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Abstract. CLEO is a Super-Droplet Model (SDM) designed for performance portability on high performance computer ar-

chitectures and with the intention of modelling warm-clouds in domains large enough to resolve shallow mesoscale cloud

organisation O(100km). This paper introduces CLEO’s novel C++ implementation of SDM, in particular how we map SDM

theory to computations which optimise performance, primarily by conservative memory usage and efficient memory access

patterns. To further speed-up simulations and to ensure a portable and maintainable code, we avoid conditional code branching5

and implement thread parallelism through the Kokkos library. As a result CLEO shows optimal linear scaling with increasing

number of superdroplets and can use CPU and GPU thread-parallelisation across a diverse range of computer architectures.

But CLEO is not just a model for computational performance, it is also designed for warm-cloud process understanding.

CLEO possesses a high degree of flexibility, especially with regard to the configuration of microphysical processes and data

output, that makes it well-suited to analysing sensitivity to microphysics. CLEO is therefore a new SDM ready to be used for10

understanding warm-cloud processes.

1 Introduction

Persistent and large discrepancies between observations of warm-rain and Large Eddy Simulations (LESs) have been ascribed

to cloud microphysics for decades (e.g. Randall et al., 2003; Abel and Shipway, 2007; Ackerman et al., 2009; vanZanten et al.,

2011) (references in Khain et al., 2015; Morrison et al., 2020). With the advent of Global Storm Resolving Models (GSRMs)15

which remove the need to parametrise convection, obscurity in cloud microphysics is now also one of the leading sources of

uncertainty in global models (e.g. Miyakawa et al., 2014; Bretherton, 2015; Kawai et al., 2019; Stevens et al., 2020; Suematsu

et al., 2021; Lang et al., 2023; Takasuka et al., 2024; Naumann et al., 2025). To tackle uncertainty in both LES and GSRMs

we not only need to address fundamental gaps in our microphysics knowledge, but we must also reconsider how we represent

cloud microphysics in models (Grabowski et al., 2019).20

Conventional bulk and bin microphysics schemes have intrinsic deficiencies, for example due to numerical diffusion, the

categorisation of condensates into discrete types, and gross assumptions about particle size distributions. The consequent

deficiencies in simulated clouds are well documented and contribute to uncertainties in their radiative properties as well as
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precipitation (e.g. Stevens and Seifert, 2008; Khain et al., 2015; Jian et al., 2021; Schulz and Stevens, 2023). To state just

one example, numerical diffusion in physical space is known to activate droplets at cloud-edge and broaden the droplet size25

distribution, and so may cause unphysical precipitation from stratocumulus (Stevens et al., 1996; Hoffmann, 2016; Morrison

et al., 2018; Dziekan and Zmijewski, 2022). Problems like these are inherent to bulk and bin microphysics schemes and

therefore cannot be eradicated by refinement of such models. Indeed, decades of research has aimed to limit the impact of

numerical diffusion on cloud microphysics, and yet the problem still persists (Grabowski et al., 2019). If we seek to resolve

such issues definitively, then the fundamental limitations of bulk and bin schemes need to be surmounted.30

The Super-Droplet Model (SDM; Shima et al., 2009) (see also Sölch and Kärcher, 2010; Andrejczuk et al., 2010; Riechel-

mann et al., 2012; Hoffmann et al., 2015; Arabas et al., 2015; Naumann and Seifert, 2015; Brdar and Seifert, 2018; Bartman

et al., 2022), is a fundamentally different model of cloud microphysics with different limitations and a number of key conceptual

advantages (Grabowski et al., 2019). In SDM the cloud condensate population is modelled by “superdroplets”. Superdroplets’

motion, microphysics and attributes (for example their masses and radii) are similar to what we expect of real condensate par-35

ticles; however a superdroplet also has a “multiplicity”, which expresses how many real particles that superdroplet represents.

SDM is a much closer representation of the underlying physics than bulk and bin schemes and, because it is a Lagrangian

model, it is non-diffusive (in both physical and mass space) (Morrison et al., 2018; Grabowski et al., 2019). Furthermore,

SDM has a profound convergence property because as the number of superdroplets increases, the model tends towards a Direct

Numerical Simulation (DNS) (Shima et al., 2009). This makes SDM’s physical interpretation both conceptually elegant and40

straightforward.

SDM is also particularly well-suited to trends in high performance computing. Its coalescence algorithm conserves the num-

ber of simulated particles, i.e. superdroplets, which is beneficial for load balancing. Moreover SDM is extremely parallelisable,

which makes it ideal for multi-threaded CPU and GPU architectures and explains impressive scaling with increasing number

of superdroplets (Arabas et al., 2015; Bartman and Arabas, 2021; Dziekan and Zmijewski, 2022; Matsushima et al., 2023). Its45

scaling with increasing microphysical complexity is also better than that of conventional models once the number of super-

droplet attributes is greater than about four (Shima et al., 2009). Both the conceptual and computational advantages of SDM

make it a promising tool for better modelling of cloud microphysics (Morrison et al., 2020), and in step with the growth of

high performance computers (HPCs) we can now use SDM for more ambitious simulations than ever before.

One emerging application for SDM is to model warm-rain in domains large enough to resolve shallow mesoscale organisa-50

tion O(100km). The evaporation of warm-rain drives cold pool formation and is therefore a key player in mesoscale circulations

and cloud organisation (Barnes and Garstang, 1982; Seifert, 2008; Seifert and Heus, 2013; Vogel et al., 2021). Of particular

importance in the tropics, mesoscale cloud organisation has major repercussions for the radiative properties of shallow clouds

(Nuijens and Siebesma, 2019; Bony et al., 2020) and is highly sensitive to the formation of precipitation (Seifert and Heus,

2013; Yin et al., 2023). There is also ample evidence that mesoscale cloud organisation modulates warm-rain formation (e.g.55

Stevens et al., 2005; Nuijens et al., 2009; Schulz et al., 2021; Radtke et al., 2022, 2023), and so there are important two-way

interactions between the micro- and meso-scale of warm-clouds which, in order to be understood, require an accurate repre-

sentation of the droplet size distribution, a clear depiction of the microphysical processes at play, and domains large enough to
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resolve shallow mesoscale circulations. SDM would be an ideal candidate to meet such requirements, except that, presumably

limited by computational resources, the largest domains for SDM have not yet exceeded O(10km) (Sato et al., 2018; Shima60

et al., 2020; Matsushima et al., 2023) — far smaller than the O(100km) domains needed for resolving mesoscale organisation,

and far smaller than that which may be feasible in the age of exascale computing. This is just one example of how, if SDM

could be made inexpensive enough at large-scale, it would benefit the community who use large-domain explicitly-resolved-

dynamics models — including not just LESs, but also GSRMs.

Hence we are creating CLEO: a novel implementation of SDM to model Clouds through Lagrangian Exascale micrO-65

physics.

