

Predicting the amplitude and runup of the water waves induced by rotational cliff collapse, considering fragmentation

Hasnain Gardezi^{a*}, Talha Khan^c, Xingyue Li^{a,b*}, Taimur Mazhar Sheikh^a, Yu Huang^{a,b}, Zhiyi Chen^a

^a Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China

^b State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

^c School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

*Corresponding authors: hasnain_haider@tongji.edu.cn (Hasnain Gardezi), [\(X.Y.Li\).](mailto:xingyueli@tongji.edu.cn)

Abstract:

Cliff collapses in small lakes, and reservoirs induce powerful waves, threatening the offshore infrastructure. Unlike previous studies on waves induced by granular slide, this study experimentally and numerically investigates the waves induced by rotational cliff collapse, whereby the cliff fragments upon impact with the water surface, and determines the wave amplitude, runup, and energy transfer mechanics. Results indicate that as the water depth decreased, the impact Froude number and relative wave amplitude increased, wave velocity decreased, and splash showed greater elongation. The numerical modelling results also confirmed the experimental trends. Moreover, compared to an equivalent amount of granular mass sliding down a 30° slope, rotational cliff collapse produced 28-42% higher wave amplitudes due to the acute impact that transfers energy more efficiently. Machine learning based prediction models were subsequently developed to predict the wave amplitude and runup. The prediction models performed well both in the training and testing stages, with high R^2 values, and were validated via established statistical indices, sensitivity, and parametric analysis. The prediction models highlighted a cumulative 90% contribution of impact velocity, cliff height, and the number of fragments on the wave amplitude. In comparison, runup was greatly influenced by bank slope angle, impact velocity, cliff mass, and height. The experimental results and developed prediction models can provide the basis for understanding the rotational cliff collapse-induced waves and can help with disaster

31 mitigation and risk assessment by effectively predicting the wave amplitude and runup.

32 Keywords: Cliff fragmentation; landslide tsunami; prediction models; rotational cliff
33 collapse; wave amplitude, and runup.

34 **1. Introduction**

35 The phenomenon of cliff overturning is common along rivers and reservoirs (glacial
36 lakes, recreational lakes). The cliffs around these lakes are weathered due to climate
37 change and wave action (Ró and Cerkowniak, 2024; Young et al., 2021) and can no
38 longer be supported by the parent rock. When these initially intact, weathered cliffs fall
39 into water, they usually fragment upon impact with the water surface, and as a result,
40 induce an impulse water wave. Upon impact, the energy of gravitational mass is
41 transferred to the water body, resulting in a huge splash and a wave train, propagating
42 away from the point of impact. In the reservoirs and water channels located in
43 mountainous regions, such as glacial lakes, dams, and a river flowing through valleys,
44 these waves do not travel a long distance before reaching obstacles, opposite shores, or
45 other infrastructure. As the waves retain most of their energy, size, and strength, the
46 impact can cause significant damage to the population and infrastructure located along
47 the banks of the reservoir. Historically, extreme impulse wave heights have been
48 observed induced by landslides in events of 1958 Lituya Bay, USA, which caused a
49 wave height of 524 m (Boultbee et al., 2006; Franco et al., 2020; Miller, 1960a), 2007
50 Chehalis Lake, Canada, induced a wave of 38 m (Wang et al., 2015), 2015 Taan Fjord,
51 USA, caused a wave of 193 m (Higman et al., 2018), and 2014 Lake Askaja (Gylfadóttir
52 et al., 2017). **More recently, a volcanic activity in 2018 at Anak Krakatoa, Indonesia,**
53 **triggered a tsunami reaching up to a height of 13 m, and in 2023, the Dickson Fjord ice-**
54 **rock avalanche caused a wave height of 200 m (Svennevig et al., 2024).**

55 The cases mentioned above are extreme, whereas the phenomena of sliding,
56 toppling, and falling of cliffs in small lakes and reservoirs are quite frequent and have
57 been captured by various people around the globe. Fig. 1 (a, b, and c) indicates a
58 rotational (topple) cliff collapse in Furnas Lake, Brazil, on 8 January 2022, killing 10
59 people (Maciel et al., 2023; Sun et al., 2024). As a result of the collapse, a huge splash
60 and induced waves can be seen in Fig. 1 (c). **Despite recurring events of cliff collapse**

61 along the water banks, the rotational failure of cliffs accompanied by fragmentation
62 upon impact with the water surface remains poorly understood. Recent studies on water
63 waves have focused on block slides, translational slides, or granular flows, where the
64 mass moves along a predefined basal plane. Moreover, physical modeling has also been
65 carried out to analyse the amplitude and runup of the landslides-induced water waves
66 either by using block slide or granular slide (Heller and Spinneken, 2015, 2013;
67 Lindstrøm, 2016; Lindstrøm et al., 2014; McFall and Fritz, 2016; Miller, 1960;
68 Mohammed and Fritz, 2012; Montagna et al., 2011; Romano et al., 2023, 2020; Sælevik
69 et al., 2009; Yin et al., 2015). However, the rotational collapse is different from the type
70 of failure mentioned above. In rotational collapse, the cliff rotates along the base and
71 falls into water, thus inducing a huge splash and fragmenting upon impact.

