moisture interactions across 

various depths. Consequently, the soil moisture prediction task is reformulated as a single-time-step 

prediction task that involves multi-depth soil moisture variables. In this way, we apply the self-attention-580 

based model SA-NLNN to explore the potential of the NLNN structure. Expanding on this framework, 

we disentangle the non-local operation into four components to create the PG-NLNN model, which aligns 

with the soil water transport characteristics. By comparing our NLNNs with the LSTM model using 

synthetic data and in-situ observations, we demonstrate that both our NLNN models achieve precise and 

effective forecasts, providing an alternative possibility for soil moisture simulations. The physics-guided 585 

model PG-NLNN exhibits the best performance and remains stable with low uncertainty. The physics 

guidance in non-local operations significantly enhances the model's accuracy and reliability.  
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Additionally, our proposed models offer qualitative interpretations related to the soil properties. 

Through the investigation of various virtual scenarios -- including homogeneous soil, heterogeneous soil, 

two-layered soil, and soil with root water uptake -- we observe that both the PG-NLNN and SA-NLNN 590 

models perform well in different soil conditions. The qualitative interpretations derived from soil 

moisture data generated by PG-NLNN facilitate descriptions of soil structures. When testing with in-situ 

data, we find that the PG-NLNN model also provides interpretations consistent with real soil vertical 

heterogeneity without physical assumptions. This highlights the importance of integrating physics-

guided assistance into model design. Moreover, we have assessed the model's performance under 595 

different time scales, observation positions, and noise conditions. The NLNN model demonstrates 

adaptability to diverse time scales. When measurement positions are evenly distributed, the SA-NLNN 

model shows significant improvements compared to PG-NLNN, while maintaining high computational 

efficiency. Besides, both models exhibit robustness to noise, and the physics guidance enhances noise 

resistance.  600 

Nevertheless, the model faces challenges that necessitate future improvements. Its training and 

application are site-specific, limiting its transferability. Further research is required to enhance its 

applicability across different sites. Specifically, difficulties arise in estimating soil moisture content at 

deep layers, possibly due to the lack of consideration for the groundwater boundary. Incorporating lower 

boundary conditions into the model could address this limitation. Additionally, multi-objective network 605 

training may benefit from more effective strategies and more precise loss function designs. Introducing 

constraints at multiple time steps holds promise for achieving more stable results. Finally, further 

refinement of the non-local operation may enhance the model's performance. What’s more, the proposed 

network framework is flexible and easily customizable to suit specific requirements, allowing for its 

further exploration and extension to address various physical or hydrological problems. We encourage 610 

readers to design specialized structures tailored to their respective requirements. 
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Appendix A 

The parameters used to generate the synthetic data are recorded in Table A1 and Table A2: 

Table A1. The van Genuchten soil hydraulic parameters (van Genuchten, 1980) used for synthetic data generation.  

Case Design Homogenous soil Heterogeneous soil Two-layered soil Soil with root water uptake 

𝜃𝑟  [−] 0.078 0.078 0.078 0.078 

𝜃𝑠 [−] 0.43 0.43 0.43 0.43 

𝛼 [𝑐𝑚−1] 3.6 3.6 3.6 3.6 

𝑛 [−] 1.56 1.56 1.56 1.56 

𝐾𝑠 [𝑐𝑚 𝑑𝑎𝑦−1] (0 − 10𝑐𝑚) 0.250 Table A2 0.250 0.250 

𝐾𝑠 [𝑐𝑚 𝑑𝑎𝑦−1] (10 − 100𝑐𝑚) 0.250 Table A2 10.49 0.250 

𝑙 [−] 0.5 0.5 0.5 0.5 

Presence of plant False False False True 

 625 

Table A2. The soil hydraulic conductivity of the heterogeneous scenario. 

depth[𝑐𝑚] 𝐾𝑠 [𝑐𝑚 𝑑𝑎𝑦−1] 

