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Overview

Klema et al. present a new interpretation of topographic “curvature” in the context of coupled fluvial-
hillslope landscape evolution. Using the Oregon Coast Range as a case study, they show that, in steep
terrain, mean curvature is not equivalent to the Laplacian (despite frequent conflation in the literature) and
that mean curvature, together with Gaussian curvature, helps delineate process domains between hillslopes
and river networks.

This is an interesting and useful paper, and I think it fits well within the scope of ESurf. I am supportive
of it, and the length of this review reflects how much I enjoyed reading it. That said, the foundational claims
and their presentation require substantial revision.

Major Comments

As stated in the abstract, the major goals of this paper are to introduce mathematical notions of curvature,
develop a workflow for measuring the curvature of landscapes, and use this workflow and theory to understand
hillslope-fluvial landscapes. Overall, the workflow-related material is clearly presented, including the filtering
procedure and figures illustrating the application of curvature-based landscape classification. Given the
concerns below, I won’t elaborate on these strengths, and I hope this doesn’t make the review seem overly
negative. I found this paper less than compelling in its presentation of the mathematical framework, its
analysis of curvature in the context of geomorphology, and its selection and framing of some of the main
findings.

The authors begin by linking curvature to geomorphology through the Laplacian “curvature” (i.e., the
divergence of a linear diffusive soil-creep flux) in the stream-power plus linear diffusion model. A major claim
of this paper is that the Laplacian is not an accurate representation of curvature in steep terrain. However,
the authors fail to note that linear flux laws themselves (and thus the Laplacian) do not accurately represent
geomorphic processes in steep terrain. Take, for example, the Andrew-Bucknam/Roering nonlinear flux law:
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showing that, for shallow slopes, the leading-order term is a linear flux law, the divergence of which returns
the Laplacian of z. This linear, local flux law approximation holds for shallow slopes but breaks down at
large slopes. This is why hilltop curvature equals the Laplacian and can be used to approximate uplift.
As the authors note on line 85, over the horizontal length scales of entire mountain ranges, the Laplacian
(linear-diffusion) approximation provides a reasonable estimate of tectonic uplift rates. This holds because
the horizontal length scales greatly exceed the vertical length scales, making the shallow-slope approximation
appropriate. The shallow-slope approximation is also inherent in the derivation of the stream-power model
(Stark and Stark, 2022; Prancevic et al., 2014). I found that the relationship between vertical and horizontal
scales and the related shortcomings of the shallow-slope approximation in steep terrain are central to the
paper’s motivation, yet the authors do not clearly identify these issues.

In Sections 3 and 5 the authors present an extensive review and abstract mathematical derivation of
curvature. Although interesting, the discussion of the mathematical history of curvature (Section 3) extends
beyond the paper’s scope and could be streamlined. Considering the mathematical derivation in Section 5,
I would describe the authors’ approach as “tell-don’t-show,” in that the treatment remains abstract with
few explicit connections to the landscape evolution equations. For example, explicit mathematical details
describing the (u,v) coordinates that follow the surface are not presented. The abstract curvature derivation
also contains many inaccuracies. As written, this section adds little practical value beyond the cited references



and, without explicit equations, leaves it unclear how to compute curvature for real landscapes. 1 have
provided several suggestions in the line comments to help streamline the mathematical presentation.

Some of the paper’s conclusions are vague and may be misleading. A major example is that the authors
label the discrepancy between metrics for the leading-order shallow-slope approximation (Laplacian and
drainage area) and metrics for the full three-dimensional (non-shallow) surface (mean curvature and surface
area) as “error.” It is not “error” so much as that these are not the same quantities. Calling this discrepancy
an error also implies that the three-dimensional metrics are more appropriate for this application, yet the
authors provide no physical justification for why three-dimensional curvature or surface area are preferable in
geomorphology. This is not to deny that the three-dimensional geometric properties are interesting, but their
physical utility for landscapes remains unclear. I do not expect the authors to fully resolve this question,
but given the lack of evidence, the tone and presentation should reflect this.

A proposed major finding of this paper is an equipartition between positive and negative mean curva-
ture. For this to be “remarkable,” as stated in the abstract, there should be some kind of null hypothesis for
comparison. However, many statistically random fields (e.g., white noise) would exhibit a similar equiparti-
tion. This result would also be unlikely to hold for other ratios of hillslope length to boundary length (the
channelization index) (Bonetti et al., 2020; Litwin et al., 2022a; Anand et al., 2023), since, if the domain
were zoomed in on a single hillslope, the distribution would change.

The authors interpret the equipartition between positive and negative mean curvatures as evidence that
landscapes might minimize surface area. I do not find this suggestion to be persuasive. Minimal surfaces
have zero mean curvature everywhere on the surface (pointwise), not in an averaged sense. More generally,
optimization or variational principles in physics derive from forces and energies, typically involving the
minimization of a potential energy. Minimal surfaces arise due to surface tension, a tangential stress (force
per unit length along the interface). Surface tension is absent in landscape evolution, and the relevant
forces are gravitational, which are not naturally tangent to the surface but instead point downward. This
comment also understates the extensive body of literature on optimization principles in landscape evolution
(Rodriguez-Iturbe et al., 1992; Hooshyar et al., 2020; Birnir and Rowlett, 2013; Smith, 2021; Kleidon et al.,
2013; Stark and Stark, 2022), which, to my knowledge, makes no mention of surface area. If there were
the beginnings of a physical explanation for why landscapes might minimize surface area, I would find this
very interesting. In its current form, however, which lacks any physical mechanism, I find the suggestion
misleading.