In this first paper we introduce CLEO’s fundamental computational structure and explain how it is intended for high per-

formance on exascale computers as well as warm-cloud process understanding. Notwithstanding SDM’s many advantages in

comparison with bulk and bin microphysics, SDM faces the typical challenges of Lagrangian particle models; namely simula-

tions can be memory-intensive and it is time-consuming to transport particles in memory. The particle transport’s performance70

on exascale computers depends on both its shared- and distributed-memory parallelism, and the distributed-memory paral-

lelism strongly varies not only with CLEO’s fundamental structure, but also the host dynamical model and computer network

topology. In a follow-up paper we will therefore present CLEO’s distributed-memory parallelism (MPI domain decomposition)

and evaluate its performance specifically for LES on exascale computers. With regard to CLEO’s fundamental computational

structure, the memory and particle transport expenses are prevalent when accessing, sorting, and shuffling superdroplets. Con-75

scious of this, we chose CLEO’s memory layout to economically allocate memory and to optimise memory access patterns for

loops over superdroplets whilst compromising on other aspects of performance. Secondly, we’ve made CLEO able to efficiently

allocate resources on parallel computer architectures; both through its handling of domain decomposition, which allows SDM

and the dynamics to distribute work independently of one-another, as well as through its use of Kokkos for portable thread

parallelism (Trott et al., 2022, 2021).80

As well as for high performance, CLEO has various features to facilitate warm-cloud process understanding. We took the

idea of monoid sets from mathematics and created a computational analogy which enables adaptive time-stepping, avoids

conditional code branching, and makes microphysics and data output highly configurable. The flexibility of microphysics

makes sensitivity studies easy to conduct and, for data output, it’s easy to target output specifically to ones needs. Also for

the purpose of sensitivity studies we made it straightforward to switch CLEO’s grid and couple CLEO to different dynamical85

drivers. The companion to this paper, Bayley et al. (2025), describes the numerical methods for the warm-cloud microphysics

and droplet motion which CLEO makes available.

CLEO’s fundamental design is described in Sections 2, 3, and 4, with particular emphasis on how it is intended to make SDM

simulations suitable for high performance computers (HPCs). In Section 2 we describe CLEO’s underlying memory layout and

how it is designed for efficient memory management; Section 3 is for how CLEO enables economical resource allocation, and90

Section 4 describes CLEO’s flexibility through monoids. Overviews of CLEO’s time-stepping routine and performance on a

single node are found in Sections 5 and 6, respectively.
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2 Memory Layout

Efficient memory management is principally achieved by CLEO’s underlying memory layout of superdroplets and grid-boxes

(Sections 2.1 and 2.2). We store superdroplets within each shared memory space in an ordered and contiguous chunk of95

memory. This optimises access patterns for loops over superdroplets and avoids needing additional buffers which increase

memory consumption. However, this layout comes at the cost of sorting superdroplets and increasing cache-misses as the

number of superdroplet attributes increases. We explain the details behind this compromise in Section 2.3.

2.1 Grid-Boxes

“Grid-Boxes” (cells) compose CLEO’s spatial domain. Each grid-box defines a distinct region of space for the SDM collision100

algorithm and thereby determines which superdroplets may interact with one another. In some sense the volume of each grid-

box therefore determines the accuracy of the SDM because as the volume of each grid-box decreases given a certain number

of superdroplets, the resolution of the flow-field for superdroplet motion increases, and the multiplicity of each superdroplet

decreases, thus decreasing the errors in the SDM.

Grid-Boxes are structures consisting of three parts as shown in Figure 1a. The “GBx-index” is a unique immutable iden-105

tifier, typically a constant unsigned integer; the “state” defines the macrophysical properties of the volume, such as the wind

velocity and thermodynamics (temperature, pressure, relative humidity etc.); and the “view” of superdroplets specifies all the

superdroplets which occupy the volume at a given time.

The state may change due to microphysical processes, for example condensation lowers the water vapour pressure and

increases the temperature, or it may change through information received from the host dynamical driver as explained in110

Section 3.3.

The view specifies all the superdroplets at a given time whose spatial coordinates fall within the grid-box’s boundaries.

Rather than actually containing the superdroplets, it is an indicator to their location(s) elsewhere in memory. For example,

the view could be a linked-list of pointers to individual superdroplets, or it could be two pointers to the start and end of a

sub-section of a larger array of superdroplets (as it is in our current implementation).115

Grid-Boxes are agnostic to the underlying grid, meaning they contain no information about their spatial coordinates or their

neighbours. This is because LES grids can vary substantially, for example SCALE uses a Cartesian Arakawa-C grid, whereas

ICON uses a icosahedral-triangular Arakawa-C grid (Sato et al., 2015; Nishizawa et al., 2015; Hohenegger et al., 2023), and

decoupling the microphysics from the grid of the dynamics driver makes it simple to switch between different grids to aid model

inter-comparison studies. For a given grid, a collection of maps/functions called “grid-maps” are assembled, to map from a120

given GBx-index to grid-dependent information. Such maps take a given GBx-index and return for example the coordinates

of the boundaries of that grid-box in a particular direction or the GBx-index of the neighbouring grid-box. In doing so they

determine the type of grid, the boundary conditions of the model, and whether the model is 0-D, 1-D, 2-D, or 3-D. Thus,

changing these properties for different simulations only requires a replacement of the grid-maps. The rest of CLEO, including

the grid-boxes themselves, remains unchanged.125
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Figure 1. Schematic for the memory layout of a) each grid-box, and b) each superdroplet. The grey box contains a key for the memory

consumption of each unit.

2.2 Superdroplets

Each superdroplet in CLEO is a structure composed of four, or optionally five parts, as shown in Figure 1b. The four compulsory

parts are its attributes, multiplicity, spatial coordinates, and “SD-GBx-index”. The SD-GBx-index always matches the GBx-

index of the grid-box whose boundaries enclose the superdroplet’s spatial coordinates. It is not a requisite of SDM but assists

with keeping the superdroplets ordered by grid-box, which is necessary for efficient cache loading as explained in Section 2.3.130

Optionally, each superdroplet can be given an unique identity to facilitate tracking the evolution of individual superdroplets.

Alternatively, when tracking is not required, superdroplet identities can be given no unique address. During compilation these

identities are optimised out, enabling a simple memory-saving measure especially for simulations involving a very large number

of superdroplets. The same optimisation could be applied to grid-boxes’ GBx-indexes (since their positions in memory could

act as unique identifiers instead) however we keep GBx-indexes for generality.135
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Figure 2. Schematic for the AoS memory layout of grid-boxes and superdroplets. For illustration here the coordinates of the first four

superdroplets are within the first grid-box, hence their SD-GBx-indexes match that grid-box’s GBx-index and that grid-box’s view refers to

them.

