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Abstract. Ice aggregation in clouds plays a crucial role in cloud development and precipitation formation. Despite the sig-

nificance of ice aggregation, direct in situ quantification of aggregation rates in natural clouds has been challenging due to

the difficulty of tracking ice crystals. Here, we present in situ measurements of ice aggregation rates in persistent supercooled

stratiform clouds. Using novel glaciogenic seeding experiments (CLOUDLAB), ice crystals are nucleated upwind and subse-

quently measured downwind after a known residence time in cloud, allowing us to estimate their age. A deep-learning-based5

detection algorithm (IceDetectNet) counts the individual monomers of aggregates to derive the initial ice crystal number con-

centration (ICNCt0). We considered several factors that may influence ice aggregation, including ICNCt0, temperature, ice

crystal size, aspect ratio, and turbulence. Among these, ICNCt0 was found to be the dominant factor controlling aggrega-

tion rates by three independent approaches: causal inference, a physical equation, and machine learning models. We report,

however, a subquadratic dependence of the aggregation rate on ICNCt0 (mean exponent →0.92), in contrast to theoretical10

expectations (quadratic dependence). One possible explanation is that aggregation may also involve smaller ice crystals, but

this remains hypothetical. To predict aggregation rates, we evaluated 11 machine learning models and a physically based for-

mulation. CatBoost achieved the best statistical performance, while the physical model proved more robust in sensitivity tests.

These findings provide new insights into the microphysical and environmental controls of ice aggregation and establish a robust

methodological foundation for studying aggregation processes in natural clouds.15

1 Introduction

Ice aggregation is a key microphysical process that influences cloud development and precipitation formation. This process

has important implications for weather prediction and climate modeling. During the early stage of ice growth, diffusional

processes such as the Wegener–Bergeron–Findeisen mechanism dominate (Korolev, 2007). As clouds mature, collisional pro-

cesses including aggregation and riming become increasingly important (Connolly et al., 2012; Heymsfield, 1986; Sölch and20

Kärcher, 2011; Hosler et al., 1957). These processes enable ice crystals to grow into larger particles more rapidly than by vapor

deposition alone and are fundamental for the formation of snowflakes and graupel, eventually leading to precipitation-sized

hydrometeors (Heymsfield, 1986; Sölch and Kärcher, 2011).
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Numerous in situ observations have confirmed that ice–ice aggregation occurs in clouds over a wide temperature range,

from just below 0 °C down to ↑60 °C (e.g., Connolly et al. (2005); Crosier et al. (2011); Field and Heymsfield (2003)).25

Aggregated ice crystals often constitute a substantial fraction of total ice. For example, irregular ice crystals—which include

both aggregated and aged ice crystals—have been reported to account for 84 % of total ice crystals in stratiform clouds (Korolev

et al., 2000), 88 % in ground-based snow particle measurements (Zamorsky, 1955), and 94 % in Arctic clouds (Korolev et al.,

1999). More specifically, aggregated ice alone has been observed to comprise 38 % of ice crystals in Arctic mixed-phase clouds

(Zhang et al., 2024), 45 % in thunderstorm clouds (Jaffeux et al., 2022), and 52 % on average across multiple cloud types during30

aircraft campaigns (Moss and Johnson, 1994). Despite their apparent ubiquity, quantitative understanding of aggregation rates

remains limited.

Several factors have been hypothesized to influence ice aggregation, such as temperature, ice crystal shape, size, and turbu-

lence. Temperature dependence has long been debated, with laboratory studies conflicting trends: Hosler and Hallgren (1960)

observed a maximum aggregation efficiency near -15 °C, possibly due to the prevalence of dendritic growth forms that interlock35

upon collision. In contrast, earlier findings by Hosler et al. (1957) suggested peak aggregation rates around 0 °C to -5 °C, where

quasi-liquid layers on ice surfaces may enhance adhesion (Lamb and Verlinde, 2011). These competing mechanisms—the

habit-based, dendritic ice crystal interlocking mechanism at colder temperatures versus the enhanced surface stickiness near

freezing, which happens at the same time—highlight the complexity of aggregation processes. Turbulence may further enhance

aggregation by introducing small-scale velocity fluctuations that promote collisions (Chellini and Kneifel, 2024; Sheikh et al.,40

2022). They also suggest that multiple other pathways may operate, depending on the ambient conditions. Ice crystal size

and number concentration also play important roles. Larger crystals exhibit greater fall-speed differences and larger geometric

cross-sections, while higher ice crystal number concentrations (ICNC) increase collision frequency; both factors enhance the

probability of collision and sticking (Hobbs et al., 1974; Field and Heymsfield, 2003; Field et al., 2006; Connolly et al., 2012;

Karrer et al., 2021). However, disentangling these effects in natural clouds remains challenging due to observational constraints45

and the interplay of multiple factors.

Several experimental approaches have been developed to estimate aggregation, yet each carries inherent limitations. Aircraft

measurements, often using a "Lagrangian spiral descent" strategy, infer aggregation efficiency from changes in ice crystal size

distributions as the aircraft descends at approximately the terminal fall speed of the crystals (Field and Heymsfield, 2003;

Field et al., 2006). These measurements rely on 2-D imaging probes and typically assume that decreases in ice crystal number50

concentration result from aggregation. However, uncertainties arise from experimental artifacts (e.g., ice crystal breaking up

on the inlets of the probe) and misattribution of number loss to aggregation alone (McFarquhar et al., 2007; Lawson, 2011).

Laboratory studies using ice cloud chambers offer better control over experimental conditions and avoid shattering artifacts,

but chamber dimensions are generally too small to accommodate the timescales required for aggregation to occur naturally

(Shaw et al., 2020). Moreover, both aircraft and laboratory studies typically rely on indirect estimates—based on changes in55

ICNC—to infer aggregation efficiency, rather than direct observations (Connolly et al., 2012; Field and Heymsfield, 2003).

These challenges make direct in situ measurements of aggregation rates in natural cloud systems challenging, yet critical for

constraining microphysical parameterizations in models. In this study, we use a novel combination of UAV-based glaciogenic
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cloud seeding experiments (Henneberger et al., 2023) within CLOUDLAB project and an advanced deep-learning detection

algorithm (Zhang et al., 2024) to address these gaps. This approach establishes a well-defined initial condition for ice crystal60

formation and subsequently captures a detailed snapshot of the ice crystal population after their residence in cloud, thereby

allowing aggregation to be quantified over a precisely constrained time interval. The deep-learning algorithm (IceDetectNet)

robustly identifies individual ice monomers within aggregated ice crystals, providing an unprecedented level of detail for

quantifying aggregation.

The specific research questions that we address are:65

1. Which microphysical and meteorological factors control the rate of ice aggregation?

2. How rapidly does aggregation occur following initial ice formation, and to what extent can the aggregation rate be

inferred from the controlling parameters?

To answer these questions, we investigate ice aggregation rates in stratiform clouds using both data-driven and physically

derived approaches. Specifically, we (i) identify the microphysical and meteorological controlling controls on aggregation70

(Sect. 3.1); (ii) disentangle the direct and indirect effects of each factor using causal inference (Sect. 3.2); (iii) evaluate predic-

tive models trained on these factors (Sect. 4.2 and Sect. 4.3); and (iv) test the sensitivity of the predictions to temperature and

the initial ice crystal number concentration (ICNCt0) (Sect. 4.4).

2 The CLOUDLAB campaign and observational data

The CLOUDLAB experiments were conducted in persistent wintertime stratus clouds over the Swiss Plateau, with mea-75

surements centered at a site near Eriswil (47→04↑14↑↑N, 7→52↑22↑↑E; 920 m a.s.l.). These clouds were typically supercooled,

liquid-dominated, and quasi-stationary, with bases below 1,000 m a.g.l. and thicknesses of several hundred meters (Scherrer

and Appenzeller, 2014). We performed glaciogenic seeding upwind of the measurement site using uncrewed aerial vehicles

(UAVs) and sampled the resulting microphysical changes with a suite of in situ and remote sensing instruments. Methods

specific to this study are detailed below, including the seeding operations and instrumentation (Sect. 2.1) and observed ice80

properties (Sect. 2.4).

