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Abstract. We provide best practices for estimating the dissipation rate of turbulent kinetic energy, ε, from velocity measure-

ments in an oceanographic context. These recommendations were developed as part of the Scientific Committee on Oceano-

graphic Research (SCOR) Working Group #160 “Analyzing ocean turbulence observations to quantify mixing”. The recom-

mendations here focus on velocity measurements that enable fitting the inertial subrange of wavenumber velocity spectra.

The method examines the measurable range for this method of dissipation rates in the ocean, seas, and other natural waters.5

The recommendations are intended to be platform-independent since the velocities may be measured using bottom-mounted

platforms, platforms mounted beneath the ice, or platforms directly on mooring lines once the data is motion-decontaminated.

The procedure for preparing the data for spectral estimation is discussed in detail, along with the quality control metrics that

should accompany each estimate of ε during data archiving. The methods are applied to four ‘benchmark’ datasets covering

different flow regimes and two instrument types (acoustic-Doppler and time of travel). Problems associated with velocity data10

quality, such as phase-wrapping, spikes, measurement noise, and frame interference, are illustrated with examples drawn from

the benchmarks. Difficulties in resolving and identifying the inertial subrange are also discussed, and recommendations on how

these issues should be identified and flagged during data archiving are provided.
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1 Introduction

Quantifying turbulence and mixing in the ocean is critical for understanding many processes including the turbulent transfer15

of momentum, heat and material —as well as the dissipation of energy (Fox-Kemper et al., 2019). For example, when seeking

to understand how an ocean boundary layer responds to wind, it is critical to reliably understand how energy is dissipated by

a turbulent cascade to the viscous scales —or how material is exchanged across isolines, such as the seasonal thermocline, as

well as through boundaries of the fluid into the benthos or atmosphere (D’Asaro, 2014).

However, owing to the small temporal and spatial scales which inherently characterize turbulent flow, key representative20

quantities are often not straightforward to measure (Gregg, 1999). The dissipation rate of turbulent kinetic energy ε describes

the energy lost from the fluid system to viscous dissipation. In addition, ε can be related to processes that drive turbulent

fluxes of momentum, heat and material. The small scales and variable nature of the processes require precise measurement and

analysis before one arrives at an estimate of ε and associated quantities.

These computations are especially challenging in the ocean as ε can range over almost ten orders of magnitude (Stewart25

and Grant, 1999). Consequently, distinct measurement techniques have been developed for differing parts of this wide range of

ε. Microstructure profiling shear probes can measure turbulence in low to medium energy regions of the ocean (Lueck et al.,

2024), while typical point-velocity sensors allow for estimating timeseries of dissipation rate in higher energy environments

than shear probes.

Acoustic point-measurement instruments —sensors which measure point-velocity timeseries in the ocean —have been de-30

ployed since the mid-1990s (Lemmin et al., 1999; Rusello et al., 2006), and are based on either acoustic backscatter (Trow-

bridge and Elgar, 2001), or time of travel (Henchicks, 2001) approaches. The time of travel instruments (e.g., MAVS) are better

suited to low-energy environments than the acoustic backscatter approach. The single-point measurements were found to be

especially well-suited to capture ε values within boundary-layers to improve understanding of dynamics and transfer processes

(Li et al., 2022); or, in experiments in which the control volume is fixed in space - i.e., the sensor is mounted on the sea bed or35

a fixed platform, rather than in open-ocean measurements of ε such as recorded with a falling profiler (Le Boyer et al., 2023).

Technology for acoustic point velocity timeseries measurements has matured over the last decades, with many commercial

instruments now well-established (e.g., the Nortek Acoustic Doppler Velocimeter, ADV, and Nobska Modular Acoustic Veloc-

ity Sensor, MAVS), resulting in a wide user base of researchers and engineers. In particular, improvements in noise reduction

meant that by the late 1990s, data from these instruments were able to be analysed to provide turbulence estimates (e.g., Voul-40

garis and Trowbridge, 1998; Kim et al., 2000). Previously, such estimates were only undertaken by a small number of groups

worldwide with bespoke equipment that was built, maintained, and operated in-house. With this expansion in the user-base

comes a need for consistent, or at least comparable, methods to assess data quality and archive datasets. However, currently no

standardized methods or guidelines exist for these velocity measurements.

Here, we address this deficit by describing recommendations for best practices for obtaining ε from point velocity measure-45

ments. These recommendations were developed through the Scientific Committee on Oceanic Research working group #160

on Analysing ocean Turbulence Observations to quantify MIXing (ATOMIX), specifically the subgroup on point velocities.
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The working group established benchmark datasets to assess and validate algorithms (independent of programming language)

for estimating ε.

In addition, ATOMIX developed recommendations for two other types of technologies, shear probes (Lueck et al., 2024),50

and acoustic-Doppler current profilers (in prep). The ATOMIX approach promotes a consistent variable naming framework,

followed by example-based description of guidelines for formatting, processing level, parameter estimation, and quality control.

A key result is the provision of final ε estimates for the benchmark datasets to enable researchers to check their own analyses.

2 Background theory and sampling requirements

A critical aspect of most approaches to sampling environmental turbulence is that data are typically acquired in the time55

domain, but the mechanistic, physical understanding is best described and analyzed in the spatial (i.e., wavenumber) domain.

Technological developments are on the cusp of enabling the direct measurement of spatial spectra (e.g., Shcherbina et al.,

2018), but we focus on the more traditional timeseries measurements. These measurements are converted from a time to spatial

frame of reference by invoking Taylor’s frozen turbulence hypothesis whereby, under certain conditions, turbulent structure

can be considered ‘frozen’ as it moves past a stationary sensor (Lumley, 1965; Wyngaard and Clifford, 1977). In practice,60

this hypothesis requires an estimate of the mean advection speed Ū past the sensor, which enables the conversion of spectral

observations Ψ̂ from the frequency f (Hz) to wavenumber domain k̃ (cpm) as:

Ψ̂(k̃) = ŪΨ̂(f)

k̃ =
f

Ū
. (1)

The presence of ·̂ above variables indicate observational or estimated parameters.

Irrespective of whether the instrument is fixed or moving (e.g., drifting or moored), the velocity Ū is always the speed65

relative to the instrument rather than the actual water speed. This conversion can lead to errors in ε of a few percent when

Ū is about ten times larger than the root-mean-square of the turbulent velocity fluctuations in the direction of the mean flow

(Wyngaard and Clifford, 1977; Lumley, 1965). The error magnitude in flows with low mean speeds Ū was determined more

recently by Pécseli and Trulsen (2022), using idealized numerical experiments. Their work excludes the impact of surface

waves on the advection of turbulence and the estimated urms. They found that the expected errors on ε̂ drops when the ratio70

urms/Ū increases. When Ū was three times larger than urms, the ε̂ estimates were overpredicted by less than 10%. The errors

grew to about 25% when Ū was comparable in magnitude to urms (Pécseli and Trulsen, 2022).

Taylor’s hypothesis impacts which wavenumbers are resolved in the final spectra. Slower mean speeds enable resolution of

the smaller turbulence scales within the viscous subrange without increasing the sampling rate of measurements (Figure 2).

Hence, the expected mean speed Ū must be considered when selecting the sampling frequency of measurements and setting75

the ambiguity velocity of the instrument. A low ambiguity velocity in pulse-coherent Doppler instruments improves the data

quality by reducing the measurement noise but might “phase wrap” the measured velocities (Lhermitte and Serafin, 1984;
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Figure 1. Sketch of point velocity deployment configurations showing both under ice and seafloor deployments with examples of a time of

travel sensor (upper) or acoustic backscatter sensor (lower).

Lohrmann and Nylund, 2008). Section §4.1 covers how phase-wrapped data can be identified and remedied, while the metrics

for assessing the validity of Taylor’s hypothesis will be discussed in section 4.2.
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Figure 2. Spectral representations from the four benchmark datasets overlaying the expected idealized curves for a range of ε. The gray

diamonds denote the empirical limit of the inertial subrange and depend on ε. The coloured triangles represent the approximate distance of

the platform from the nearest boundary (2π/κz). The impact of vortex shedding is apparent in the under-ice MAVS example at approximately

25 cpm.

Estimating turbulence quantities from field measurements also necessitates satisfying the stationarity assumption. This as-80

sumption implies that the statistical properties of the flow do not vary with time; and hence, ε does not evolve faster than the

timescales over which the value is estimated. Stationarity must be considered when choosing the time over which to estimate
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ε (see § 4.2). More importantly, however, the sampling rate and segmenting choices must consider the time and length scales

associated with ocean turbulence, particularly those corresponding to the inertial subrange (Figure 2).

The inertial subrange spectral model Ψj(k) is given by:85

Ψj(k) = ajCkε2/3k−5/3, (2)

where k is the wavenumber expressed in rad m−1 rather than k̃ expressed in cpm (k̃ = 2πk), Ck is the empirical Kolmogorov

universal constant that is approximately Ck = 1.5 as given in Sreenivasan (1995). The constant aj depends on the velocity

component for estimating ε. In the longitudinal direction a1 = 18/55, while the values are 4/3 larger in the vertical and trans-

verse directions, i.e. a2 = a3 = 4a1/3 (Pope, 2000). Sreenivasan (1995) collated and interpreted multiple studies to obtain an90

average value for Ck=1.62 (a1Ck = 0.53) with a standard deviation of 0.1681 (or 0.055 for a1Ck).