In Section 6.3, the conclusion that surface area may be more correct than drainage area in the sense of
the water continuity equation (“potential implications for the interpretation of continuity equations”) is mis-
leading. Some of the assumptions in the drainage area formalism include (up to constants of proportionality)
that rainfall is constant and is applied via the horizontal z-y domain, that horizontal depth-averaged water
velocity is constant, that water is routed via the steepest descent of the topography (normal-flow), and that
infiltration is neglected (Bonetti et al., 2018; Smith, 2010; Fowler et al., 2007). Given these assumptions,
surface area is irrelevant to the continuity equation for (specific) drainage area. In order for surface area to
have an effect, one or more of these assumptions needs to be relaxed, which may include Manning velocity
parameterization (Gailleton et al., 2024; Smith et al., 1997; Prescott et al., 2025), infiltration/groundwater
effects (Litwin et al., 2022b), or possibly orogenic effects.

A final, minor suggestion is to consider noting that drainage area and specific drainage area depend on
grid resolution on hillslopes. As a simple example, the drainage area assigned to a topographic maximum
equals the grid cell area, and along an idealized planar hillslope it scales linearly with grid spacing. This
is not a consequence of filtering, but rather follows from dimensionality. Drainage area has the dimension
length squared, whereas the horizontal projection of the contributing region for a point on a hillslope is
not necessarily a well-defined area (Kargere et al., 2025; Bernard et al., 2022). Given the widespread use
of drainage area to delineate process domains in the literature, it is reasonable to use this metric, but you
should note that its value on hillslopes is resolution dependent.

In light of these major recommendations and the length of the manuscript, I suggest streamlining the
paper to emphasize what it does best. At its core, this paper presents a substantial amount of interesting and
useful material (sufficient for publication), including the workflow, figures, mapping of curvature domains,
and the more straightforward connections to between shape classes and geomorphic process domains. The
clarification of the distinction between the Laplacian and the mean curvature in steep terrain is particularly
useful. Interpreting the more nuanced and exploratory results concerning the physical processes underlying



the shape classes is challenging, and in-depth explanations are clearly outside the scope of the paper. This is
not a drawback. It makes the paper more interesting. For the interpretations that are offered, I recommend
focusing on those that are well supported by the evidence and by physical reasoning. In this respect, less is
more.

Line Comments

Before turning to the detailed notes, I want to clarify that many of the following comments (the longer
ones) are suggestions and should be taken as such. My goal is not to impose my viewpoint, but offer
constructive feedback. For stylistic issues, which occur throughout, I recommend a careful read-through to
check punctuation (missing commas), ensure that references to sections, equations, and figures follow the
Copernicus style guide, and verify consistent capitalization. I have flagged a few examples, but given the
paper’s length, it is beyond the scope of this review to note every instance.

5, 9: As noted in the major comments, “systematic error” seems overstated. In the small-slope limit, the
Laplacian approximates twice the mean curvature, but this breaks down as slopes increase. Similarly, the
difference between upstream surface area and horizontal drainage area reflects distinct quantities, not errors
in map-view approaches.

10: The pointwise curvature tensor is a tensor field.

10: Gaussian should be capitalized, “mean” should not be.

12: Complement.

12: As noted in the major comments, I don’t think this is an abstract-worthy finding.

17-18: isostasy (not “isostacy”).

21: Though it’s often described this way in the literature (and I’ve made this mistake myself) the stream-
power model is technically not advection, but a sink term (Bonetti et al., 2020). True advection would take
the form V - (zu), where u is a velocity field.

22-25: “Can be” is used twice.

28: Be more precise. The issue is less about oversimplification and more about overlapping process
domains.

33: “Development” is used twice.

76: DEM was already defined.

Eq. (9): The cross product produces the zero vector, which should be typeset in bold.

90: Eq. (1) defines a partial differential equation in z(z,y,t). Therefore, use %.

132: Per the Copernicus style guide, use Sect., followed by the number in the running text, except when
at the beginning of a sentence.

132: As noted in the major comments, the Laplacian of z is proportional to the mean curvature only to
leading order when z is O(e) relative to the horizontal length scales.

134: “is must”

141: Add a comma after result.

150: Local, not locale.

Figure 2: Use A rather than d to denote a finite, non-infinitesimal change.

163: Citation style

Section 4: This section gets is sandwiched between two sections about curvature, which distracts from
the flow. Consider putting it around Sect. 6 or so.

170: Coarser

Figure 2: “dashed lines how.” “show”

219: It might be clearer to define the surface in terms of the endpoints of the position vector, rather than
defining points on an undefined surface. This definition would be along the lines of: “The surface is the set
of endpoints of the position vector, parametrized by the coordinates (u,v), forming a subset of R3.”