72 While a few relevant studies provide partial understandings on the phenomena,
73 such as as Liu et al. (2025) numerically analyzed the waves induced by different types
74 of mass movements, considering different shapes using smoothed particles, similarly,
75 Heller et al. (2021) experimentally analyzed the waves induced by iceburg calving and
76 Yin et al. (2015) studied the potential cliff collapse of Jianchuandong rock mass in
77 Three Gorges dam. While these studies contribute to the broader understanding of the
78 impact induced by water waves, they do not consider the combined effect of rotational
79 collapse and fragmentation. Moreover, the shape of the induced splash, as observed in
80 Lake Furnas, has also not been properly explored either experimentally or numerically,
81 as can be seen in Fig. 1 (a, b, and c), the falling cliff was still intact and broke under its
82 own weight upon impact with the water surface and induced a huge splash.

83 Parallel advancements in numerical modeling have enhanced our understanding of
84 landslide induced water waves thorugh, computational fluid dynamics (CFD), Eulerian
85 and Lagrangian methods, employing depth-averaged model, nonlinear shallow water,
86 Navier-Stokes model, or Boussinesq equation, for both two- and three-dimensional
87 modelling (Franci et al., 2020; Grilli et al., 2019; Guan and Shi, 2023; Heidarzadeh et
88 al., 2020; Kim et al., 2020; Mulligan et al., 2020; Paris et al., 2021; Rauter et al., 2022;
89 Ruffini et al., 2019). Though these methods have successfully analysed the wave
90 generation, propagation, and wave dynamics either induced by granular slide or block

91 slide, their direct application to rotational cliff collapse remains limited.

92 Furthermore, empirical and regression-based hybrid prediction models have been
93 developed for landslide-induced water waves by considering geometric, geological, and
94 kinematic parameters, as shown in Table 1. Das and Wiegel (1972) proposed that the
95 sliding velocity and water depth are the main factors affecting the wave amplitude.
96 Watts (1998) emphasised the role of slope angle, length, and mass, while Fritz et al.
97 (2003) highlighted the role of landslide mass thickness governing the amplitude of the
98 induced wave. While these models provide important parameteric correlations, they
99 were developed for translational or granular slides and show limited application for
100 complex rotational cliff collapses involving fragmentation (Dai et al., 2023; Dignan et
101 al., 2023; Esposti Ongaro et al., 2021).

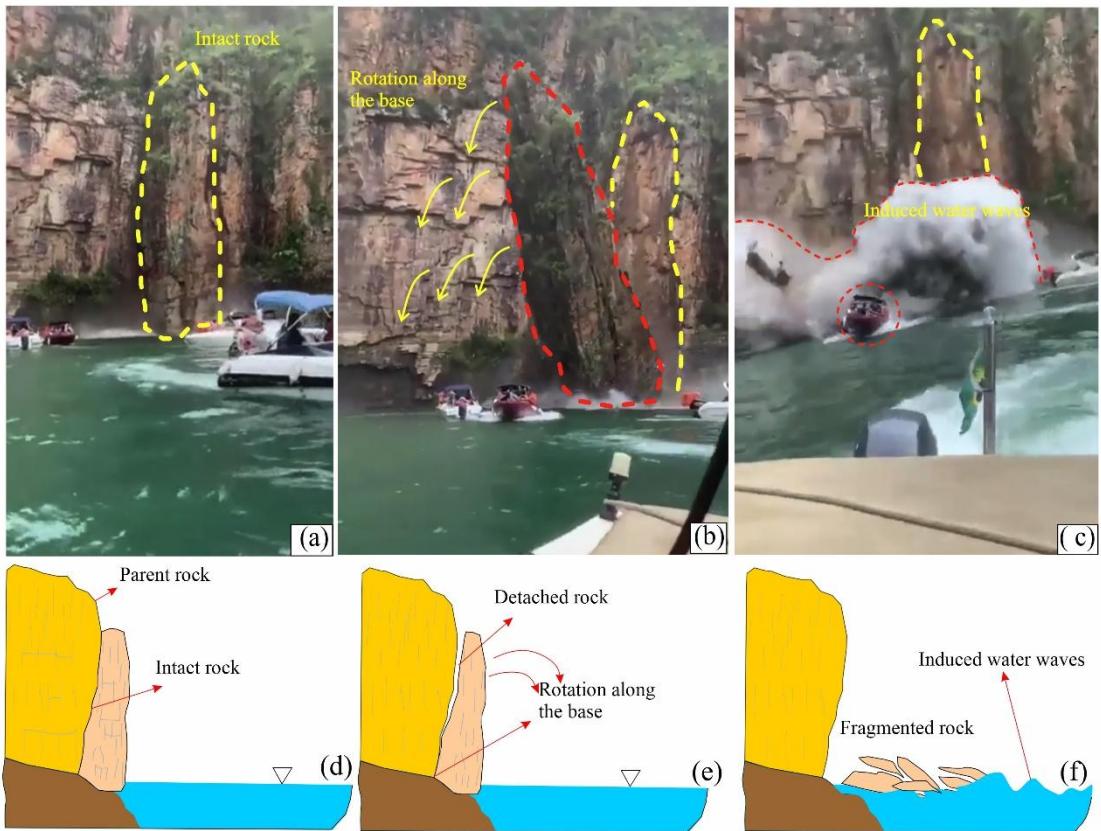
102 Recently, scientists have shifted to machine learning (ML) approaches for
103 predicting wave dynamics (Bujak et al., 2023; Cesario et al., 2024; Li et al., 2024, 2023;
104 Romano et al., 2009; Tarwidi et al., 2023; Tian et al., 2025; Wang et al., 2017; Wiguna,
105 2022). While these prediction models have shown improved performance over
106 traditional regression and hybrid models, there is a need to develop an ML-based
107 framework for predicting amplitude and runup of the waves induced by rotational cliff
108 collapse, considering fragmentation.