The inertial subrange covers larger scales than the viscous subrange. It can be nonexistent in low Reynolds number flow in

which the larger turbulent scales become comparable in size to the smallest scales (Saddoughi and Veeravalli, 1994; Gargett

et al., 1984). The largest scales depend on the sought-after quantities – ε and the background flow properties. The smallest

scales are defined by the Kolmogorov length scale LK :95

LK =
(
ν3/ε

)1/4
, (3)

where ν is the kinematic viscosity of seawater. The largest scales of the inertial subrange are about ten times the Kolmogorov

scale, which translates to:

kis ≈
1

10LK
(4)

(Pope, 2000). When the ratio between the largest and smallest turbulent length scale becomes smaller than roughly 300,100

the inertial subrange becomes severely anisotropic (see the review in Bluteau et al., 2011). Energy levels drop below those

predicted by the isotropic model in equation 2, and the inertial subrange becomes unsuitable for estimating ε. These problems

typically occur for weakly turbulent flows, especially near boundaries or in highly stratified-sheared flows (Gargett et al., 1984;

Saddoughi and Veeravalli, 1994).

Several relationships exist to define the scale of the largest turbulent overturns (Ivey et al., 2018). We provide a brief105

overview, noting that these scales can be of the order of meters. The scales are always limited by the distance to the near-

est boundary, either the bottom or the surface. One common definition for the large overturns in a stratified-sheared flow is the

Ozmidov length scale LO (Ozmidov, 1965):

LO =
(
ε/N3

)1/2
, (5)

or by the Corssin length scales in sheared flows (Corrsin, 1958):110

LS =
(
ε/S3

)1/2
, (6)

where N and S are the background stratification and velocity shear. This length scale tends to be smaller than LO and better

represents the low wavenumber limit of the inertial subrange (see, for example Bluteau et al., 2011).
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Near boundaries, other definitions for the largest overturn size may be warranted. For example, the Obukhov length scale for

ocean convection includes the effects of buoyancy and applied wind stress (Obukhov, 1946; Zheng et al., 2021). Near a solid115

boundary,

LS ≡ κz (7)

when the assumptions of the log-law of the wall are satisfied (Bluteau et al., 2011). The Von Kàrmàn’s constant is κ = 0.39,

as revised by Marusic et al. (2013) using atmospheric and laboratory observations over a wide range of Reynolds numbers.

Hence, when no velocity shear measurements are available, the distance of the nearest boundary can be used to characterize120

the largest overturns, although this approach may overestimate the overturn sizes.

Generally, the inertial subrange can be identified directly from the spectral observations. Knowledge of the above length

scales is important to ensure the sampling and analysis strategies do not inadvertently reduce the range of wavenumbers

resolved within the inertial subrange. These scales partly dictate the segmenting and spectral averaging strategies described

below (§ 4.2 and 4.3), as well as the choice of burst sampling duration if continuous sampling is unfeasible with the available125

battery power of the instrument.

Measurement campaigns must ensure the sampling rate is sufficiently fast to resolve the high, most isotropic, wavenumbers

of the inertial subrange. The sampling rate must be faster for fast-moving flows than in low-energy environments, although

the high-energy flows typically lead to a wider inertial subrange. A sampling rate of 64 Hz has a Nyquist frequency of 32 Hz.

If the noise levels are low, the highest wavenumbers of the inertial subrange are resolved for ε ≲ 10−5 W kg−1 and mean130

speeds Ū ≲ 1 m s−1. For slower expected speeds Ū ≲ 0.25 m s−1, a sampling rate of about 16 Hz suffices for resolving the

entire inertial subrange when ε ≲ 10−5 W kg−1. The sampling rate can be further reduced if the expected ε is much lower than

10−5 W kg−1 (see Figure 2). However, the noise floor adversely impacts our ability to estimate low ε by potentially drowning

out the high wavenumbers of the inertial subrange (§4.4.3).

3 Benchmark datasets and formatting135

The benchmark datasets were selected to cover a range of instrument types and environmental conditions that can be encoun-

tered ranging from low-energy environments, such as beneath sea ice or lakes, to high-energy environments, such as sills and

obstacles in coastal oceans or shallow embayments and estuaries (Bluteau et al., 2025). Here, we focus on four benchmark

datasets encompassing a range of water depths and background flow speeds (Table 1). Other datasets were considered, but the

present ones have problematic sections that allowed us to demonstrate the application of quality control metrics.140

All four datasets are characterized by being recorded relatively close to a horizontal boundary. The four benchmark datasets

are split evenly across two types of instruments - (i) acoustic-Doppler velocimeter (ADV) which is a backscatter device, and

(ii) Modular Acoustic Velocity Sensor (MAVS) which is a time-of-travel device. The ADV datasets presented here were both

collected with a Vector, Nortek AS, while the MAVS instruments were produced by Nobska. The MAVS instrument notably

does not require particulate material in the water column to resolve speed fluctuations and, thus, turbulence. However, as we145
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discuss later, their sampling rings shed vortexes that contaminate velocities in the direction perpendicular to the instrument’s

main shaft (Hay et al., 2013). Bottom frames may also contaminate MAVS and ADV velocity measurements.

We specify the technology type used for collecting the velocities in the names of the benchmark datasets, which can be

summarized as follows:

1. Tidal Slough ADV - unstratified, shallow water;150

2. Tidal Shelf ADV - stratified boundary-layer with relatively fast speeds, in deep water;

3. Under-ice MAVS - weak flows, 5 m beneath rough ice;

4. Tidal MAVS - fast flows, near bed in shallow and unstratified waters.

Table 1. Summary of setup, environmental conditions, and estimated ε̂ for benchmark datasets (Bluteau et al., 2025). The range for mean

speed Ū represents the 50th and 95th percentile, while the range for ε̂ represents the 2.5th to 97.5th percentile.

Name

W
at

er
de

pt
h

z Ū τε (τFFT) sampling

rate

ε̂ Comments

m m m s−1 seconds Hz W kg−1

Tidal slough

ADV

2.8 0.45 0.15-0.33 540 (135) 16 1e-7 to 1e-5 Tidal slough deployment where the vis-

cous subrange is occasionally resolved.

Unstratified, but shear-induced anisotropy

Tidal shelf

ADV

250 0.4 0.25-0.78 256 (32) 64 1e-7 to 1e-4 Continental shelf deployment in a Strati-

fied bottom log layer. Dataset has phase

wrapping and flow-dependent evidence of

vortex shedding.

Under-ice

MAVS

353 5 0.03-0.06 1024 (256) 8 3e-9 to 7e-8 Slow under-ice and weakly-stratified,

boundary layer in deep water. The in-

strument was suspended beneath crystal-

coated ice.

Tidal

MAVS

20 1.45 1.0-1.1 82.8 (20.7) 12.35 3e-4 to 1e-3 Strong tidal flows in shallow water. Weak

stratification

The format of these benchmarks was devised to facilitate testing from different checkpoints, i.e., processing levels, and

include quality-control parameters to assess data quality. The benchmarks use the NetCDF-4 file format with four distinct155

processing levels stored in their own group named according to the processing levels (Figure 3). The variable dimensions were

repeated within each group even though the last three processing levels shared many dimensions. This choice accommodates
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the possibility of archiving only some processing levels in a central repository since archiving all levels may be prohibitive for

long timeseries.

The first data level contains the raw velocity measurements and boolean quality-control indicators that flag poor-quality160

velocity samples. The second level involves applying the quality control flags, replacing the missing samples (typically through

linear interpolation), and then segmenting the time series into smaller subsets, usually a few minutes long.

This second level separates each subset of velocity samples used for computing spectra and other statistics required for

converting from time to space or selecting turbulence models (e.g., wave statistics). The third level contains the spectral

observations for each segment that are used to derive ε by fitting the observations over the inertial subrange with the appropriate165

theoretical model. The fourth level contains the estimated ε from all available velocity components, along with boolean quality-

control flags that indicate one or many reasons why an ε should be discarded or, at the very least, have the quality questioned.

The flags’ metadata includes thresholds for any quality-control test applied to the original measurements. This level contains

the ε, and quality-control indicators, which would typically be presented in a scientific article or technical report.

4 Processing methods170

We detail the best practices for the processing step as they are applied to each NetCDF data level (Figure 3). Our processing

choices were determined using the existing literature, ATOMIX members’ experience, and testing of alternative methods. The

current benchmarks and proposed best practices are a starting point for eventual processing standards for estimating ε. Our

intention is for future users to verify their results at different data processing checkpoints, allowing the quality of archived

datasets to improve further over time.175

4.1 Quality control of raw velocity measurements

A timeseries, recorded from one instrument, is stored as a two-dimensional matrix where each column represents a velocity

component. The Level 1 flags are obtained by applying multiple quality-control processing steps to the raw measurements. We

note that several of the quality control steps are applied to the velocities collected in beam coordinates. However, in acoustic

systems with three or four transducers, data is rotated into horizontal and vertical velocity components by applying linear180

transformations to the data in beam coordinates; thus, a ‘bad data’ flag in beam coordinates should generally also be applied in

each of the xyz coordinates. Below, we describe identification of bad data and formation of the quality control flags as applied

to the ADV benchmarks. The MAVS benchmarks have flags only at Level 4 for the ε̂ estimates. The primary data quality issue

for this instrument is vortex shedding from the sampling rings.

The most common indicators of low-quality data are either low backscatter amplitudes or low signal-to-noise ratios, which185

express the strength of the signal relative to a background noise level (SNR = 20log10(Asignal/Anoise)). Critical cut-off val-

ues for discarding data are instrument- and environment-specific. For the Nortek Vector used in the benchmark datasets, the

manufacturer recommends values are 6 dB above the noise floor (around 50 dB) and 15 for amplitude and SNR, respectively

(Nortek, 2018). In contrast, an obstruction of an acoustic beam may manifest as high values in both backscatter and SNR. This
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Figure 3. Parallel data and NetCDF Level hierarchy showing the transition from raw time series to the final ε timeseries with the segment

analyses at each burst.

obstruction may be identified by a large difference in amplitude between the adjacent acoustic beams, especially if another190

beam is located behind the obstruction.