2.1 Seeding Operations and Instrumentation

Glaciogenic seeding was performed upwind of the measurement site using a customized uncrewed aerial vehicle (UAV; Meteo-

drone MM-670, Meteomatics AG, Switzerland) equipped with burn-in-place flares (Zeus MK2, Cloud Seeding Technologies,

Germany). Each flare contained approximately 200 g of seeding material, including about 20 g of silver iodide and other ice-85

active compounds effective at temperatures below ↑5→C (Chen et al., 2024; Miller et al., 2024). The UAV was operated by

flying multiple crosswind legs (200–400m) while releasing seeding particles for 5–6 minutes at distances of 2–3km upwind of

the measurement site at seeding time t0 (In-cloud seeding and ice nucleation processes in Fig. 1). Further details on the seeding

operations and ice nucleation mechanisms are provided in Miller et al. (2024, 2025) .
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The plume of ice crystals generated by seeding arrived at the measurement site after 5–10 minutes depending on the wind90

speed. Because the plume was typically several hundred meters wide and persisted over the site for several minutes, it could be

sampled continuously as it passed, yielding a time series of microphysical observations. The residence time—the time between

ice nucleation and observation—was calculated by comparing the times of seeding particles release and first ice detection,

and using the observed wind speed across the plume to estimate advection time. To avoid underestimating travel time, the

maximum wind speed among the measured instruments was used in the calculation (See Fuchs et al. (2025) for more details95

regarding the method). Throughout this growth period, the temperature and wind speed were assumed to remain constant.

The microphysical properties of the plume were measured using a suite of in situ and remote sensing instruments at mea-

surement time t1 (see Fig. 1, Ice detection). Remote sensing measurements included ground-based Ka- and W-band Doppler

cloud radars. These radars were used to observe the general cloud structure (e.g., cloud top height) before and after seeding.

They were also used to retrieve the turbulence intensity, which is expressed as the eddy dissipation rate (EDR). EDR was100

retrieved from the Ka- and W-band radars following the spectral-width method (Appendix E in Wu et al. (2025)). The retrieval

assumes homogeneous, isotropic turbulence within the radar volume. Primary EDR estimates were obtained from a mira35

MBR7 Ka-band Doppler radar, with an RPG94 W-band radar used to fill data gaps. Both radars have identical beamwidths

(0.5→), with dwell times of 3 s (MBR7) and 5 s (RPG94), and the EDR was averaged over a 30 s temporal window. Horizontal

wind speed, required for the retrieval, was obtained from mira35 MBR5 PPI scans, ECMWF Reanalysis v5 reanalysis, and in105

situ measurements. The spatial resolution of the retrieved EDR was approximately 30 m per grid cell.

In situ observations were provided by a tethered balloon system (TBS) carrying the HOLographic Imager for Microscopic

Observations (HOLIMO; Ramelli et al. 2020). The TBS consisted of a 200 m3 helium-filled kytoon capable of reaching

altitudes up to 1 km above ground. Suspended 30 m below the kytoon, the instrument platform carrying HOLIMO, a digital

in-line holography system with resolving sizes of 6 µm for cloud droplets and 25 µm for ice crystals. HOLIMO operated110

continuously before, during, and after each seeding experiment, recording cloud droplets throughout and ice crystals over the

duration of the plume encounter. Holograms were reconstructed using HoloSuite (Fugal and Shaw, 2009) at 1 s resolution,

and particles were classified as artifacts, cloud droplets, or ice crystals using a convolutional neural network (Touloupas et al.,

2020). Manual verification was performed for all cloud droplets and ice crystals larger than 35 µm to ensure classification

accuracy; no ice crystals smaller than this threshold were observed.115

Classified ice crystals were then further analyzed using a fine-tuned version of IceDetectNet (Zhang et al., 2024), named

IceDetectNet-CLOUDLAB (see Sect. 2.3 for details). IceDetectNet-CLOUDLAB is a rotated object detection model trained

to assign each monomer a shape label comprising its basic habit and microphysical process, and to estimate the number of

monomers per ice crystal. The classification scheme includes three basic ice habits—column, plate, and irregular—and one

microphysical process, riming. If an ice crystal contains more than one monomer, it is additionally classified as aggregated.120

This results in two independent microphysical processes (riming and aggregation) and four possible states for each ice crystal:

pristine, rimed, aggregated, and rimed+aggregated. Combining the three habits with these four states yields a total of 12 distinct

ice crystal classes. The uncertainty in cloud droplet number concentration is approximately ±5 %, while that for ice crystal
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Figure 1. Scheme for quantifying in situ ice aggregation after cloud seeding. Seeding particles are released by a UAV, initiating ice

crystal formation at time t0. The ice crystals grow and aggregate during the residence time t1→ t0, and at t1 an image of them is captured

by a holographic imager on a tethered balloon system. The ice habit and the number of monomers per aggregate are quantified based on

the IceDetectNet (Zhang et al., 2024). For example, the right panel shows an aggregate consisting of two monomers classified as a frozen

droplets and a column-plate. The aggregation rate (Ragg) is defined as the total number of aggregation events,
∑

(ni→ 1), divided by the

residence time t and the sampled volume Vt1 at t1.

number concentration ranges from 5–10 % for crystals larger than 100µm and about 15 % for smaller ones. Uncertainty

quantification for habit/process classification and monomer counts is detailed in Appendix A.125

2.2 Estimating Aggregation Rates from Experimental Data

Ice aggregation was quantified by estimating the number of monomer-level collisions that formed each observed aggregate.

Each detected aggregate containing ni monomers was assumed to have undergone (ni↑1) aggregation events and have ni ice

crystals at the initial state t0. The aggregation rate Ragg (s↓1 L↓1) was thus defined as:

Ragg =
∑N

i=1(ni↑ 1)
t ·Vt1

(1)130

where N is the total number of detected aggregates, ni is the monomer count of the i-th aggregate, t is the residence time

estimated based on the method in (Fuchs et al., 2025), and Vt1 is the sampled cloud volume at time t1. Ragg represents the

mean aggregation rate integrated over the residence time t. The approach relies on the following assumptions:
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1. Steady background conditions. Environmental and microphysical properties of the background cloud (e.g., tempera-

ture, wind speed) are assumed to remain constant throughout each experiment.135

2. Instantaneous nucleation. Ice nucleation is assumed to occur immediately upon release of seeding particles, providing

a well-defined initial time to ice formation. Our observations have revealed that ice formation is likely initiated very

quickly after the release of the highly hygroscopic and ice-active seeding material (Miller et al., 2025).

3. Conservation of monomer number. The total number of ice crystal monomers is assumed to be conserved between

the seeding and observation locations. This implies that (i) sedimentation losses within the plume are balanced by ice140

crystals falling from above, which is supported by radar observations and (ii) no secondary ice production (SIP) occurs.

The latter is supported by observations: no large droplets or graupel were detected, and no evidence of frozen droplet

breakup was observed, consistent with conditions unfavorable for SIP.

4. Complete detection of aggregate monomers. All monomers within an aggregate are assumed to be accurately identified

by IceDetectNet. However, some early aggregates may become unresolved after diffusional growth and be classified as145

irregular, but this fraction is very small (see Fig. 2h). Other potential detection uncertainties and classification errors are

discussed in Appendix A and are considered negligible.