2.3 Access Patterns

The memory layout of both grid-boxes and superdroplets in a single shared memory space targets efficient memory access

patterns. In this layout, the structures for each grid-box are stored together in a single array (an Array of Structures; AoS), and

likewise superdroplets are stored in their own AoS, in a contiguous block of memory completely separate from grid-boxes.

Additionally the superdroplets’ array is ordered by increasing SD-GBx-index, and hence the view of superdroplets for each140

grid-box is formed by references to the start and end of the sub-block of superdroplets whose SD-GBx-indexes match the

grid-box’s GBx-index. This is all summarised in Figure 2. The memory layout we have chosen benefits some computational

operations at the expense of others. In particular, ordering the superdroplets by SD-GBx-index makes cache loading efficient

but requires the additional expense of sorting them during superdroplet motion, and using AoS favours data transfer over Single

Instruction, Multiple Data (SIMD) operations. In the following section we discuss in more detail how these conflicts manifest145

in CLEO’s SDM algorithms.

Single, ordered arrays of grid-boxes and superdroplets efficiently handle memory allocations and cache loading for loops

over superdroplets. As opposed to having superdroplets scattered in memory, e.g. by having a separate array of superdroplets

for each grid-box, having a single array of superdroplets requires less frequent memory (de)allocations when superdroplets

move around the domain and therefore also avoids the need for buffers which would increase the memory consumption of the150

model. The layout we have chosen is also computationally efficient for enacting loops over superdroplets — exactly as occurs

during microphysics and while updating superdroplets’ spatial coordinates — because both grid-boxes and superdroplets are

ordered and accessed sequentially, and the required data from each grid-box is only loaded to the cache memory once for all the

superdroplets in a grid-box. We also minimise cache misses during collisions between superdroplets because only superdroplets

in the same grid-box may interact with one another and so, by storing them in a contiguous chunk of memory, we maximise155

the locality of reference between them. As such, CLEO is designed for both efficient memory allocation and cache blocking.

Matsushima et al. (2023) also employed cache blocking to drastically improve the performance of another implementation of

SDM.
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Whilst keeping the superdroplet array ordered by SD-GBx-index makes loops over superdroplets highly efficient, it also

means that during superdroplet motion we must sort the array, as illustrated in Figure 3. Superdroplets’ spatial coordinates160

and hence SD-GBx-indexes may change, breaking the crucial condition for cache blocking that superdroplets occupying the

same grid-box exist in a contiguous chunk of memory. We therefore apply a counting-sort algorithm to the superdroplet array

as the last step of superdroplet motion. Although this algorithm scales linearly with increasing number of superdroplets, it

nevertheless involves time-consuming data copies, scatter-gather patterns and/or atomic operations, and it doubles the memory

consumption of the superdroplet array. Choosing to keep the superdroplet array ordered is therefore a trade-off. On the one165

hand it makes loops over superdroplets more efficient, on the other hand it makes superdroplet motion more expensive due to

sorting.

Using an AoS for superdroplets rather than a Structure of Arrays (SoA) prioritises efficient data movement over vectorisation.

With the AoS layout, irrespective of the number of attributes of each superdroplet, the speed of algorithms which sort/shuffle

superdroplets during motion/microphysics scale only with the number of superdroplets. In contrast the SoA layout would need170

to perform sorting/shuffling on the array for each individual sub-component of the superdroplets separately, resulting in more

computations. Another strength of AoS over SoA is that the addition or removal of superdroplets during motion involves

less memory (de)allocations and more efficient cache loading. However, with the AoS layout, operations that act on a single

attribute can be less efficient because Single Instruction, Multiple Data (SIMD) parallel processing is harder to apply. Also if

the number of attributes of each superdroplet is increased, the number of cache misses likewise increases.175

Which data layout results in better performance certainly depends on the computer architecture (e.g. cache size and types of

processors) as well as the number of superdroplets and number of superdroplet attributes as a result of the compromise between

fast computations through vectorisation and fast memory access patterns. For simulations involving many superdroplets (lots of

data transfer) with few attributes (few cache misses), the memory layout we have chosen should be more suitable, but rigorous

benchmarking would be needed to confirm the preferred layout for a given setup. In the end, some compromise between the180

two (an Array of Structures of Arrays, AoSoA) may be the better than either extreme. The decision for the memory layout of

CLEO is nevertheless bolstered by the work of Matsushima et al. (2023), who also focused on data movement to optimise their

SDM’s performance, as well as by the rising weight given to the High Performance Conjugate Gradients Benchmark when

ranking HPCs, which demonstrates the increasing concern for the performance of memory bandwidth limited computations.

3 Resource Allocation185

CLEO has the potential to allocate resources economically because of its parallelism and the way it couples to a host dynamical

driver. We used Kokkos to implement thread parallelism and Message Passing Interface (MPI) for domain decomposition. As

such, CLEO can make use of the available memory hierarchies and execution resources on a diverse set of HPC architectures.

To advect thermodynamics CLEO must be coupled to a host dynamical driver capable of advection, however the domain

decomposition and computational resources for the dynamics can be independent from those used by SDM. This allows us190

greater freedom to improve load balancing and therefore to run economical simulations.
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Figure 3. Schematic of the superdroplet array before, during and after superdroplet motion. To illustrate the ordering, the superdroplets have

been given SD-GBx-indexes for grid-boxes from 0 to 9.

3.1 Kokkos Thread Parallelism

CLEO depends on Kokkos for performance portable thread parallelism across a diverse range of computer architectures.

Kokkos is a collection of libraries which enable us to write a single source code that builds for an arbitrary number of CPU

cores and optionally GPU cores (Edwards et al., 2014). During compilation on a given computer architecture, Kokkos evaluates195

the hardware available and optional user-defined specifications, to determine how to appropriately allocate the memory and

execution resources to achieve high performance. For example, it determines whether to use column- or row-major layouts

for arrays of grid-boxes and superdroplets in order to avoid cache misses, and it chooses task sizes for threads of parallelised

loops which optimise cache blocking. By doing so, Kokkos implements (hierarchical) parallelism of loops over grid-boxes and

superdroplets and selects memory layouts designed to be efficient for a specific processor or accelerator. (Alternatively the200

memory layouts and task distribution can be manually specified.) The key benefits are that in abstracting the parallelism, we

are able to separate the software’s purpose from the details of a computer’s hardware, and we can provide specialised thread

parallelism at the same time as portability and maintainability across many architectures. At the time of writing, we have tested

CUDA, OpenMP and C++ Threads, and the full list of available parallel execution spaces also includes OpenMPTarget, HIP,

SYCL and HPX.205

3.2 MPI Domain Decomposition

For distributed memory parallelism CLEO uses MPI domain decomposition. The layout described in Section 2 is replicated

for the sub-domain given to each MPI process and an extra step in superdroplet motion between the second and third steps
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of Figure 3 is activated to send superdroplets between processes. CLEO’s MPI domain decomposition is functioning but we

reserve its performance evaluation for a follow-up paper which discusses its optimisation in the context of realistic flows and210

coupling to a specific dynamical driver.