ADV systems use pulse-to-pulse coherent technology in which a pair of pulses separated by a known time lag are emitted.

The similarity between the measured echo of the two pulses is assessed and reported as a percentage value, which provides a

further indication of data quality (Lohrmann and Nylund, 2008). It is worth noting that coherence and amplitude are functions

of different parameters with varying sensitives, and thus provide two separate measures of quality control. Low correlation195

values can be used to identify bad data; but the converse is not necessarily true, that is, a large value doesn’t indicate good

quality data in all cases. A canonical cut-off value of 70% has been shown to generally reduce variance within the dataset;

however, values of 50% are also commonly used as a cut-off. In general, values should be set on a case-by-case basis following

careful inspection of the dataset (Nortek, 2018).
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For pulse-coherent instruments, the Doppler phase shift can only be determined from−π to π. For values outside this range,200

when the along-beam velocity exceeds the ambiguity velocity as set by the time-lag between pulses, ‘phase wrapping’ can

occur. This effect manifests as a sudden and unrealistic change in velocities, which is usually also accompanied by a change

in sign. These ‘phase-wrapped’ velocities can sometimes be corrected for in beam coordinates by subtracting or adding twice

the ambiguity velocity. However, it is preferable to set the nominal maximum velocity to a sufficiently large value when

programming the instrument for deployment to reduce data processing issues (Rusello, 2009).205

Further quality-control measures may involve removing excessively large speeds and/or other outliers, which could arise

under some circumstances, such as broken instruments or biofouling. Our quality control data format provides users with the

ability to specify the threshold and rationale in the data file, which can also be described in the methods in their scientific

publications. We recommend that these additional user-defined flags also consider other data quality concerns. For example,

suddenly varying pitch, roll, or heading measurements may indicate unwanted movement of the instrument, or pressure sensors210

may indicate whether the instrument is out of the water.

4.1.1 Despiking velocities

Short-lived transient spikes may contaminate velocity measurements, often only a few samples in duration but with different

amplitude to the neighbouring "correct" signal. It is critical to remove as many of these spikes as possible, as they can dra-

matically alter the velocity spectra, which are required for fitting the inertial subrange model. Spikes in ADV measurements215

may manifest because of aliasing of the Doppler signal, which happens when pulses are contaminated through reflection off

complex objects and boundaries (Goring and Nikora, 2002).

To despike ADV velocity measurements, we recommend the median filter-based method described by Brock (1986). This

method was originally developed for atmospheric measurements and was also recommended by Starkenburg et al. (2016)

review for despiking high-frequency atmospheric measurements of carbon dioxide used to quantify vertical turbulent fluxes.220

They found that the median filter was more robust than other filters such as the commonly applied phase-space thresholding

method developed by Goring and Nikora (2002). In particular, the median filter method (i) is better at handling missing points,

(ii) copes with the presence of low-frequency coherent turbulent structures, and (iii) is less biased by spikes than other methods

(Starkenburg et al., 2016).

The method requires a window length, over which to calculate the median, and a threshold for spike identification. The225

window length must be longer than the duration of spikes, which can span consecutive samples but also must be sufficiently

short to compute a reasonable local median (see Table 1 of Starkenburg et al., 2016). For the spike-identification threshold, we

recommend a method that calculates a histogram of velocity differences between the original minus the smoothed velocities

(Brock, 1986). In this technique, the local minimums on either side from the center define the positive and negative thresholds,

and velocity differences exceeding these thresholds are deemed to be spikes (Figure 4).230
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Figure 4. Example of the despiking procedure adapted from Brock (1986). (a) original velocities and smoothed signal obtained by applying

a median filter over 2fs+1 samples. (b) Histogram of the difference between the original and smoothed velocity timeseries during the first

despiking iteration. A power of 0.2 was applied to the number of samples n in each histogram bin. The ∆U = 0 threshold for identifying

spikes was determined from this histogram as the first instance where n = 0 above and below ∆U = 0. In this example, the thresholds for

accepting velocities as good is −0.056 m s−1< ∆U < 0.051 m s−1. If no bins have n = 0, then the ∆U corresponding to the minimum n

is used for setting despiking thresholds.

4.1.2 Formation of data quality flags

Each step flags velocity samples that do not meet the quality-control criteria. Each criterion uses binary (1/0) values that

are then transformed into a “bitwise” flag. The maximum flag value depends on the number of criteria Nc used to assess data

quality. The overall value of the boolean flag increases as the number of failed quality-control metrics increases. The maximum

possible value for the flag will be less than 2Nc , which translates to 255 when eight quality-control metrics are being evaluated235

(Nc = 8).

To flag the raw velocities, we use an 8-bit boolean number calculated from:

VEL_FLAG =
Nc∑

j∈I

2j−1, (8)

where j is the flag number amongst those applicable to each velocity sample. For example, I = {2,5} if the second and fifth

quality-control flags apply to the velocity samples, translating to a boolean value of 18. These boolean flags allow tracking240

the state of multiple metrics simultaneously while reporting only one number. A value of 0 means the velocity sample was
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not flagged and thus is likely high-quality. These boolean flags were designed with the Climate and Forecast (CF) metadata

conventions in mind.

Flags are identifiable in the NetCDF file by the FLAG suffix appended to the variable name, i.e., XYZ_VEL_FLAG for

raw velocities collected in the instrument’s XYZ coordinates, or EPSI_FLAG for ε̂ estimates (Table A1). We also included245

additional metadata in the variables’ attributes. We added “flag thresholds” and “flag thresholds meanings” to CF recommended

“flag_meanings” and “flag_masks” attributes (see Table 2). The “flag thresholds” provide the thresholds associated with a

given flag, while the “flag thresholds meanings” briefly explain how the thresholds are applied. These extra attributes allow

future users to revisit the flags, particularly the thresholds used, and apply more stringent (or less stringent) thresholds at their

discretion.250

Table 2. Summary of the different boolean flags and thresholds used to flag raw velocity samples. This information is stored with the suffix

_FLAGS appended to the velocity variable name at the first processing level (Table A1). None of the MAVS datasets were flagged at level

1. As contamination from vortex shedding impacts the quality of ε̂ estimates, these data are flagged at level 4.

Flag meanings Flag masks Flag threshold Flag threshold meaning

1. Low signal to noise

ratio

1 10 db Ratio is below the threshold.

2. Low amplitude 2 60 counts Amplitude is below the threshold.

3. Low correlation 4 70 Correlation is below the threshold.

4. Obstructed beam 8 40 Amplitude difference between adjacent

beams is above the threshold.

5. Spike 16 Sampling rate Median filter half-width number of

samples (Brock, 1986). Set to the sam-

pling rate of the instrument.

6. Suspiciously large

velocity

32 3 Sample exceeds the standard deviation

by the set multiplying factor.

7. User-defined 64 n/a User can optionally flag out-of-water

samples, broken probes, etc.

8. Phase-wrapped 128 n/a Replaced by unwrapped velocity

Total 255 if all eight metrics are used

4.2 Segmented timeseries

At Level 1, quality control of the raw velocity measurements was completed. For the spectral calculations required to compute

ε, (1) the measurements must be segmented in time, (2) flagged data must be replaced, (3) the velocities must be rotated into

the frame of reference of the mean flow, and (4) the rotated velocities must be detrended to calculate the velocity fluctuations

in the mean, transverse, and vertical directions.255
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The time series must be segmented before computing properties of turbulence. Selecting the length of the segments requires

a balance between using sufficient data to resolve the inertial subrange in wavenumber space, while still ensuring stationarity

of the turbulence. Stationarity implies that the key properties of the flow do not change over timescales shorter than the length

of the segment. For many aquatic systems, this time scale is on the order of 5-15 minutes. If burst sampling is used because

continuous sampling is unfeasible for the duration of the deployment, the segmenting considerations discussed below should260

be incorporated into the experimental design, as each burst is typically considered a segment. However, it is possible to break

up bursts into segments if they are long enough (e.g., Tidal slough ADV benchmark in Table 1). These choices are made at the

data processing stage for continuous time series.

The choice of segment length τε for estimating the dissipation impacts the resolvable wavenumbers of the inertial subrange

and ultimately the statistical accuracy of the final spectrum to be computed. As described below (§ 4.3), a fast Fourier transform265

(FFT) is used to convert the time series into frequency space. The number of velocity samples NFFT included in each FFT, the

sampling frequency fs, and the mean velocity Ū dictate the spectral resolution and the smallest resolvable wavenumbers ∆k̃:

∆k̃ =
fs

NFFTŪ
=

1
τFFTŪ

. (9)

The duration of each FFT-length is given by τFFT = NFFT/fs. The low wavenumber and resolution that resolves theoretically

at least one decade of the inertial subrange is given by:270

∆k̃ ≲ 1
70Lk

. (10)

When a decade is resolved, ten spectral samples Ns are available for spectral fitting (Figure 5b). This wavenumber resolution

depends on the ε (Figure 5a), while the FFT duration τFFT depends also on the mean speed past the sensor (Figure 5c).

Increasing the τFFT by a factor of 10 allows for 100 spectral samples to be theoretically resolved in the inertial subrange (Figure

5b). Once a τFFT is chosen, the total duration of each segment (or burst duration) for estimating dissipation τε ≥ 2τFFT, and275

preferably τε ≥ 3τFFT. These choices ensure the spectra have sufficient statistical certainty (degrees of freedom) for fitting

(Bluteau, 2025).

