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Supplementary Text 1: HPLC analysis and chromatogram evaluation
Settings for HPLC analysis

We deployed two mobile phases; Mobile-phase A: volumetric ratio of 2:8, milliQ:methanol
with ion-pairing (0.001 M tetrabutyl ammonium phosphate and 0.001 M propionic acid) and
Mobile phase B: volumetric ratio of 6:4, acetone:methanol. The HPLC protocol follows Lami
et al. (2000). We injected 100 ul of pigment extract into a mobile phase A and ramped in the
first 30 min from 85% mobile-phase A to 100% mobile-phase B. Next, 100% mobile-phase B
was maintained for 20 min. The respective flow rate gradient during these two phases,
changes from 1 ml min"' to 2 ml min-'. At the end of the 50-minute run, the column was
rinsed for 15 min by linear ramping back to 85% mobile-phase A within 5 min and

maintaining this for 10 min (Lami et al., 2000).
Chromatogram evaluation and error calculation

Baseline chromatograms of two samples from the composite core (located at 14.36 ka BP and
15.85 ka BP) are displayed below. The Full Chemical Error (FCE) was calculated as the mean
absolute error (MAE) of 5 random full chemical duplicate samples (separate samples at the
same depth; original = S;; duplicate = D;). When the FCE expressed as a percentage of the

downcore range (max value in timeseries S — min value) was >35% the pigment timeseries
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Table S1: "“C dates, tephra and biostratigraphic markers used for the age-depth model
presented in Fig. 2 of the main text. One sample (BE-20927) was lost during target pressing.
The sample BE-20934.1.1 (Pinus sp. periderm) was excluded because it is too young (10.9
ka BP) relative to its stratigraphic position (ca. 16.7 ka BP).

Master *c A Calibrat Mean
ge d A M Weight
Lab Code depth uncal.(y *1s(y) edAge t1sigma modelle + easure Macrofossil elg Comment
(cm) 8 Intcal20 d age ment (dry)
P) (cal. BP) 8
5 c.f. wood fragments, thin, rather soft (8
BE-20926.1.1| 487.7 9362 105 10580 10409-10733| 10642 307 gas z) 0.2mg
mm°),
3 Pinus sp. periderm fragments (15 mm?); s ctting
BE-20927 | 495.6 - - - - 10092 3425 |graphite COMif-scale, Quercus sp. Budscale; deciduous gy yypay
twig; small dicot leaf fragments; Betula alba g
fruit, Betula alba (woody fruit scale)
BE-20928.1.1) 504.8 | 10005 56 | 11839 11330-11685| 11599  227.5 [graphite Pjnussp. Periderm; wood fragment (14mm?) 1.1mg
several Pinus sp. periderm fragments (90
BE-20929.1.1] 508.7 10155 56 11494 11330-11654| 11830 262.5 |graphite mmz); Betula alba fruit; 2 conif. (P.cembra) 1.6mg
basis of male blossom; 4 conif. scale fragments
BE-21037.1.1f 514 10214 115 11912 11624-12431( 12261 448.5 gas Pinus sp. periderm thin fragments (10 mmz) 0.4mg
LST 520.2 13006 12997-13015| 13062 55 TEPHRA Reinigetal., 2021 -
BE-21036.1.1| 5254 | 11398 130 | 13282 13165-13408| 13405 1835 | gas AN PREERARRUIIED a0
needle fragments (basis)
PIN_67.6 527.7 13753 13584-13922| 13689 309 [BIOSTRAT Amman et al., 2013 -
BE-20930.1.1| 527.7 11508 134 13378 13242-13496( 13689 309 gas 11 Betula alba fruits (partly with wings) 0.4mg
4 Betula alba fruit fragments; few small dicot
BE-20931.1.1] 532.7 12280 123 14331 14057-14800( 14212 270.5 gas 0.1mg
leaf fragments
BET_75.5 535.2 14443 14254-14632| 14461 291.5 [BIOSTRAT Amman et al., 2013 -
BE-20932.1.1] 537.7 12282 283 14418 13877-14907| 14675 312.5 gas 1Betula alba fruit fragment (without wings) 0.1mg
JUN_78.5 538.2 14665 14476-14854| 14711 339.5 [BIOSTRAT Amman et al., 2013 -
Conif. deciduous twig with periderm; conif.
BE-20933.1.1] 542.7 12573 145 14849 14481-15183| 14989 405.5 gas ) 0.6 mg
deciduous small fragments (3 mm®)
BET_88.5 548.2 16000 15315-16685| 15575 804 |BIOSTRAT Rey et al., 2020 =
BE-20934.1.1] 560.7 9555 302 10886 10413-11251 16680  1305.5 gas Conif. Pinus sp . Periderm (0.5 mml) <0.1mg outlier
Table S2: Parameters used for RABD index calculations.
Name Pigment Left band | Max. absorption | Right band
(nm) (nm) (nm)
Rmean Reflectance 471 950
RABDg44 Bphe a 772 844 900
RABDs19 Phycocyanin 570 619 634
RABDsge7 Chlorophyll a 634 667 772




