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Abstract: Photovoltaic (PV) power generation has become a cornerstone of clean energy, for which accurate forecasting is 

essential to ensure safe and efficient grid integration. However, raw Numerical Weather Prediction (NWP) outputs often fail 

to provide reliable forecasts because PV power is influenced by multiple coupled factors, including meteorological factors and 15 

photovoltaic modules. To address this challenge, this study develops a multi-scale PV power forecasting framework that 

integrates NWP with deep learning techniques (MIPV-NWP-PINN) and evaluates its performance using PV module 

monitoring data from a power station in northwestern China. First, a regional high-resolution NWP system based on the 

Weather Research and Forecasting (WRF) model is established to generate multi-scale meteorological forecasts with lead 

times of 6 hours, 1 day, 3 days, and 5 days. Next, a novel hybrid correction model that combines Quantile Mapping with a 20 

Temporal Pattern Attention-based Long Short-Term Memory (TPA-LSTM) network is proposed to improve the accuracy of 

Global Horizontal Irradiance (GHI) forecasts. This correction approach reduces the Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE) by more than 23% compared to raw NWP outputs. Building on these corrected meteorological 

forecasts, a Physics-Informed Neural Network (PINN)-iTransformer model is developed for the final prediction of PV power. 

By incorporating physical constraints directly into its loss function, this model consistently outperforms state-of-the-art 25 

alternatives across all forecasting horizons, achieving reductions of 15.5% in RMSE and 12.4% in MAE. This physics-

constrained framework substantially improves the accuracy and robustness of PV power forecasting across multiple time scales. 

The enhanced reliability directly supports secure PV grid integration and contributes to the broader transition toward low-

carbon energy systems.  

1 Introduction 30 

The rapid expansion of Photovoltaic (PV) power is reshaping the global energy landscape; it is projected to become the 

dominant renewable energy source by 2029 and is expected to constitute 8.3% of the total electricity supply by 2025 (Iea, 
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2024). Within this context, Northwest China, due to its abundant solar resources, has become a key region for the global PV 

industry’s growth. The region’s high solar irradiance and clear-sky index provide ideal conditions for large-scale, centralized 

PV plants, establishing it as the primary area for such deployments in China. However, the challenge of accurate PV forecasting 35 

is magnified in this region, which is characterized by an arid desert climate and complex meteorological dynamics. This 

environment is not only susceptible to frequent extreme weather, such as dust storms, but also experiences significant 

attenuation and variability in Global Horizontal Irradiance (GHI) due to high concentrations of anthropogenic aerosols (Nie 

and Mao, 2021). These uncertainties significantly impair the performance efficiency of PV modules and introduce substantial 

challenges to power grid stability and operational security. Consequently, accurate GHI forecasting is essential for ensuring 40 

the economic viability of power stations and maintaining the stability of the energy system.  

Many PV power forecasting studies inflate model performance by using actual weather data as input, a practice that does not 

reflect real-world forecasting scenarios (Dai et al., 2025). High-precision meteorological forecasts are crucial for enhancing 

the accuracy of PV power predictions, particularly for physics-based models (Das et al., 2018; Dai et al., 2025). While 

Numerical Weather Prediction (NWP) provides such forecasts, its outputs often exhibit significant deviations from actual 45 

observations. Therefore, improving the accuracy of NWP-derived GHI has become a key challenge in the operation of PV 

systems. Literature consensus suggests that mainstream radiation transfer schemes, like those in the Weather Research and 

Forecasting (WRF) model, systematically overestimate GHI across various weather conditions. This bias is amplified by 

increasing cloud cover and aerosol influence (Zempila et al., 2016). To mitigate this bias, researchers have incorporated factors 

such as aerosols into their models (Ruiz-Arias et al., 2014). Despite these efforts, models still fail to overcome the GHI 50 

overestimation problem. For instance, Yue et al. (2025) demonstrated that WRF-Solar tends to underestimate total cloud 

fraction in China, leading to a persistent overestimation of GHI. This issue becomes particularly acute in China’s arid and 

semi-arid regions, where most large-scale PV plants are clustered. In these areas, the complex mixture of dust and 

anthropogenic aerosols, compounded by the NWP model’s deficiencies in representing cloud microphysics, further amplifies 

forecast uncertainty.  55 

Given the complexity and expense of directly modifying the core of NWP models, statistical post-processing techniques have 

emerged as a cost-effective alternative. For instance, Visaga et al. (2024) employed a Kalman filter (KF) to post-process WRF-

generated GHI, reducing its Root Mean Squared Error (RMSE) by 17%. Similarly, Khan and Jama (2024) implemented bias 

correction using a nonlinear regression model, while Rincón et al. (2018) combined KF with model output statistics, achieving 

up to a 97% reduction in annual GHI bias compared to raw forecasts. Alvarenga et al. (2022) used an Artificial Neural Network 60 