With real observations, we recommend first selecting τFFT from Figure 5c using the lowest expected ε and a relatively low

Ū derived from the observations. The spectra can then be estimated and plotted in wavenumber space against the theoretical

velocity spectra in a similar format as Figure 2. This visual representation can immediately show whether the chosen τFFT280

is longer than necessary (e.g., Tidal Shelf High Quality example in Figure 2) or if the length needs to be extended because

the high wavenumbers are drowned by noise. The goal is to choose a τFFT that is sufficiently long to resolve a decade of the

inertial subrange throughout the entire dataset. The duration τFFT will be longer than necessary when ε or Ū increases (Figure

5c). For our benchmarks, the total segment duration varied from 82 seconds for the high-energy Tidal MAVS benchmark to

1024 seconds for the low-energy Under-ice MAVS benchmark (Table 1).285

The Level 1 flags can exclude data points from further analysis. Once the time series has been segmented, data loss due to

flagged points must be addressed before spectral calculations. For spectral computations, these excluded data points must be

replaced in the time series as appropriate. It is recommended that linear interpolation replace missing points and record the
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Figure 5. a) Minimum FFT length scale ℓFFT that must be resolved by the spectra as a function of ε and the number of fitted spectral

samples Ns. The lowest resolved wavenumber and resolution ∆k̃ = ℓ−1
FFT. (b) The number of spectral samples available for fitting as a

function of the number of resolved decades δ = log10

(
kis
∆k

)
within the inertial subrange. (c) Minimum FFT-length duration τFFT required

for resolving Ns =10 spectral samples within the inertial subrange. Note (a) and (c) represent minimum lengths and durations since the

available bandwidth for spectral fitting may be reduced because of measurement noise and/or anisotropy.

percent of good samples in each segment in the NetCDF Level 2 and 4 data. Segments with more than 10% missing data should

be flagged and rejected (Table 3). The threshold chosen for rejection should be recorded at Level 4 in the NetCDF file within290

the EPSI_FLAGS metadata (Table A4).

To estimate ε from all the different velocity components, the measurements must be rotated into the main direction of the

flow. In some instances, the instrument’s frame of reference may be aligned with the direction of flow, which is ideal to account
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for the varying levels of anisotropy among components (Gargett et al., 1984; Bluteau et al., 2011). If this alignment isn’t set,

then the velocities’ measurement frame must be rotated into that of the flow, which we refer to as the analysis frame of reference.295

This process can be done by using the time-averaged velocities in each segment. If only the vertical velocity component will

be used for calculation ε, then this step may not be necessary. The frame of reference for velocity analysis is noted in the

NetCDF metadata within the Level 2 hierarchal group (Table A2). These velocities should be stored at Level 2 in a 3-D matrix

UVW_VEL with dimensions [N_SEGMENT, N_SAMPLE, N_VEL_COMPONENT] with the rotation method (if any) for

obtaining UVW_VEL velocities noted in the Level 2 metadata. Each N_SEGMENT are associated with a unique timestamp300

taken at the mid-point of each segment and stored in the TIME variable. We also store at Level 2 the variables ROT_AXIS

and ROT_ANGLE, which can be used for rotating velocities from the measured coordinate system (e.g., XYZ_VEL) into the

analysis frame of reference UVW_VEL (Table A2). This information is helpful for recovering the velocities of each segment

in the original frame of reference.

4.3 Spectral observations305

The parameters chosen when computing spectra can restrict the range of resolved wavenumbers, thus impacting the suitability

of the spectra for estimating dissipation rates ε̂. In particular, spectra must resolve as much of the available inertial subrange

as possible (Figure 2) while considering how measurement noise may dominate the high wavenumbers close to the viscous

subrange, which tend to be more isotropic than low wavenumbers. These choices also impact the statistical reliability of the

velocity spectrum, and thus ε̂ obtained from fitting algorithms as well as the accuracy of the spectral slope estimates (Bluteau,310

2025) — a quality-control indicator presented below in §4.6.

Our recommended spectral averaging involves splitting the time series into Nf subsets that are 50% overlapped and win-

dowed using a Hanning function (Lueck et al., 2024). An FFT is applied to each windowed subset before computing the squared

magnitude to get the power spectral density estimates (chapter 8 for pwelch methods; Percival and Walden, 2020). These power

spectral density of all subsets are then averaged together to yield the spectra used for estimating ε. When computing spectra315

from 50% windowed time series with a Hanning (cosine) window results in degrees of freedom d:

d = cNf = c

(
2τε

τFFT
− 1

)
(11)

with c = 1.9 (Equation 416 of Percival and Walden, 2020) or c = 1.92 according to Nuttall and Carter (1980). With our

suggested segment duration of τε ≥ 3τFFT (§4.2), Nf ≥ 5 since Nf = 2τε/τFFT− 1. The resulting spectral observations will

have about 10 degrees of freedom, i.e., d≈10. This recommendation is based on log-fitting methods returning ε̂ within a factor320

of about 1.5 of the actual value when applied to synthetic spectra with d = 10 (Bluteau, 2025)

4.4 Estimates of turbulent kinetic energy dissipation ε

We now discuss obtaining ε from the spectral observations, which involves spectral fitting Equation 2 to the wavenumbers

within the inertial subrange. We will focus first on the fitting methods before addressing how to identify the wavenumbers that

belong to the inertial subrange, as these wavenumbers depend on ε – the sought quantity.325
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4.4.1 Spectral fitting techniques

We considered six methods to fit the model Ψj(k) to the spectral observations Φj(k), and subsequently estimate ε. The details

of the methods and their assessment against synthetic spectra are described in Bluteau (2025). Spectra were synthesized by

specifying ε in Equation 2 and adding uncertainty to the spectra via two different statistical distributions. The sensitivity of the

fitting methods was also evaluated against the uncertainty (smoothness) of the spectral observations and the number of samples330

used in the fitting.

From this analysis, we recommend using fitting methods applied to log-transformed spectral observations. Specifically, we

recommend minimizing the least-absolute deviation (residuals) between the fitted model and the observations. This method

requires no assumption about the statistical distribution of the observations, unlike least-square regression, which expects

normally distributed data. Minimizing the absolute residuals is considered less stable than least-square regression (Tercan,335

2021). However, since only the intercept β0 that best fits the log-transformed spectral observations Ψ̂(k) is required; the

technique amounts to:

β0 = median
[
ln(Ψ̂i)−β1 ln(ki)

]
. (12)

The spectral slope β1 is set to the expected value of−5/3 for the inertial subrange (Equation 2), and i denotes each observation

in the spectra. Linear least squares would take the mean of Equation 12 rather than the median. Both least-square regression340

and least-absolute deviation performed well against the synthetic spectra (Bluteau, 2025). However, the estimated ε̂ from

least-absolute deviation were less biased, especially for spectra with low degrees of freedom, i.e., high degrees of uncertainty

because of limited spectral averaging.

From the fitted intercept β̂0, we can estimate ε̂ using:

ε̂ =
(

exp(β0)
ajCk

)3/2

, (13)345

where ajCk are the constants already defined above for the inertial subrange model (Equation 2). Using the ladLog fitting

method and FFT-lengths that are 1/4 of the segment length (d≈ 14), the estimated ε̂ is expected to be within 43% of the

actual ε if ten samples are fitted over one decade (Figure 3 and 4 of Bluteau, 2025). This error reduces to 15% when the

number of samples increases to 100, which tends to occur when the fit falls at wavenumbers nearing the high wavenumber

limit of the inertial subrange. The synthetic spectra were also used to evaluate the ability of the fitting technique to estimate350

the spectral slope β̂1 (Bluteau, 2025). The spectral slope estimates help flag spectra that do not exhibit a clear inertial subrange

because of poor data quality, low energy, and anisotropy, or simply because the sampling protocol or spectral averaging cannot

resolve the inertial subrange. The latter occurs when sampling too slowly or using fft-lengths that are too short to resolve the

entire inertial subrange (§4.3). As with the estimation of ε̂, the methods applied to the log-transformed data were better at

recovering the spectral slope β̂1 than those used to untransformed data. The logLAD method was less sensitive to outliers than355

the least-square regression (Bluteau, 2025).

Their results from fitting synthetic spectra using the logLAD method are shown in Figure 6 to determine a relationship for

flagging ε̂ estimates. The deviation of β̂1 from the expected β1 =−5/3 varied with the number of spectral samples fitted Ns,
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the degrees of freedom d of the synthetic spectra, and the decadal range:

δ = log10 (kN/k1) (14)360

between the first and Ns fitted wavenumber. The estimated 99.7% bounds from fitting synthetic spectra can be mathematically

represented by:

β̂1 > β1±
A

δ
√

2dNs

(15)

with A ranging between 7 to 17 (Figure 6). A small A is a stricter threshold for deeming spectra as exhibiting an inertial

subrange. This factor is documented in the metadata of the Level 4 NetCDF quality-control ε̂ flags (EPSI_FLAGS in Table365

A4). To apply Equation 15, we also store at Level 4 the number of samples fitted Ns as N_FITTED, the bounds of fitted

wavenumbers K_BNDS to calculate δ, and the degrees of freedom d (Table A4).
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Figure 6. (a) The 99.7% bounds (0.15th and 99.85th percentiles) for the logLAD method and the χ2
d distributed synthetic spectra dataset.

