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Abstract. Precipitable water vapor (PWV) exhibits rapid and complex variations during typhoons, and its evaluation under 

typhoon conditions remains challenging due to sparse observations over the oceans. This study systematically evaluates 

PWV estimates from three state-of-the-art reanalyses during 113 typhoons between 2020 and 2024 over the Northwest 

Pacific and East Asia. The fifth-generation European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5), the 15 

Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), and the Japanese Reanalysis for 

Three Quarters of a Century (JRA-3Q) are compared with ground-based Global Navigation Satellite System (GNSS), 

radiosondes, and radio occultation (RO) observations. Results based on ground-based GNSS show that ERA5 provides the 

highest accuracy, with a bias of −1.65 mm in non-typhoon periods and an even smaller bias of −0.29 mm during typhoons, 

and root mean square error (RMSE) decreasing from 3.52 mm in non-typhoon periods to 3.40 mm during typhoons. JRA-3Q 20 

also has smaller error during typhoons compared to non-typhoon periods though its bias and RMSE remain relatively large. 

Conversely, MERRA-2 shows higher error during typhoons compared to non-typhoon periods, shifting from a modest 

underestimation of −0.53 mm in non-typhoon periods to an overestimation of 0.86 mm during typhoons, but still maintains 

accuracy throughout typhoon periods. PWV estimates from all three reanalyses show high correlations with those from 

radiosonde and RO observations. These results provide a comprehensive accuracy reference and confirm the suitability of 25 

reanalyses for PWV researches during typhoons, with ERA5 appearing the most reliable among the datasets evaluated. 

1 Introduction 

Water vapor is primarily distributed within the troposphere and is one of the most important greenhouse gases. It plays a 

critical role in energy exchange within weather systems, the hydrological cycle, and climate change (e.g., Schneider et al., 

2010; Sherwood et al., 2010). Precipitable water vapor (PWV), defined as the total amount of water vapor contained in a 30 

vertical column of the atmosphere per unit area, is a key variable for characterizing atmospheric water vapor. It is widely 
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used in meteorological and climatological monitoring and forecasting (e.g., Zhao et al., 2020; Zhang et al., 2022). The 

spatio-temporal variation and distribution of PWV does not only influence the vertical humidity structure and water vapor 

transport processes but are also closely associated with the formation and development of various extreme weather events, 

including severe convective systems (Kim et al., 2022; Liu et al., 2023). 35 

Tropical cyclones (TCs) are among the most destructive types of extreme weather. They occur frequently, exhibit high 

intensity, and cause widespread impacts (Emanuel, 2005; Walsh et al., 2012; Chan et al., 2018; Wang et al., 2020; Shi et al., 

2021; Xi et al., 2023). TCs are often accompanied by heavy rainfall and secondary disasters such as flooding, landslides, and 

debris flows (Woodruff et al., 2013; Cogan et al., 2018; Utsumi and Kim, 2022). With intensifying global warming, the 

average translational speed of TCs has decreased by approximately 10%, while their associated precipitation has increased 40 

by about 15%, leading to more prolonged impacts in affected regions (Elsner, 2020; Intergovernmental Panel on Climate 

Change (IPCC), 2022; Tran et al., 2022). 

TCs occurring over the Northwest Pacific and the South China Sea are referred to as typhoons. In recent years, typhoons 

have frequently struck countries in the Asia-Pacific region, including China, South Korea, and Japan, with southeastern 

China being particularly vulnerable. These events have resulted in substantial casualties and economic losses (Esteban and 45 

Longarte-Galnares, 2010; Jung et al., 2024; Wang et al., 2024). Some intense typhoons and their residual circulations have 

even penetrated deep into inland China. For example, Typhoon In-Fa (2106) in 2021 and the double typhoons Doksuri (2305) 

and Khanun (2306) in 2023 caused severe flooding in northern and northeastern China (Shi et al., 2022; Zhao et al., 2024). 

As a type of extreme weather driven in part by atmospheric moisture, typhoons are strongly coupled with the spatio-temporal 

distribution of PWV. PWV reveals the pathways and intensity of moisture transport during typhoons and exhibits a strong 50 

physical response to their evolution and movement. Therefore, high-accuracy PWV estimates are crucial for understanding 

the mechanisms underlying extreme precipitation during TCs, improving TC monitoring and forecasting, and supporting 

disaster risk assessment and mitigation efforts. 

Various measurement techniques have been employed to retrieve PWV, including radiosondes, water vapor radiometers, 

satellite-based microwave/infrared remote sensing, and sun photometers (Ichoku et al., 2002; King et al., 2003; Li et al., 55 

2003; Turner et al., 2007). In recent decades, the development of Global Navigation Satellite System (GNSS) technologies 

and Low Earth Orbit (LEO) satellites has enabled the widespread application of ground-based GNSS and space-based GNSS 

radio occultation (RO) for atmospheric observations (e.g., Melbourne et al., 1994; Kursinski et al., 1996; Li et al., 2017). 

However, these techniques have limitations, especially when applied to fast-moving, ocean-based, and moisture-complex 

weather systems such as TCs. Accurately estimating PWV with both high resolution and temporal continuity remains 60 

challenging.  

Conveniently, gridded global reanalysis datasets provide atmospheric fields with high spatial and temporal resolution and no 

gaps, making it possible to obtain PWV at any time and location through interpolation. Reanalysis data thus offer valuable 

resources for retrospectively investigating moisture transport and evolution during typhoons and for characterizing the 

spatial and temporal features of water vapor. Currently, several research centers provide atmospheric reanalysis datasets that 65 
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are widely used, including the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) 

Reanalysis (ERA5) (Hersbach et al., 2020a), the Modern-Era Retrospective Analysis for Research and Applications Version 

2 (MERRA-2) (Gelaro et al., 2017a), and the Japanese Reanalysis for Three Quarters of a Century (JRA-3Q) (Kosaka et al., 

2024). 

Due to differences in data assimilation strategies and the uneven spatio-temporal distribution of assimilated observations, the 70 

accuracy of PWV estimates from reanalysis datasets remains uncertain. Therefore, we perform a systematic and 

comprehensive evaluation to assess the accuracy and applicability of PWV products from reanalyses prior to practical 

application.  

Ground-based GNSS-PWV, with high accuracy of typically within 1–2 mm, is not assimilated into any of the three 

reanalysis datasets examined in this study, making them independent and reliable reference data for validation (Wang et al., 75 

2020; Li et al., 2025). However, given the sparse coverage of GNSS stations over oceans, many studies have also employed 

radiosonde and GNSS radio occultation (RO) observations as complementary validation sources. 