(ANN)-KF model for GHI correction, reducing the Mean Absolute Error (MAE) of the raw GHI by 45%. These studies 

demonstrate that statistical post-processing is a powerful tool for improving NWP forecast accuracy at a modest computational 

cost. Therefore, applying bias correction to NWP outputs is a proven strategy for enhancing the practical utility of PV power 
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forecasts. Despite these advances, significant opportunities remain for developing more sophisticated statistical correction 

algorithms to further improve the reliability of forecasts. 65 

Furthermore, even a corrected irradiance forecast is not the final product; a subsequent modeling step is required to convert 

this meteorological data into a PV power prediction. The methods to solve this problem are broadly classified into three 

categories: physical, data-driven, and hybrid models (Gupta et al., 2025; Li et al., 2025). Physical models, exemplified by the 

five-parameter model, simulate power output from the intrinsic parameters of PV modules (De Soto et al., 2006), but their 

practical performance is often limited (Wang et al., 2019). In contrast, data-driven statistical methods have become the 70 

mainstream approach due to their flexibility and high accuracy. Traditional statistical models, including Multiple Linear 

Regression (Alskaif et al., 2020), Random Forest (Kumar et al., 2025), and Support Vector Machine (Vandeventer et al., 2019), 

have been increasingly superseded by deep learning architectures. For example, Multi-Layer Perceptron (MLP) (Liu and Gai, 

2025), Recurrent Neural Network (Vu and Chung, 2022), Long Short-Term Memory (LSTM) (Guo et al., 2025; Liu et al., 

2024), and Transformer (Piantadosi et al., 2024; Wu et al., 2024a) have been applied to prediction owing to their superior non-75 

linear feature extraction capabilities. Predictive accuracy can be refined through hybrid frameworks, often employing 

metaheuristic algorithms for hyperparameter optimization (Zhai et al., 2025; Peng et al., 2024). Nevertheless, purely data-

driven models are inherently ‘black-box’ in nature. Their prediction process lacks physical interpretability and even yields 

outputs that violate fundamental physical laws in scenarios with sparse or noisy training data. 

Hybrid models that fuse physical principles with statistical learning have emerged to address limitations in PV power 80 

forecasting. These frameworks range from mechanism-driven hybrids to statistical-physical fusion models (Santos et al., 2024). 

A common strategy involves a ‘shallow’ or sequential integration of physics. For instance, the Physical-Hybrid Artificial 

Neural Network (PHANN) couples a solar radiation model with MLP (Dolara et al., 2015; Hottel, 1976). Other works have 

adopted similar cascaded structures, such as using a physical model to compute module-surface irradiance as an input feature 

for an LSTM network (Wu et al., 2024b), or to establish a baseline physics prediction that an ANN subsequently refines to 85 

capture residual dynamics (Zhang et al., 2024). Despite improving accuracy, these cascaded frameworks lack deep mechanistic 

integration. In contrast, Physics-Informed Neural Networks (PINN) provide a more profound mechanistic basis. PINN embeds 

physical laws, often in the form of differential equations, directly into the neural network’s loss function, compelling the model 

to adhere to physical principles during training (Raissi et al., 2019). Although PINN has been applied to related PV tasks, such 

as temperature prediction (Wang et al., 2025), its direct application to PV power forecasting remains underexplored. Deeply 90 

coupling PINN with advanced time-series models for direct PV power prediction represents a significant, yet largely untapped, 

research area with substantial scientific merit. 

To bridge these research gaps, this study develops a NWP-driven multi-scale photovoltaic forecasting framework that 

fundamentally integrates physical principles with data-driven modeling through deep synergistic coupling (MIPV-NWP-
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PINN). The MIPV-NWP-PINN comprises a hierarchical, multi-module forecasting chain, with its technical pipeline illustrated 95 

in Figure 1. Firstly, we establish a WRF prediction system to generate fine-grained numerical weather forecasts. Secondly, we 

design a hybrid correction module employing a Quantile Mapping -Temporal Pattern Attention-Long Short-Term Memory 

(QM-TPA-LSTM) network to enhance the GHI accuracy. Following this, a physical model is utilized to calculate the plane-

of-array irradiance (𝑮𝑷𝑶𝑨 ). For the final task of PV power prediction, we construct a PINN-iTransformer model by 

incorporating the physical equations constraint. This ‘physics-constrained, data-driven’ hybrid architecture excels in statistical 100 

performance and significantly improves physical consistency and interpretability. This paper is structured as follows: Section 

1 provides an introduction to the core issues and scope of the study. Section 2 presents the theoretical underpinnings and 

methodologies employed. Section 3 elaborates on the process of GHI correction and estimation. Finally, Section 4 details the 

PV power prediction, including a comparative analysis against other established models. 