109 To address this gap, the current study uses Genetic Programming (GP), and
110 specifically Multi-Expression Programming (MEP), to develop a data-driven prediction
111 model for the wave amplitude and runup. This model is similar to living organisms,
112 which can learn, adapt, and modify their composition, size, and shape (Gardezi et al.,
113 2024). MEP is a cutting-edge, advanced form of GP that adopts a demonstrative model
114 for programming and uses linear chromosomes to determine optimum population size,
115 mutation probability, and evolutionary model. Compared to other ML models, it can
116 produce more precise results even when the problem complexity is unknown (Usama
117 et al., 2023)

118 In this study, we have experimentally and numerically analyzed the hydrodynamics
119 of the wave induced by rotational cliff collapse, considering fragmentation of the cliff
120 upon impact, and have also developed a prediction model for wave amplitude and runup.

121 The physical modeling was carried out by developing a scaled water flume and a
122 platform inducing rotational motion of the cliff. A total of 162 experiments were carried
123 out, varying seven control parameters: water depth, fall height, cliff mass, impact
124 velocity, cliff height, runup slope angle, and number of fragments. To improve accuracy
125 and consistency, each parametric combination was averaged from two experimental
126 values; hence, a total of 81 experimental results were obtained. The parameters were
127 selected to comprehensively elaborate on the distinct phases of rotational cliff collapse
128 and induced waves. Water depth and runup slope angle provide the basis for wave
129 propagation and runup. Whereas, the cliff collapse dynamics are explained by cliff mass
130 (which governs the energy input), height of the cliff (defines the initial potential energy),
131 and fall height (determines the transformation of potential to kinetic energy). Cliff
132 impact velocity determines the amount of kinetic energy imparted to the water body at
133 the time of impact, which is important for wave generation. Finally, the number of
134 fragments is selected to demonstrate the effect of fragments of cliff upon impact with
135 the water surface on wave amplitude and runup height. Together, these parameters
136 define the energy budget from the state of rest to its release and then transfer to the
137 water body to its final stage as amplitude and runup. Since the wave velocity was not
138 directly measured during the experiments, it was measured using a 2D numerical model
139 developed using Ansys-Fluent. Furthermore, the numerical modeling results for wave
140 amplitude and runup were cross-validated with their experimental counterparts.

141 Finally, based on experimental results, prediction modeling for the amplitude and
142 runup of water waves was carried out using multi-expression programming (MEP), and
143 a novel prediction model was developed for the water waves induced by rotational cliff
144 collapse, considering fragmentation of the cliff upon impact with the water surface.



145

146 Fig. 1: (a, b, and c) waves induced by a cliff collapse in Lake Furnas, Brazil. (d, e, and
147
148

149

150

151

152

153

154

155

156

157

158

159

160

161

Table 1: Historical overview of the prediction models for wave amplitude

Authors	Predictive model
(Kamphuis and Bowering, 1970)	$A_m = \left(\frac{v_s}{\sqrt{gh}} \right)^{0.7} \left(0.31 + 0.2 \log \left(\frac{l_s}{h^2} \right) \right) + 0.35 e^{-0.08(x/h)}$
(Noda, 1970)	$A_m = 1.32 \frac{v_s}{\sqrt{gh}}$
(Huber and Hager, 1997)	$\frac{H_m}{h} = 2 \times 0.88 \sin \theta \cos^2 \left(\frac{2\alpha}{3} \right) \left(\frac{\rho_s}{\rho_w} \right)^{0.25} \left(\frac{V}{wh^2} \right)^{0.5} \left(\frac{r}{h} \right)^{-\frac{2}{3}}$
(Fritz et al., 2004)	$A_m = 0.25 \left(\frac{v_s}{\sqrt{gh}} \right)^{1.4} \left(\frac{s}{h} \right)^{0.8}$
(Panizzo et al., 2005)	$\frac{H_m}{h} = 0.07 \left(\frac{T_s h^2}{ws} \right)^{-0.45} (\sin \alpha)^{-0.88} e^{0.6 \cos \theta} \left(\frac{r}{n} \right)^{-0.44}$
(Heller, 2007)	$A_m = \frac{4}{9} \left[F \left(\frac{s}{h} \right)^{1/2} \rho^{1/4} \left(\cos \frac{6\alpha}{7} \right)^2 \right]^{4/5}$ $A_m = \max(A_{c1}, A_{c2})$
(Mohammed and Fritz, 2012)	$A_{c1} = 0.3 F^{2.1} \left(\frac{s}{h} \right)^{0.6} \left(\frac{r}{h} \right)^{\left(-1.2 F^{0.25} \left(\frac{s}{h} \right)^{-0.02} w - 0.33/h \right)} \cos \alpha$ $A_{c2} = 1.0 F S^{0.8} \left(\frac{w}{h} \right)^{-0.4} \left(\frac{l}{h} \right)^{-0.5} \left(\frac{v}{h} \right)^{-1.5 F^{0.5} \left(\frac{w}{h} \right)^{-0.07} \left(\frac{w}{h} \right)^{-0.3}} \cos^2 \alpha$
(Wang et al., 2016)	$A_m = 1.17 F \left(\frac{sl}{bh} \right)^{0.25} \left(\frac{w}{b} \right)^{0.45} (\sin^2 \alpha + 0.6 \cos^2 \alpha)$
(Li et al., 2023)	$A_m = 0.59 \sqrt{\frac{2H(1-f \cot \alpha)}{h}} \left(\frac{swl}{h^3} \right)^{N-0.11} \left(\frac{x}{h} \right)^{-0.43} \cos^2 \left(\frac{2}{3} \alpha \right)$