At the regional scale, evaluations have shown that ERA5 achieves generally lower PWV errors (<1 mm) over China, 

outperforming its predecessor ERA-Interim, with cross-validation using radiosonde data further confirming its reliability 

(Zhang et al., 2019; Zhang et al., 2019). In India, ERA5 also clearly outperforms MERRA-2 in PWV monitoring (Rani and 80 

Singh, 2025). Over the southern Tibetan Plateau, multiple reanalysis products exhibit systematic positive biases in the 

seasonal PWV cycle, likely linked to the persistent wet bias in regional models (Wang et al., 2017). In the Arctic, 

evaluations suggest that the Copernicus Arctic Regional Reanalysis (CARRA) provides accurate PWV estimates and shows 

good agreement with radiosonde observations, although with evident seasonal variability (Zhang et al., 2025). At the global 

scale, reanalysis PWV has shown good agreement with GNSS, radiosonde, and RO observations (Zhang et al., 2018). 85 

However, considerable uncertainties remain in tropical and southern hemisphere regions, particularly in PWV estimates from 

the National Center for Environmental Prediction/Department of Energy (NCEP/DOE) dataset (Vey et al., 2010). Moreover, 

geographic and climatic factors have been shown to influence the consistency between reanalysis and GNSS-derived PWV 

(Bock and Parracho, 2019). Among the various products, ERA5 generally outperforms others, while China’s newly released 

global reanalysis dataset, China Meteorological Administration-40 (CRA40), exhibits comparable performance to ERA5 in 90 

PWV estimation (Wang et al., 2020; Li et al., 2025), However, as CRA40 data are not fully publicly available, it is not 

included in this study. GNSS RO data have also been used to compare ERA5 and MERRA-2 PWV estimates in tropical and 

subtropical regions (Johnston et al., 2021). Additionally, recent studies have identified humidity modeling discontinuities in 

ERA5 at 09:00 and 21:00 UTC, which introduce diurnal jumps in zenith tropospheric delay (ZTD) and subsequently affect 

PWV estimations (Yuan et al., 2025). 95 

Existing evaluation studies have primarily focused on long-term and large-scale averages, with limited systematic 

assessment of PWV accuracy from reanalysis datasets under extreme weather conditions such as typhoons. Moreover, 

comparative analyses of PWV estimation accuracy between typhoon and non-typhoon periods remain scarce.  
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Driven by this research gap, we provide a systematic evaluation of PWV estimates from ERA5, JRA-3Q, and MERRA-2 

during typhoon events using ground-based GNSS, radiosonde, and RO data from January 2020 to December 2024 over the 100 

Northwest Pacific and East Asia region. The data and methods used in this study are introduced in Section 2. Section 3 

presents the results, and Sections 4 and 5 provide a discussion and conclusions, respectively. 

2 Data and methodology 

2 Data and methodology 

In this section we introduce the typhoon datasets, the three reanalyses, as well as the observational data from ground-based 105 

GNSS, space-based GNSS RO, and radiosondes used in this study. We also outline the PWV retrieval method, data quality 

control procedures, and the spatio-temporal co-location strategy. 

2.1 Typhoon data 

The typhoon data used in this study are sourced from the typhoon track real-time release system, operated by the Zhejiang 

provincial department of water resources and the Zhejiang water resources information management center 110 

(https://typhoon.slt.zj.gov.cn/, last accessed: 27 August 2025). The system provides typhoon center location, time, wind 

speed, and additional information, with a temporal resolution of 1–3 hours that becomes finer with increasing typhoon 

intensity. The typhoon categories in this dataset follow the classification scheme of the China Meteorological Administration 

(CMA), which defines six categories based on wind speed: tropical depression (TD, 10.8–17.1 m/s), tropical storm (TS, 

17.2–24.4 m/s), severe tropical storm (STS, 24.5–32.6 m/s), typhoon (TY, 32.7–41.4 m/s), severe typhoon (STY, 41.5–115 

50.9 m/s), and super typhoon (Super TY, ≥51.0 m/s). For simplicity, these are denoted as L1 to L6, respectively. In this study, 

L1 typhoons are not included since no GNSS stations are co-located with their tracks. 
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Figure 1: (a) Spatial distribution of typhoon tracks, ground-based GNSS station from IGS (marked by circles) and CMONOC 
(marked by triangles), and IGRA radiosonde stations (marked by diamonds) with colorbars indicating wind speed (in m/s, left) 120 
and station elevation (in m, right). (b) Number of typhoons in each month and category from January 2020 to December 2024. 

There are 113 typhoons recorded from January 2020 to December 2024 (This period represents the full extent of the 

available CMONOC dataset), and the spatial distribution of their tracks are shown in Fig.1a. Fig. 1b illustrates the number of 

typhoons by category over the five-year period, totaled per month. Typhoons occur most frequently from July to November, 

with the highest number of typhoons in August, September, and October. Specifically, tropical storms (L2) dominate in 125 

August and super-typhoons (L6) in September, while typhoon categories are more evenly distributed in October. 
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2.2 Reanalysis data 

2.2.1 ERA5 

ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past eight decades from 1940, 

and is a state-of-the-art reanalysis dataset developed by ECMWF (Hersbach et al., 2020a; Soci et al., 2024). ERA5 is 130 

produced using a four-dimensional variational (4D-Var) data assimilation system and model forecasts in CY41R2 of the 

ECMWF Integrated Forecast System (IFS), with 137 hybrid pressure levels in the vertical and the top level at 0.01 hPa. 

Atmospheric data are available on the interpolated 37 pressure levels. The native horizontal resolution is 0.25°× 0.25°, and 

the finest temporal resolution is 1 hour. 

2.2.2 MERRA-2 135 

MERRA-2, developed by the Global Modeling and Assimilation Office (GMAO) at the National Aeronautics and Space 

Administration (NASA), provides global atmospheric reanalysis data starting from 1980 (Gelaro et al., 2017b). Compared to 

its predecessor MERRA, MERRA-2 incorporates improvements in the Goddard Earth Observing System (GEOS) model and 

the Gridpoint Statistical Interpolation (GSI) assimilation system, enabling the assimilation of modern satellite observations 

such as hyperspectral radiance, microwave sensors, RO, and NASA ozone profiles. MERRA-2 offers a horizontal resolution 140 

of 0.5° × 0.625°, 72 vertical levels up to 0.01 hPa, and the instantaneous 3-hourly data are used in this study. 