 105 

Figure 1: Flowchart of the MIPV-NWP-PINN. 

2 Data and Methods 

2.1Data Acquisition 

The proposed forecasting framework was empirically evaluated using high-resolution data from a PV power station in 

Zhongwei, Ningxia, China (37.53°N, 105.04°E), as depicted in Figure 2(c). The system recorded key variables including 110 

ambient air temperature, GHI, wind speed, wind direction, PV module temperature, and PV power output. Data were collected 

from June 1 to July 31, 2020, with a temporal resolution of 120 seconds. This observational dataset calibrated and evaluated 

all NWP simulations and subsequent power forecasting models. The technical specifications and related parameters of the 

sampling equipment are detailed in Table S1(in the support file). We incorporated GHI data from six additional National Solar 

Radiation Database (NSRDB) stations to assess the framework’s spatial generalizability. The GHI data from these stations are 115 

well-established to exhibit high agreement with ground-based measurements (Sengupta et al., 2018). The geographical 
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distribution of these six stations is illustrated in Figure 2(b). 

2.2  he W F Numerical Model 

High-resolution regional meteorological forecasts were generated using the WRF model (version 4.1) (Stossmeister et al., 

2019). A four-level nested domain configuration was employed with horizontal resolutions of 27, 9, 3, and 1 km for domains 120 

d01 to d04, respectively, as illustrated in Figure 2(a). This progressively refined grid setup enables downscaling large-scale 

weather patterns to a kilometer-scale resolution. 

  

Figure 2: W F model domain configuration and site locations. (a),  opography of the four nested W F domains (d01–d04). (b), 

Map of a subregion within the d03 domain, where red markers indicate the locations of the evaluation sites. (c), A zoomed-in map of 125 

the d04 domain, with the green point marking the location of the primary observation station. 

The WRF simulation period covered from 00:00 UTC on June 1, 2020, to 23:00 UTC on July 31, 2020, with hourly outputs. 

To emulate a realistic operational forecasting procedure, we implemented a rolling forecast scheme to create forecasts with 

horizons of 6, 24, 72, and 120 hours. The initial 12 hours of each simulation run were discarded as a spin-up period to ensure 

forecast accuracy. Consequently, the actual simulation duration was set to N+12 hours to obtain a valid N-hour forecast. 130 

Specifically, estimates of 6, 24, 72, and 120 hours corresponded to simulation durations of 18, 36, 84, and 132 hours, 

respectively. Each forecast cycle was initialized and bounded by the Final Operational Global Analysis data from the National 

Centers for Environmental Prediction (Contributor, 2015), and data assimilation was turned off across all domains. This 

approach not only simulates real-world forecasting practices but also reduces initial condition errors. Table S2 presents the 

central physics parameterization schemes used in this study. The Dudhia scheme (Dudhia, 1989), a widely adopted model in 135 

the field, was employed for shortwave radiation. 

2.3  M- PA-   M  adiation  orrection Model 

This study proposes QM-TPA-LSTM, a hybrid post-processing model designed to correct inherent biases in NWP forecasts. 

The model employs a two-stage sequential correction strategy to perform rolling corrections on the GHI output from the WRF 

model, as illustrated in Figure 1. The QM method provides an initial statistical bias correction in the first stage. In the second 140 

stage, a TPA-LSTM network models and predicts the residual errors from the first stage. The final, refined GHI forecast is 
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then obtained by aggregating the corrected GHI with the TPA-LSTM-predicted residuals. 

QM is a highly reliable statistical method for climate bias correction (Sun et al., 2022). It performs corrections based on the 

statistical distributions of data rather than complex physical processes. For example, studies have shown that QM reduced 

WRF-simulated rainfall RMSE by 34% (Charoensuk et al., 2024), effectively minimized errors in soil moisture predictions 145 

(Koujani et al., 2025), and significantly improved precipitation and temperature forecasts (Ngai et al., 2017). The fundamental 

principle of QM is that for a given raw WRF forecast value, its quantile in the distribution of the raw WRF training data should 

be identical to the quantile of the corrected value in the distribution of the observed training data (Charoensuk et al., 2024). In 

this study, we employ the empirical cumulative distribution function. Although the QM correction enhances forecast accuracy, 

the residual errors contain valuable, yet uncaptured, predictive information. The TPA-LSTM network is employed to capture 150 

these dynamics. The TPA mechanism enhances the standard LSTM by using the final hidden state as a query to compute 

attention weights over all previous hidden states. A context vector is then formed as a weighted sum, allowing the model to 

selectively focus on historically relevant features for the current prediction, thereby improving forecast accuracy (Shih et al., 

2019). 