The numerical experiments are shown for both numbers of samples Ns and decadal range δ fitted by Bluteau (2025). Results are scaled by

the expected standard deviation of χ2
d distributed samples (

√
2d) in addition to δ

√
Ns. This figure illustrates that deviation of β̂1 from the

true value β1 =−5/3 scales approximately with δ
√

2dNs.
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4.4.2 Locating the inertial subrange in spectral observations

A primary challenge in obtaining ε̂ is identifying the spectral wavenumbers that most likely belong to the inertial subrange,

as these wavenumbers depend on ε̂ – the sought quantity. With appropriate choices for data sampling, segmenting (§4.2), and370

spectral averaging (§4.3), this step amounts to avoiding the low wavenumbers dominated by anisotropy and the high wavenum-

bers dominated by instrument noise. Other wavenumbers to avoid are those impacted by vortex shedding off instrument frames

(e.g., Under-ice MAVS in Figure 2), or surface waves.

We evaluated four strategies for identifying the inertial subrange within the spectra by adding white noise to the synthetic of

Bluteau (2025). Two strategies involved taking the absolute deviation between the log-transformed spectra and the model and375

taking the mean or median of the quantity | lnΨ̂− lnΨ|. The third strategy estimated the the mean absolute deviation of Ψ̂/Ψ

(Equation 24 of Ruddick et al., 2000). Our fourth and recommended strategy is to estimate ε̂ and the spectral slopes β̂1 over

short wavenumber subsets of the spectra (see Figure 7). The wavenumbers with the estimated slope closest to the expected

β1 =−5/3 for the inertial subrange are then selected to calculate the spectrum’s final ε̂.

In practice, the user must select the size of each subset, in addition to the wavenumber overlap for each subset within the380

spectra. For our benchmark datasets, we used an overlap equivalent to 1/20 of a decade, but other users may prefer shifting

the window by one spectral sample at a time. We recommend a minimum decadal wavenumber range of δ = 0.8 and that each

fitted subset includes at least ten samples, especially when δ < 1 (Bluteau, 2025). Users may also specify a maximum kmax

and minimum wavenumbers kmin that can be fitted upon inspection of the spectral observations (e.g., Figure 2). For example,

kmax ≈ 2π/Lb where Lb is the distance to the nearest boundary, while kmin ≈ π/ℓ depends on the dimension ℓ of the sampling385

volume of the instrument. For each subset, the estimated ε̂i is used to calculate LK , and verify whether the fitted wavenumbers

are within the inertial subrange. The user may provide some allowance, but we recommend ensuring that the median fitted

kmed is within the inertial subrange, i.e., kmed < 0.1/LK . Spectra for which none of the fitted subsets satisfy this requirement

were flagged (see § 4.6).

4.4.3 Impact of noise on ε estimates390

In some instances measurement noise may adversely impact the estimated ε̂, and render the spectra unusable for estimating

turbulence quantities. The drowning of the inertial subrange by noise is particularly common in low-energy environments such

as the ocean interior or in lakes. To deal with this issue, some authors have presumed the shape of the noise spectra to either

remove it from the spectral observations (e.g., Davis and Monismith, 2011), or add the presumed noise shape to the model

used for fitting the unaltered spectral observations (e.g., Ruddick et al., 2000). Rather than use these strategies, we recommend395

comparing the estimated ε̂ to the minimum εm when the corresponding theoretical spectral energy levels in the inertial subrange

(Equation 2) exceeds the noise floor Φn (Bluteau et al., 2011):

εm =
(

Φn

ajCk

)3/2

k5/2. (16)

19

https://doi.org/10.5194/egusphere-2025-4433
Preprint. Discussion started: 18 September 2025
c© Author(s) 2025. CC BY 4.0 License.



10
0

10
1

b)
u

w

best u

best w

10
-1

10
0

10
1

10
2

10
3

k [rad m
-1

]

0

0.5

1
c)

10
-4

10
-3

10
-2

10
-1

10
0

kL
k

segment 71

10
-5

10
-4

10
-3

10
-2

a)
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This recommendation is based on the relatively low positive bias introduced when leaving the noise “as-is” in the spectra

(Figure 8). The noise floor Φn typically appears as white noise (flat) in velocity spectra and can be estimated by averaging400

the energy levels of the highest wavenumbers where β̂1 ≈ 0. Equation 16 depends on the fitted wavenumbers k and can be

generalized further as a function of the smallest turbulent length scales Lk defined in Equation 3 (Bluteau et al., 2011):

k =
α

Lk
=

α

(ν3/ε)1/4
. (17)

The inertial subrange corresponds to α≤ 0.1. Substituting this relationship for k into Equation 16 yields the following mini-

mum εm:405

εm =
α20/3

ν5

(
Φn

ajCk

)4

. (18)

This equation demonstrates that noise is most detrimental when fitting wavenumbers approaching the theoretical high wavenum-

ber bound of the inertial subrange (α = kLk = 0.1). The minimum resolvable εm can be viewed as the measurement detection

limit. The limit increases with noise levels, albeit the increase is amplified when when fitting large wavenumbers i.e., k close

to the beginning of the viscous subrange (Figure 8). For example, the inertial subrange sits above the noise floor for ε > 10−7410

W kg−1 at wavenumbers ten times smaller than the highest within the inertial subrange (α = 0.01) provided the noise levels

Φn are less than 10−6 m2 s−2/(rad/m) (Figure 8a). However, if fitting the highest wavenumbers within the inertial subrange

(α = 0.1), the spectra sit above the noise floor only if Φn ≲ 2× 10−8 m2 s−2/(rad/m) (Figure 8b).

By leaving the noise floor “as-is” in the spectral observations, a positive bias occurs when estimating ε̂. The over-estimation

is in addition to other errors associated with spectral fitting techniques described above. When ε̂≈ εm, the estimated ε̂ over-415

predicts the prescribed value ε by a factor of 3 (circles in Figure 8). When ε̂≈ 100εm, the estimated ε̂ over-predicts ε by a factor

of 1.5 (squares in Figure 8). These positive biases are relatively small compared to the range of ε encountered in environmental

flows, especially considering how quickly the bias lessens when including lower wavenumbers (α≤ 0.1) in the fit. Hence, the

biases shown in Figure 8 are conservative when α is determined from the largest fitted wavenumber kN .

To flag overly noisy spectra with Equation 18, the user must estimate the spectral noise floor Φn from the observations.420

For our benchmarks, Φn was calculated as the average spectral energy levels over the last δ = 0.1 decadal range or the last 30

spectral samples, whichever leads to a larger number of averaged samples. The resulting Φn is stored as SPEC_NOISE_UVW

in the same units as the spectra from which the average was determined at Level 3 UVW_VEL_SPEC. The spectral noise

estimate Φn is used with the maximum fitted wavenumber kN stored in K_BNDS and the estimated dissipation ε̂ stored in

Level 4 to estimate εm using Equation 18. The estimated εm is stored as MIN_EPSI_NOISE at Level 4 so that this value can425

be used to generate quality control flags for ε̂ in section 4.6.

4.4.4 Flow interference

Nearby instrument frames may obstruct the flow or shed vortexes, contaminating the velocity observations. This contamination

is often recognizable as a narrow band peak in the velocity spectra when the frame obstruct the flow upstream of the sampling
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indicates that the inertial subrange sits below the noise floor; thus, ε̂ cannot be resolved.

following (Figure 2). In this situation, the contamination frequency fc can be determined from the Strouhal number Sr:430

fc = 0.21
Ū

D
(19)

for high Reynolds flow (Sr ≈ 0.21, Kundu, 1990). The frequency of the disturbances increases with decreasing diameter D

of the obstruction or an increase in the velocities past the frame Ū . These disturbances are typically associated with a specific

flow direction relative to the instrument’s frame of reference. Hence, if the instrument is fixed in space, the flow direction can

be used to identify when vortex shedding is potentially contaminating the velocity spectra, Alternatively, near boundaries, the435
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estimated ε̂ can be compared to the predicted values for the log-law of the wall and the flow direction (see Figure 4 McGinnis

et al., 2014). This contamination may occur at wavenumbers higher than those within the inertial subrange, as apparent in the

first 25 minutes of the Tidal Shelf ADV benchmark. The flow disturbances will sometimes be significant enough to increase

energy levels within the inertial subrange. Thus, it is preferable to avoid the problem by placing the sampling volume of the

instruments far from the obstruction. A common rule of thumb is leaving a space larger than ten times the diameter of the440

obstruction between the frame and the sampling volume. When the sampling volume is obstructed, ε̂ will be over-estimated

downstream of the disturbance (see Figure 4 of McGinnis et al., 2014).