Table S3: Table with pigments and their primary producers and interpretation, retention
times and calibration parameters. Ward’s clustering on carotenoids yielded 4 carotenoid
groups (Fig. 6 main text) which were subdivided into subgroups based on the primary

producer interpretations.

Carotenoid groups  Pigment name Retention time (Lami et al., 2000) Calibration (y=ax+b)  Primary producers*
1 Okenone 46.3 a=0.1500 b =0.000 PSB
1 Spheroidene 47.2 PNSB?, N-fixing
1
2.1 Isorenieratene 519 a=0.1740b =0.0350 GSB, steptomycetaceae, mycobacleria1
21 OH-spheroidene 43.5 PNSB?, N-fixing
2.2 Diatoxanthin 34 Diatoms, Silicifyers
2.2
3.1 Chloroxanthin 52.6 PNSBZ, N-fixing
3.1 a-carotene 57.5
3.1
3.2 Diadinoxanthin 31.8 a=0.1363b =0.0171 Dinoflagellates, diatoms, green algea
3.2 B-carotene 57.3 a=0.1294b =0.0177 All aquatic primary producers
3.2 Lutein, Zeaxanthin 27.4,26.6 a=0.1220 b =0.0950 Euglinids, green algea, eustigmacaea
3.2
4.1 Astaxanthin 19.6 Stresssed green algea3
4.1 Astacene 28.9
4.1
4.2 Canthaxanthin 36.1 a=0.1187b =0.0249 Filamentous cyanobacteria, N-fixing
4.2 Alloxanthin 232 a=0.0904b =0.1147 Cryptophytes, Silicifyers
4.2 y-carotene 56.9
4.2
4.3 Echinenone 49 a=0.3000b =0.0480 Cyanobacteria
4.3
Chlorophyll a 49.2,50.2, 50.8 a=0.2582b =-0.0008 Green primary producers
Pheophorbides a All greens between 10.8 - 49.6 Chla degradation by grazing" (Zooplankton)
Pheophytins a All greens between 51.8 - 59.9 Chla degradation by lightand oxygenation
Pyropheophytin a All greens between 60.5 - 64.8 Heavy chla degradation (e.g. terrestrial inwash)
Bacteriopheophytin a 50.5, 51.1, 53.3 PSB
Bacteriopheophorbidea  9.4,13.1 PSB

*Based on classification schemes of Yabuzaki (2017); Bianchi and Canuel (2011); Schliter et al. (2006); Lami et al. (2000).

1Mycobacteria abundance in many freshwater ecosystems and pigment production is proven (Becerril et al., 2018; Vaerewijck et al., 2005; Joynson, 1979; David, 1974).
2 Albrecht etal., (1997); Davies etal. (1969).