2.4 PINN-i ransformer Framework 155 

We developed the PINN-iTransformer model to achieve high-precision, multi-scale PV power forecasting by integrating 

physical mechanisms with an advanced deep learning architecture. This module utilizes iTransformer as its backbone network 

to capture complex temporal dependencies, while embedding constraints from a semi-empirical physical model via the PINN 

framework to enhance its generalization capability and physical interpretability. 

2.4.1 i ransformer Model 160 

Transformer-based architectures are widely applied in time series forecasting due to their proficiency in capturing complex 

temporal patterns (Piantadosi et al., 2024; Wu et al., 2024a). However, when processing multivariate time series, the 

conventional Transformer embeds data points from the same time step but different variables into a single token, which can 

weaken the correlations between variables. As shown in Figure 3, iTransformer inverts the roles of the feed-forward network 

and the attention mechanism within the Transformer framework. Specifically, it embeds the time points of individual series 165 

into variable-tokens, which are then processed by the attention mechanism to capture inter-variable correlations (Liu et al., 

2023). 
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Figure 3:  chematic of the modified i ransformer architecture. 

2.4.2 Physics-Informed Neural Networks 170 

(a)  emi-empirical Physical Model 

To integrate a priori physical knowledge into our data-driven framework, we employ a semi-empirical PV power model as a 

physical constraint. This model class was chosen for its ability to balance model complexity and predictive utility effectively. 

The study employs the efficient semi-empirical model proposed by Fan et al. (2025), which estimates power output based 

solely on solar irradiance, ambient temperature, wind speed, and a coefficient representing the thermal loss characteristics of 175 

the module. Its advantages lie in its minimal parameter requirements and high computational efficiency while retaining a 

description of the core physical processes. 

𝑷𝒑𝒉𝒚 = 𝒇𝑷𝑽 (
𝑮𝑷𝑶𝑨

𝑮𝑺𝑻𝑪
) [𝟏 + 𝜶𝑷𝑽(𝑻𝒄 − 𝑻𝒓𝒆𝒇)]𝑷𝑴𝑷𝑷 (1) 

𝑻𝒄 = 𝑻𝒂 + 𝑮𝑷𝑶𝑨𝒆𝒙𝒑𝒂 + 𝒃 · 𝝎𝒔 (2) 

Where, 𝑷𝒑𝒉𝒚 is the PV power output, 𝒇𝑷𝑽 represents the photovoltaic module efficiency coefficient, which is intrinsically 180 

linked to the module’s manufacturing process. 𝑮𝑺𝑻𝑪 is the irradiance on the module surface under standard test conditions， 

𝜶𝑷𝑽  is the photovoltaic module temperature loss coefficient, 𝑻𝒄  is the module temperature, and 𝑻𝒓𝒆𝒇  is the module 

temperature under reference conditions. 𝑷𝑴𝑷𝑷 signifies the module’s maximum power, 𝝎𝒔 represents the wind speed, and 

𝑻𝒂 denotes the ambient temperature. The coefficients 𝒂, 𝒃 are undetermined parameters that can be fitted from historical 

data using the least squares method. 185 

(b) PINN Model 

The core idea of PINN is to guide model training by augmenting the loss function. In addition to the standard supervised 

learning loss (MSE), this study introduces a physics-informed loss term. This loss term quantifies the discrepancy between the 
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iTransformer’s output and the estimates from the semi-empirical physical model. Therefore, the total loss function is defined 

as a weighted sum of the supervised loss and the physics-informed loss. During model optimization, this physics-inspired 190 

regularization term compels the network to converge towards a solution space that adheres to physical laws while fitting the 

observational data. This prevents physically implausible predictions and significantly improves the model’s dynamic 

consistency and extrapolation capabilities under various operating conditions. The total loss function consists of a data-driven 

loss and a physics-informed loss, with its mathematical formulation as follows: 

𝓛 = 𝓛𝒑𝒓𝒊𝒎𝒂𝒓𝒚 + 𝝀𝓛𝒑𝒊𝒏𝒏 (3) 195 

Concurrently, a first-order ordinary differential equation (ODE) describing the dynamic temporal evolution of photovoltaic 

power is introduced. This equation characterizes the system’s relaxation towards its equilibrium state, taking the following 

form: 

𝒅𝑷̂(𝒕)

𝒅𝒕
= −𝒌 · (𝑷̂(𝒕) − 𝑷𝒆𝒒(𝒕)) (4) 

Where, 𝑷̂(𝒕)  denotes the generated power of the module at time t, 𝑷𝒆𝒒(𝒕)  represents the theoretical equilibrium power 200 

derived from the model proposed by (Fan et al., 2025), and k is the relaxation coefficient. 