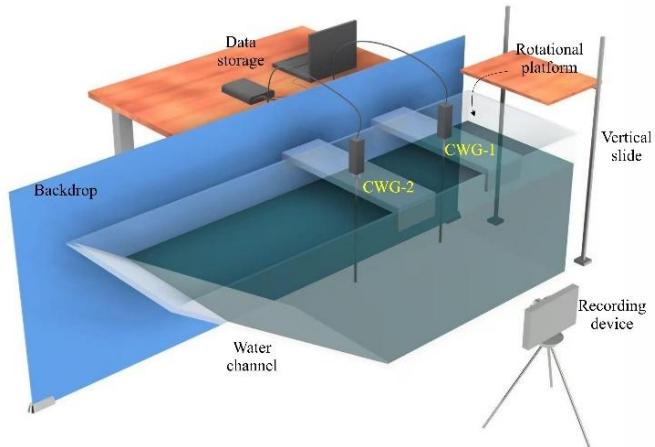
Note: l is the landslide length; s is the landslide thickness; w is the landslide width; m is the landslide mass weight; V is the landslide volume; H is the landslide height; T_s time for motion of slide, b is the river width; h is the still water depth; $x(r)$ is the offshore distance from the bank slope; α is the slope angle; θ is the angular direction; v_s is the impact velocity.

2. Research methodology

2.1 Experimental setup

The physical modeling for wave amplitude and runup induced by rotational cliff collapse was carried out in a three-dimensional water flume made up of plexiglass, as shown in Figs. 2 and 3. One end of the flume is vertical at 90° , whereas the other end is inclined and fixed at 30° (Fig. 3a and b). The flume is 0.55 m high, 0.5 m wide, and 1.4 m long along the base and 2.35 m long at the top. Furthermore, to measure the runup of induced water waves at various slope angles, two sliding rails were installed towards the inclined end at 45° and 60° . So, upon insertion of the gate at 45° and 60° , the top length of the flume was further reduced according to the Pythagoras theorem. To induce the rotational cliff collapse, a 0.55 m wide and 0.6 m high movable platform was

174 designed, which can move in the vertical direction and can also rotate about its axis.
 175 The rotational motion was induced by pulling the hinge; the release ensured a pure
 176 rotational motion, which was visually verified by video analysis. The flume was marked
 177 with a vertical scale to measure the water depth. The wave amplitude was measured
 178 using capacitance-type wave gauges with an accuracy of ± 0.5 mm, placed along the
 179 centerline at specified intervals. The runup height was measured using a graduated
 180 paper attached to the inclined surface. The entire process was recorded using a digital
 181 camera (240 fps, 720p resolution) placed perpendicular to the experimental flume; the
 182 velocity of the falling cliff was verified by frame-by-frame video analysis using Particle
 183 Image Velocimeter (PIV).



184
 185 Fig. 2: Illustration of experimental setup including wave gauges, rotational platform,
 186 recording, and data storage devices.

187
 188 Fig. 3: Photographs of the setup, (a) Experimental flume, (b) platform for inducing
 189 rotational cliff collapse.

190 **2.2 Test preparation and materials**

191 Physical experiments were carried out by varying the water depth, fall height,

192 number of fragments, bank slope angle, mass of falling rock, cliff height, and impact
193 velocity. The tests were carried out for three water depths, i.e., 0.34 m, 0.27 m, and 0.20
194 m, and three fall heights, i.e., 0.64 m, 0.44 m, and 0.245 m from the surface of the water.
195 Furthermore, the number of blocks was also varied, i.e., 6, 10, and 12 blocks having
196 combined weights of 1.445 kg, 2.29 kg, and 2.82 kg, respectively. At the same time, the
197 impact velocity changed by changing the fall height. The wave runup was measured by
198 varying the bank slope angle, i.e., 30°, 45°, and 60°.