Another contamination source specific to the MAVS velocity sensor is the rings that house the acoustic transducers. These

rings shed vortexes, contaminating the velocity measurements. This contamination affects most directions transverse to the

instrument’s main shaft. For a horizontally mounted instrument, such as our Tidal MAVS benchmark, the longitudinal direction445

was the least affected by the rings’ vortex shedding (Hay et al., 2013). In contrast, the transverse direction was the most

affected. The other Under-ice MAVS benchmark was mounted vertically on a rod lowered beneath the ice sheet. The vertical

velocity direction was the least affected, followed by the longitudinal, although the vertical component still shows evidence of

a high-frequency flow disturbance in its spectra (Figure 2). Our quality-control metrics below include optional flagging for ε̂

estimates affected by flow disturbances.450

4.5 Confidence intervals for ε̂

Given the above recommendation for fitting the spectra using the least-absolute deviation method, we suggest creating confi-

dence intervals on ε̂ using bootstrapping techniques (Davison and Hinkley, 1997). The advantage of bootstrapping is that no

assumption is made about the statistical distribution of the observations. Bootstrapping involves resampling the dataset and re-

computing the desired statistics to provide a distribution of estimates, from which confidence intervals can be obtained. For our455

application, we bootstrapped the fitted β̂0 since it is used to estimate ε̂ from Equation 13. This step is achieved by resampling

the residuals r between the log-transformed observations (lnΨ̂) and the best-fit β̂0:

ri = lnΨ̂i−
(

β̂0−
5
3

lnki

)
(20)

and adding them to the best-fit line in log-log space to create a new dataset lnΨ̃:

lnΨ̃i = r̃i +
(

β̂0−
5
3

lnki

)
, (21)460

where i represents an observation and r̃i, the bootstrapped residuals. The new spectral log-transformed spectra lnΨ̃ are refitted

with Equation 12 to obtain a bootstrapped β̂0 estimate. The resampling of residuals and fitting are repeated many, typically

more than 1000, times (Davison and Hinkley, 1997), to obtain a collection of bootstrapped β̂0 estimates for a given velocity

spectrum, and thus ε̂ estimate. Finding the 2.5th and 97.5th percentiles from the collection of β̂0 provides the 95% confi-

dence interval.These percentiles are then substituted into Equation 13 to obtain the confidence levels for ε̂. In the benchmark465

datasets, we obtained the 95% confidence intervals for each ε̂ estimate by resampling the residuals and refitting 1000 times

lnΨ̃ (Equation 21).
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4.6 Quality-control considerations and flags

Similarly to the raw velocities at Level 1, we assess our ε̂ estimates against multiple quality-control metrics. The results of this

assessment are stored using an 8-bit (Nc = 8) boolean flag calculated with the same equation as for our raw velocities (eq. 8).470

Thus, the maximum flag value is 255 when all eight quality-control metrics apply to a given ε̂ estimate. This number is stored

at Level 4 as EPSI_FLAGS. Below we describe each metric individually, which are summarized in Table 3.

Table 3. Summary of the different boolean flags and thresholds used to mask ε estimates, stored as EPSI_FLAGS variable in the 4th

processing level within NetCDF file.

Flag meanings Flag masks Flag threshold Flag threshold meaning

1. Non-stationary 1 20 subsets Number of subsets used for calculating runs. The acceptable number

of runs is in between 6 and 15 when subdividing the dataset into 20

subsets.

2. Failed Taylor hy-

pothesis

2 TH in Eq. 22 Ratio is above the acceptable threshold TH = 0.33 (Pécseli and Trulsen,

2022).

3. Noise dominated

spectra

4 Tn in Eq. 23 Ratio ε/εm is below the acceptable threshold. A low ratio implies the

high wavenumbers of the inertial subrange are drowned by noise.

4. Poor spectral slope 8 A in Eq. 15 Smaller A reduces the range of acceptable slopes β̂1 for an inertial sub-

range.

5. Missing velocity

samples

16 TP =10% Maximum permissible percentage of missing velocity samples in a seg-

ment.

6. Anisotropic (op-

tional)

32 TA in eq. 24 Ratio of largest to smallest turbulent overturns too low for the spectra to

exhibit a well-defined isotropic inertial subrange. May require informa-

tion about the background shear and/or stratification, especially if far

from a boundary.

7. Outside inertial sub-

range

64 Eq. 25 Estimated ε̂ places the fitted k within the viscous subrange.

8. User-defined 128 Example of user-defined metrics could be outliers in the ε̂ timeseries,

contamination from vortex shedding shedding, etc.

Total 255 if all eight metrics are used
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4.6.1 Non-stationarity

Our first metric presents the results from testing the stationarity of turbulent velocities. Both spectra computations and the

inertial subrange model rely on the assumption of stationarity. The test is applied to each velocity component separately. For475

this purpose, we used the nonparametric test by Bendat and Piersol (2000), which involves calculating two statistics (standard

deviations and average) over shorter subsets of each velocity timeseries segment (of duration τε). We then compare the number

of runs (crossings) of each statistic about its average to the expected values in Table A.6 of Bendat and Piersol (2000). For

this evaluation, the user must choose the significance level and the number of subsets to subdivide each segment. We used 20

subsets and a 95% level, resulting in an acceptable number of runs between 6 and 15. We flagged ε̂ as non-stationary if the480

number of runs for the standard deviation and means for the velocity segment are outside the expected range.

4.6.2 Violation of Taylor’s frozen hypothesis

The second quality metric focuses on Taylor’s frozen turbulence hypothesis. We recommend flagging ε̂ estimates associated

with low advection velocities Ū relative to the root mean square of the turbulent velocity fluctuations along the direction of

mean advection urms. This condition translates to flagging ε̂ associated with urms/Ū exceeding a threshold TH :485

urms

Ū
> TH . (22)

We suggest TH = 0.33 based on the work of Pécseli and Trulsen (2022) who showed that the error for ε̂ for this value is

about 10%. Larger errors are expected when urms
Ū

increases (see Figure 12 of Pécseli and Trulsen, 2022). Thus, TH could be

increased but it should always remain smaller than 1. The chosen threshold should be specified in the metadata of EPSI_FLAGS

accompanying the ε̂ estimates as detailed in Table 3.490

4.6.3 Noise-dominated spectra

The third flag considers whether the fitted spectra are drowned by noise. This criteria involves calculating the minimum resolv-

able εm using equations 17 and 18 from the dissipation ε̂ estimates, the maximum fitted wavenumber kmax, and the estimate

of the spectral noise floor Φn (see § 4.4.3). The estimated ε̂ is compared to the minimum resolvable εm. Dissipation estimates

are flagged as being drowned by noise when the ratio between these two quantities is less than the user-defined threshold Tn:495

ε̂

εm
< Tn. (23)

The threshold Tn must always be larger than one and specified in the ε̂ flag’s metadata (see Table 3). We suggest Tn = 3 owing

to the positive bias shown when the highest wavenumbers of the inertial subrange sit near spectral observations as illustrated

in Figure 8).

4.6.4 Spectral slope outside expected range500

Our fourth flag involves estimating the spectral slope β̂1 from the observations. We identify ε̂ associated with spectral slopes

that deviate too much from the expected -5/3 value. This situation may occur because of excessive noise, anisotropy, or other
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contamination (e.g., vortex shedding). Spectral slope estimates that fall outside the bounds given by Equation 15 are flagged.

To flag ε̂, we set A = 17 because we estimated the spectral slopes β̂1 using methods applied to log-transformed spectral

observations. This A value is based on the 99.7% bounds in Figure 6. Reducing A would render the threshold more stringent,505

flagging an increased number of ε̂ estimates. Users should always specify their choice of A in the metadata accompanying their

ε̂ estimates. This information in combination with the variables for estimating the acceptable bounds (Equation 15) should be

available to enable other users to re-flag ε̂ if desired.

4.6.5 Missing too many samples

Our fifth flag involves identifying segments with significant data loss during the quality-control of raw velocities, which render510

the spectra unreliable for estimating ε̂ (§ 4.1). Limited testing involving the random removal of velocity samples from our

benchmarks showed that spectral shapes deviate considerably from the original when more than 10% of samples are removed.

As the percentage of data loss increases, the interpolated time series yield spectra with increased energy levels at low k and

decreased energy at high k. We suspect acceptable data loss depends on data quality (i.e., noise levels) and underlying turbu-

lence captured in the original time series. We thus recommend users specify their threshold TP for the maximum percentage of515

data loss in the segment after quality-controlling the raw velocities. For our benchmark datasets, we use 10% as the minimum

percentage of good samples in a segment.

4.6.6 Spectral anisotropy

The sixth metric is for flagging anisotropic ε̂ estimates. This flag is optional as it typically requires an estimate of the largest

turbulent overturns L (see §2). The size of the large overturns depends on the mean flow characteristics and so necessitate520

measuring the background stratification (LO, Equation 5) or the background shear (LS , Equation 6) unless the distance from

the boundary is a suitable alternative for L (Equation 7). Spectra are considered too anisotropic when the ratio L/LK is small,

which would potentially lead to underestimating ε̂. To flag this issue, we compare this ratio to a user-defined threshold TA:

L

LK
< TA. (24)

The threshold TA depends on the chosen measure for L and the velocity component (see Bluteau et al., 2011, for an extensive525

review). The longitudinal direction tends to have a broader inertial subrange than the vertical and transverse directions. We

recommend a similar threshold TA = 100 to Bluteau et al. (2011), noting that higher thresholds might be necessary when the

transverse or vertical components are used to estimate ε̂. The user should specify the definition of their largest L and the

threshold TA for flagging the data in the EPSI_FLAG metadata. For our benchmarks, this length-scale was set L = κLb and

stored as at level 4.530

4.6.7 Fit located outside inertial subrange

The seventh flag identifies spectra when most fitted wavenumbers sit outside the inertial subrange. This situation arises when

the median fitted wavenumber kmed during the search of the inertial subrange (see §4.4.2) are high and always lies within the
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viscous subrange:

kmed ≳ 0.1
LK

(25)535

(Pope, 2000). This situation typically arises when the speed past the sensor is very slow, or the spectra are very noisy, such that

the algorithm places the inertial subrange at very high wavenumbers.

Alternatively, the fitted wavenumbers may be too small and thus outside the inertial subrange. This situation will arise if

the inertial subrange is unresolved because the sampling frequency is too slow or the largest overturns’ are negligible. For the

benchmarks, these wavenumbers are those smaller than those dictated by the distance to the nearest boundary (see Figure 2).540

4.6.8 User-defined flags

The last flag is reserved for missing ε̂ estimates or any other user-defined flag. For example, the user may flag data loss onboard

the instrument, ε̂ outliers in the time series, or perhaps unrealistically different ε̂ between velocity components. Occasionally, all

components will yield ε̂ estimates, passing all quality control criteria, but significant differences still exist between components.