2.2.3 JRA-3Q 

JRA-3Q is produced by the Japan Meteorological Agency (JMA) using its advanced global numerical weather prediction 

(NWP) system to enhance the quality and temporal coverage of long-term reanalysis (Kosaka et al., 2024). It builds upon 

developments since JRA-55 and extends the reanalysis period back to September 1947, covering an earlier era that includes 145 

many notable typhoon events. JRA-3Q assimilates a wide range of reprocessed observational datasets, including rescued 

historical observations and satellite data provided by global meteorological and satellite centers. It employs a 4D-Var data 

assimilation system and addresses many of the limitations found in JRA-55, resulting in a high-quality and consistent dataset 

spanning over 75 years. The vertical structure includes 45 pressure levels, with a horizontal resolution of 0.375° × 0.375° 

and a temporal resolution of 6 hours. It is noteworthy that the JRA-3Q dataset was officially released in 2022, and related 150 

evaluation studies are still relatively limited. The evaluation conducted in this study may serve as a helpful reference for its 

future application. 

Table 1 summarizes the data centers, resolutions, start time, update frequency, and assimilation strategies of the three 

reanalysis datasets. For more detailed information, readers are referred to the publications (Gelaro et al., 2017a; Hersbach et 

al., 2020b; Bell et al., 2021; Kosaka et al., 2024). 155 
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Table 1. Summary of three atmospheric reanalysis datasets used in this study. 

Data description ERA5 data on 
pressure levels 

MERRA-2 
M2I3NVASM 

JRA-3Q isobaric 
analysis fields 

Organizations ECMWF NASA GMAO JMA 
Horizontal resolution 
(lon × lat) 0.25°×0.25° 0.625°×0.5° 0.375°×0.375° 

Vertical pressure levels 37 72 45 
Temporal resolution 1-hourly 3-hourly 6-hourly 
Temporal coverage Jan 1940−present Jan 1980−present Sep 1947−present 
Update frequency Daily Monthly Monthly 
Assimilation strategy 4D-Var 3D-Var 4D-Var 

2.3 GNSS data 

2.3.1 Ground-based GNSS data 160 

Ground-based GNSS provides continuous, all-weather, high-precision observations of atmospheric variables with high 

temporal resolution, making it well-suited for evaluating reanalysis data under typhoon conditions. The International GNSS 

Service (IGS) provides zenith path delay (ZPD, also known as ZTD) products at 5-minute intervals. However, most IGS 

stations in the Asia–Pacific region is concentrated in Japan and South Korea, with sparse coverage along China’s 

southeastern coast. To enhance spatial coverage, we incorporate GNSS data from the Crustal Movement Observation 165 

Network of China (CMONOC). These data are processed using the Position and Navigation Data Analyst (PANDA) 

software developed by Wuhan University (Shi et al., 2008), based on the Precise Point Positioning (PPP) technique 

(Zumberge et al., 1997), to generate ZTD estimates at the same temporal resolution as the IGS products. 

Additionally, a quality control procedure excludes loosely constrained ZTD estimates, defined as those deviating from the 

station’s monthly mean by more than four standard deviations (STD) (Zhang et al., 2017). Fig. 1a shows the locations of IGS 170 

and CMONOC stations and their elevation. To minimize errors in the vertical interpolation of PWV, the analysis excludes 

stations with elevations greater than 500 m. In total, this study uses 34 IGS and 30 CMONOC stations. 

2.3.2 GNSS RO data 

GNSS RO data of the Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, as 

the successor to COSMIC, are provided via the COSMIC Data Analysis and Archive Center (CDAAC) in Boulder, USA 175 

(Schreiner et al., 2020). The orbital inclination of the COSMIC-2 constellation is specifically designed to enhance the 

number of RO observations over tropical and subtropical regions, resulting in nearly all RO profiles being distributed within 

a latitude range of 45°N to 45°S. Computing PWV requires atmospheric specific humidity or water vapor partial pressure 

profiles. This study uses near real time wet profiles (hereafter “wetPrf”) from the Level 2 products. The wetPrfs provide 

atmospheric parameters with a vertical sampling of 50 m below 20 km and 100 m between 20 km and 60 km (the upper limit 180 
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of the profiles). These data are retrieved using a one-dimensional variational (1D-Var) technique, and the lowermost height 

varies among profiles (Wee et al., 2022). In tropical and subtropical regions, super-refraction often prevents signals from 

penetrating to the surface, resulting in variation in the lowermost height across COSMIC-2 profiles (Schreiner et al., 2020; 

Wang et al., 2022). To reduce vertical interpolation errors, this study uses only wetPrfs that pass the CDAAC quality control 

procedures and reach below 500 m. 185 

2.4 Radiosonde data 

Radiosonde data used in this study are obtained from the Integrated Global Radiosonde Archive (IGRA), with routine 

observations conducted twice daily at approximately 0000 and 1200 UTC. PWV derived from radiosonde profiles typically 

has an uncertainty of 5% to 8% (Pérez-Ramírez et al., 2014; Turner et al., 2003). Despite certain limitations, radiosonde 

observations remain a standard reference for evaluating the PWV retrieved from other techniques (Gui et al., 2017). Quality 190 

control is performed following the approaches proposed in previous studies (Wang and Zhang, 2008; Zhang et al., 2017), 

with additional criteria applied to ensure profile completeness and temporal coverage: (1)  Humidity profiles must extend to 

at least 300 hPa and include measurements at the surface and at a minimum of five standard pressure levels above the surface, 

regardless of whether surface pressure is above or below 1000 hPa.; (2) Profiles containing large data gaps, defined as 

pressure intervals exceeding 200 hPa between successive humidity measurements, are discarded; (3) Stations must operate 195 

continuously from January 2020 to December 2024, with at least 200 observations per year; (4) Stations with elevations 

exceeding 500 m are excluded (Shi et al., 2025). Only profiles with more than 30 vertical levels are used for PWV 

calculation. Based on these criteria, a total of 60 radiosonde stations is retained for evaluation. The locations of the 

radiosonde stations are indicated in Fig. 1. 