2.3 Training IceDetectNet-CLOUDLAB for Aggregated Ice Monomer Identification

To retrieve the number of monomers in each aggregate, we fine-tuned the original IceDetectNet model (Zhang et al., 2024) to

create IceDetectNet-CLOUDLAB, specifically adapted for holographic images collected during CLOUDLAB seeding experi-150

ments. The original model was trained to classify ten ice crystal habits; for this application, the output layer was reconfigured

to distinguish four categories: column, plate, column-rimed, and plate-rimed. The final classification layer was randomly ini-

tialized, while all other parameters were taken from the IceDetectNet. A total of 2,380 manually labeled images were used,

randomly selected to ensure an approximate balance across all seeding experiments. Of these, 2,134 images were used for train-

ing and 246 for testing. The model architecture followed IceDetectNet-CLOUDLAB (Zhang et al., 2024), based on S2ANet155

with a ResNet-50 backbone. To improve training stability on the smaller CLOUDLAB dataset, which contains fewer ice crys-

tals and fewer classes than previous applications, the initial learning rate was reduced to 0.0001. The number of training epochs

was extended to 200, with learning rate decay scheduled earlier at epochs 32 and 48 to encourage earlier convergence and to

prevent overfitting. A linear warmup phase of 1,000 iterations was applied to avoid early gradient instability. During inference,

up to six predictions per image were retained after non-maximum suppression (IoU threshold = 0.5).160

2.4 Statistical Characterization of Ice Crystal Properties

We analyzed 21 seeding experiments (Table F1) conducted at temperatures between ↑4.7→C and ↑7.8→C. The ice crystal

habit distribution differed systematically with temperature: warmer experiments (T >↑7→C) contained exclusively columnar

crystals, whereas the colder experiments (T ↓↑7→C) contained both plates and short columns (Fig.E1). Plates and columns
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have been shown to exhibit different diffusional growth rates along their major axes (Fuchs et al., 2025), which can influence165

subsequent aggregation. Based on this habit difference, the experiments were classified into “warmer” (T >↑7→C, n = 14)

and “colder” (T ↓↑7→C, n = 7) regimes (Fig. 2a). Residence times were generally shorter in the colder experiments, ranging

from 294–532 s, compared to 371–629 s in the warmer experiments (Fig. 2b).

ICNCt0, the initial ice crystal number concentration, was estimated by assuming that each aggregated monomer corresponds

to one ice crystal present at t0. This allows estimation of the ICNCt0 at the initial state t0. ICNCt0 was higher in the warmer170

regime than in the colder, with mean ± standard deviation of approximately 815 L↓1 ± 394 L↓1 and 566 L↓1 ± 291 L↓1, re-

spectively (Fig. 2c). These levels lie between typical ICNCt0 values reported for deep convection (Heymsfield and Willis, 2014)

(→100 L↓1) and those associated with secondary ice production in convective systems (Korolev et al., 2020) (→1000 L↓1).

Aggregates were more frequent in the warmer regime, with fractions reaching up to 43% of total observed ice crystals, while

remaining around 15% in the colder regime (Fig. 2d). Ice crystals in the warmer regime reach mean major size (defined as the175

length of the crystal’s major axis) per experiment of up to 312 µm (minimum 101 µm), compared to a range of 66–129 µm

in the colder regime; the warmer regime also exhibited a broader, long-tailed size distribution (Fig. 2e). Aspect ratio (defined

as the ratio of the major to minor axis lengths) distributions differed as well: the colder regime was narrowly peaked around

1.4–1.6, while the warmer regime showed a broader and flatter distribution around 1.73-4.13 (Fig. 2f). The riming ratio (RR)

is defined as the fraction of rimed crystals. Rimed crystals were abundant in both regimes, with fractions exceeding 38% in all180

experiments and reaching up to 94% in one single experiment, indicating that riming was nearly ubiquitous (Fig. 2g). Finally,

irregular ice crystals, which have no identifiable habit, were uncommon overall (2–5%; Fig. 2h). Some early aggregates may

have grown sufficiently by diffusion to obscure their monomer structure, thus being classified as irregular. These crystals were

slightly more frequent in the colder regime, suggesting that any resulting underestimation of aggregation is likely negligible.

3 Microphysical and Environmental Controls on Ice Aggregation185

We examined the microphysical and environmental controls on ice aggregation through a structured sequence of analyses.

We first examined how microphysical and environmental factors influence the observed aggregation rates (Sect. 3.1). We then

applied a causal graph to disentangle the direct and indirect effects of these factors on aggregation (Sect. 3.2).

3.1 Correlations Between Aggregation Rate and Microphysical and Environmental Factors

To better understand the mechanisms underlying aggregation, we first examine the Pearson correlations between the aggrega-190

tion rate and four factors: ICNCt0, residence time, temperature, and EDR. No clear correlation was observed between aggre-

gation rate and EDR, which characterizes the turbulence intensity within the cloud (see Appendix B for the EDR correlation

analysis). This suggests that, under the present experimental conditions, turbulence at the resolved scales (30 m ! 30 m) did

not significantly influence aggregation. The correlations with ICNCt0, residence time, and temperature are all presented in the

following.195
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Figure 2. Distributions of ice crystal properties during seeded periods, grouped by temperature: colder (T ↑→7→C, blue) and warmer

(T >→7→C, red). (a) Temperature; (b) Residence time; (c) ICNCt0; (d) Aggregation ratio; (e) Major size of ice crystals; (f) Aspect ratio;

(g) Riming ratio; (h) Irregular ratio. For (a) and (b), the solid lines show the per-experiment distributions. For (c) through (h), the solid lines

represent one-second resolution distributions within each regime, and the scatter points indicate the means of the experiments (The scatter

positions along the y-axis are offset solely to reduce overlap. Only the values along the x-axis carry meaning).

3.1.1 Strong positive correlation between ICNCt0 and aggregation rate

ICNCt0 exhibited a strong positive correlation with the aggregation rate in all experiments (Fig. D1). This is consistent with

theoretical expectations, as higher crystal concentrations increase the probability of collisions leading to aggregation (Hobbs

et al., 1974).

To illustrate this relationship more clearly, we present two experiments for reference: a warmer case (SM054, T = ↑5→C)200

and a colder case (SM069, T = ↑7.6→C) (Fig. 3a,b). Under the condition that the ice crystals are homogeneously distributed,

the aggregation rate (Seifert and Beheng (2006) Eq.62), which is the number of aggregation events per unit time per unit
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volume of cloud , can be expressed as:

Ragg =
1
2

K(D1,D2,T )N1 N2,

where N1 and N2 are the number concentrations of two ice crystal populations of sizes D1 and D2, T is temperature, and205

K(D1,D2,T ) is the collision kernel, which depends on ice crystal size, shape, fall speed, and ambient conditions (Connolly

et al., 2012). In the simplest case where the population is monodisperse and N1 = N2 = ICNCt0, the rate becomes proportional

to ICNC2
t0, shown as: Ragg = 1

2K(D1,D2,T )(ICNCt0)2. This quadratic dependence arises because the collision frequency

between ice crystals scales with the product of their number concentrations.

We first evaluated the data against this fixed quadratic relationship (Ragg = a· ICNC2
t0), where the prefactor a effectively210

represents 1
2K(D1,D2,T ). To account for differences between experiments, a was fitted independently in each case. While

this model gets correlation coefficients of r = 0.93 and r = 0.81 for the warmer and colder cases, respectively, it systematically

underestimated aggregation at low ICNCt0 (Fig. 3a,b, dashed grey lines).