This situation may occur, for instance, because of vortex shedding from nearby flow obstacles (§ 4.4.4). We used this user-545

defined flag to denote velocity directions from the MAVS benchmark datasets that were impacted by vortex shedding.

4.6.9 Final ε̂ estimates

In the NetCDF file, a final estimate for ε̂ is stored as a 1d timeseries EPSI_FINAL. This parameter is effectively the “best”

ε̂ issued from the data processing and flagging with the EPSI_FLAGS. There can often be large differences in dissipation

estimates among the three velocity components caused by differing impacts of noise, anisotropy at low wavenumbers, and550

vortex shedding on the spectral observations. Thus, we select one of the velocity component to produce the final ε̂ estimates,

and document the choice in the EPSI_FINAL metadata.

5 Application of methods to benchmark datasets

We illustrate the methods, common data quality issues, and the application of quality-control flags for our Tidal Shelf ADV

benchmark. The quality-control thresholds and processing choices are summarized in Table 4 for our four benchmarks. The555

velocities’ “legged” appearance was caused by setting the velocity range below the maximum observed during deployment.

This issue is rectified once beam velocities are unwrapped. These velocities were stored as XYZ_VEL_UNWRAP at level

1, and once quality-controlled, they are segmented and included in the NetCDF file at level 2 (Figure 3 and Table A1). This

dataset was high quality as the data return was more than 85% for all segments (Figure 9c). The most significant data loss

coincided with the period of strong flows when many velocity samples were phase-wrapped. Despite the unwrapping, some560

poor velocities samples remained and were flagged using the 5 and 6th flags that denote spikes and suspiciously large velocities

in Table 2. These samples appeared in the timeseries as having velocities flags totaling 160 and 176, respectively (Figure 9c).

For this dataset, the 8th flag, denoting phase-wrapped samples, was not used to discard velocity samples. This flag yielded a
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boolean value of 128. To be discarded, the samples must be flagged for another reason, so only samples with flags greater than

0 and not equal to 128 were replaced using linear interpolation at level 2 (see §4.3). This interpolated dataset was then split565

into 256-sec long segments with a 25% overlap between adjacent segments and stored in the Level 2 group within the NetCDF

file.
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Figure 9. Level 1 and 2 observations associated with the Tidal Shelf ADV benchmark. (a) Raw velocities with obvious signs of phase-

wrapping. (b) Quality-controlled and unwrapped velocities for the benchmark. (c) Maximum boolean velocity flags (i.e., XYZ_VEL_FLAG)

value for each 256 s long segment. The secondary axis shows the percentage of good samples within each segment. (d) Mean velocities and

direction relative to the instrument’s frame of reference. Table 2 summarizes the meaning of the velocity boolean flags.
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The Level 2 segmented and quality-controlled data were then used to calculate the spectra stored in the NetCDF file at

Level 3. Spectra from four different segments of the Tidal Shelf ADV benchmark are illustrated in Figure 10. This benchmark

displayed evidence of vortex shedding when velocities were directed at 220◦ relative to the instrument’s frame of reference and570

exceeded 5 cm s−1 (segments 1 to 7). However, the shedding was well outside the inertial subrange (100 cpm, Figure 10a), so

ε̂ was not flagged for this criteria.

The spectra from segments 8 through 10 were not impacted by vortex shedding because the flow was too weak despite the

velocities being oriented in the right direction to contaminate the measurements (see segment 10 in Figure 10b). In this second

example, the ε̂ estimates of all velocity components were nonetheless flagged for failing the Taylor Hypothesis criteria and575

for most of the spectra sitting within the theoretical viscous subrange based on the fitted ε̂ (2nd and 7th flags, respectively, in

Table 3). Combined, these two flags translate to a boolean value of 66 for the longitudinal and transverse ε̂ flag stored at level

4 (Equation 8). The vertical component had a larger flag of 67 because it was also deemed non-stationary (1st flag in Table 3).

Table 4. Data processing choices when estimating ε̂ from quality-controlled velocities.

Tidal slough ADV Tidal shelf ADV Under-ice MAVS Tidal MAVS

Measured coordinate system XYZ XYZ ENU XYZ

Rotation method None to align with Ū to align with Ū None

δ wavenumber range for fitting 0.8 0.8 0.8 0.8

EPSI in EPSI_FINAL Vertical (w) Vertical (w) Vertical (w) Transverse (v)

Thresholds used when creating EPSI_FLAG

1. Non-stationary (subsets) 20 20 20 20

2. Failed Taylor Hypothesis: Th 0.33 0.33 0.33 0.33

3. Noise dominated spectra: Tn 3 3 3 3

4. Poor spectral slope: A 17 17 17 17

5. Missing velocity samples: Tp 10 10 10 10

6. Anisotropic: Ta and L = κLb 150 and L=0.18 m 100 and L=0.16 m 200 and L=2 m 200 and L=0.58 m

7. Outside inertial subrange Assumes the inertial subrange ends at k ≈ 0.1/Lk

8. User-defined Not used Not used Vortex shedding in u and v Vortex shedding in u and w

For our third example, ε̂ estimates from the transverse and vertical components received a boolean ε̂ equal to 32 (Figure

10c). This value translates to applying the 6th flag, concerning turbulence anisotropy (I ∈ 6 in Equation 8). For this dataset, we580

used a threshold of TA = 100 to identify segments that were too anisotropic to yield a reliable ε̂ estimate (Equation 24, Table

4). The longitudinal component passed the condition for being sufficiently isotropic, while passing all other quality-control

criteria (EPSI_FLAG = 0).

Our fourth and final example received an EPSI_FLAG of 8 in the longitudinal velocity component (Figure 10d). This

boolean code implies that this segment failed the 4th criterion, which indicates that the spectral slope β̂1 =−0.83 (Figure 11e)585

was outside the expected range based on Equation 15. For this computation, we used d = 28.5 for the spectra’s degrees of

freedom, N = 32 for the number of fitted samples, and δ = 0.8 for the decadal range fitted. The other two velocity components

passed all quality-control criteria (EPSI_FLAG=0).
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Figure 10. Example spectra from four different segments of the Tidal Shelf ADV benchmark are shown in separate panels for all three

velocity components. The turbulence model spectra for velocities are shown in gray for 10−7 (darkest) to 10−4 W kg−1 (lightest) as digitized

by Luznik et al. (2007) from the work of Gargett et al. (1984). The approximate limit between the inertial and viscous subrange for each

model spectra is denoted by the diamonds (Equation 4).
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Despite not flagging any of the ε̂ from the Tidal Shelf ADV for vortex contamination, this contamination source did impact the

reliability of ε̂ of other benchmarks. For example, we flagged all of the MAVS ε̂ estimates obtained from velocity components590

perpendicular to the instrument’s shaft. This step translates to flagging all the Tidal MAVS ε̂ estimates, which were not from

the transverse (y) direction and all Under-ice MAVS ε̂ estimates that were not from the vertical (w) direction (Table 4). The

chosen velocity component for the final ε̂ estimates differs between the datasets. The Tidal MAVS assigns the ε̂ estimates from

the transverse direction given the orientation of the flow relative to the instrument’s shaft, while the other datasets assigned ε̂

from the vertical component. Depending on the intended scientific purposes for the ε̂ estimates, users may want to be more595

or less stringent when applying the quality-control metrics. Hence, we recommend documenting the chosen thresholds in the

NetCDF metadata for EPSI_FLAGS.
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Figure 11. Estimated ε̂ and associated quality control metric used for flagging the Tidal Shelf ADV benchmark dataset. a) The 95% bootstrap

confidence intervals are shown for theε̂ estimates that passed all quality-control metrics. b) Taylor Frozen hypothesis (Equation 22) with the

mean speed U past the sensor on the secondary right axis. c) Noise-dominated spectra metric (Equation 23). d) Too many missing velocity

samples comapred to TP . e) Spectral slopes β1 deviate from the expected range (Equation 15). f) Likely anisotropic spectra (Equation 24).

g) Boolean flag for our estimated ε̂. The higher EPSI_FLAGS are show in h).
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6 Conclusions

This paper uses acoustic point-measurement data to describe a systematic approach to obtaining reliable estimates of a key

ocean parameter —the dissipation rate of turbulent kinetic energy ε. We describe the processing and data handling steps, quality600

control, and associated flags. Finally, we provide benchmark results for researchers to validate their computer methodologies.

This approach was developed as part of the ATOMIX working group. As such, parallel analyses exist for other ocean

measurement measurement techniques (Lueck et al., 2024). There are benefits to this combined approach, including the ability

to leverage a broader range of experience and coding and making the step from one type of measurement to another much

easier. This benefit also applies to field campaigns with overlapping measurement approaches (e.g., the near-bed section of a605

shear profile overlapping with a region measured with a bed-mounted acoustic velocimeter).

One clear but simple conclusion is that there are significant benefits to consistently employing the ATOMIX naming and

storage convention described here. In particular, this enables rapid integration with existing approaches and builds a more

cohesive and efficient sampling community with enhanced cross-talk between researchers using different methods. Over time,

we expect improvements to the best practices as new instruments become available and new environmental conditions are610

sampled. With the oceans’ continued importance and role in key Earth system processes, more systematic sampling of the

oceans is inevitable. It is important that this sampling produces results that are consistent and reliable.

Code and data availability. The benchmarks and tools for loading benchmark datasets are available at the following public repository 10.

5281/zenodo.16798905 (Bluteau et al., 2025) under the SCOR community resources. This repository also includes example templates for

writing our recommended metadata into NetCDF files.615
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Table A1. Summary of Level 1 NetCDF data format. This level includes the full resolution raw timeseries velocities in physical units,quality-

control flags, and ancillary data.