2.5 Ground-based station selection scheme and RO co-location method 200 

The gale-force wind radius (R34, where 34 refers to wind speed in knots) is a key parameter for quantifying the spatial 

extent of a typhoon's impact. Previous studies report that R34 typically ranges from 210 km to 340 km (Sampson et al., 2017; 

Kim et al., 2022). In this study, the distance between each ground-based station and the typhoon center is calculated, and a 

station is considered to be in the typhoon area if the minimum distance is less than 300 km. For the comparison using RO 

profiles, spatio-temporal co-location with typhoon centers is required. Considering the horizontal smearing of RO profiles, a 205 

matching window of 100 km and 30 minutes is applied to associate RO profiles with corresponding typhoon centers. 

2.6 PWV estimation 

PWV can be derived using two approaches. The first integrates specific humidity or water vapor partial pressure profiles and 

is applied to reanalysis, radiosonde, and RO data. The second converts the zenith wet delay (ZWD) estimated from GNSS 

PPP into PWV using a conversion factor. 210 
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2.6.1 Reanalysis-PWV, radiosonde-PWV, and RO-PWV 

The PWV is obtained from vertical integration of the specific humidity ( q , in g∙kg-1) profile, expressed as: 

2

1

 
p

p
w s

q
PWV dp

gρ
=

⋅∫   (1) 

where 1p  and 2p  (in hPa) represent the upper and lower pressure boundaries of the integration, respectively, and sg  

denotes the mean gravitational acceleration, can be written as: 215 

( ) ( ) ( )( ) ( )6 2 7, 1 0.0026373cos 2 5.9 10 cos 2 1 3.14 10s ng h g hϕ ϕ ϕ− −= − + ⋅ ⋅ − ⋅ ⋅  (2) 

where 29.80665 m sng −= ⋅  is the standard gravitational acceleration, ϕ  (in rad) and h  (in m) are latitude and elevation, 

respectively. When water vapor partial pressure e  (in hPa) is used instead of specific humidity, the conversion between e  

and q  follows: 

0.622 0.378
qp

e
q

=
+

  (3) 220 

where p  is atmospheric pressure (in hPa). 

2.6.2 GNSS-PWV 

The ZTD, which consists of the zenith hydrostatic delay (ZHD) and ZWD components, can be accurately derived from 

GNSS observations processed in PPP mode. The ZHD can be precisely calculated using the Saastamoinen model 

(Saastamoinen, 1972; Elgered et al., 1991): 225 

( )
0.002277

1 0.00266 cos 2 0.00028
sp

ZHD
Hϕ

⋅
=

− ⋅ − ⋅
  (4) 

where ϕ  is the station latitude (in rad), H  denotes the ellipsoidal height (in km), and sp  is the surface pressure (in hPa). 

The ZWD can be obtained as the difference between ZTD and ZHD: 

ZWD ZTD ZHD= −   (5) 

the PWV is subsequently computed by scaling ZWD with a water vapor conversion coefficient: 230 

PWV ZWD= Π×   (6) 

where Π  is determined using the following equation: 
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( )6
3 2

1
10 /w v mR k T kρ−

Π =
′+  

  (7) 

where 31000 kg mwρ
−= ⋅  is the density of liquid water, 1 1461.51 J K kgvR − −= ⋅ ⋅  is the specific gas constant for water vapor, 

-1
2 17 10 K hPak ′ = ± ⋅ and 5 2 -1

3 3.776 0.004 10  K hPak = ± × ⋅  are atmospheric refractivity constants. The parameter mT  235 

represents the weighted mean temperature. It can be obtained either from an empirical linear model between surface 

temperature and mT  (Bevis et al., 1994) or from vertical integration using meteorological data. Previous comparisons have 

shown that the integration approach generally yields higher accuracy (Wang et al., 2005). The computation of mT  follows 

this equation (Davis et al., 1985; Bevis et al., 1992): 

 
( )

( )

( )

( )
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 
− 
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 
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 

∑∫
∫ ∑

 (8) 240 

here, e  denotes the water vapor pressure at the station’s zenith (in hPa), T  is the temperature (in K), and h  is the height (in 

m). 

2.6.3 PWV vertical adjustment model 

To adjust PWV estimated from reanalyses to the height of GNSS or radiosonde stations, and to adjust RO-PWV to the 

required height for comparison, a vertical adjustment is necessary. The exponential PWV adjustment model is currently 245 

widely used and computationally efficient, with the formula as follows: 

 ( )( )1 2 1 2exp / 2PWV PWV h h= ⋅ − −  (9) 

where 1PWV  and 2PWV  represent the PWV at 1h  and 2h . 

2.6.4 Statistical metrics 

The statistical metrics used in this study include the systematic deviation of PWV from reanalysis with respect to 250 

observations, denoted as bias, and root mean square error (RMSE). To provide a more intuitive representation of the PWV 

bias relative to the reference value, the relative bias (RB) is defined as follows:  

 100%reanalysis reference

reference

PWV PWV
RB

PWV
−

= ×  (10) 

where reanalysisPWV  represents the PWV from different reanalysis data, and referencePWV  is the reference PWV, which can be 

GNSS-PWV, radiosonde-PWV, or RO-PWV. 255 
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3 Results 

This section presents the evaluation results of PWV estimates from the three reanalysis datasets. For clarity and consistency, 

prefixes are used to distinguish PWV derived from different data sources and their corresponding evaluation metrics. 

Specifically, GNSS-PWV, RS-PWV, and RO-PWV denote PWV retrieved from ground-based GNSS, radiosonde, and RO 

data, respectively. Similarly, E-PWV, M-PWV, and J-PWV refer to PWV estimated from ERA5, MERRA-2, and JRA-3Q 260 

reanalysis datasets, respectively. The term REA-PWV collectively refers to all reanalysis-derived PWV values. The same 

naming convention is also applied to evaluation metrics such as bias and RMSE. 

3.1 Evaluation using ground-based GNSS data 

For ground-based GNSS, subscripts are used when necessary to distinguish data from different networks. Specifically, 

GNSS-PWVI and GNSS-PWVC refer to PWV estimated from IGS and CMONOC stations, respectively. 265 

3.1.1 Monthly evaluation 

To provide a comprehensive understanding of the PWV accuracy of the three reanalysis datasets, evaluations are conducted 

using data from 64 GNSS stations spanning January 2020 to December 2024. Monthly mean PWV from the reanalyses is 

compared to GNSS-PWV, with results shown in Fig. 2. The top, middle, and bottom rows of Fig. 2 display the monthly 

mean PWV (a1–a3), bias and RMSE (b1–b3), and RB (c1–c3), respectively. Red and yellow denote results referenced to 270 

GNSS-PWVC, while blue and green correspond to GNSS-PWVI. 