3.3 Coupling CLEO to a Host Dynamical Driver

CLEO is designed to run concurrently to a host dynamical driver called a “dynamics-solver” and exchange information with it

via a “dynamics-coupler”. In a one-way coupling, CLEO receives information for the state of each grid-box from the dynamics-

solver, whereas in a two-way coupling, CLEO also sends state information back. For illustration, a simple one-way coupling215

is when thermodynamics at a particular time-step are received from a dynamics-solver which stores arrays read from a file. To

advect thermodynamic fields as per fluid dynamics, CLEO must be coupled to a dynamics-solver with a fluid-dynamical core.

The dynamics-coupler determines the degree of independence of the grid and of the resource allocation for CLEO and

the dynamics-solver. For the maximum possible flexibility, CLEO can be coupled to a dynamics-solver through Yet Another

Coupler (YAC; Hanke et al., 2016). YAC uses MPI communication and can also interpolate variables between different grids220

meaning that, by using YAC, CLEO and the dynamics-solver can not only have different domain decompositions, but also

have different grids. Using different grids is advantageous because it enables the dynamics-solver to compose the domain in

the optimal way for its fluid-dynamics. Meanwhile CLEO can compose the domain more favourably for SDM, for example

using a nested grid, or grid boundaries which reduce grid-box volumes and/or simplify the numerics of superdroplet motion. In

general, using MPI means CLEO and the dynamics-solver do not have shared memory and that their domain decompositions225

are independent. Whilst this can result in costlier communication, it also maximises our freedom to optimise the load balancing

and so economise the allocation of computer resources.

4 Flexibility through Monoids

CLEO uses monoids to enable model flexibility without added run-time from conditional code branching. In abstract mathe-

matics, a monoid is a closed set with an associative binary operation (a semigroup) and an identity element. We apply this idea230

computationally by creating types, including an identity type, which obey specific constraints to ensure they can be combined

pairwise (and associatively) to create a new type which also obeys these constraints. This means any number and permutation

of such things can be combined sequentially during compilation to create the instantiation of a template to be used at run-time.

We use C++20 concepts to impose the constraints for each monoid on templated types. This has the added benefit of more

comprehensible error messages than ordinary template meta-programming.235

As an example, consider some code which calls a function “do_microphysics” through an object called “Z”. Z can be any

object as long as it obeys some constraints: it contains a function called “do_microphysics”, which takes a view of superdroplets

as an argument and potentially modifies it. Now let us create any number of objects, A, B, C, ... which all obey these constraints

but have different implementations of the “do_microphysics” function. For example A.do_microphysics may model conden-

sation, whereas B.do_microphysics may model collision-coalescence. We then define an associative binary operation for these240
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objects that returns a new one which likewise satisfies the constraints of the “do_microphysics” function. For example the op-

eration could return “AB” from A and B where AB.do_microphysics = A.do_microphysics followed by B.do_microphysics.

Defining the outcome of the operation (AB) to also satisfy the constraints means that we can then combine AB with further

objects, C, D, etc. to create one final object, Z, whose “do_microphysics” function is an assembly of all the microphysics we

desire. Everywhere else in the code we use Z, for example to call the “do_microphysics” function (rather than A, B, or C etc.),245

meaning that if we wish to change the microphysics we need only recompile CLEO with a different combination of things

comprising Z. This allows us extraordinary freedom regarding the implementation of the “do_microphysics” function whilst

keeping the rest of the code intact1.

Using monoids to enable model flexibility provides faster run-time performance than using conditional code branching. The

decisions regarding which functions are called occurs upon instantiation of each templated type during compilation. This is250

in stark contrast to a code which makes decisions at run-time, for example by using if-statements to determine whether or

not to call functions. Indeed, demanding the same degree of flexibility from a code which uses if-statements would require an

excessive number of conditional branches — in the example above, to be able to model just A, B, AB, or BA requires three.

If this were implemented in CLEO, each branching would add computational expense and reduce code maintainability and

readability.255

Thus, to ensure run-time performance whilst enabling flexibility, CLEO uses monoids for microphysics and data output.

Section 4.1 details the constraints imposed on objects used to enact microphysics and how such objects can therefore be

combined with one another using a binary operator. Likewise, Section 4.2 details the constraints and associated binary operator

for data output.

4.1 Microphysical Processes260

Microphysics in CLEO is enacted by the instantiation of a templated type which satisfies the constraints of a “microphysical

process”. The constraints are chosen to ensure a type instantiated to perform microphysics will function in the time-stepping

routine displayed in Figure 4a. They are that every microphysical process has three (GPU compatible) functions, next_step,

on_step, and run_step, each with specific signatures as imposed by the C++20 concept shown in Listing 1. Naturally,

types which count as valid microphysical processes may contain additional information beyond these three functions, e.g. a265

time-step value or a random number generator for a specific microphysics algorithm, however such additional information is

not a requirement of a microphysical process.

We also choose to define the associative binary operation A⊕B = C for types that obey the constraints of a microphysical

process such that:

– C.next_step = minimum(A.next_step, B.next_step),270

– C.on_step = (A.on_step or B.on_step),
1Note in general our monoids are not commutative; AB ̸= BA, condensation enacted before collisions may have a different outcome to condensation after

collisions.

10

https://doi.org/10.5194/egusphere-2025-4398
Preprint. Discussion started: 22 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Listing 1 The definition of a microphysical process in CLEO

/* define a microphysical process */

template <typename P>
concept MicrophysicalProcess =

requires(P p, TeamMember &tm, unsigned int t, view_supers supers,

State &state, NullMonitor mo) {

{ p.next_step(t) } -> std::convertible_to<unsigned int>;
{ p.on_step(t) } -> std::same_as<bool>;
{ p.run_step(tm, t, supers, state, mo) } -> std::same_as<void>;

};

– C.run_step = A.run_step, then B.run_step.

This definition enables us to compile a single microphysical process that obeys the time-stepping routine in Figure 4a but

is actually constructed from the sum of any permutation of microphysical processes, as demonstrated in Listing 2. The flow

diagram between C.run_step and C.next_step in Figure 4a is simply supplanted by calling the run_step function of each of the275

original microphysical processes sequentially, as exampled by Figure 4b.