The physical residual, denoted as 𝑹(𝒕), is defined based on this ODE and can be expressed as: 

𝑹(𝒕) =
𝒅𝑷̂(𝒕)

𝒅𝒕
+ 𝒌 · (𝑷̂(𝒕) − 𝑷𝒆𝒒(𝒕)) (5) 

Consequently, the physical loss function is formulated as the mean squared value of these residuals: 

𝓛𝒑𝒊𝒏𝒏 =
𝟏

𝑵
∑ (𝑹𝒊)

𝟐𝑵
𝒊=𝟏  (6) 205 

Ultimately, by minimizing the weighted total loss 𝓛 = 𝓛𝒑𝒓𝒊𝒎𝒂𝒓𝒚 + 𝝀𝓛𝒑𝒊𝒏𝒏, this work trains a model that achieves both accurate 

data fitting and adherence to physical principles. 

3 Data Preprocessing and Feature  ngineering  

3.1  eliability Analysis of NWP Output 

Figure 4 presents scatter plots comparing WRF model forecasts with station observations for temperature and GHI at various 210 

lead times (6 h and 1–5 days), while Figure 5 shows a time-series comparison for GHI. The WRF model exhibits high predictive 

skill for temperature across all lead times, demonstrating a strong correlation with observations and low error metrics. For 

GHI, the model accurately reproduces the diurnal cycle and overall trends, and notably, it effectively captures sharp declines 

in irradiance associated with sudden weather events, such as cloud-cover changes and precipitation (indicated by the light-red 

shaded area in Figure 5). This capability to represent the influence of key meteorological processes on solar radiation 215 

underscores the scientific merit of the WRF forecasts. Nevertheless, a persistent systematic overestimation bias is evident in 

the GHI forecasts (Figure 4), with maximum errors reaching an RMSE of 231.5 W/m² and an MAE of 159.3 W/m². As solar 
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radiation is a direct input for photovoltaic power forecasting, this bias directly propagates to power predictions, introducing 

significant uncertainty. Consequently, bias correction of the model’s radiation output is an essential step for subsequent 

applications (Lindsay et al., 2020). 220 

  

Figure 4:  omparison of W F-simulated and observed meteorological variables at Zhongwei station.  

  

Figure 5:  ime series of observed   I versus NWP predictions at various forecast horizons. 

We cross-validated the WRF model’s forecasts against data from six diverse reference sites (Figure 2(b)) to rigorously assess 225 

its spatial generalizability. As illustrated in Figure 6, the WRF model’s performance at these external sites is highly consistent 

with its performance at the local observation station, with high correlation coefficients (R). While the GHI overestimation bias 

persisted, its magnitude was lower than at the primary Zhongwei site. A scale mismatch likely explains this reduction. The 
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WRF simulation’s 1 km × 1 km resolution at Zhongwei produces area-averaged irradiance, amplifying apparent GHI error 

compared to single ground-station point measurements. Conversely, the gridded NSRDB data provides better spatial 230 

representativeness and more closely matches the WRF output. This multi-site validation confirms that the WRF numerical 

model exhibits good reliability for short- to medium-range weather forecasting, providing robust environmental variable inputs 

for the subsequent PV power forecasting model. 

 

Figure 6:  valuation of meteorological forecasts at different sites.  235 

3.2   I  orrection 

This study implements real-time, multi-step rolling corrections for the WRF-derived GHI, as illustrated in the forecasting 

scheme presented in Figure 7. The framework leverages historical GHI observations and WRF meteorological parameters as 

inputs. During the data preprocessing phase, a dataset comprising 900 hours of valid GHI observations was constructed after 

cleaning and filtering. This dataset covers 60 days, with 15 daytime hours selected from each day. The dataset was partitioned 240 

into a training set (the first 400 steps), a validation set (the subsequent 100 steps), and a test set (the final 400 steps). 

To simulate a realistic operational forecasting scenario, the forecast horizons were set to 6, 15 (one day ahead), 45 (three days 

ahead), and 75 steps (five days ahead), aligning with the WRF rolling forecast mechanism. Correspondingly, the model utilized 

historical data from 60, 90, 180, and 225 steps as input. This input-output length configuration is designed to capture dynamic 

dependencies across different time scales. An automated, non-overlapping rolling-window mechanism realizes the model’s 245 

prediction process. Specifically, the model generates a GHI sequence based on historical data for a forecast horizon. After this 

sequence is recorded, the entire prediction window is advanced by several steps equal to the forecast horizon (e.g., after a 15-

step forecast, the window slides forward 15 steps), and the next prediction begins from this new position. This process is 

iterated until a continuous sequence of predictions covering the entire test set is generated. The efficacy of the GHI correction 

at the primary Zhongwei site is illustrated in Figure 8. Its performance relative to benchmark models is detailed in Figure 9, 250 

and the generalizability of the correction is demonstrated across six additional sites in Figure 10.  
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Figure 7:  chematic of the forecast output strategy.  he forecast horizons are 6, 15, 45, and 75 steps, corresponding to lead times of 

6 hours, 1 day, 3 days, and 5 days, respectively. 