 
Figure 2: Monthly mean evaluation results. (a1-a3) represent REA-PWV (in mm); (b1-b3) represent bias and REA-RMSE (in 
mm); (c1-c3) represent REA-RB. Red and yellow denote results referenced to GNSS-PWVC, while blue and green correspond to 
GNSS-PWVI. 275 
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The monthly-mean PWV from reanalyses, E-PWV, M-PWV, and J-PWV, exhibits high consistency and pronounced 

seasonal variation, with peaks of typically about 50 mm in July and August and low values of about 20 mm in boreal winter. 

The peak of PWV precedes the typhoon season, which occurs from August to October. Overall, GNSS-PWVC is generally 

higher than GNSS-PWVI from February to September, but lower in the other months. The monthly mean E-PWV and M-

PWV are similar, while J-PWV remains consistently lower than both across all months. E-PWV and J-PWV show negative 280 

biases every month, with the absolute value of the bias positively correlated with PWV, consistent with previous studies 

indicating that mean REA-PWV is negatively biased in low-latitude regions (Wang et al., 2020). The largest E-biasC and E-

biasI occur in October and July, with −1.82 mm and −1.63 mm, respectively, while the largest J-biasC and J-biasI both occur 

in August with −4.51 mm and −3.79 mm, respectively, from the GNSS ground-based observation. M-PWV shows good 

consistency with GNSS-PWV, with M-biases staying below 1 mm to near-zero from May to September, when PWV is 285 

relatively high. The monthly mean RMSE follows a similar distribution pattern as PWV, with E-RMSE being the smallest, 

followed by M-RMSE, and J-RMSE being the largest. RB values are generally smaller in summer and larger in winter. 

When monthly mean PWV exceeds 40 mm (May to September), despite larger biases, RB remains below 3%. 

For the months with more than ten typhoons within the five-year period (July to November), the weighted mean bias and 

RMSE are calculated based on the number of CMONOC and IGS stations. The E-bias, M-bias, and J-bias are −1.38 mm, 290 

−0.58 mm, and −3.74 mm, respectively, while the E-RMSE, M-RMSE, and J-RMSE are 3.38 mm, 4.51 mm, and 5.10 mm, 

respectively. Among the three datasets, Merra-2 shows the least systematic deviation while ERA5 shows the lowest RMSE, 

suggesting greater stability for E-PWV. For JRA-3Q, both the absolute value of J-bias and J-RMSE are the largest in most 

months, The next section presents a more detailed evaluation of REA-PWV during typhoon events. 

3.1.2 Composite evaluation considering adjacent periods of typhoons 295 

In general, typhoon monitoring agencies release typhoon data based on wind speed. Data recording begins or ends when the 

wind speed reaches or falls below a specified threshold. However, it has been found that water vapor plays a critical role in 

TC formation. High column water vapor appears near the pouch center and starts to increase about 42 hours prior to genesis, 

while a substantial increase in precipitation occurs within 24 hours before genesis (Wang, 2014; Wang and Hankes, 2016). 

Moreover, even after typhoon dissipation or passage, residual circulation can continue to exert influence (Duan et al., 2014). 300 

Therefore, in addition to the recorded typhoon period (hereafter “r-typhoon”), we also evaluate the accuracy of REA-PWVs 

during the one-week adjacent period (AP), defined as the week before and the week after r-typhoon.  

Results are presented in Fig. 3. A schematic of the timeline with r-typhoon and the AP is shown in the top panel of Fig. 3. 

When referring to AP with a duration of X days, it indicates a period covering X days before and after r-typhoon. Figure 3 

(a1–c4) presents the results for ERA5, MERRA-2, and JRA-3Q, respectively, while Fig. 3 (a3) and (a4) indicate the number 305 

of station-typhoon pairs. On the x-axis, L2 to L6 represent different typhoon categories, “L2–6” denotes all typhoon 

categories, and “Non” refers to the mean results for the same stations and periods in non-typhoon years during 2020–2024. 
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For example, in the case of typhoon Doksuri (July 21–29, 2023), “Non” refers to results from the same station and the same 

period in 2020, 2021, 2022, and 2024, when no typhoon occurred. 

 310 
Figure 3: The top panel shows a schematic of a typhoon, including the r-typhoon and AP. The bottom panel presents REA-biases 
and REA-RMSEs (in mm) for different typhoon categories, with AP ranging from 7 days before/after to 0 day (color from light to 
dark). The x-axis shows typhoon categories or conditions. Panels (a3) and (a4) show the number of station-typhoon pairs, while (d1) 
and (d2) display the mean REA-biases and REA-RMSEs for all typhoons. 

For biases (Fig. 3, left panels), all three REA-biases generally decrease as the AP shortens. Specifically, the absolute values 315 

of E-bias and J-bias decrease, while that of M-bias increases. E-biasC and E-biasI (except during L6 typhoons) tend to 

decrease as AP shortens. For L2–L4 typhoons, both E-biasC and E-biasI change from negative to positive as AP shortens, 

with this effect most pronounced for E-biasC during L5 typhoons. According to Fig. 3 (d1), all E-biases are smaller than 1 

mm, indicating good agreement between E-PWV and GNSS-PWV even when the bias turns positive. M-bias is 

predominantly positive and becomes more pronounced as AP shortens, though the mean bias for all typhoons remains within 320 

1 mm. For L3 typhoons, the M-biasC exceeds 2.5 mm, which may be due to the limited sample size of only four events. All 

J-biases are negative. For L3 and L6 typhoons, J-biasC does not decrease monotonically as AP shortens. Overall, the absolute 

value of J-bias is the largest. Figure 3 (d1) shows that both E-bias and J-bias decrease as AP shortens, with values within r-
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typhoon of –0.21 mm and –1.89 mm, respectively. The absolute value of M-bias decreases from 7 adjacent days to 3 

adjacent days, but becomes positive and increases when the AP is less than 3 days.  325 

For RMSE (Fig. 3, right panels), both E-RMSE and J-RMSE tend to decrease with a shorter AP, especially for E-RMSE in 

L4 typhoons and J-RMSE in L2 and L4 typhoons. M-RMSEC shows no clear pattern with AP changes, whereas M-RMSEI 

generally increases as AP shortens. According to Fig. 3 (d2), E-RMSE, M-RMSE, and J-RMSE for all typhoon periods 

remain nearly unchanged with AP variations. M-RMSE and J-RMSE are similar near 5 mm, while E-RMSE is the lowest 

near 3.5 mm. 330 

Under non-typhoon conditions, REA-biases and REA-RMSEs remain nearly unchanged with varying AP. Without 

considering AP, E-bias, M-bias, and J-bias are –1.58 mm, –0.53 mm, and –3.69 mm, respectively; E-RMSE, M-RMSE, and 

J-RMSE are 3.51 mm, 4.73 mm, and 5.08 mm, respectively. Among the three datasets, ERA5 yields the lowest RMSE, 

MERRA-2 shows the smallest bias, while JRA-3Q exhibits the largest bias and large RMSE. 