By defining the addition of microphysical processes in this way, we also ensure adaptive time-stepping in which the com-

bined microphysical process always takes the largest possible time-step such that the time-steps of original processes are

respected. Consider the microphysical process C = A⊕B. The time-stepping routine in Figure 4a starts at time=0s, which

is less than the final time for time-stepping, t_final. When C.run_step is first called, both A.on_step and B.on_step return280

false and afterwards C.next_step updates the time to the smaller value out of A.next_step and B.next_step. On the next loop

iteration, the microphysical process(es) out of A and B which return true from their own on_step function enact microphysics,

C.run_step then returns and time is incremented again. The loop for microphysics enacts this logic repeatedly until t_final is

exceeded and the simulation terminates. For demonstration, if t_final=20s and A and B have constant time-steps of 3s and 5s,

respectively, time advances with the letter in the bracket indicating which microphysics would be enacted at each time-step in285

the following sequence: 0s -> 3s (A) -> 5s (B) -> 6s (A) -> 9s (A) -> 10s (B) -> 12s (A) -> 15s (A and B) -> 18s (A) ->

20s (B). In general, A and B need not have constant time-steps and can themselves be formed from the summation of other

microphysical processes. Thus we can construct a single microphysical process during compilation which is the sum of any

permutation of microphysical processes and enables adaptive time-stepping which adheres to each process’ time-steps.

For completeness of the monoid for microphysical processes, the set has an identity element, NullMicrophysicalProcess290

shown in Listing 3. This is useful as an initial microphysics construction, or in simulations when no microphysics is desired.

4.2 Observers

Data output, for example writing information to non-volatile memory or statements to a terminal window, is entirely analogous

to microphysics. Output is done by the instantiation of a templated type which satisfies the constraints of an “observer” - a

concept for things which have the possibility to read and copy information from CLEO at selected points during time-stepping.295
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Listing 2 Example code showing how microphysical processes are combined in CLEO. Here we choose “≫” to be the operator

in the definition of A⊕B = C for microphysical processes.

/* define how to combine microphysical processes */

template <MicrophysicalProcess M1, MicrophysicalProcess M2>

struct CombinedMicrophysicalProcess {

M1 a; /**< First microphysical process. */

M2 b; /**< Second microphysical process. */

unsigned int next_step(const unsigned int t) const {

return Kokkos::min(a.next_step(t), b.next_step(t));

}

bool on_step(const unsigned int t) const {

return a.on_step(t) || b.on_step(t);

}

void run_step(const TeamMember &tm, const unsigned int t, view_supers supers,

State &state, const Monitor auto mo) const {

a.run_step(tm, t, supers, state, mo);

b.run_step(tm, t, supers, state, mo);

}

};

auto operator>>(const MicrophysicalProcess auto a,

const MicrophysicalProcess auto b) {

return CombinedMicrophysicalProcess{a, b};

}

// ... ///

/* use a combination of microphysical processes */

const MicrophysicalProcess auto mphys1 = condensation(config);

const MicrophysicalProcess auto mphys2 = collision_coalescence(config);

const MicrophysicalProcess auto mphys3 = collision_breakup(config);

const MicrophysicalProcess auto microphysics =

mphys3 >> mphys2 >> mphys1; // change this line to change microphysics

}

Structures called “Monitors” are used by some observers for output which cannot be obtained at the start or end of a time-

step, but rather must be monitored during a SDM time-step — for example the mass change due to condensation/evaporation.

Monitors are also a monoid in CLEO, but we omit the set’s definition here for the sake of brevity. The constraints on an observer

are chosen to ensure the type instantiated as the observer will function in CLEO’s time-stepping routine shown in Figure 5 (pink

boxes). They are that every observer has six functions, before_timestepping, after_timestepping, next_step,300

on_step, at_start_step, and get_monitor, each with specific signatures as imposed by the C++20 concept shown

in Listing 4.
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Start 
time = 0

End

time < t_final?

time = C.next_step 

false

true

C.run_step 

do C's microphysics

C.on_step? false true

do B's microphysics

B.on_step? false true

B.run_step 

A.run_step 

do A's microphysics

A.on_step? false true

a) b)

Figure 4. a) The flow diagram for the time-stepping routine of some microphysical process “C” as described by the example in the text. b)

The flow diagram between C.run_step and C.next_step when C = A⊕B.

Listing 3 The identity element of the microphysical process monoid in CLEO.

/* define the identity element for a microphysical process */

struct NullMicrophysicalProcess {

unsigned int next_step(const unsigned int t) const {

return std::numeric_limits<unsigned int>::max();
}

bool on_step(const unsigned int t) const { return false; }

void run_step(const TeamMember &tm, const unsigned int t, view_supers supers,

State &state, const Monitor auto mo) const {}

};

Any type which satisfies these constraints is a valid element of the monoid for observers and can therefore be combined with

another element using the associative binary operation A⊕B = C, which we choose to define as:

– C.before_timestepping = A.before_timestepping, then B.before_timestepping,305
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Listing 4 The definition of an observer in CLEO

/* define an Observer */

template <typename Obs>
concept Observer = requires(Obs obs, unsigned int t, view_constgbx gbxs,

view_constsupers supers) {

{ obs.before_timestepping(gbxs) } -> std::same_as<void>;
{ obs.after_timestepping() } -> std::same_as<void>;
{ obs.next_step(t) } -> std::convertible_to<unsigned int>;
{ obs.on_step(t) } -> std::same_as<bool>;
{ obs.at_start_step(t, gbxs, supers) } -> std::same_as<void>;
{ obs.get_monitor() }; // should return a Monitor type

};

– C.after_timestepping = A.after_timestepping, then B.after_timestepping,

– C.next_step = minimum(A.next_step, B.next_step),

– C.on_step = (A.on_step or B.on_step),

– C.at_start_step = A.at_start_step, then B.at_start_step,

– C.get_monitor = A.get_monitor ⊕ B.get_monitor,310

as demonstrated in Listing 5.

Exactly like, but independent of, microphysical processes, the sum of different observers ensures adaptive time-stepping.

Likewise this means observers can have different output frequencies and ones that are not necessarily factors of each other.

In fact, the constraints on the time-stepping functions for observers and microphysics are so similar they could stem from the

same parent time-stepping concept, but for simplicity we keep them distinct.315

Observers that write data to non-volatile memory are designed to write large datasets efficiently. Buffers hold output data

in RAM until they reach a specified chunk size (∼10MB by default). These are then written to chunks of arrays in a dataset

according to the Zarr storage specification version 2. Zarr is chosen because it is well-suited to high throughput of large N-

dimensional arrays, especially because it enables parallelised reading/writing. The dataset is compliant with the requirements

of Xarray, and is therefore also compatible with NetCDF. Data can be written as any data-type of the NetCDF Climate and320

Forecast (CF) Metadata Convention, but to save memory it is cast to 4 bytes by default. Additionally, arrays of superdroplet

data (e.g. their spatial coordinates) are output according to the CF Metadata Convention’s contiguous ragged representation.

This is because the number of superdroplets may change over time if superdroplets leave or enter the domain and so the length

of data at each output time-step may change. A ragged array, as opposed to a fixed shape array with dimensions of the largest

length of data, does not contain empty data points and so saves memory.325

For completeness, the monoid for observers has an identity element, NullObserver, shown in Listing 6. This is useful as

an initial observer construction, or in simulations which do not require output from CLEO.
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5 Time-stepping CLEO

CLEO’s entire time-stepping routine is shown in Figure 5. In summary, one time-step consists of seven key stages:

1. Determine the next time-step, t_next.330

2. If on a coupling time-step, receive thermodynamics and wind velocity fields for SDM from the dynamics-solver via the

dynamics-coupler.