199 To replicate the field density of the rocks, red gutka bricks having a density of
200 around 2000 kg/m³ were used. A singular block had a dimension of 0.055 x 0.05 x
201 0.042 m. The mass volume and dimension of all the blocks were unchanged to ensure
202 consistency in the experiments. A combination of 6, 10, and 12 blocks of red gutka
203 bricks was used to form a cliff and measure the wave amplitude and runup of induced
204 waves. The blocks were joined together with the help of cement paste having a water-
205 cement ratio W/C 0.8 and cured for 2 hours in front of an electric heater at 150 °C. To
206 ensure the weak bond strength, several trials for bond strength were carried out after a
207 curing period of 2 hours, and it was found to be in the range of 0.42-0.5 MPa. In contrast,
208 the inertial stresses at the time of impact were several times higher, such that they
209 caused the fragmentation of the cliff. This condition was purposely designed to imitate
210 naturally fractured cliff materials, confirming that the structure fragmented primarily
211 along the joints upon impact with the water surface, consistent with field observations
212 of rotational cliff collapses. The bonded blocks were placed on the rotational platform
213 at specific heights, i.e., 0.64 m, 0.44 m, and 0.245 m from the water level, and were
214 allowed to rotate under their own weight by pulling the hinge, such that the placed block
215 falls in the water following rotation motion along its base Fig. 3 (b). To avoid the
216 slippage of blocks and to ensure that it had sufficient frictional resistance needed for
217 pure rotational motion of the simulated cliff, finely-grounded bricks of the same cliff
218 material were pasted on the rotational platform, thereby preventing translational motion
219 or vertical free fall into the water.

220

Furthermore, to reduce the impact of falling blocks on the base of the flume, a wooden plank weighing 2.69 kg and dimensions 0.65m x 0.37m x 0.01 m was placed at the point of impact inside the flume. Due to its large surface area and lighter density, it tends to float in the flume, so two blocks of concrete weighing 3.58 kg were placed on it, Fig. 3 (a). **Since the fall height was small, no considerable local breakage was observed in the blocks, and the brief water contact minimised the water absorption effect.**

The induced wave amplitude was measured by placing the wave measuring gauges at a distance of 0.65 m and 0.135 m from the vertical face; the gauges were wired and connected to the laptop. At the same time, the runup was measured manually with the help of a scale by pasting a scaled paper on the slope. Furthermore, the experiments were also recorded with the help of a high-resolution camera for verification purposes.

2.3 Numerical Modeling

Simulating multi-phase flows is challenging due to the constant deformation of the liquid-gas interface. Various numerical methods have been developed to model these flows, each offering unique advantages depending on the specific flow regime and characteristics of interest. In this study, the Volume of Fluid (VOF) method is utilized for its effectiveness in handling significant interface distortions and topological changes. The VOF method offers superior mass conservation, which is critical in high velocity impact conditions where liquid fragmentation and wave generation are significant (Backbill et al., 1992; Hirt and Nichols, 1981). **Alternative numerical schemes, such as the Front Tracking approach, are generally limited in handling complex topological changes (Tryggvason et al., 2001; Liu and Liu, 2010; Monaghan, 1994; Yang and Kong, 2018). Another approach is the Level Set method, but it suffers from mass conservation and convergence issues. The Lattice Boltzmann Method (LBM) is also common; however, its applicability to high velocity impact is rather limited (Aidun & Clausen, 2010).** Given these trade-offs, the Volume of Fluid (VOF) method finds an optimal balance of computational efficiency, interface tracking capability, and proven reliability for modeling multiphase flow in the moderate-to-high velocity range relevant to this

study. Therefore, a two-dimensional numerical model of a cliff, having the same properties as the experimental cliff mentioned previously, hitting the water surface is developed using the VOF method to accurately capture the liquid-gas interface.

In this approach, a volume fraction (α), ranging between 0 and 1, is applied across the entire computational domain. A value of $\alpha = 1$ indicates a control volume filled with liquid, while $\alpha = 0$ denotes a control volume filled with gas. The interface is represented by values where $0 < \alpha < 1$. In the Volume of Fluid (VOF) method, the momentum equation is solved across the entire computational domain, with the resulting velocity field shared by all phases. To account for surface tension effects, a continuum surface force (CSF) model is employed (Backbill et al., 1992). The normal vector n and interface mean curvature k are as follows, respectively:

$$n = \frac{\nabla \alpha}{|\nabla \alpha|} \quad (1)$$

and

$$k = \nabla \cdot \frac{\nabla \alpha}{|\nabla \alpha|} \quad (2)$$

The interface is maintained as sharp through the use of geometric reconstruction to ensure its clarity. The volume fraction (α) is discretised with the geo-reconstruct scheme, while the convective terms in the momentum equation are handled using a second-order upwind method. The PISO (Pressure-Implicit with Splitting of Operators) algorithm was employed for pressure-velocity coupling, which is well-suited for transient flows. Temporal discretisation employs a second-order implicit scheme, and spatial gradients are calculated using the Least Squares Cell-Based method.