3.1.3 Evaluation during recorded typhoon periods 335 

This section focuses on the accuracy of PWVs during r-typhoon from reanalyses, without considering AP. Table 2 presents 

mean REA-biases, REA-RMSEs and dRMSEs of all typhoons during both r-typhoon and non-typhoon. In addition, to 

distinguish between systematic bias and random error, the de-biased RMSE (dRMSE) is introduced as a supplementary 

metric to reflect the random component after removing bias. It should be noted that dRMSE is used as a reference metric to 

understand the errors better, while bias and RMSE remain the primary metrics for subsequent evaluation.  340 
Table 2. Mean REA-biases, REA-RMSEs, and REA-dRMSEs (in mm) of all typhoons during r-typhoon and non-typhoon periods. 

Metrics Reanalyses R-typhoon Non-typhoon 

Bias 
ERA5 –0.29 –1.65 

MERRA-2 0.86 –0.53 
JRA-3Q –1.92 –3.61 

RMSE 
ERA5 3.40 3.52 

MERRA-2 5.19 4.74 
JRA-3Q 4.61 5.01 

dRMSE 
ERA5 2.86 2.58 

MERRA-2 4.55 4.01 
JRA-3Q 3.57 2.84 

For biases, E-biases and J-biases during r-typhoon periods are smaller in comparison to the non-typhoon periods across all 

typhoon categories, while the M-bias is only smaller for the L4 category during r-typhoon. For all typhoons, the mean biases 

during non-typhoon periods are –1.65 mm and –3.61 mm for E-bias and J-bias, respectively, and –0.29 mm and –1.92 mm 

during r-typhoon periods, respectively. M-bias changes from –0.53 mm to 0.86 mm, increasing in absolute value and shifting 345 

from negative to positive. These results indicate that the overall underestimation of E-PWV and J-PWV is alleviated during 
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r-typhoon, while M-PWV shifts from underestimation during non-typhoon to overestimation during r-typhoon, with the 

overestimation being more evident for L2 and L3 typhoons.  

For RMSEs, both E-RMSE and J-RMSE are generally lower during r-typhoon compared to non-typhoon, decreasing by 0.12 

mm and 0.40 mm, respectively. In contrast, M-RMSE increases by 0.45 mm during r-typhoon. The REA-dRMSEs for all 350 

categories and individual typhoon levels are higher during r-typhoon compared to non-typhoon. These results indicate that 

E-RMSE is the lowest and least affected by typhoons, whereas M-PWV exhibits higher uncertainty during typhoons. 

Interestingly, the REA-dRMSEs for all categories and individual typhoon levels are higher during r-typhoon compared to 

non-typhoon, opposite to REA-RMSE, which is lower during r-typhoon. This shows that the larger REA-RMSEs during 

non-typhoon periods, especially for E-RMSEs and J-RMSEs, are not caused by an increase in random error – which is 355 

indeed decreasing – but by an increase in bias. Thus, during typhoons, for ERA5 and JRA-3Q, the random error is higher, 

but the bias is much lower, leading to lower overall error. 

 
Figure 4: Spatial distribution of mean REA-biases, REA-RMSEs, and REA-dRMSEs (in mm) at GNSS station locations during r-
typhoon for all typhoons. 360 

Fig. 4 shows the spatial distribution of REA-biases, REA-RMSEs, and REA-dRMSEs at GNSS stations during r-typhoon 

period for all typhoons. For biases, E-bias and M-bias exhibit similar spatial patterns: most stations in southern China and 

South Korea have negative biases, while those in eastern China are mainly positive. Notably, some stations in South China 

Sea, Philippines, Southern Japan also show prominent positive biases. J-bias is predominantly negative, with only a few 
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stations showing positive values. For RMSE, E-RMSE is generally the lowest and most uniformly distributed, while M-365 

RMSE is higher and shows relatively large values (>8 mm) at a station located in Southern Japan. J-RMSE falls between the 

other two, with the highest value (8.12 mm) observed at a station located in Fujian province, China. For dRMSE, E-dRMSE 

is the lowest overall, followed by J-dRMSE, while M-dRMSE is the highest and exhibits a clear latitudinal dependence, 

being larger at higher latitudes. Additionally, JRA-3Q displays the largest difference between RMSE and dRMSE among the 

three datasets, further indicating that the relatively large absolute J-biases substantially impact J-RMSE. 370 

To sum up, E-PWVs and J-PWVs show improved accuracy during r-typhoon compared to non-typhoon, while M-PWVs 

exhibit a slight decrease in accuracy. However, the absolute value of mean M-bias remains within 1 mm, and its mean 

RMSE increases by only 0.45 mm. Despite some deterioration, M-PWVs still maintain a comparable level of accuracy 

during typhoons. These results indicate that E-biases and J-biases are lower and their stability is better under the dynamic 

conditions of typhoons.  375 

Nevertheless, the underlying causes of the changes in accuracy for all three REA-PWVs during typhoons warrant further 

investigation. JRA-3Q assimilates JMA tropical cyclone bogus (TCB) data to improve the accuracy of typhoon analysis 

(Kosaka et al., 2024). This assimilation provides prior information on typhoons and helps constrain the estimation of 

atmospheric parameters, resulting in reduced J-bias and J-RMSE during typhoons. MERRA-2 does not assimilate any 

estimates of TC central surface pressures. Instead, TCs detected in the model background fields are relocated using the 380 

position given in the NCEP tcvitals reports following an established method (Liu et al., 2000; Koster et al., 2016), which 

enables MERRA-2 to more accurately capture typhoon processes. Despite this, M-PWV is generally overestimated and M-

RMSE increases during typhoons.  

Regarding RMSE, the reductions in E-RMSEs and J-RMSEs during r-typhoon are smaller than the corresponding 

improvements in E-biases and J-biases. This may be attributed to substantial atmospheric variability during typhoons, which 385 

maintains high random PWV uncertainties even with data assimilation. Overall, this study focuses on evaluating the 

accuracy of the three REA-PWVs during typhoons, while the underlying causes of changes in their accuracy merit further 

investigation. 