A better fit was achieved using a free power-law relationship (Ragg = a· ICNCn
t0), where both a and n were estimated sep-

arately for each experiment. This empirical model closely matched the observations across the full range of concentrations215

(Fig. 3a,b, solid lines). In the warmer-case experiment (SM054), the aggregation rate scaled with an exponent of 1.09, im-

proving the correlation to r = 0.98 (Fig. 3a). In the colder-case experiment (SM069), the best-fit exponent was 0.68, with

a corresponding correlation of r = 0.83 (Fig. 3b). This pattern was consistent across all 21 experiments, where the free-fit

power-law systematically performed better than the fixed-quadratic form (see Fig. D1). The average exponent across all ex-

periments was 0.92± 0.11, smaller than the quadratic dependence expected from the collision kernel formulation (Melzak,220

1957; Connolly et al., 2012; Seifert and Beheng, 2006). Bulk microphysics schemes such as Lin et al. (1983) and Morrison

and Milbrandt (2015) have even adopted a linear dependence on ICNC, which is closer to our observations, often with an

additional size threshold so that aggregation only occurs once ice crystals exceed a certain size. However, our observations hint

that aggregation may also occur among smaller ice crystals. This could result in effective dependence with an exponent smaller

than one.225

3.1.2 No significant correlation between aggregation rate and residence time

Residence time in our experiments ranged from 294 s to 650 s (Table F1, Fig. 4) and showed no significant correlation with

aggregation rate (r =↑0.09, p = 0.686). This parameter is specific to our experimental design, as the ice crystals were ar-

tificially generated by cloud seeding, enabling an explicit measurement of the total growth period. In natural-cloud studies,

residence time is rarely quantified, and direct comparisons are therefore not straightforward. Theoretically, a longer residence230

time would be expected to yield a smaller time-averaged aggregation rate, because ICNC decreases over time. We find only a

very weak tendency for Ragg to decrease with residence time (Fig. 4, R2 = 0.009), suggesting that our results remain broadly

comparable to previous observational and laboratory studies despite this experimental uniqueness (Connolly et al., 2012; Field

and Heymsfield, 2003; Field et al., 2006). This weak dependence between aggregation rate and residence time may reflect the

fact that ice crystals must first grow to sufficiently large sizes before collisional aggregation becomes efficient. During the early235
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Figure 3. Correlation between aggregation rate and ICNCt0 in two temperature regimes. (a) warmer case (SM054, T = →5.0→C); (b)

colder case (SM069, T = →7.6→C). One-second data points are shown as red circles (warmer) and blue squares (colder). Solid lines with

shaded areas show free power-law fits Ragg = a · ICNCn
t0 with 95% confidence intervals (red for warmer, blue for colder); dashed lines with

grey shading show quadratic fits (n = 2). The prefactor a was fitted independently for each experiment and reflects the effective collision

kernel.

Figure 4. Correlation between aggregation rate and residence time. Orange markers with error bars show the mean ± standard deviation

for each experiment, and the solid line represents the linear fit (r = 0.09, p = 0.686) across all 21 experiments.

growth phase, ICNC decreases rapidly due to plume dilution (as seeded particles are initially concentrated and then disperse;

see Fig. 2 in Ramelli et al. (2024)), but this shows little impact on the aggregation rate, making it appear largely insensitive to

residence time.

3.1.3 Temperature dependence of aggregation rate associated with ice crystal size and aspect ratio

Temperature exhibited a weak positive correlation with aggregation rate across all experiments (r = 0.43, p = 0.053; Fig. 5).240

Although the statistical evidence was weak (p = 0.053), the observed trend is consistent with theoretical expectations and pre-

vious findings that warmer conditions enhance aggregation (Hosler et al., 1957). Consistent with known temperature-dependent
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Figure 5. Correlation between aggregation rate and temperature Same as Figure 3, but for the Temperature.

Figure 6. Distributions of ice crystal major axis length and aspect ratio in warmer and colder cases. (a) Major axis length and (b)

aspect ratio for SM054 (warmer, red) and SM069 (colder, blue).

habits, the warmer group (above ↑7→C) consisted exclusively of columnar ice crystals (Fig. E1a), whereas the colder group

(below ↑7→C) included both columnar and plate-like crystals (Fig. E1b).

To investigate the mechanisms underlying temperature relationship, we compared the distributions of ice crystal size and245

geometry (the same cases as in Fig. 3), to better understand why the warmer case (SM054) has a higher aggregation rate than

the colder case (SM069). Warmer case (SM054) exhibited broader distributions of both major axis length and aspect ratio

compared to SM069 (colder case), as shown in Fig. 6. This pattern was not unique to SM054; broader distributions of major

size (Fig. 2 (e)) and aspect ratio (Fig. 2 (f)) were consistently observed in warmer experiments. Such variability in shape and

size increases the range of fall velocities among crystals (Heymsfield, 1972; Mitchell, 1996), which promotes more frequent250

collisions and subsequent aggregation at warmer temperatures.
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3.2 Causal Pathways Among Aggregation Drivers

Previous analyses showed that ICNCt0, temperature, major axis length, and aspect ratio each correlate with aggregation rate to

varying degrees. However, these factors are not independent, and their relative contributions and interactions remain unclear.

To disentangle direct and indirect effects among these variables, we constructed a causal graph in the form of a directed acyclic255

graph (DAG; Fig. 7), incorporating these 4 variables as well as riming ratio (RR), which is the percentage of rimed ice crystals

to all the observed ice crystals. Because RR can influence ice crystal geometry — particularly major size and aspect ratio — it

may therefore affect aggregation indirectly.

DAGs represent hypothesized cause–effect relationships, with nodes denoting variables and arrows indicating the direction

of influence (Pearl, 2009; Peters et al., 2016). Unlike correlation-based analyses, DAGs explicitly separate direct effects from260

mediated pathways, enabling quantitative decomposition of total effects. For example, temperature may influence aggregation

rate both directly and indirectly by altering ice crystal size and aspect ratio.

The graph structure was specified by combining prior physical knowledge with statistical dependencies inferred from the

data. Path coefficients were estimated using structural equation modeling (SEM), which fits a system of regression equations to

quantify the strength of each link. All variables were standardized prior to fitting, so that each coefficient represents the change265

in aggregation rate (in standard deviations) associated with a one-standard-deviation increase in the predictor, reflecting their

relative importance.

The fitted DAG (Fig. 7) shows that ICNCt0 (+0.81), temperature (+0.24), and major size (+0.08) have positive direct

effects on aggregation rate, with ICNCt0 clearly dominating. Aspect ratio exhibits a weak negative direct effect (↑0.16), likely

because stronger aggregation tends to increase the number of monomers per particle, producing more compact and rounded270

aggregates and thus reducing the aspect ratio. Beyond its direct effect, temperature also strongly influences aspect ratio (+0.61)

and major size (+0.40), which in turn affect aggregation. Since aspect ratio and major size have opposing effects (negative and

positive, respectively), these indirect contributions partially cancel, and temperature maintains an overall positive influence.

RR has a negligible direct effect on aggregation (-0.01). RR indirectly increases the major axis length (+0.31), promoting

aggregation. However, it also decreases ICNCt0 (↑0.23), suppressing aggregation. These opposing effects cancel each other275

out, resulting in a minimal net effect of RR on aggregation. Specifically, RR tends to produce larger, more heavily rimed

crystals but in lower numbers, as enhanced sedimentation reduces concentrations within the plume. As a result, the net effect

of RR remains minimal, suggesting that riming and aggregation are largely independent processes in these experiments.

4 Aggregation Rate Predictive Models

Building on the preceding analysis, we next evaluated whether aggregation rates can be quantitatively predicted from the280

identified microphysical and meteorological factors. We first describe the training procedures and evaluation metrics (Sect. 4.1).

Then, we implemented and compared eleven machine learning models (Sect. 4.2) and one physically based equation (Sect. 4.3),

using temperature, major axis length, aspect ratio, and ICNCt0 as input features and the aggregation rate as the target variable.

RR was excluded from the predictive modeling as its direct effect on aggregation was found to be negligible in our causal
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Figure 7. Causal graph of factors influencing aggregation rate. The graph depicts the inferred direct and indirect effects on aggregation

rate (R_agg) among five variables: ICNCt0, temperature (T), major axis length (Majsiz), aspect ratio (AR), and riming ratio (RR). Nodes

represent variables, and directed arrows indicate causal relationships. Arrow thickness, color, and the numerical labels on the arrows denote

the magnitude and direction of the standardized effects (change in aggregation rate in standard deviations per standard deviation change in

the predictor).

inference analysis (Sect.3.2). Finally, to evaluate the robustness of these models under varying atmospheric and microphysical285

conditions, we performed a sensitivity analysis with respect to temperature and ICNCt0 (Sect. 4.4).

4.1 Predictive Model Training and Evaluation

We trained the models using temperature, major axis length, aspect ratio, and ICNCt0 as predictors of the aggregation rate.