The boundary conditions were defined as follows: the bottom boundary was modeled as a no-slip wall, while the top boundary was set as a pressure outlet at atmospheric conditions, and the lateral sides were modeled as stationary walls to confine the liquid film within the domain. For accurate simulation of the rotational motion of the cliff through the air-water interface in a multi-phase flow environment, dynamic meshing was implemented within the ANSYS Fluent framework. This approach facilitated the adaptation of the computational mesh to accommodate the cliff's movement while maintaining the integrity of the liquid-gas interface captured by

279 the Volume of Fluid (VOF) method. Dynamic meshing was critical for modeling the
280 complex interactions between the falling cliff and the surrounding air and water phases,
281 allowing the mesh to deform and adapt in response to the cliff's trajectory. In ANSYS
282 Fluent, the dynamic meshing strategy employed a combination of mesh deformation
283 and local remeshing techniques to handle the cliff's motion. Mesh deformation was
284 applied to adjust the existing mesh nodes smoothly as the cliff moved, preserving mesh
285 quality in regions experiencing moderate displacement. For areas near the cliff where
286 significant deformation could lead to poor mesh quality, local remeshing was utilized
287 to regenerate mesh elements for better numerical stability and accuracy. The smoothing
288 and remeshing algorithms were configured to maintain high mesh quality, with a
289 skewness threshold set to prevent excessive element distortion.

290 The rotational cliff collapse was simulated using an in-house user-defined function
291 (UDF). This UDF interfaced with ANSYS Fluent to dynamically update the rock's
292 position and velocity. To enhance computational efficiency, a dynamic mesh zone was
293 defined around the cliff, with a finer mesh resolution near its surface to capture the
294 sharp gradients in the flow field and interface dynamics. The mesh was gradually
295 coarsened away from the rock to reduce computational cost while maintaining
296 sufficient resolution in the far-field regions. The dynamic meshing process was
297 synchronised with the transient flow solver, using a time step size determined through
298 a time step independence study to balance accuracy and computational efficiency. **It is**
299 **also worth mentioning that the numerical simulations were performed considering the**
300 **rock as a unified mass. This approach describes the slight differences between the**
301 **experimental and numerical results, which are nonetheless within the acceptable range.**

302 **2.4 Multi-expression programming**

303 The MEP model was developed for predicting wave amplitude and runup using
304 experimental data, as shown in Table 2. **A dataset of 81 experimental results was used**
305 **as an input to a machine learning model.** Furthermore, the data was divided into 70/30
306 ratios for training and validation purposes before developing the model. The model
307 starts working by generating a random chromosome population, and it continues to
308 generate the chromosomes until a terminal condition is achieved, generating an optimal

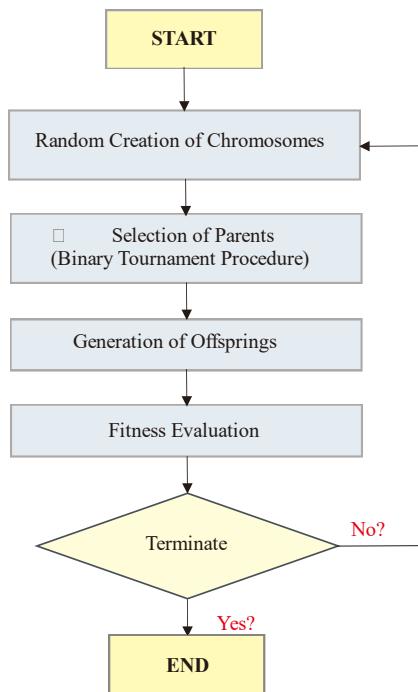
309 expression from the data having input and output pairs over a certain number of
 310 generations, as shown in Fig. 4.

311 Based on a binary tournament process, parents are selected and then undergo a
 312 recombination process through a consistent crossover probability. This recombination
 313 produces two more offspring. These offspring go through mutation, and if these
 314 offspring perform better than the least fitting offspring in the current population, then
 315 the better offspring replace them. The illustrations used by MEP are similar to the ones
 316 used by C++ and Pascal compilers. The MEP chromosomes are comprised of numerous
 317 genes combined using various mathematical operators such as addition (+), subtraction
 318 (-), multiplication (x), and division (/), and these genes create expression trees (ETs)
 319 (Cheng et al., 2020). Moreover, there are several **hyperparameters** such as code length,
 320 sub-population size and number, crossover probability, and other sets of various
 321 functions involved in in generation of MEP code, and they also govern the overall
 322 performance of the code. Among these parameters, the size of the population tells us
 323 about the number of programs being generated, whereas an increase or decrease in
 324 subpopulation size directly affects the complexity and computation time of the model.
 325 Moreover, the length of the developed model is controlled by varying the code length
 326 parameter. **During model development, prerequisite tuning procedures were applied to**
 327 **optimize these hyperparameters. This careful selection minimized the risk of premature**
 328 **convergence or underfitting while ensuring computational efficiency.**

329 **Table 2: Experimental dataset used for training and validation of the machine learning**
 330 **model.**