3. If on an observation time-step, perform observation.

4. Time-step the dynamics-solver from the current time to t_next.

5. Time-step SDM from the current time to t_next via the sub-time-stepping routine shown in Figure 5b, enacting micro-335

physics followed by superdroplet motion.

6. If on a coupling time-step, send thermodynamics from SDM to the dynamics-solver via the dynamics-coupler.

7. Increment the time to t_next.

The length of one time-step and the exact implementation of each of these parts is determined by types instantiated for the

dynamics-solver, dynamics-coupler, grid-maps, observer, superdroplet motion, and microphysical process. For example, when340

using a one-way coupling the dynamics-coupler’s function for step 6 is empty. The sub-time-stepping routine for SDM shown

in Figure 5b is simply an extension of the logic from Figure 4a to include observers and superdroplet motion as well as

microphysics. Although currently it is performed afterwards, to reduce run-time the entire sub-time-stepping routine could in

principle be made asynchronous to the time-step of the dynamics-solver.

6 Performance345

Here we show the performance of CLEO’s superdroplet-scaling and strong-scaling using OpenMP, C++Threads and CUDA

parallelism. The simulations are performed on a single node of Levante HPC at the German Climate Computing Center (DKRZ)

using 1, 16, 64 or 128 CPU threads and, when CUDA is enabled, an additional GPU2. The node’s configuration and the software

used are listed in Table 1. To change the problem size we decrease the volume of each grid-box, holding the domain volume

and the number of superdroplets per grid-box fixed (Matsushima et al., 2023) (as opposed to fixing the grid-box volumes and350

increasing the number of superdroplets per grid-box; Dziekan and Zmijewski, 2022). This not only decreases the variance in

the number of droplet collisions and increases the precision of the droplet size distribution, but also increases the resolution of

the flow field and the accuracy of each superdroplet’s position (Bayley et al., 2025). The better this superdroplet-scaling, i.e.

grid-box scaling, the more efficiently we can run accurate simulations.

2Tests with CUDA parallelism also used OpenMP for parallelised CPU code, e.g. some parts of initialisation. Since the majority of the time is spent on

GPUs, changing the number of CPU threads has negligible effect on the CUDA build’s speed-up and so we only show plots for the tests with 128 CPU threads.

15

https://doi.org/10.5194/egusphere-2025-4398
Preprint. Discussion started: 22 October 2025
c© Author(s) 2025. CC BY 4.0 License.



The simulations are of a 3-D Cartesian domain 6000m× 300m× 1500m with 256 superdroplets per grid-box, varying355

grid-spacing as listed in Table 2 and with the initial conditions shown in Figure 6a-d. They include condensation, evaporation,

collision-coalescence and droplet motion using the configuration listed in Table 3 for the physics described in Bayley et al.

(2025). The droplets in every grid-box are initialised from a bimodal log-normal dry-aerosol distribution of NaCl. The modes

are at 20nm and 150nm with standard deviations of 1.4 and 1.6, respectively, their relative probability is 3:2, and the total

droplet number concentration is 500cm−3. Superdroplets are created by randomly sampling 256 evenly-in-log-space bins360

between 5nm and 1µm — as in the “Single-SIP-init” method of Unterstrasser et al. (2017), but in radius not mass space.

Superdroplets’ spatial coordinates are uniformly randomly sampled from the space within each grid-box. The dynamics are a

simplified version of the 2-D kinematic flow model from Arabas et al. (2015). We prescribe the same divergence-free wind field

and hydrostatic equilibrium, but the kinetics are held constant in time, without feedback from microphysics, rather than relaxed

towards the initial profiles. To mimic sub-cloud and in-cloud conditions, the temperature has a lapse rate of 9.8Kkm−1 below365

750m and 6.5Kkm−1 above, while the water vapour has a lapse rate of 2.97gkg−1 km−1 below 750m and super-saturation

is fixed at 0.1% above. The surface pressure is 1013.15hPa, the surface temperature is 297.9K, and the surface water vapour

mass mixing ratio is 16gkg−1. We ran the simulations for 80mins without data output and present results per 1s of simulated

time. An example of the superdroplets’ evolution is shown in Figure 6e.

The superdroplet-scaling of the wall-clock time is shown in Figure 7 for the maximal set of resources for each build: serial370

(1 thread), CUDA (128 CPU threads and 1 GPU), OpenMP (128 threads) and C++Threads (128 threads). The wall-clock time

for all the builds is almost entirely time-stepping SDM, as opposed to initialisation or the dynamics-solver, and time-stepping

SDM scales linearly with increasing number of superdroplets once the total number of superdroplets is large enough. This is

because the bottleneck of microphysics is the (serial) random shuffling of superdroplets during collisions and the bottleneck

of motion is the aforementioned counting-sort algorithm (Section 2.3). Both of these algorithms scale linearly with increasing375

number of superdroplets. For C++Threads and OpenMP builds, motion (i.e. sorting) is the dominant bottleneck, while for

serial and CUDA builds, it is the microphysics (i.e. shuffling). The time-per-call of motion is, however, three times greater than

shown here since the time-step was 3s. The expense of motion per-call is therefore comparable to that of microphysics for all

builds, and considerably more for OpenMP and C++Threads.

The strong-scaling in Figure 8 shows the speed-up of the wall-clock time with increasing number of CPU threads for various380

problem sizes2. Overall, none of the builds reach optimal efficiency (Figure 8a); CUDA suffers from microphysics (Figure 8b),

while OpenMP and C++Threads suffer from motion (Figure 8c).

The limit for CUDA parallelism due to microphysics can be seen in Table 4. The speed-up of motion maximizes at 150 for

the largest problem sizes, however microphysics appears to plateau at smaller problem sizes and at 70. The bottleneck is again

the shuffling algorithm we use during collision-coalescence, presumably due to the relatively slow clock-speed of a single385

GPU thread, and so a different (parallelised) shuffling algorithm may improve performance. Alternatively, the shuffling could

be performed concurrently with other parts of the time-stepping routine. For OpenMP, the strong-scaling of microphysics is

almost perfect, at 100% efficiency for large enough problem sizes, however, the overall speed-up is limited by the speed-up

of motion which is no greater than 8. The scaling of C++Threads is better than OpenMP despite slightly less-optimal scaling
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of the microphysics because motion scales better for all but the largest problem size. The bottleneck of motion on CPUs is390

not the data copying itself, but rather the synchronisation of threads required by scatter-gather patterns in the counting-sort

algorithm. Data copying nevertheless doubles the memory footprint of the superdroplets. A more specialised sorting algorithm

which exchanges rather than copies superdroplets and uses the relationship between the GBx-indexes to avoid scatter-gather

patterns would therefore provide better performance both in terms of memory usage and speed. Our results are in agreement

with Matsushima et al. (2023) who found that after optimising their SDM, superdroplet tracking (movement and sorting) was395

indeed the bottleneck of SDM on CPUs, and for the largest simulation this was predominately due to superdroplet sorting.