Short name

Standard name

Dimensions Comments

TIME

time

TIME units: Days since a specified reference, e.g.,

Days since 2005-01-01T00:00:00Z

N_VEL_COMPONENT

unique_identifier_for_each_velocity_component

N_VEL_COMPONENT Maximum of 3 for u,v, w (east, north, up) ve-

locities

XYZ_VEL

water_velocity_measured_in

_instrument_coordinates

or

ENU_VEL water_velocity_measured_in

_geographical_coordinates

or

BEAM_VEL water_velocity_measured_in

_beam_coordinates

TIME,

N_VEL_COMPONENT

units: m/s

reference datum: instrument, geographi-

cal, or beam frame of reference for XYZ,

ENU or BEAM. The same coordinate

system should be used to provide the

flags (e.g., XYZ_VEL_FLAGS) and op-

tionally the unwrapped velocities (e.g.,

XYZ_VEL_UNWRAP_FLAGS)

XYZ_VEL_FLAGS

water_velocity_measured_in

_instrument_coordinates_status_flags

TIME,

N_VEL_COMPONENT

CF-compliant 8-bit (0-255) boolean flag that

designates why a velocity sample was dis-

carded.

HEIGHT or DEPTH TIME units: meters

Optional or sensor-dependent

BURST_NUMBER

unique_identifier_for_each_burst

TIME Integers of 1, 2, etc, to designate which burst

the velocities are associated with. For contin-

uous sampling, this can be omitted or have all

samples associated with burst 1.

HEADING

platform_yaw_angle

TIME units: degrees

positive: clockwise

reference datum: true North

PITCH

platform_pitch_angle

TIME units: degrees

positive: counterclockwise

reference datum: around the instrument y-axis

ROLL

platform_roll_angle

TIME units: degrees

positive: counterclockwise

reference datum: around the instrument x-axis

ABSIC

backscater_intensity

TIME,

N_VEL_COMPONENT

units: counts

CORRN

noise_correlation_percent

TIME,

N_VEL_COMPONENT

units: %

SNR

signal_noise_ratio

TIME,

N_VEL_COMPONENT

units: db

XYZ_VEL_UNWRAP

water_velocity_measured_in_

instrument_coordinates_unwrapped

TIME,

N_VEL_COMPONENT

units: m s−1

These velocities needed to be unwrapped ow-

ing to choosing an ambiguity velocity too

small compared to measured velocities.

38

https://doi.org/10.5194/egusphere-2025-4433
Preprint. Discussion started: 18 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Table A2. Summary of Level 2 NetCDF data format. This level includes quality-controlled and segmented timeseries.

Short name

Standard name

Dimensions Comments

TIME

time

TIME units: Days since a specified reference, e.g.,

Days since 2005-01-01T00:00:00Z

UVW_VEL

water_velocity_in_the_analysis_frame_of_reference

TIME,

N_VEL_COMPONENT,

N_SAMPLE

units: m/s

reference datum: analysis frame of reference

Velocities from level 1 stored on a per-

segment, i.e., duration τε basis. These may be

rotated from the original measurement frame

stored in level 1.

PERGD

percentage_of_samples_good

TIME units: %

Percentage of samples in each segment that

passed all quality-control metrics.

TIME_BNDS

time_interval_bounds

TIME, N_BNDS units: same as TIME

Provides the beginning and end of each inter-

val specified by the variable TIME

TAYL

ratio_of_rms_of_turbulent_velocity_with_mean_water_speed

TIME Left hand side of Equation 22

ROT_AXIS

axis_of_rotation_from_east_to_x

TIME,

N_VEL_COMPONENT

units: degree

reference datum: east

positive: counterclockwise

Axis in the geographical coordinate system to

rotate velocities into the analysis frame of ref-

erence.

ROT_ANGLE

angle_of_rotation_from_east_to_x

TIME units: degree

reference datum: east

positive: counterclockwise

Angle for rotating the velocities from geo-

graphical coordinates into the analysis frame

of reference

BURST_NUMBER

unique_identifier_for_each_burst

TIME Integers of 1, 2, etc, to designate which burst

the velocities are associated with. For contin-

uous sampling, this can be omitted or have all

samples associated with burst 1

N_SAMPLE

unique_identifier_for_each_sample_within _the_segment

N_SAMPLE Value from 1 to fsτε to designate the velocity

sample in each segment, and thus the largest

value is based on sampling frequency fs and

segment duration τε

N_BNDS

unique_identifier_for_defining_low_high_bounds

1,2 1 represents the lower bound and 2 the upper

bound

N_VEL_COMPONENT

unique_identifier_for_each_velocity_component

N_VEL_COMPONENT Same as level 1
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Table A3. Summary of Level 3 NetCDF data format. This level includes the spectral observations.

Short name

Standard name

Dimensions Comments

TIME TIME Same as level 2

TIME_BNDS TIME, N_BNDS Same as level 2

UVW_VEL_SPEC

power_spectrum_density_of_velocity_in_the_analysis_

frame_of_reference

FREQ,

N_VEL_COMPONENT,

TIME

units: (m s−1)2/Hz

reference datum: analysis frame of reference

Summing these spectra across all frequencies

should equal to the signal’s variance estimated

in the time-domain.

FREQ

frequency

FREQ units: Hz

PSPD_REL

platform_speed_wrt_sea_water

TIME units: m s−1

Mean speed past the sensor Ū used to con-

vert from frequency (time) to wavenumber

(space).

DOF

degrees_of_freedom_of_spectrum

1 See Equation 11 since it depends on how the

spectra was computed.

SPEC_NOISE_UVW

power_spectrum_density_white_noise_of_velocity_in_the_

analysis_frame_of_reference

TIME,

N_VEL_COMPONENT

units: (m s−1)2/Hz

Typically determined from the high-frequency

(noise-dominated) part of the spectrum i.e.,

noise floor (§4.4.3).

KVISC

kinematic_viscosity_of_water

1 or TIME units: m2 s−1

BURST_NUMBER

unique_identifier_for_each_burst

TIME Same as level 2

N_VEL_COMPONENT

unique_identifier_for_each_velocity_component

N_VEL_COMPONENT Same as level 1

N_BNDS

unique_identifier_for_defining_low_high_bounds

1,2 Same as level 2
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Table A4. Summary of Level 4 NetCDF data format. This level includes timeseries of the ε̂ dissipation estimates. The parameters necessary

for re-flagging ε̂ estimates are shown separately in Table A5.

Short name

Standard name

Dimensions Comments

EPSI

specific_turbulent_kinetic_energy_dissipation_in_water

TIME,

N_VEL_COMPONENT

units: W kg−1

ε̂ estimated from each of the individual veloc-

ity component.

EPSI_FLAGS

specific_turbulent_kinetic_energy_dissipation_in_water

status_flag

TIME,

N_VEL_COMPONENT

units: W kg−1

See Table 3. CF-compliant 8-bit (0-255)

boolean flag that designates why an ε̂ estimate

was flagged as being of poor quality.

EPSI_CI

specific_turbulent_kinetic_energy_dissipation_in_water con-

fidence_interval

TIME,

N_VEL_COMPONENT

units: W kg−1

95% confidence interval from bootstrapping

residuals

EPSI_FINAL

specific_turbulent_kinetic_energy_dissipation_in_water_final

TIME units: W kg−1

comment: Specifies which velocity compo-

nent was retained as the final ε̂ estimates that

would be provided in a scientific publication.

EPSI_FINAL_CI

specific_turbulent_kinetic_energy_dissipation_in_water

final_confidence_interval

TIME units: W kg−1

95% confidence interval of the final ε̂ from

bootstrapping residuals.

TIME TIME Same as level 2

TIME_BNDS TIME, N_BNDS Same as level 2

PSPD_REL TIME Same as level 3

K_BNDS

fitted_wavenumber_bounds_of_spectra

TIME,

N_VEL_COMPONENT,

N_BNDS

units: (m s−1)2 per cpm

Provides the first and last wavenumber bound

fitted to estimate ε̂

BURST_NUMBER TIME Same as level 2

N_VEL_COMPONENT N_VEL_COMPONENT Same as level 1

N_BNDS 1,2 Same as level 2
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Table A5. Additional parameters stored at Level 4 NetCDF for re-flagging ε̂ estimates.

Short name

Standard name

Dimensions Comments

PERGD TIME Same as level 2

TAYL TIME Same as level 2

MIN_EPSI_NOISE

minimum_specific_turbulent_kinetic_energy_dissipation

in_water_resolvable

TIME,

N_VEL_COMPONENT

units: W kg−1

Calculates εm using Equation 18 with the

highest fitted wavenumber k.

L

turbulent_length_scale

1 or TIME units: m

comment: Should specify the definition used

for estimating the largest turbulent overturn,

which could be LO , LS , or Lz = κz (Equa-

tion 5, 6, 7).

KVISC 1 or TIME Same as level 3

SPEC_SLOPE

estimated_spectral_slope_of_fitted_wavenumbers

_in_logspace

TIME,

N_VEL_COMPONENT

β1 in Ψ̂∼ kβ1 (Equation 2)

DECADE 1 The fitted wavenumber range δ given by

Equation 14 and needed for calculating the ac-

ceptable β̂1 range in Equation 15

N_FITTED

number_of_fitted_samples

TIME,

N_VEL_COMPONENT

Ns in Equation 15

DOF 1 Same as level 3. Required for calculating the

acceptable slope β̂1 range in Equation 15

DIR_CSPD

direction_of_water_speed

TIME units: degree

reference datum: x-axis

positive: counterclockwise

Useful for flow interference.
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