All variables except temperature were available at 1 s resolution; temperature was constant for each experiment. We fitted

the analytical model (Eq. 2) by minimizing the mean absolute error (L1 norm) between predicted and observed aggregation290

rates, with L2 regularization applied to all parameters (penalty coefficient = 10↓4). All coefficients were initialized to one

and optimized using gradient descent with a learning rate of 10↓2 over 1500 iterations. All machine learning models were

trained with default hyperparameters, except for a fixed random seed (42) to ensure reproducibility. No early stopping, feature

engineering, or categorical coding was applied, as all inputs were continuous. Model performance was assessed using five-

fold cross-validation with group-based splits defined by seeding experiment identifiers. This ensured that data from a given295

experiment were restricted to either training or test sets. For each model and fold, we computed the root mean square error

(RMSE), which quantifies the typical magnitude of prediction error, and the coefficient of determination (R2), which reflects

the proportion of variance explained. We reported the mean and standard deviation of both metrics across the five folds. After

evaluation, each model was retrained on the full dataset and archived for reproducibility. Model interpretability was assessed
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using SHapley Additive exPlanations (SHAP). SHAP values quantify how much each feature shifts a prediction away from300

the dataset’s average prediction, with positive values indicating an increase and negative values a decrease. Conceptually, each

feature is treated as a “player” in a cooperative game, and its SHAP value represents the average change in the prediction when

the feature is added to all possible subsets of other features. This provides a consistent measure of each feature’s contribution

to the prediction, accounting for interactions with other features. Global feature importance was obtained by averaging the

absolute SHAP values across all samples, and the results were visualized using summary plots.305

4.2 Machine Learning Models for Aggregation Rate Prediction

4.2.1 Overview of Machine Learning Algorithms

We implemented eleven supervised regression algorithms to model the relationship between environmental and microphysical

predictors and aggregation rate. These included linear methods (Linear, Ridge, and Bayesian Ridge Regression), instance-based

learning (K-Nearest Neighbors), decision tree–based models (Decision Tree, Extremely Randomized Trees), and ensemble310

boosting techniques (Adaptive Boosting, Gradient Boosting, Light Gradient Boosting Machine, Extreme Gradient Boosting,

and gradient boosting with categorical features support (CatBoost)). Linear models assume independent, additive effects and

are limited in representing nonlinear interactions. Tree-based models capture nonlinear and interaction effects through hier-

archical partitioning of the feature space, while boosting methods iteratively refine predictions by combining multiple weak

learners. Detailed descriptions of all models are provided in Appendix C. Among these, CatBoost is particularly well-suited315

for the current problem because of its ability to handle nonlinear interactions and its robustness to overfitting. CatBoost is a

gradient boosting method that uses symmetric (oblivious) decision trees, where all nodes at the same depth split on the same

feature and threshold. This symmetry simplifies optimization and improves generalization. It also introduces “ordered boost-

ing,” which builds trees in a way that avoids using future information during training, thereby reducing overfitting. Additionally,

CatBoost efficiently handles categorical features and typically requires minimal hyperparameter tuning.320

4.2.2 Predictive Performance and Feature Contributions

Among all machine learning models, CatBoost and Gradient Boosting achieved the highest performance, with the lowest

RMSE (1.53↔10↓1 s↓1 L↓1) and high R2 (0.87) for CatBoost, and a slightly higher RMSE but marginally better R2 (0.88) for

Gradient Boosting. Their comparable skill likely reflects their shared ensemble structure and residual learning strategy. Extra

Trees and Light Gradient Boosting Machine followed closely in performance (Table 1). For subsequent analyses, CatBoost was325

selected as the representative data-driven model owing to its competitive accuracy and robust generalization. The physically

derived equation also performed comparably to the tree-based models, achieving an RMSE of 2.10↔ 10↓1 s↓1 L↓1 and R2

of 0.78, suggesting that it captures the dominant aggregation dependencies despite its reduced complexity and lack of data-

driven tuning. In contrast, linear models (Linear Regression, Ridge, Bayesian Ridge) performed poorly, with R2 values around

0.56 and RMSE around 2.73↔ 10↓1 s↓1 L↓1, highlighting the importance of nonlinear interactions and feature dependencies330

that linear approaches cannot represent. In each experiment (Fig. 8), the agreement between observed aggregation rates and
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Table 1. Model performance comparison. Mean RMSE (10↑1 s↑1 L↑1) and R2 values along with their standard deviations, sorted by

RMSE in ascending order.

Model RMSE (↓10↑1) R2

CatBoost 1.53± 1.08 0.87± 0.08

Gradient Boosting 1.55± 0.91 0.88± 0.05

Extremely Randomized Trees 1.62± 0.94 0.87± 0.05

Light Gradient Boosting Machine 1.63± 1.00 0.86± 0.07

Extreme Gradient Boosting 1.67± 1.04 0.86± 0.07

Decision Tree 1.99± 0.92 0.80± 0.04

Adaptive Boosting 2.05± 0.75 0.75± 0.11

K-Nearest Neighbors 2.09± 1.05 0.78± 0.06

Physical Equation 2.10± 1.34 0.78± 0.11

Bayesian Ridge Regression 2.73± 0.90 0.56± 0.16

Linear Regression 2.73± 0.90 0.56± 0.16

Ridge Regression 2.73± 0.90 0.56± 0.16

CatBoost predictions is evident, with residuals having means near zero and relatively small standard deviations. These results

demonstrate that the model effectively captures the relevant physical mechanisms.

To interpret the predictions, we computed SHAP, which quantifies the relative contribution of each feature factor. ICNCt0

was the dominant predictor, explaining 69.9% of the variance (Fig. 9), consistent with the earlier correlation analysis (Fig. 3,335

Fig. D1) and the causal graph (Fig. 7), where ICNCt0 also showed the strongest standardized effect. However, a simple linear

regression model using ICNCt0 alone performed poorly (R2 = 0.56± 0.16, RMSE = 2.73↔ 10↓4 ± 0.90↔ 10↓1 s↓1 L↓1;

Table 1), underscoring the importance of nonlinear interactions among multiple variables.

Major axis length (14.9%) also contributed meaningfully to the predictions. Larger major sizes were associated with higher

aggregation rates, consistent with the expectation that larger crystals, with greater cross-sectional area and fall-speed variability,340

enhance collision likelihood (Heymsfield and Miloshevich, 2003) — in agreement with the positive direct effect identified in

the causal graph (+0.08, Fig. 7). Aspect ratio (8.3%) had a weaker and more complex effect: SHAP values clustered near zero,

with a slight tendency for lower aspect ratios to favor aggregation and higher aspect ratios to suppress it, consistent with its

negative effect in the causal graph (↑0.16).

Temperature accounted for 6.9% of the model output. Higher temperatures generally promoted aggregation, consistent with345

laboratory findings (Hosler et al., 1957) and the causal graph (+0.24, Fig. 7). Also, unlike the other variables, temperature was

measured as a single value per experiment rather than at a 1-second resolution, which may have limited its explanatory power

in the model. Nevertheless, its limited contribution suggests that its influence is largely indirect and mediated by changes in
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Figure 8. Observed, predicted, and residual aggregation rates per experiment. For each experiment, observed aggregation rates (dark

blue circles), CatBoost-predicted aggregation rates (yellow triangles), and residuals (pink squares, observed minus predicted) are shown side

by side, with observed values on the left, predicted in the middle and residuals on the right. Markers indicate mean values, and error bars

represent the standard deviation within each experiment. Rates are expressed in L↑1s↑1.