Figure 8 systematically illustrates the correction effect of the hybrid QM-TPA-LSTM model on the raw GHI forecasts at the 255 

Zhongwei site. The time-series plot (top) shows that the corrected GHI (blue) closely tracks the ground-truth measurements 

(red), effectively mitigating the substantial overestimation bias of the raw WRF forecast (green). The scatter plots on the right 

further corroborate this improvement from a statistical distribution perspective: the corrected data points (blue) converge more 

tightly around the 1:1 diagonal line (red), indicating a substantial enhancement in the consistency between predicted and 

observed values. The bar charts at the bottom provide a quantitative evaluation of RMSE and MAE for different forecast 260 

horizons. The results show that the corrected GHI exhibits a marked decrease in both RMSE and MAE under all conditions, 

with an average reduction exceeding 23%, thereby significantly improving the quality of the GHI output. 

The 6-hour-ahead correction yielded the best performance, with reductions in RMSE and MAE of 33% and 36%, respectively. 

However, the correction performance diminishes as the forecast horizon increases. This phenomenon is likely due to two 

factors: (1) the inherent challenge for neural networks to model long-range temporal dependencies, and (2) a dataset size that 265 

may be insufficient for the model to learn high-frequency meteorological fluctuations. 

     
   

     
   

     
   

     
   

    
   

    
       

   

    
   

    + 
       + 

       

      
   

      
   

      
   

      
   

    
   

    
       

   

    
   

    +  
       +  

       

      
   

      
   

      
   

      
   

    
   

    
       

   

    
   

    +  
       +  

       

PredictionInput Data

 

 

 

 

 

 

 

 

 

        + 

 olling Forecasting
ing

     

          

  

  + 

  +   +  

   +   +   +   

         +   

  +  

  +   +   

  +    +    +   

      

             

         +   
  +  

  +   +   

  +    +    +   

      
             

      
   

      
   

      
   

      
   

    
   

    
       

   

    
   

    +  
   

    +  
        

  

         +   

  +  

  +   +   

  +    +    +    

      
             

6hours

1day

3days

5days

D
a
ta

 
et
ti
n
g  raining  et Validation  et  est  et

Number:0 3  Number:400 4  Number:500    

In
p
u
t

D
a
ta

W F-  I W F- emperature W F-  W F-Wind  peed  istory Observed   I

 
o
ll
in
g
 F
o
r
e
ca
s
ti
n
g
  
c
h
em

e

https://doi.org/10.5194/egusphere-2025-4439
Preprint. Discussion started: 28 October 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

 

 

  

Figure  : Performance evaluation of the   I correction model.  

The proposed QM-TPA-LSTM model was evaluated against three benchmarks across multiple forecast horizons: LSTM (Yang 

et al., 2025; Sun et al., 2022) and Transformer (Piantadosi et al., 2024; Wu et al., 2024a), as well as the KF model, which is 270 

widely used in meteorological correction (Visaga et al., 2024). As shown in Figure 9, all models successfully corrected the raw 

WRF GHI output, demonstrating the efficacy of the post-processing framework. However, the classic KF model outperformed 

the standard LSTM and Transformer models. This suggests that, for this specific task, standard deep learning models may not 

necessarily surpass established statistical methods without targeted architectural design. The proposed QM-TPA-LSTM model 

achieved the best correction under all conditions, with the lowest RMSE and MAE values and a distribution closer to the actual 275 

values. This validates the effectiveness of the hybrid model architecture in more effectively correcting both systematic and 

random errors in GHI forecasts. 
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Figure  :  omparison of different correction models for W F-simulated   I.  

We validated the generalization of the QM-TPA-LSTM model by correcting GHI forecasts at six geographically diverse 280 

NSRDB sites. The correction results in Figure 10 show that the model consistently reduced the error of the raw WRF forecasts 

across all external test sites and for all forecast horizons. Specifically, the model achieved maximum reductions in RMSE and 

MAE of 15.1% and 17.4%, respectively, at different sites. These results provide compelling evidence that the model can 

effectively enhance GHI correction accuracy, even when applied to other geographical locations and data sources (e.g., 

NSRDB). In conclusion, our local and multi-site validations demonstrate that the proposed hybrid framework is a generalizable 285 

and effective tool for post-processing GHI in numerical weather forecasts. 
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Figure 10:  valuation of correction results using N  DB data at multiple sites.  