3.2 Evaluation using radiosonde observations 

Although all three reanalysis datasets assimilate radiosonde observations, those observations are used as a reference due to 390 

their high accuracy, serving to further evaluate REA-PWVs. Fig. 5 presents the evaluation results in terms of correlations 

between REA-PWVs and RS-PWVs. According to Fig. 5 (a–c), all three REA-PWVs exhibit high agreement with RS-PWVs 

during pre-typhoon, r-typhoon, and post-typhoon, especially for ERA5, whose correlation coefficients remain above 0.9. The 

correlation is slightly lower during pre-typhoon compared to r-typhoon and post-typhoon. Based on Fig. 5 (d–h), the 

correlation between REA-PWVs and RS-PWVs does not show notable variation across different categories, except for a 395 

noticeable decrease during L5 typhoons, where the correlation coefficients for ERA5 and MERRA-2 are below 0.9 and 0.8, 

respectively, and that for JRA-3Q also reaches its lowest value, 0.86. 
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Figure 5: Correlation statistics of REA-PWVs and RS-PWVs during pre-typhoon (one week before r-typhoon) (a), r-typhoon (b), 400 
and post-typhoon (one week after r-typhoon) (c), as well as during r-typhoon for different categories (d–h). Panels (i) and (j) 
display bar charts of REA-biases and REA-RMSEs corresponding to Fig. 5 (a–h). In the figure, “r” denotes the correlation 
coefficient, and the number of samples is also showed. 

The results show that nearly all biases are negative, with positive M-biases observed only for L5 and L6 typhoons, both less 

than 0.3 mm. The absolute value of M-bias is the smallest, followed by E-bias, while J-bias has the largest absolute value. 405 

The mean REA-biases during r-typhoon are lower than those during pre-typhoon and post-typhoon. For RMSE, E-RMSE is 

consistently the lowest, M-RMSE exceeds J-RMSE during L5 and L6 typhoons but is lower than J-RMSE for other 

categories. The variations of REA-RMSEs among pre-typhoon, r-typhoon, and post-typhoon are generally small. Notably, 

only J-RMSE increases by 0.3–0.5 mm in post-typhoon compared to pre-typhoon and r-typhoon. All three REA-RMSEs 

reach their lowest values during r-typhoon. Moreover, although the overall accuracy of J-PWV is lower than that of M-PWV, 410 

the correlation coefficients for J-PWV are higher than those for M-PWV in all cases (a–h), which may be due to systematic 

biases. These results indicate that all three REA-PWVs maintain strong correlations with RS-PWV under typhoon conditions. 

3.3 Comparison with COSMIC-2 RO profiles 

Evaluation using GNSS-PWVs and RS-PWVs as references is limited by station locations, whereas RO-PWVs can be used 

to compare REA-PWVs over oceanic regions. Based on the co-location scheme described in Section 2.5, there are 49 and 415 
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216 COSMIC-2 RO profiles co-located with typhoon centers during r-typhoon and non-typhoon, respectively. Fig. 6 

presents the comparison results for r-typhoon and non-typhoon. REA-PWVs exhibit strong correlations with RO-PWV, with 

correlation coefficients of 0.92, 0.86, and 0.87 during r-typhoon. Overall, the correlation coefficients during r-typhoon are 

slightly lower than those during the non-typhoon. 

 420 
Figure 6: Correlation statistics of REA-PWVs and RO-PWVs during r-typhoon (a) and non-typhoon (b). In the figure, “r” denotes 
the correlation coefficient, and the number of samples is also showed. 

Table 3. REA-biases and REA-RMSEs relative to RO-PWVs during r-typhoon and non-typhoon (in mm). 

 R-typhoon Non-typhoon 
 Bias RMSE Bias RMSE 

ERA5 −0.45 2.85 −0.67 2.73 
MERRA-2 0.67 4.05 −0.34 3.84 

JRA-3Q 1.63 4.14 −2.45 4.03 
Table 3 presents the biases and RMSEs of the three REA-PWVs during the r-typhoon and non-typhoon periods. The 

absolute values of E-bias and J-bias are smaller by 0.22 mm and 0.82 mm during r-typhoon compared to the non-typhoon 425 

periods, respectively, while the absolute value of M-bias increases by 0.33 mm. For RMSE, all three REA-PWVs have 

higher values during r-typhoon than in the non-typhoon period, with increases of 0.12 mm, 0.21 mm, and 0.11 mm, 

respectively, indicating increased uncertainty in REA-PWVs under typhoon conditions. Although there are more than 5,000 

COSMIC-2 RO profiles per day in global tropical and subtropical regions, the number of co-located RO profiles remains 
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limited under the strict co-location criteria. Therefore, the results in this section are intended primarily as complementary 430 

information. 

3.4 Neighborhood standard deviation of REA-PWVs 

Neighborhood standard deviation (NSD) quantifies the local spatial variability of reanalysis data, reflecting the consistency 

among neighboring grid points (Wei et al., 2013). Higher NSD indicates stronger spatial heterogeneity and larger 

representativeness errors when comparing with point observations, which should be considered in evaluation (Bock and 435 

Parracho, 2019). NSD is particularly useful for characterizing spatial heterogeneity during extreme weather events such as 

typhoons, providing insights into the reliability of reanalysis products. 

 
Figure 7: Schematic of NSD calculation. The orange line shows the typhoon track; the red marker indicates the typhoon center. 
The 16 nearest grid points are shown in dark blue and light blue, with the 4 closest points in light blue. 440 

To evaluate local spatial heterogeneity of the three REA-PWVs near typhoon centers, NSD is calculated at two scales based 

on the standard deviation of PWVs at the 16 nearest grid points (NSD-16) and at the 4 nearest grid points (NSD-4) around 

the typhoon center, as illustrated in Fig. 7. When calculating NSD, PWV at each grid point is interpolated to the altitude of 

the typhoon center. 