S/No.	Water depth d (m)	Fall height H (m)	Fragments (N_f)	Angle α (°)	Cliff Mass m (Kg)	Cliff height h (m)	Velocity v (m/s)	Amplitude A (m)	Runup R (m)
1	0.34	0.245	6	30	1.445	0.12	2.19	0.0225	0.051
2	0.34	0.445	6	30	1.445	0.12	2.95	0.0230	0.056
3	0.34	0.645	6	30	1.445	0.12	3.56	0.0365	0.068
4	0.34	0.245	6	45	1.445	0.12	2.19	0.0370	0.045
5	0.34	0.445	6	45	1.445	0.12	2.95	0.0425	0.051
.
.
.
37	0.27	0.245	10	30	2.295	0.20	2.19	0.0431	0.116

38	0.27	0.445	10	30	2.295	0.20	2.95	0.0510	0.129
39	0.27	0.645	10	30	2.295	0.20	3.56	0.0685	0.141
40	0.27	0.245	10	45	2.295	0.20	2.19	0.0390	0.085
41	0.27	0.445	10	45	2.295	0.20	2.95	0.0523	0.102
.
78	0.2	0.645	12	45	2.82	0.24	3.56	0.0733	0.146
79	0.2	0.245	12	60	2.82	0.24	2.19	0.0565	0.062
80	0.2	0.445	12	60	2.82	0.24	2.95	0.0636	0.083
81	0.2	0.645	12	60	2.82	0.24	3.56	0.0657	0.098



331

332

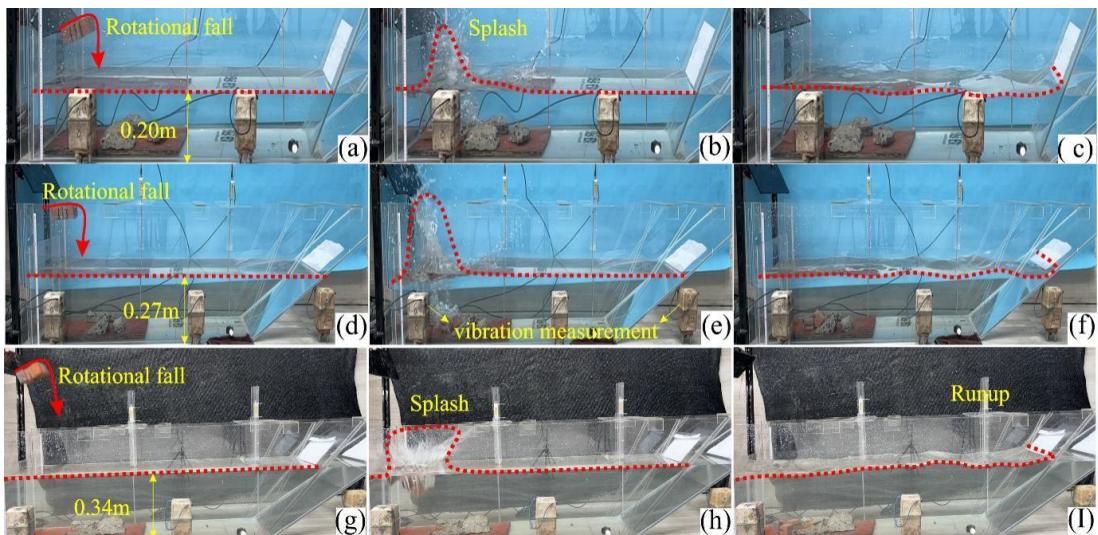
Fig. 4 Schematic representation of MEP workflow used in this study

333 **3. Results and discussions**

334 **3.1 Experimental results**

335 The experimental results of the wave amplitude and runup, induced by rotational
 336 cliff collapse, reveal complex hydrodynamic processes. As shown in Fig. 5, the failure
 337 is initiated by the rotational fall of the cliff, leading to a significant amount of impact
 338 energy upon hitting the water surface. The impact induced a huge splash, which is
 339 evident from Fig. 5 (b, e & h). It was observed that the shape of the splash also varies
 340 with water depth for all the cases; higher water depths resulted in a mushroom-shaped
 341 splash, i.e., broader on the top, as the momentum dissipates before interacting with the
 342 bottom surface, resulting in a vertical jet and the formation of a mushroom-shaped

343 **splash**, as can be seen in Fig. 5(h). The observed phenomena perfectly align with the
 344 basic concepts of fluid dynamics, which state that greater depths absorb more impact
 345 energy compared to shallow waters. Shallow waters produced a vertically elongated
 346 splash as can be seen in Fig. 5 (b & e). It can be observed that as the depth decreases,
 347 the splash becomes more elongated, as shallower depths intensify the upward
 348 momentum transfer, thus resulting in a more elongated shape (Kubota and Mochizuki,
 349 2009).