3.3  alculation of Irradiance on the PV Module  urface 

Although the forecast accuracy of GHI was improved through bias correction, the 𝑮𝑷𝑶𝑨 , which is the radiation actually 290 

absorbed by PV modules, is influenced by a complex interplay of multiple radiation components. Therefore, using GHI directly 

for power forecasting may introduce uncertainty. As shown in Figure 11(a), the instantaneous position of the sun is defined by 

key geometric parameters, including the solar zenith angle, solar azimuth angle, and solar elevation angle. These angles exhibit 

periodic, dynamic changes over time, causing significant variations in the solar irradiance received by the PV module at 

different moments. This variation follows a well-defined astronomical time function. Figure 11(b) further elucidates the 295 

physical composition of the irradiance received on the module surface. This total irradiance is a superposition of three 

components: the projection of Direct Normal Irradiance (DNI) onto the module plane, Diffuse Horizontal Irradiance (DHI), 

and ground-reflected irradiance (Mahmoudi et al., 2024; Anderson et al., 2023). Accurate calculation of 𝑮𝑷𝑶𝑨 requires the 

decomposition of GHI and the application of a radiation transposition model that incorporates the module’s tilt and azimuth 
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angles. This is a critical step toward achieving high-precision PV power forecasting. The underlying physical principles are as 300 

follows: 

𝑮𝑷𝑶𝑨 = 𝑮𝒃 + 𝑮𝒈 + 𝑮𝒅 (7) 

Here, 𝑮𝑷𝑶𝑨 represents the total solar irradiance on the PV module surface, 𝑮𝒃 denotes the beam irradiance on the tilted 

plane, 𝑮𝒈 is the isotropic ground-reflected irradiance, and 𝑮𝒅 signifies the diffuse sky irradiance. The beam irradiance is 

calculated as: 305 

𝑮𝒃 = 𝑫𝑵𝑰 · 𝒄𝒐𝒔𝜽𝒊 ( ) 

Where 𝜽𝒊 is the angle between the sun’s rays and the normal to the photovoltaic module surface (the angle of incidence). This 

angle can be expressed by the following equation: 

𝒄𝒐𝒔𝜽𝒊 = 𝒔𝒊𝒏𝝋 · 𝒔𝒊𝒏𝜹 · 𝒄𝒐𝒔𝜷 − 𝒄𝒐𝒔𝝋 · 𝒄𝒐𝒔𝜸 + 𝒄𝒐𝒔𝝋 · 𝒄𝒐𝒔𝜹 · 𝒄𝒐𝒔𝝎 · 𝒄𝒐𝒔𝜷 ( ) 

Here, 𝝋 is the latitude of the module’s location, 𝜹 is the solar declination angle, 𝜸 is the azimuth angle of the PV module, 310 

𝝎 is the hour angle, and 𝜷 is the tilt angle of the PV module installation. 

The calculation principle for 𝑮𝒈 is as follows: 

𝑮𝒈 = 𝑮𝑯𝑰 · 𝝆 ·
(𝟏−𝒄𝒐𝒔𝜷)

𝟐
 (10) 

The calculation principle for 𝑮𝒅 is as follows: 

𝑮𝒅 = 𝑫𝑯𝑰 · 𝑹𝒅 (11) 315 

Where 𝑹𝒅 is the diffuse transposition factor. 

Model for calculating 𝑮𝑷𝑶𝑨  are integrated into the pvlib-python library developed by Sandia National Laboratories 

(Anderson et al., 2023). In this study, we first employed the Erbs model to decompose GHI (Erbs et al., 1982). Subsequently, 

the classic Hay-Davies anisotropic sky model was used to calculate the diffuse irradiance received on the tilted surface of the 

PV module (Hay, 1979). The ground-reflected irradiance component was estimated based on a constant ground albedo of 0.2, 320 

a typical value for common vegetation or soil surfaces. In Figure 11(c), the blue curve represents the corrected GHI time series, 

while the red curve shows the resulting 𝑮𝑷𝑶𝑨 time series. 

 

Figure 11:  olar geometry and irradiance components. (a),  chematic illustrating the solar zenith, azimuth, and altitude angles. (b), 
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 omponents of solar irradiance on a tilted PV module surface. (c),  ime series of the corrected   I and the calculated 𝑮𝑷𝑶𝑨. 325 

4 PV Power Forecasting and  valuation 

A comparative study was designed to validate the PINN-iTransformer using operational data from a station in Zhongwei. The 

overall forecasting architecture is depicted in Figure 12. The experimental protocol involved partitioning the dataset into 

training (80%), validation (10%), and testing (10%) sets to prevent information leakage. We benchmarked our proposed PINN-

iTransformer against a suite of models representing distinct strategies for integrating physical principles with deep learning. 330 

The comparison began with a standard iTransformer, a purely data-driven baseline. We then evaluated a tandem hybrid model 

(Physics-iTransformer), where an initial forecast from a physical model is corrected by a subsequent iTransformer that learns 

the residual error. Finally, we assessed a physics-constrained model (PC-iTransformer), which incorporates a physical model 

from (Fan et al., 2025) as a soft constraint by penalizing deviations from physical laws within the loss function. Performance 

was systematically evaluated across multiple forecast horizons: 6 hours, 1 day, 3 days, and 5 days. Figures 13-15 demonstrate 335 

that the PINN-iTransformer architecture consistently outperformed all competing models, confirming its superior predictive 

accuracy. 