For all typhoons under non-typhoon conditions, E-NSD-16, M-NSD-16, and J-NSD-16 are 2.23, 2.85, and 1.59 mm, while 445 

E-NSD-4, M-NSD-4, and J-NSD-4 are 1.24, 1.61, and 0.84 mm, respectively. In both NSD-16 and NSD-4, J-NSD is the 

smallest, E-NSD is intermediate, and M-NSD the largest, indicating strongest spatial consistency for J-PWV and weakest for 

M-PWV. During r-typhoon periods, all NSDs increase: E-NSD-16, M-NSD-16, and J-NSD-16 rise to 2.61, 4.17, and 2.30 

mm, representing relative increases of 17.1%, 46.4%, and 44.8%, while E-NSD-4, M-NSD-4, and J-NSD-4 rise to 1.62, 2.64, 

and 1.31 mm, corresponding to increases of 30.9%, 63.5%, and 56.2%. M-NSD shows the largest absolute and relative 450 

increases among the three reanalyses. Overall, the NSDs of the three REA-PWVs increase markedly during typhoons, 

indicating enhanced spatial heterogeneity under typhoon conditions. Despite this increase, E-NSD and J-NSD generally 

remain below 3 mm, while M-NSD stays within 5 mm. 
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A direct evaluation of the NSD is not possible, as NSD cannot be computed from the observations used in this study. 

However, the NSD results help in interpreting the results of the errors and biases of the reanalysis products. MERRA has the 455 

highest random error (dRMSE) of the three reanalysis datasets. An overestimation of NSD would lead to higher random 

error. Therefore, this suggests that the NSD of MERRA is overestimated, and the lower NSD of ERA and JRA is closer to 

the true values – which is in line with the lower dRMSE of ERA and JRA. This also explains why MERRA, despite having 

generally lower absolute bias levels compared to JRA, still has higher overall RMSE. 

4 Discussion 460 

Beyond the direct accuracy evaluation, a further aspect to consider is how typhoon center–station distance (hereafter 

“distance”) and wind speed may influence the performance of REA-PWVs, since these factors are not explicitly accounted 

for when comparing them with GNSS-PWVs. Therefore, this section further investigates the influence of these two 

parameters. Fig. 8 presents three representative typhoon–station pairs with minimum distances less than 200 km: In-fa–JSLS, 

Doksuri–KMNM, and Khanun–AIRA. To facilitate the discussion of water vapor–related changes during each typhoon, 465 

precipitation obtained from the Global Precipitation Measurement (GPM) mission is also plotted (gray bars). The right 

panels show the corresponding time series of REA-biases. 
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Figure 8: Time series of PWVs and biases for three typhoon–GNSS station pairs. The left and right columns show PWVs and 
biases, respectively. PWVs and biases correspond to the left y-axis (in mm); distance to the right red y-axis (in km); and 470 
precipitation to the right gray y-axis (in mm/h). Vertical red dashed lines divide the series into pre-typhoon, r-typhoon, and post-
typhoon periods. Each panel is annotated with the typhoon number, name, maximum category, and station. Blue shading of 
varying intensity (darker for stronger categories) indicates typhoon categories, and the x-axis shows month–day. 

According to Fig. 8 (a1–c1), all three REA-PWVs demonstrate generally high consistency with GNSS-PWVs. However, as 

shown in Fig. 8 (a2–c2), large absolute values of M-biases, sometimes exceeding 10 mm and even approaching 20 mm, are 475 

observed during pre-typhoon of In-fa, post-typhoon of Doksuri, and r-typhoon of Khanun. Additionally, J-biases during pre-

typhoon also reach negative values less than –10 mm. In contrast, E-biases perform better overall, with fewer occurrences of 

absolute biases greater than 10 mm. Analysis of the distance pattern reveals that when the distance gets below approximately 

600 km, all three REA-biases tend to shift from negative to positive, suggesting a certain correlation between REA-biases 

and distance. On the other hand, no clear trend is observed in REA-biases with changes in typhoon categories.  480 

Further statistical analysis shows that during r-typhoon for all typhoons, the correlation coefficients between distance and E-

bias, M-bias, and J-bias are –0.286, –0.202, and –0.370, respectively, indicating weak negative correlations. Meanwhile, the 

correlation coefficients with wind speed are all below 0.1, indicating no relationship. These results suggest that, when 

distance and wind speed are not explicitly considered, the evaluation of REA-PWVs based on GNSS-PWVs is generally 

reasonable and representative. Although neither distance nor wind speed show a clear correlation with PWV accuracy, the 485 

influence of distance appears to be slightly stronger than that of wind speed. This analysis provides a preliminary 

understanding of the potential influence of distance and wind speed on the evaluation of REA-PWVs. Future work may 

consider introducing multivariate approaches to enable more detailed evaluations. 

5 Conclusions 

This study provides the first systematic evaluation of the accuracy of PWV estimates from ERA5, MERRA-2, and JRA-3Q 490 

reanalysis datasets under typhoon conditions, using ground-based GNSS, radiosonde, and RO observations. More than 100 

typhoon events from 2020 to 2024 are examined across four scenarios, namely pre-typhoon, r-typhoon, post-typhoon, and 

adjacent periods, and results for each scenario are compared with the result during non-typhoon periods.  

Evaluation using GNSS-PWVs shows that ERA5 exhibits the most stable performance, with smallest biases and RMSE 

during typhoons, and slightly larger biases and errors in non-typhoon periods. While being less accurate than ERA5, JRA-3Q 495 

also has less bias and RMSE during typhoons than in non-typhoon periods, indicating that the assimilation of TCB 

observations has a positive contribution to PWV estimation. MERRA-2 has least accuracy in terms of RMSE. In contrast to 

ERA5 and JRA-3Q, its accuracy is less during typhoons compared to non-typhoon periods. Error decomposition showed that 

while the RMSE of MERRA-2 is the highest of the three reanalysis datasets, its bias is the smallest during non-typhoon 

periods, and the second smallest during typhoons. The bulk of its RMSE stems from random error components. This is likely 500 

caused by the fact that MERRA-2 shows much higher spatial variability of PWV in the neighborhoods around typhoon 
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tracks than ERA5 and JRA-3Q, estimated via neighborhood standard deviation. ERA5 and JRA-3Q have similar spatial 

variability and are thus consistent with each other. 

Evaluations using RS-PWVs and RO-PWVs confirm the overall consistency of the three reanalyses with GNSS-based 

results, supporting their reliability under typhoon conditions. However, since RS and RO samples are limited, these results 505 

should be regarded as supplementary, with the GNSS-based evaluation providing the main reference. 

Through a comprehensive evaluation, this study demonstrates that reanalysis data can provide continuous and reasonably 

reliable PWV information under typhoon conditions, even in regions where ground-based observations are sparse or 

unavailable. These results offer valuable references for water vapor research and practical support for typhoon monitoring 

and forecasting during extreme weather events. Future work will extend the evaluation to a global scale to assess the 510 

performance of various reanalysis water vapor products during TCs worldwide. 
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