0 − 10cm 0.226  0.270  0.241  0.263  0.222  0.226  0.263  0.221  0.262  0.276  

10 − 20cm 0.230  0.226  0.217  0.226  0.249  0.203  0.229  0.196  0.207  0.202  

20 − 30cm 0.200  0.239  0.244  0.253  0.251  0.248  0.203  0.225  0.206  0.205  

30 − 40cm 0.241  0.223  0.197  0.227  0.218  0.256  0.258  0.294  0.308  0.242  

40 − 50cm 0.242  0.155  0.177  0.184  0.218  0.230  0.225  0.211  0.207  0.252  

50 − 60cm 0.285  0.338  0.351  0.345  0.317  0.355  0.333  0.343  0.322  0.320  

60 − 70cm 0.261  0.272  0.306  0.279  0.319  0.250  0.262  0.224  0.240  0.269  

70 − 80cm 0.269  0.300  0.276  0.250  0.267  0.233  0.240  0.249  0.207  0.233  

80 − 90cm 0.202  0.209  0.208  0.248  0.231  0.232  0.245  0.258  0.250  0.222  

90 − 100cm 0.254  0.211  0.201  0.203  0.186  0.213  0.233  0.196  0.247  0.213  
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Appendix B 

This section presents a preliminary comparison between the NLNN model and the physics-based soil 630 

moisture model derived from Richards' equation. 

The Ross method (P J Ross, 2003; Peter J Ross, 2006) is a rapid, non-iterative numerical scheme for 

soil moisture forward modeling based on Richards’ Equation. For boundary conditions, the daily 

reference evapotranspiration (ET0) is calculated with the FAO Penman-Monteith method (Allen et al., 

1998). We first utilize 10 days of site historical data to invert the site-specific soil hydraulic parameters 635 

(α, n,𝐾𝑠) through data assimilation with the ensemble Kalman filter (EnKF) method (Evensen, 2003) 

within the Ross framework. These parameters are then applied in the Ross method to obtain a fast solution 

of one-dimensional Richards’ equation, enabling the forecasting of soil moisture dynamics. 

In the real-world experiments, we selected three sites: Falkenberg, Cape-Charles, and Goodwell, with 

distinctly different soil textures and land covers, as recorded in Table 1 in the manuscript. Figure A1 640 

illustrates the autoregressive 24-day predicted time series soil moisture data for the PG-NLNN model 

and Ross-EnKF across these three sites. The MAE results are recorded in Table A3. It is seen that soil 

moisture forecasts obtained by PG-NLNN are closer to real observations, compared to the traditional 

Ross-EnKF method. 

 645 

Figure A1. The 24-day predicted soil moisture time series of 5 depths with PG-NLNN and Ross-EnKF at Falkenberg 

(a-e), Cape-Charles (f-j), and Goodwell (k-o). 
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However, it should be noted that the data assimilation process in Ross-EnKF did not update soil 

infiltration parameters, potentially disadvantaging the physical model. What’s more, the proposed 650 

approaches cannot predict soil moisture at arbitrary depths and times as the physical models. The 

fundamental differences between machine learning and physical modeling make fair, direct comparisons 

with standard methods both critical and difficult.  

Table A3. The MAE [%] values for 24-day forecasts of the proposed PG-NLNN model and Ross-EnKF model 

 Falkenberg Cape-Charles Goodwell 

PG-NLNN 0.681 1.766 1.998 

Ross-EnKF 4.395 5.484 3.840 

 655 

Moreover, our machine learning approach exhibits autoregressive error accumulation in long-term soil 

moisture predictions—a limitation not observed in physics-based modeling. As demonstrated by the 120-

day autoregressive forecasts (Figure A2), while model uncertainty gradually accumulates with prediction 

time, it remains within acceptable bounds. Importantly, the physics-guided PG-NLNN model maintains 

significantly greater stability across the entire prediction horizon. 660 

 

Figure A2. The 120-day predicted soil moisture time series of 5 depths with PG-NLNN and SA=NLNN at 

Falkenberg (a-e), Cape-Charles (f-j), and Goodwell (k-o). 

 

 665 
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