The bottlenecks in CLEO’s microphysics and motion are expected to become less acute with more complex simulations. The

addition of more microphysical processes, for example to model frozen condensates, will increase the cost of microphysics

in ways that decrease importance of the shuffling algorithm. Coupling CLEO to a dynamics-solver capable of advection will

diminish SDM’s role in the total run-time and introduce other dynamics-related bottlenecks. Above all, the expense of trans-400

porting superdroplets between MPI processes is expected to make the cost of sorting during superdroplet motion inferior to the

cost of MPI domain decomposition, even once optimised.

Figure 9 shows the superdroplet- and strong-scaling of CLEO’s memory consumption is as expected. The memory footprints

increase linearly with increasing number of superdroplets and are almost constant with increasing CPU threads. The overhead

from using OpenMP or C++Threads parallelism is almost insignificant. It is larger for smaller problem sizes but still no405

greater than 1%, and is predominately from the creation of thread-safe random number generators and arrays for the scatter-

gather patterns. Due to the large number of threads on a GPU, the overhead of CUDA parallelism for problem sizes less than

approximately 106 superdroplets can be relatively large because thread-safe random number generators are more expensive

than the superdroplets and grid-boxes themselves. For large enough problem sizes however, the overhead of CUDA is also

insignificant, and the maximum memory allocation (i.e. the superdroplet memory allocation) can actually be substantially410

smaller than in serial. The high-water memory consumption, that is the largest resident set size memory used, can divided

into the apparent memory consumed by a single superdroplet and grid-box. As demonstrated in Table 5, for all builds both

superdroplets and grid-boxes are effectively O(100bytes), whereas by default stand-alone they are 68bytes and 120bytes,

respectively.

7 Conclusions415

To satisfy our curiosity about cloud responses to climate change, SDM offers a promising new way to model cloud micro-

physics. SDM overcomes many of the problematic features of conventional microphysics representations and this has al-

ready proven fruitful, for example in studying the role of turbulence during droplet growth (Li et al., 2019; Grabowski and

Thomas, 2021; Chandrakar et al., 2023). However, the computational cost currently inhibits SDM from certain areas of re-

search, an important case being the study of interactions between cloud microphysics and their mesoscale organisation. This420

research requires LES that can clearly depict warm-cloud microphysical processes and resolve droplet sizes whilst also cap-

turing mesoscale circulations. We therefore need a SDM for studying warm-clouds in LES with hectometre resolution and
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O(100km) domains. CLEO is a new computational implementation of SDM intending to be fit for that purpose. Of course,

to make such large-domain LES feasible, CLEO must be able to harness both the shared- and distributed-memory parallelism

of exascale computers, and whilst the shared-memory performance depends mostly on the fundamental structure of the code,425

the distributed-memory parallelism is also sensitive to the host dynamical model and computer network topology. As such, we

will evaluate CLEO’s distributed-memory parallelism in an follow-up paper specific to LES on exascale computers, whilst this

paper discusses CLEO’s fundamental computational design and it’s performance on shared-memory architectures. In Bayley

et al. (2025), the numerics of CLEO’s warm-cloud microphysics is described.

Efficient memory management is a principal feature of CLEO’s design for high computational performance of large simula-430

tions. We have chosen the layout of grid-boxes and superdroplets in contiguous ordered chunks of memory to try to minimise

cache loading and support data locality. Whilst keeping superdroplets ordered requires a costly sorting algorithm, this expense

will become less significant with larger simulations involving MPI domain decomposition, more complex microphysics and

a fluid-dynamical core. The memory layout we have chosen also favours data transfer over SIMD operations, as is deemed

appropriate for simulations involving frequent transport of a large number of superdroplets which have a low number of at-435

tributes. Since simulations of many superdroplets are exceptionally memory demanding, CLEO’s optional features, such as

superdroplet tracking, can be optimised out of simulations. Data output is also designed economically by following the Zarr

storage specification to write binary files and by using ragged arrays to represent superdroplet data.

CLEO’s resource allocation is designed flexibly so that large simulations can be economised. To exploit parallelism on

HPCs, we use MPI for domain decomposition and Kokkos for abstracted and hierarchical thread parallelism. Kokkos makes440

CLEO concise and maintainable, but most importantly performance portable, meaning CLEO can make use of the various

forms of thread-parallelism available on a diverse set of computer architectures, including those with GPUs. Further flexibility

is built into how CLEO couples to a host dynamical driver. The coupling allows SDM and the dynamics to have independent

domain decompositions, meaning we have greater freedom to allocate computational resources in a way that achieves load

balancing and therefore produces more economical simulations.445

CLEO is highly configurable as well as computationally performant. Monoids, defined through template meta-programming

with C++20 concepts, enable adaptive time-stepping and make choices regarding which variables to output and which micro-

physical processes to include highly flexible. In contrast with flexibility obtained through conditional code branching, flexibility

via monoids has faster run-time and makes the code more readable. The coupling between CLEO and a host dynamical driver

not only allows different domain decompositions, but also makes it easy to switch host model to conduct sensitivity studies and450

optimise the numerical methods of SDM and the dynamics-solver separately. Additionally, CLEO has flexibility over the choice

of grid for SDM. All this flexibility makes CLEO well-suited for detailed study of microphysics, for example evaporation, its

influence on hydrometeor evolution and atmospheric dynamics.

CLEO’s current state of development raises opportunity for further optimisation and larger simulations. The bottlenecks of

CLEO’s SDM algorithms on a single node are the shuffling during collisions between droplets (acute in GPU simulations),455

and the sorting during superdroplet motion (in CPU-only simulations). Using a parallelised shuffling algorithm may be more

optimal for GPUs, but optimisation could also come from making parts of the shuffling algorithm execute concurrently with
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other computations at each time-step. Similar optimisations could provide better performance of the sorting algorithm on CPUs,

as well as lower its memory consumption. However, whether such optimisations are worthwhile should be assessed with more

ambitious simulations, where the transport of superdroplets between nodes, additional microphysics, and/or the expense of the460

dynamics-solver and communication with it, could surpass these algorithms as the major bottlenecks. Given CLEO’s current

state of development however, we can speculate about the minimum cost of such ambitious simulations. Consider a LES with

a 150km× 150km× 7km domain with grid-spacing 150m horizontally, 40m vertically and 128 superdroplets per grid-box.