Figure 9. SHAP analysis of feature contributions to CatBoost model predictions. Each dot represents one prediction at 1-second resolu-

tion from the test data. SHAP values (horizontal axis) indicate the impact of each input feature on the predicted aggregation rate. Features

(i.e. ICNCt0, Major size, Aspect ratio, and Temperature) are ranked by their overall importance (right), with percentages representing the

mean absolute SHAP value normalized across all features. Dot colors reflect the corresponding feature values, with red denoting higher and

blue denoting lower values of the feature.

crystal habit and size, as reflected by aspect ratio and major axis length. Therefore, temperature likely acts as a secondary driver

embedded within other structural parameters.350
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4.3 Physical Model

4.3.1 Model Formulation

We constructed an empirical formulation for the ice aggregation rate based on established microphysical principles. The basic

structure follows the collision kernel framework (Melzak, 1957), in which the aggregation rate is proportional to the product of

the number concentrations of the interacting particles. Under the simplest assumption of equal-sized populations, this scaling355

becomes quadratic in ICNCt0. However, bulk microphysics schemes such as Lin et al. (1983); Morrison and Milbrandt (2015)

have used a linear dependence. To allow flexibility between these theoretical and parameterization-based scalings, the exponent

on ICNCt0 was treated as a free parameter. The temperature dependence is represented as an exponential term, consistent

with parameterizations of collision efficiency in two-moment schemes (e.g. Seifert and Beheng (2006)), where temperature

modulates the quasi-liquid layer and hence the sticking probability upon collision. The dependence on major axis length is360

formulated as a power law to account for its role in determining both geometric cross-section and differential fall speed, which

are classical components of aggregation kernels. Thus, the proposed equation is:

Ragg = ω · ICNCt0
ω0 · expω1T ·MajSizω2 (2)

where: Ragg is the observed aggregation rate (s↓1 L↓1), ω is a dimensioned scaling constant, ε0, ε1, and ε2 are empirically

fitted exponents, ICNCt0 is the initial ice crystal number concentration (L↓1), T is the ambient temperature (°C), MajSiz is365

the average major axis length of ice crystals (m). The term ICNCt0
ω0 accounts for the increased probability of collisions as a

function of ice crystal concentration. Collection theory suggests a near-quadratic dependence under the assumptions of random

motion and homogeneous mixing (Connolly et al., 2012). We retain a flexible exponent ε0 to account for inhomogeneities and

dispersion effects in real clouds. The temperature-dependent exponential term, eω1T , reflects the nonlinear role of temperature

in aggregation-relevant processes. Temperature modulates diffusional growth, growing dimension and the thickness of the370

quasi-liquid layer, which shapes ice size and habit. Many of these processes exhibit exponential or Arrhenius-like behavior

with temperature. The exponential formulation is consistent with aggregation parameterizations in operational two-moment

microphysics schemes (e.g. Seifert and Beheng (2006); Lin et al. (1983). The power-law dependence on ice crystal size,

MajSizω2 , represents the combined influence of fall speed variability and geometric collision cross section. Larger crystals

sediment faster and offer larger interaction surfaces, increasing the likelihood of collision and adhesion. This formulation375

follows classical approaches to the collection kernel under differential sedimentation. Aspect ratio was excluded from the final

model, as it is not explicitly represented in two-moment bulk schemes (Lohmann and Roeckner, 1996; Seifert and Beheng,

2006), and its fitted coefficient in our analysis was negligible compared to the other factors.

The final fitted form is:

Ragg = 0.0058 · ICNCt0
0.73 · exp(0.18 ·T ) ·MajSiz0.16, (3)380
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When optimized on the same dataset, this physical model achieved an RMSE of 2.10↔ 10↓4 s↓1 L↓1 and an R2 of 0.78

(Table 1). Although lower than the CatBoost model (R2 = 0.87), its performance remains strong, suggesting that the dominant

dependencies of aggregation are well captured.

The fitted ICNCt0 exponent (ε0 = 0.73) is below 1, which is consistent with the above free power-law fitting, which includes

only one controlling factor, ICNCt0. This strong, but nonlinear, positive contribution aligns with both the causal graph (Fig. 7)385

and SHAP analysis (Fig. 9), which also identified ICNCt0 as the dominant predictor. The temperature coefficient (ε1 = 0.18)

indicates a positive sensitivity to temperature, consistent with laboratory evidence (Hosler et al., 1957) as well as the causal

graph and SHAP findings, though the effect is modest. Finally, the major size exponent (ε3 = 0.16) is relatively small, sug-

gesting a weaker dependence on crystal size compared to ICNCt0 or temperature. This may reflect either the limited variation

in crystal size across experiments, especially the colder cases (Fig. 2e) or the dominant influence of concentration effects under390

high-ICNCt0 seeded conditions.

4.4 Sensitivity to temperature and ICNCt0

We evaluated the sensitivity of predicted aggregation rates to temperature and ICNCt0 by comparing predictions from Cat-

Boost (CatB) and the physical equation against observations (Fig. 10). Three prescribed ICNCt0 levels—101, 102, and 103

L↓1—were selected to represent conditions characteristic of stratus clouds (Gultepe et al., 2001), deep convection (Heymsfield395

and Willis, 2014), and secondary ice production in convective cloud systems (Korolev et al., 2020). To enable a meaningful

comparison between predictions and observations, we stratified the measurements into three corresponding ICNCt1 intervals:

(100.5, 101.5), (101.5, 102.5), and (102.5, 103.5) L↓1. These intervals approximately align with the predicted ICNCt0 levels and

allow an assessment of the models’ ability to capture the observed magnitudes and trends across representative regimes.

Both models reproduce the observed positive temperature dependence within the measurement domain (↑7.8→C to↑4.7→C;400

shaded region in Fig. 10) and exhibit physically plausible trends beyond. At all fixed ICNCt0, predicted aggregation rates

increased systematically with temperature, broadly consistent with the observations. Observed rates generally clustered around

the predicted values at their respective ICNC levels, supporting the proposed scaling.

CatBoost predictions were smooth and closely aligned with observations at high and intermediate ICNC levels, but at low

ICNC they exhibited pronounced fluctuations at warmer temperatures (T > ↑6→C) and a nearly flat response at colder tem-405

peratures (T < ↑6→C; solid dark blue line in Fig. 10). This behaviour likely reflects the high variability of observations in this

regime, as similar scatter is evident in the measured data, which can obscure systematic dependencies and limit the model’s

ability to learn consistent patterns. In contrast, predictions from the physical equation were stable and monotonic across the

full ICNC and temperature ranges, reproducing the general trends well, though slightly overestimating aggregation rates at the

lowest ICNC and T <↑7→C. The increased variability in low-ICNC observations suggests that other factors, such as habit410

composition, size distribution, or turbulence, may exert a proportionally stronger influence when ICNC is low.

Although evaluation based on RMSE and R2 over the full test set indicated slightly better performance of CatBoost compared

to the physical equation, Fig. 10 suggests that the two approaches perform similarly in most regimes, with the physical equation

outperforming CatBoost in some cases (e.g., low ICNC at T <↑7→C). This apparent discrepancy can be partly attributed to
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Figure 10. Sensitivity of predicted and observed aggregation rates to temperature across ICNC levels. Predictions from the CatBoost

model (CatB) and a physical equation are shown for three prescribed initial ice crystal number concentrations (ICNCt0) of 101 (solid),

102 (dashed), and 103 L↑1 (dash-dotted); blue and red curves correspond to CatB and the physical equation, respectively. Observations are

divided into three ICNCt1 intervals: (100.5, 101.5), (101.5, 102.5), and (102.5, 103.5) L↑1, and are plotted as crosses in cyan, orange, and red,

respectively. The shaded region indicates the observed temperature range (→7.8→C to →4.7→C).

how the performance metrics are computed: RMSE and R2 are dominated by data-rich regions, where CatBoost tends to415

follow the observed scatter more closely—especially when the observations themselves are subject to variability from binning

into three ICNCt1 intervals [(100.5, 101.5), (101.5, 102.5), and (102.5, 103.5) L↓1]. In such regions, CatBoost can achieve

lower residuals by adapting flexibly to local variations, whereas the physical equation prioritizes smooth, process-consistent

behavior. In contrast, in sparsely sampled or more physically complex regimes, the physical equation yields more stable and

monotonic trends, while CatBoost shows larger deviations. These complementary behaviors underscore the value of combining420

data-driven flexibility with physically constrained formulations.