 
Figure 12:  chematic of the PV power forecasting framework. 

Figure 13 presents a comprehensive performance evaluation of the four primary forecasting models across multiple horizons. 340 

The analysis reveals a clear hierarchy of performance. The serial hybrid model (Physics-iTransformer) exhibited the poorest 

performance, with its error metrics (R, MAE, RMSE) significantly higher than those of other models. This suggests a simple 

residual correction framework is prone to error accumulation and amplification. The purely data-driven iTransformer 

occasionally generated physically implausible negative power values, a common artifact of deep learning models lacking 
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physical boundary constraints. In stark contrast, models incorporating physical knowledge demonstrated markedly superior 345 

reliability. Both the PC-iTransformer and our proposed PINN-iTransformer outperformed the baseline models. Notably, the 

PINN-iTransformer achieved the best overall performance, consistently yielding the highest R and the lowest MAE and RMSE 

across all forecast horizons. This result supports the hypothesis that integrating physical differential equations deeply into the 

network architecture, as the PINN framework does, substantially enhances model generalization and predictive accuracy. 

 350 

Figure 13:  ime series plot of PV power predictions and error histogram evaluation.  

The predictive accuracy of all models degrades over longer forecast horizons, a deterioration attributable to three factors. First, 

cumulative error in the WRF-derived GHI propagates through the forecast, directly impairing power prediction. Second, the 

capacity of neural networks to maintain long-term temporal dependencies inherently diminishes across extended sequences. 

Finally, the limited training dataset constrains the model’s ability to learn features robust enough for long-range inference, 355 

amplifying prediction errors. 

Furthermore, to better reflect real-world engineering applications and address the computational cost of WRF simulations, 

specifically, the resource redundancy from short rolling steps needed to avoid ‘spin-up’ errors, we used a 5-day rolling WRF 

forecast to evaluate performance. As shown in Figure 14, the PINN-iTransformer model’s predictions align more closely with 

the 1:1 line than the benchmarks. Across all forecast horizons, the model consistently outperforms all benchmark models, 360 
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reducing RMSE and MAE by up to 15.5% and 12.44%, respectively. Notably, while prediction errors for all models increase 

with the forecast horizon, the PINN-iTransformer maintains the lowest RMSE and MAE. 

 

Figure 14: Multi-step PV power forecasting performance using a 5-day W F forecast.  

The proposed PINN-iTransformer was evaluated against a diverse set of benchmarks, including LSTM (Yang et al., 2025), the 365 

frequency-domain-based TimsNet (Yu et al., 2025), a hybrid model integrating an attention mechanism, CNN-Attention-

BiGRU (Dai et al., 2024), and the multilayer perceptron-based TSMixer (Ekambaram et al., 2023). All models were evaluated 

using the same multi-step forecasting tasks. The results, presented in Figure 15, clearly demonstrate the outstanding 

performance of the PINN-iTransformer. Its RMSE and MAE metrics are significantly lower for all specified forecast horizons 

than for all benchmark models.  370 
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Figure 15: Performance comparison of different models for multi-step forecasting.  

 

5  onclusion 

This study proposes a physics-informed real-time forecasting framework (MIPV-NWP-PINN) designed to overcome key 375 

limitations—such as poor generalizability and physical inconsistency—in conventional data-driven approaches for 

photovoltaic (PV) power forecasting. The framework establishes an end-to-end prediction pipeline that integrates high-

resolution numerical weather prediction (NWP), a novel global horizontal irradiance (GHI) bias correction model, and a 

physics-constrained deep learning architecture. 

First, the hybrid QM-TPA-LSTM model synergistically combines statistical quantile mapping with deep temporal pattern 380 
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extraction, achieving superior GHI bias correction accuracy across forecasting horizons ranging from 6 hours to 5 days, 

outperforming existing methods including standalone neural networks and Kalman filter (KF) models. 

Second, the newly developed PINN-iTransformer architecture for power forecasting explicitly incorporates physical principles 

into the network design. This integration ensures physically plausible predictions, effectively guiding the learning process and 

substantially improving model generalization and stability. As a result, the PINN-iTransformer consistently exceeded the 385 

performance of state-of-the-art time-series models across all evaluated forecast horizons. 

While this study demonstrates a robust proof of concept at a single station, future work will focus on validating and extending 

the framework’s applicability across diverse geographical and climatic conditions. Additionally, although the GHI correction 

component proves effective, it remains largely data-driven. A critical direction for future research is to enhance its physical 

fidelity through explicit modeling of radiative transfer effects influenced by atmospheric constituents such as clouds, 390 

anthropogenic aerosols, and dust. 
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