In other words, O(1010) superdroplets overall. For a minimum bound on the cost, let us assume that the wall-clock time for

superdroplet motion increases by a factor of 10 due to the transport of superdroplets via MPI, but that all of the run-time of the465

dynamics-solver and communication can be made asynchronous. Then, by using 1000 NVIDIA A100 GPUs (250 “Levante-

like” GPU-nodes), the SDM setup from the performance tests presented here suggest that O(107) superdroplets per MPI process

would need approximately one second of wall-clock time for every second of simulated time. Even for a more conservative

estimate, where the performance is slower by a factor of 1000, a simulation of several hours that takes several weeks to run

is still conceivable. Future development of CLEO is therefore a promising avenue to pursue towards using SDM to study the470

interactions between cloud microphysics and mesoscale cloud organisation.
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Listing 5 Example code showing how observers are combined in CLEO. Here we choose “≫” to be the operator in the

definition of A⊕B = C for observers. Monitors are also monoid, with their own C++20 concept, associative operation, and

identity element, but we omit their definition here for brevity.

/* define how to combine observers */

template <Observer Obs1, Observer Obs2, Monitor Mo>

struct CombinedObserver {

private:
Obs1 a; /**< First Observer. */

Obs2 b; /**< Second Observer. */

Mo mo; /**< Combination of First and Second Observers' Monitors */

public:
void before_timestepping(const view_constgbx gbxs) const {

a.before_timestepping(gbxs);

b.before_timestepping(gbxs);

}

void after_timestepping() const {

a.after_timestepping();

b.after_timestepping();

}

unsigned int next_step(const unsigned int t) const {

return Kokkos::min(a.next_step(t), b.next_step(t));

}

bool on_step(const unsigned int t) const {

return a.on_step(t) || b.on_step(t);

}

void at_start_step(const unsigned int t, const view_constgbx,

const view_constsupers supers) const {

a.at_start_step(t, gbxs, supers);

b.at_start_step(t, gbxs, supers);

}

Monitor auto get_monitor() const { return mo; }

};

auto operator>>(const Observer auto obs1, const Observer auto obs2) {

const Monitor auto mo12 =

CombinedMonitor{obs1.get_monitor(), obs2.get_monitor()};

return CombinedObserver{obs1, obs2, mo12};

}

// ... //

/* use a combination of observers */

const Observer auto obs1 = StreamOutObserver(config);

const Observer auto obs2 = TimeObserver(config, dataset);

const Observer auto obs3 = StateObserver(config, dataset);

const Observer auto obs4 = SuperdropsObserver(config, dataset);

const Observer auto observer =

obs4 >> obs3 >> obs2 >> obs1; // change this line to change observer

}
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Listing 6 The identity element of the observer monoid in CLEO.

/* define the identity element for an Observer */

struct NullObserver {

void before_timestepping(const view_constgbx gbxs) const {}

void after_timestepping() const {}

unsigned int next_step(const unsigned int t) const {

return std::numeric_limits<unsigned int>::max();
}

bool on_step(const unsigned int t) const { return false; }

void at_start_step(const unsigned int t, const view_constgbx gbxs,

const view_constsupers supers) const {}

Monitor auto get_monitor() const { return NullMonitor{}; }

};
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    next step for superdroplet motion)

get observer's monitor

t_sdm = time

time-step SDM 
via sub-time-stepping routine

1.

2.

3.

4.

5.

6.

7.

Figure 5. a) The flow diagram for CLEO’s time-stepping routine. Each step is coloured by which of CLEO’s structures it involves. The steps

involved in the SDM sub-time-stepping routine are shown in b) and are an extension of the logic presented in Figure 4a to include output and

superdroplet motion as well as microphysics.
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Figure 6. An example of the performance tests with 16384 grid-boxes. (a-d) The initial conditions, (e) The growth and movement of a

random sample of 500 superdroplets between 1500m < x < 3000m for the test case with 1.638× 104 superdroplets overall.

Grid-Boxes Total Superdroplets ∆x /m ∆y /m ∆z /m

1 2.560× 102 6000.0 300.0 1500.0

8 2.048× 103 1500.0 150.0 1500.0

64 1.638× 104 750.0 75.0 750.0

512 1.311× 105 375.0 37.5 375.0

2048 5.243× 105 187.5 37.5 187.5

4096 1.049× 106 187.5 18.8 187.5

16384 4.194× 106 93.8 18.8 93.8

32768 8.389× 106 93.8 9.4 93.8

131072 3.355× 107 46.9 9.4 46.9

Table 2. The problem size for the performance tests in terms of the number of grid-boxes composing the domain and the consequent total

number of superdroplets and domain grid-spacing.

Time-step /s Additional Configuration Notes

droplet motion 3 terminal velocity parametrisation from Rogers et al. (1993)

condensation/evaporation 1 (default) minimum sub-time-step: 0.001s

absolute and relative tolerances: 0.01 and 0.0

collision-coalescence 1 hydrodynamic kernel from Simmel et al. (2002)

Table 3. SDM configuration for the tests of CLEO’s superdroplet- and strong-scaling.
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Figure 7. The superdroplet-scaling of the wall-clock time for each simulated second given the maximum set of resources for each build on

Levante HPC: a) Serial (dash-dotted), b) CUDA (dotted), c) OpenMP (solid), and d) C++Threads (dashed). The colours decompose the total

time (blue) into the time spent on SDM (cyan), motion (purple) and microphysics (red)

Figure 8. The strong-scaling of the speed-up of wall-clock time relative to the serial simulations with increasing number of CPU threads on

Levante HPC. The line-style denotes the build and the colours from purple to green indicate increasing problem size in terms of the total

number of superdroplets in the domain. The speed-up of motion from CUDA exceeds the y-axis scale and is reported in Table 4 instead.
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Figure 9. a) The superdroplet-scaling of the serial build for the resident set size high-water memory consumption (brown) and for the

maximum memory allocation (grey); b and c) The strong-scaling of the same memory footprints for the parallelised builds: OpenMP (solid),

C++Threads (dashed) and CUDA (dotted). The colours from purple to green indicate increasing problem size in terms of the total number of

superdroplets in the domain.

CUDA Speed-Up

#SDs in Domain SDM Microphysics Motion

1.638× 104 10.9 12.4 6.86

1.311× 105 49.3 50.8 43.8

1.049× 106 76.5 69.9 139.5

3.355× 107 79.0 71.6 152.3

Table 4. The speed-up of wall-clock time for the CUDA build relative to the serial simulations for problem sizes plotted in Figure 8.
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Serial OpenMP C++Threads CUDA

% of high-water memory consumption

Superdroplets 99.3 97.5 97.5 99.1

Grid-Boxes 0.2 0.2 0.2 0.6

Apparent size /bytes

Superdroplet 314.4 309.8 308.6 332.9

Grid-Box 162.1 162.7 162.0 515.9

Table 5. The apparent size of superdroplets and grid-boxes calculated from their contribution to the high-water memory consumption for the

simulations with 32768 grid-boxes (256 superdroplets per grid-box).
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