5 Conclusions

In this study, we present the in-situ quantification of ice aggregation rates in persistent supercooled stratiform clouds. This

was made possible by a novel experimental design combining glaciogenic cloud seeding, which provided a controlled initial

state and allowed us to determine the age of ice crystals from nucleation to observation, and IceDetectNet, a deep-learning425
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algorithm capable of counting the number of monomers in individual ice crystals. This approach offered new insights into the

microphysical and meteorological conditions that govern aggregation. The ICNCs observed during the experiments exceeded

those typically found in naturally occurring stratiform clouds but were comparable to levels observed during secondary ice

production events in convective clouds (Korolev et al., 2020). The combination of high ICNC and the absence of secondary

ice production provided a rare opportunity to isolate the contribution of aggregation without the confounding influence of ice430

multiplication processes and to generate observational constraints relevant to natural clouds.

We found ICNCt0, temperature, major axis length, and aspect ratio as the primary controls on aggregation rate among all

the factors we investigated, with ICNCt0 emerging as the dominant factor. Even though ICNCt0 has the strongest influence,

a linear model based solely on ICNCt0 failed to reproduce the observed rates, showing the importance of other factors and

the nonlinearity of their interactions. While ICNCt0, temperature, and major axis length contribute positively to aggregation,435

aspect ratio acts as a negative factor, and riming showed no detectable effect, showing that riming and aggregation are largely

independent processes. The influence of temperature operates both directly and indirectly by modifying ice crystal shape,

consistent with current microphysical schemes (e.g. Seifert and Beheng (2006)). EDR showed no significant correlation with

aggregation rate. This likely reflects our coarse resolution (→30 m) compared to the Kolmogorov and inertial subrange scales

(→0.1 mm–10 m) where turbulence is expected to influence collisional growth (Pumir and Wilkinson, 2016), with additional440

masking by strong turbulence, narrow size distribution, and the dominant effects of ICNCt0 and temperature.

We demonstrated that both machine learning models and the physically derived equation successfully reproduced the ob-

served aggregation rates. CatBoost achieved the best performance in terms of RMSE and R2 on the test dataset by capturing

nonlinear interactions, whereas the physically based model proved more robust and stable in sensitivity tests, particularly in

regimes with low ICNCt0, higher observational variability, and outside the observed temperature range. These differences445

highlight the complementary nature of data-driven and physically constrained approaches.

This study advances our understanding of the microphysical and environmental controls on ice aggregation. It emphasizes

the central role of ICNCt0 and the influence of temperature-dependent ice crystal properties. The study also showed that the

aggregation occurs within 5-10 min after the ice formed. However, the mechanism behind the observed sub-quadratic relation-

ship between ICNCt0 and aggregation rate remains uncertain. One possible explanation that is consistent with our observations450

is that aggregation may involve smaller ice crystals. However, this remains hypothetical. Addressing these uncertainties re-

quires experimental designs that can capture the intermediate stages of ice crystal growth and interaction. The single-point

experimental setup limits our ability to capture the full evolution of microphysical processes and may obscure intermediate

stages of aggregation. Future experiments would benefit from a Lagrangian observational setup to better resolve the complete

aggregation pathway. This would allow us to refine the representation of aggregation in weather and climate models, ultimately455

improving predictions of precipitation and cloud radiative effects.

Code and data availability. Data and scripts will be uploaded into a repository upon acceptance, and are available upon request until then.
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Table A1. Prediction uncertainty of IceDetectNet-CLOUDLAB. Comparison between predicted (Pred) and hand-labeled (HL) monomer

counts on the test set. Discrepancy (Discr.) is defined as prediction minus ground truth. Discr. (%) is normalized by HL Count.

#HL Monomer #HL Ice Crystal Pred (mean ± std) #Discr. Discr. (%)

1-monomer 167 1.10 ± 0.35 16 9.6

2-monomer 96 2.44 ± 0.90 21 21.9

3-monomer 51 2.71 ± 1.36 →5 →9.8

4-monomer 24 4.17 ± 0.75 1 4.2

Appendix A: IceDetectNet-CLOUDLAB Uncertainties

To assess the uncertainty of IceDetectNet-CLOUDLAB, we compared its predicted monomer counts with manual annotations

on a test set comprising 246 images of aggregates, totaling 359 labeled monomers. Discrepancies were calculated as the differ-460

ence between predicted and annotated monomer counts. For example, if the hand label (HL) assigned two monomers while the

prediction assigned one, the discrepancy was recorded as ↑1; if the prediction assigned three, the discrepancy was +1. Across

all test images, the total discrepancy summed to 14, indicating a slight net overestimation of 14 monomers. To investigate

the model’s behavior across different aggregation levels, we grouped ice crystals by their hand-labelled monomer count (1 to

4) and computed the mean and standard deviation of the predicted counts within each group. Ideally, a perfect model would465

yield a mean equal to the true monomer count and a standard deviation of zero. The largest relative deviation occurred in the

2-monomer category, where the model overestimated the monomer count by 21.9% (TableA1). Predictions for 3-monomer ag-

gregates showed a slight underestimation. For the most frequent class 1-monomer ice, ice crystals—IceDetectNet-CLOUDLAB

performed reliably, with a mean prediction of 1.10 and a low standard deviation of 0.35 (TableF1). These results indicate that

the model is robust for monomer number counting but tends to slightly overestimate complexity in multi-monomer aggregates.470

Appendix B: Correlation Between Aggregation Rate and EDR

We evaluated whether turbulence intensity, represented by EDR, influenced the aggregation rate across the 21 seeding ex-

periments. No significant correlation was found in either the warmer (r = 0.29, p = 0.321) or colder (r =↑0.14, p = 0.767)

temperature regimes. Mean aggregation rates remained largely invariant across EDR bins, with substantial within-bin vari-475

ability. HOLIMO imaged cloud particles within a three-dimensional volume of 11.76 cm3 at 20 Hz during seeding conditions

Fuchs et al. (2025); Ramelli et al. (2020, 2024), yielding an effective spatial resolution of approximately 1 m along the flight

path. One likely explanation for the absence of a detectable signal is the sampling resolution: our measurements average over

spatial scales far exceeding those at which turbulence is theoretically expected to influence collisional growth (Kolmogorov

and inertial subrange scales of →0.1 mm–10 m) (Pumir and Wilkinson, 2016; Bodenschatz et al., 2010).480
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Figure B1. Correlations between aggregation rate and EDR grouped by temperature. Same as Fig. 2c, but with EDR as the x-axis.

Figure B2. Distribution of EDR grouped by temperature group. Top: Probability density functions of EDR for all seeding experiments,

grouped by temperature: colder (T ↑→7→C, blue) and warmer (T >→7→C, red). Bottom: Mean EDR values for individual experiments,

shown as red circles (warmer) and blue squares (colder).

Nevertheless, spatial-scale limitations alone may not fully explain this discrepancy. Chellini and Kneifel (2024) reported

enhanced aggregation and riming using Ka-band radar retrievals at comparable →10–30 m scales, suggesting that resolution

alone is unlikely to explain the absence of a turbulence signal in our data. Other factors may have contributed: (1) the seeded

clouds were generally warmer, lower in altitude, and characterized by relatively strong turbulence. It is possible that EDR

values were already sufficiently large for turbulence-driven aggregation effects to saturate, such that additional variability485

in EDR had little incremental impact; (2) the ice crystal size distribution in seeding experiments was relatively narrow and

often dominated by specific ice habits, unlike the broader and more complex size distributions typical of natural mixed-phase

clouds. This simpler distribution composition may reduce the sensitivity of aggregation processes to turbulence; and (3) the

dominant influence of ICNC and temperature on aggregation rates could obscure any secondary turbulence effects, particularly

in short-lived seeded clouds.490
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Appendix C: Machine Learning Aggregation prediction Models

We used a total of 10 supervised regression algorithms. Below we summarize the basic principles of each model:

– Linear Regression (Géron, 2022) fits a linear function by minimizing the squared difference between predicted and

observed values. It assumes independent, additive relationships among input features and cannot capture nonlinear in-

teractions.495

– Ridge Regression (Géron, 2022) extends linear regression by adding L2 regularization, which penalizes large coeffi-

cients and reduces overfitting, particularly in the presence of small sample sizes.