3Orosa etal. (2001); Boussiba and Vonshak (1991); Renstrgm et al. (1981)

“4Bianchi and Canuel (2011)



Fig. S1: Core segments, stratigraphic correlation and composite core of Amsoldingersee
(coring August 2022)
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Fig. S2: Calibration of RABD844 (inferred from hyperspectral imaging) to Bphe a measured
with UV-VIS (spectrophotometry) after pigment extraction (proxy-proxy calibration, Butz et
al., 2015). Fig. S2 (left) shows the regression with 95% confidence (dashed line) and
prediction intervals (dotted line) and the calibration statistics (n, p-values, R2.q, RMSEP for
10-fold jackknifing, k-fold jackknifing, and bootstrapped); the orange horizontal dashed line
represents the Limit of Quantification. The panels in the middle show the Q-Q plot, Cook’s

Distance, the time series comparison, the residual distribution and (right panels) the scale-

location, residual trajectory and leverage plots.
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Fig. S3: Calibration of RABD667 (inferred from hyperspectral imaging) to chl a measured
with UV-VIS (spectrophotometry) after pigment extraction (proxy-proxy calibration, Butz et
al., 2015). Fig. S3 (left) shows the regression with 95% confidence (dashed line) and
prediction intervals (dotted line) and the calibration statistics (n, p-values, R2.q, RMSEP for
10-fold jackknifing, k-fold jackknifing, and bootstrapped); the orange horizontal dashed line
represents the Limit of Quantification. The panels in the middle show the Q-Q plot, Cook’s
Distance, the time series comparison, the residual distribution and (right panels) the scale-

location, residual trajectory and leverage plots.
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Fig. S4: Pollen diagram of AMS22-COMP1 and biostratigraphic markers. Pollen analysis

followed Moore et al. (1991). From the pollen diagram we inferred four established

biostratigraphic markers (horizontal dashed lines) after Rey et al. (2017, 2020), Ammann et

al. (2013) and Wehrli et al. 2007) — Early Betula appearance, Juniperus rise, main Betula

rise, Betula - Pinus shift:
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Fig. S5: All CLR XRF data from core AMS22_COMP1. A selection is shown in Fig. 3 of the

main text.
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Fig. S6: ‘Standardized’ Euclidian multi-dimensional scaling was applied to the dataset to
check for non-linear dependencies. Added are the resulting MDS axes and the inferred
clusters (lithotypes) that remain well separated when applying MDS. The stress plot is
provided with an appropriate cutoff at 0.05 indicating that only two MDS components are

needed to explain most data variance.
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Fig. S7: PC biplot of P, Mn and Fe fractions (all data). Ward'’s clusters 1—4 are colored along
their confidence ellipses. Arrows indicate the temporal trajectory (ages in green). The
environmental interpretation of the PCs is indicated in blue text.
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Fig. S8a: Pigment stratigraphy for a) carotenoids and b) photopigments of lake Amsoldingen
(AMS22-COMP1)
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Fig. S8a continued:
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Fig. S8b
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Fig. S8b continued.
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Fig. S8b continued.
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Fig S9. Redundancy analysis was performed on the Hellinger transform of the carotenoid
dataset and total sums of pheophorbides, pheophytins, pyropheophytins and chlorophylls a.
The RDA was first run (A) using the following explanatory variables: JulyT (merged by
overlaying data from Bolland et al., 2020 and the Alpine stack from Heiri et al., 2015; pre
14.8 ka BP from Burgaschisee, post 14.8 ka BP from Alpine stack. We further smoothened
the data using the ‘rloess’ method with a span of 2% for the alpine stack and 20% for the
Blrgaschisee data; Arboreal Pollen AP from Moossee (Rey et al., 2020); 5’80 of NGRIP
(NGRIP Members, 2004), Bphe a (this study) and TN, TS, TOC and CNS (this study). The
variance partitioning between nutrients and temperature is shown panel B. A second RDA

(panel C) and was performed after forward selection (Legendre, 2012).
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