220: It would be useful to clarify that each coefficient depends on the (u,v) coordinates, i.e., 1 (u,v),
ro(u,v), r3(u,v).

224: “the the”

224-225: w and v are scalar coordinates (a chart). The E-W and N-S curves are the level sets where
either u or v are constant.

225: Add a comma after “displacement.”
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225: ds is not a small displacement. Displacement is a vector quantity, whereas ds is a scalar quantity.
Refer to the magnitude of the displacement as infinitesimal rather than merely “small.” By definition ds =
||dr|| is the length of an infinitesimal displacement. Therefore t = % is a unit tangent vector, as noted in
line 242.

229: Replace the phrase “resultant of” with “resulting from.”

230: Add a comma before “with.”

232: ds? is the square of the infinitesimal displacement magnitude (infinitesimal arc length) along the
curve.

233: The authors also use I to denote the metric tensor itself (Eq. 33). If this is the chosen convention,
be more precise and write I(dr, dr) to denote the bilinear form I acting on the tangent vectors dr, returning
a scalar value.

236: Capitalize “Cartesian.”

236-239: The definition of a here distracts from the flow of the explanation.

240: ds is not “any surface curve.” It is the infinitesimal increment (line element) along the a curve on
the surface.

246: Use ‘Eq. (10)’ rather than ‘equation 10.’

247: As in line 233, refer to the fundamental forms as bilinear operators acting on the infinitesimal
displacement vectors, and use parentheses.

255: N-S grid lines, respectively,

Comments on Section 5

This section is abstract, and only minimally applied to the problem at hand. I wonder how many in the
geomorphology community will have the patience to work through this abstraction. Figure 2 does a good
job, but some mathematical ‘show-don’t tell’ could be useful. Below are some mathematical identities that
may help connect this derivation to the form of Eq. (1).

A natural place to start might be the x —y ‘projected’ coordinate system, given that this is the coordinate
system for Eq. (1). The (land) surface is defined by the set of endpoints of the position vector

r(z,y) = (z,y, 2(z, y))T

This is what you have in Eq. (8), where x,y, z(x,y) are your 71,79, r3. This also appears to be the form
of Bergbauer and Pollard (2003). In terms of (u,v):

r(u,v) = (m(u, v),y(u,v), z(x(u,v), y(u, v)))T.

These coordinate systems are related by a Jacobian:
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This Jacobian matrix is invertible, allowing for changes between the intrinsic and projected coordinates.

By Eq. (1), the surface is assumed to be differentiable (no cliffs or overhangs) and therefore % and %Z
are well-defined. As in Stark and Stark (2022), you may also want to rename the land-surface height to

something other than z for clarity. It follows from the assumptions in the paper that:
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The metric tensor (gay) in the (x,y) coordinates is:

ar(x,y) 8z(w,y)

82($,y) T 81‘(.’E,y) T
= (1,0 —2<2 —_— = 1
ox (1.0 Ox ) Oy 0.1, Oy )
! o 1t(5)’



The g, metric tensor is mapped to g,, (first fundamental form) using the inverse of the Jacobian
matrix. If slopes are shallow, then the g,, metric tensor is approximately the identity matrix, since the
partial derivatives of z in z and y enter as higher-order terms. To make this explicit, assume z = O(¢). In
other words, the surface height is small compared with the horizontal domain size. Then % and g—; are O(e),

so Fyy = %g—; are O(e?) ~ 0. The deviations of E,, and G, from 1 are also O(e?). In steep landscapes

such as the OCN, the vertical height scale is not negligible compared to the horizontal scale, so the slopes
are not negligible, and this expansion breaks down. As a result, the metric tensor here is not approximately
equal to the identity matrix.

Comments on Section 6.1: The set-up of (Bergbauer and Pollard, 2003) provides an analytical
expression for the mean curvature:

9z\2\ 9%z 9z 0z 9%z 9z\2\ 8%z
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This form can be compared analytically compared the half Laplacian, which is the leading order term
for shallow slope. Given this analytical solution, I wonder whether this section is necessary. I also don’t find
the inclusion of the D8 algorithm particularly useful. If you prefer to keep these sections, consider moving
some of this material to the appendix.

270: The parenthetical note does not aid clarity.

271: Write “Figure” at the beginning of sentences, but Eqn. (19) in the middle.

273: Eqn. (17)

319, 335, 365: Determinant.

383: “the the”

396: “As outlined in Section 3,”

400: It is not clear what is meant by the “z” and “y” coordinate vectors. I believe you mean the vectors
Or/0x and Jr/0y, but these have not been defined.

474: No citation.

476: “the the”

564: Citation style.

650: You could mention channel widening (as oin line 610) as well, which to me seems just as important
as step-pool morphology, if not more (Bernard et al., 2022; Gailleton et al., 2024).

503, 666: In the current form, the proposed partitioning scheme isn’t so much physically justified as
geometrically justified (486).

675-679: Given my major comment, it seems unfounded to classify the discrepancy between upstream
drainage area and upstream surface area as “error.”
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