– Bayesian Ridge Regression (Géron, 2022) introduces a probabilistic prior over the regression coefficients and estimates

them using Bayesian inference. This yields both regularized predictions and uncertainty estimates, while still assuming

linearity.500

– K-Nearest Neighbors (Géron, 2022) is a nonparametric method that predicts output values by averaging the labels of

the k training samples closest to the test point. Similarity is typically measured by Euclidean distance in the standardized

feature space. Although simple and interpretable, the method becomes less effective in high-dimensional spaces.

– Decision Tree Regression (Géron, 2022) recursively partitions the input space by choosing feature-value thresholds that

minimize the prediction error (typically mean squared error) at each split. The resulting model is a set of hierarchical505

“if–then” rules—for example, “if ICNCt0 > 800 L↓1 and temperature < ↑6→C, then...”. At each node, the best split is

selected without looking ahead. While decision trees can capture nonlinear relationships and feature interactions, they

tend to overfit if not regularized.

– Adaptive Boosting (Géron, 2022) constructs an ensemble of weak learners—models that perform only slightly better

than random guessing—by sequentially reweighting the training samples. After each iteration, higher weights are as-510

signed to mispredicted samples, forcing the next learner to focus more on difficult cases. The final output is a weighted

sum of all learners. While this can substantially reduce bias, AdaBoost can be sensitive to noise and outliers.

– Gradient Boosting (Géron, 2022) also builds an ensemble of decision trees, but instead of adjusting sample weights, it

fits each new tree to the residuals (i.e., errors) of the combined ensemble so far. This stage-wise additive approach allows

the model to incrementally improve predictions and capture complex nonlinear dependencies.515

– Light Gradient Boosting Machine (Ke et al., 2017) is an optimized gradient boosting implementation. It uses histogram-

based feature binning, where continuous input features are discretized into fixed-width bins to accelerate training and

reduce memory usage. Unlike traditional level-wise tree growth, LightGBM grows trees leaf-wise by expanding the leaf

with the highest loss, leading to deeper, more specialized trees. These optimizations make LightGBM highly efficient on

large datasets.520
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– Extreme Gradient Boosting (Géron, 2022) enhances standard gradient boosting with L1 and L2 regularization to penal-

ize model complexity and prevent overfitting. It also supports parallelized training and handles missing values natively

during tree construction. These improvements make it robust and scalable for structured data tasks.

– Extremely Randomized Trees (Géron, 2022) is an ensemble of decision trees where both the features and split thresh-

olds are selected randomly at each node, rather than chosen based on an optimal impurity measure. This high degree of525

randomness reduces variance and helps avoid overfitting, especially when the data contain noise.
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Appendix D: Correlation Between Aggregation Rate and ICNC

Figure D1. ICNCt0–aggregation rate relationships across all experiments. Same as Fig. 3, but shown individually for all 21 experiments.

Red and blue markers represent warmer (T >→7→C) and colder (T ↑→7→C) cases, respectively.
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Appendix E: Examples of ice crystals

Figure E1. A randomly selected sample of ice crystal images observed by HOLIMO during (a) SM054 and (b) SM069
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Appendix F: Experiments overview

Table F1. Summary of all seeding experiments. For each experiment (Exp.) (where ’SM’ denotes seeding mission, consistent with (Fuchs

et al., 2025; Miller et al., 2025)), the table lists the number of 1-s data points(#Data), residence time between seeding and sampling (Time,

in s), wind speed at seeding level (Wind, in m s↑1), temperature (Temp, in (°C)), mean ice crystal number concentration (ICNC, in cm↑3),

background liquid water content (LWC, in mg m↑3), cloud droplet number concentration (CDNC, in cm↑3), and mean eddy dissipation rate

(EDR, in 10↑3 m2 s↑3). ICNC, LWC, CDNC, and EDR reported values are means ± standard deviations.

Exp. #Data Time (s) Wind (m s↑1) Temp (°C) ICNC (L↑1) LWC (mg m↑3) CDNC (cm↑3) EDR (10↑3 m2 s↑3)

SM048 61 650 4.0 -5.6 563 ± 1388 45 ± 34 106 ± 83 1.2 ± 0.9

SM051 138 358 7.2 -4.8 110 ± 127 107 ± 25 178 ± 43 4.5 ± 5.5

SM052 174 430 6.0 -5.6 308 ± 458 228 ± 34 369 ± 76 2.4 ± 2.3

SM053 146 429 6.0 -5.1 370 ± 458 226 ± 37 319 ± 77 5.6 ± 5.4

SM054 64 464 4.5 -5.0 370 ± 852 267 ± 27 295 ± 40 2.4 ± 1.9

SM055 178 398 5.2 -5.1 247 ± 501 235 ± 28 275 ± 32 4.8 ± 5.0

SM056 261 560 5.5 -5.2 75 ± 101 215 ± 24 267 ± 47 1.2 ± 1.2

SM058 191 489 5.3 -5.5 191 ± 206 229 ± 14 423 ± 35 1.0 ± 1.1

SM059 175 403 5.1 -5.4 325 ± 443 249 ± 18 471 ± 48 3.0 ± 4.6

SM060 101 519 5.9 -5.4 85 ± 124 261 ± 17 453 ± 74 2.2 ± 1.5

SM061 350 619 4.1 -5.6 54 ± 61 450 ± 37 437 ± 42 2.9 ± 5.3

SM062 320 629 4.1 -6.1 245 ± 203 383 ± 54 380 ± 60 2.8 ± 5.3

SM063 184 541 3.8 -6.4 180 ± 209 394 ± 43 407 ± 79 1.5 ± 2.2

SM064 165 550 3.7 -6.2 233 ± 251 348 ± 28 357 ± 63 3.1 ± 3.3

SM068 99 339 7.6 -7.8 851 ± 1387 239 ± 18 345 ± 38 2.0 ± 2.7

SM069 177 474 6.5 -7.6 98 ± 128 300 ± 15 345 ± 36 5.8 ± 9.1

SM071 80 532 4.8 -7.6 267 ± 397 277 ± 22 310 ± 44 1.5 ± 1.7

SM072 94 331 7.7 -7.5 599 ± 857 275 ± 38 352 ± 69 9.1 ± 13.2

SM073 189 313 8.2 -7.6 663 ± 1387 115 ± 27 121 ± 33 2.9 ± 2.5

SM074 113 371 8.2 -7.2 573 ± 726 148 ± 21 172 ± 28 4.1 ± 3.7

SM075 45 294 7.0 -7.2 1064 ± 1938 210 ± 28 191 ± 31 1.1 ± 1.4

Author contributions. H.Z. performed the scientific analysis, prepared the figures, and wrote the manuscript. H.Z. (SM048–SM062, except530

SM055 and SM056), C.F. (SM063–SM073), and F.R. (SM055, SM056, SM074, SM075) analyzed the data from the holographic imager.

H.Z., C.F., F.R., A.J.M., N.O., R.S., and J.H. performed the seeding experiments and in situ measurements. H.Z. and Y.C. manually labeled

the ice crystals used for training IceDetectNet-CLOUDLAB. H.Z. and X.L. developed the original IceDetectNet model and designed the
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training strategy for IceDetectNet-CLOUDLAB. H.Z. trained 11 machine learning models, with some hyperparameter suggestions from

X.L. H.Z., J.H., and U.L. designed the physical model, and H.Z. performed the training. Z.W. calculated the eddy dissipation rate. U.L., J.H.,535

and F.R. supervised the analysis and provided scientific guidance. U.L., J.H., and F.R. conceived CLOUDLAB and secured project funding.

All authors contributed to revising the manuscript and approved the final version.
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