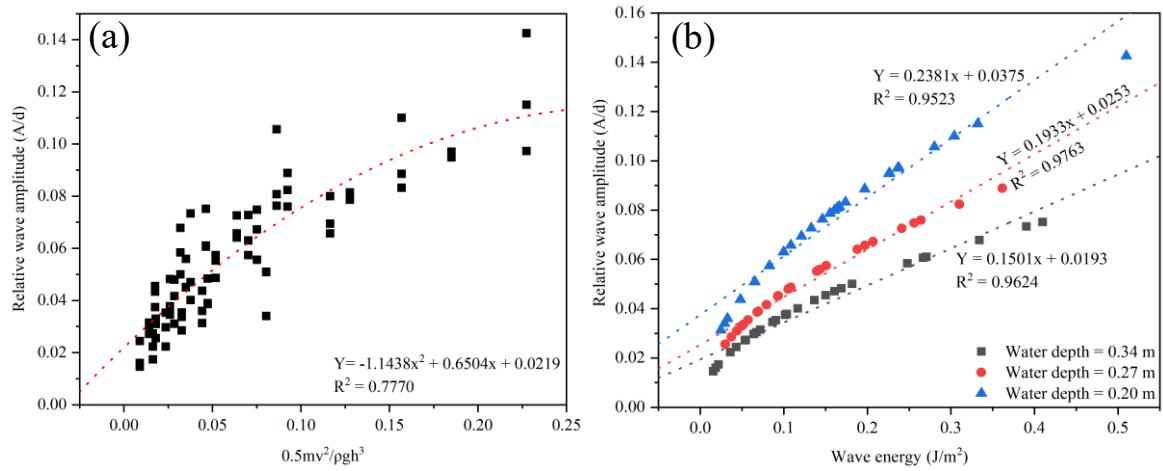


350
 351 Fig. 5: A pictorial display of the experimental setup for various water depths, i.e., 0.20
 352 m, 0.27m, and 0.34 m. (a, d & g) indicate rotational fall of the cliff, (b, e & h)
 353 showing splash as a result of cliff impact, (c, f & I) formation and propagation of
 354 induced wave and runup at various slope angles.

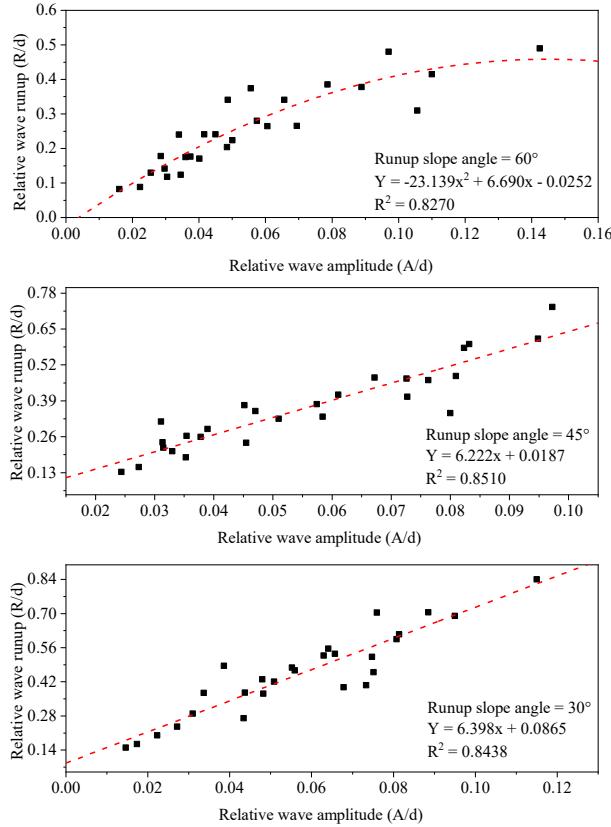
355 **3.1.1 Relation between energy and amplitude**

356 Further, the relationship between impact energy and wave response was also
 357 investigated by establishing a dimensionless impact energy parameter ($K.E/\rho gh^3$).
 358 Where $K.E$ is the kinetic energy of the cliff, ρ is the density, and h is the water depth.
 359 The negative quadratic coefficient in Fig. 6(a) indicates a nonlinear response, such that
 360 at the start, the wave amplitude increases as the impact energy increases, but later it
 361 decreases, due to reduced energy transfer at higher impact values. **At higher impact**
 362 **values, the released energy was not fully used in the wave formation and propagation;**
 363 **instead, a part of the energy was dissipated in the formation of splash, and in the**
 364 **formation of air pockets and their subsequent collapse.** Moreover, the coefficient of
 365 determination was found to be 77% indicating a good data fit.

366 The results for the relative wave amplitude and wave energy were analyzed for
 367 three water depths, i.e., 0.34 m, 0.27 m, and 0.20 m., as shown in Fig. 6(b). The results
 368 indicate a strong correlation for all three cases, with coefficients of determination
 369 around 0.96. The results indicate a direct relation between wave height and energy,
 370 whereas the decreasing slope values with the increasing water depth suggest that for
 371 deeper water the wave amplitude decreases at a slower rate with increasing wave energy,
 372 thus highlighting the impact of water depth on the wave dynamics, such that shallower
 373 water allows more amplification of waves for the same energy level, and this is due to
 374 the increased non-linear interactions and enhanced energy concentrations in shallower
 375 depths (Myrhaug and Lader, 2019).



376
 377 **Fig. 6: (a) Dimensionless impact energy ($K.E./\rho gh^3$) vs relative wave amplitude,**
 378 **indicating a nonlinear trend, (b) Wave energy vs relative wave amplitude, indicating**
 379 **higher wave amplifications in shallow waters.**



380

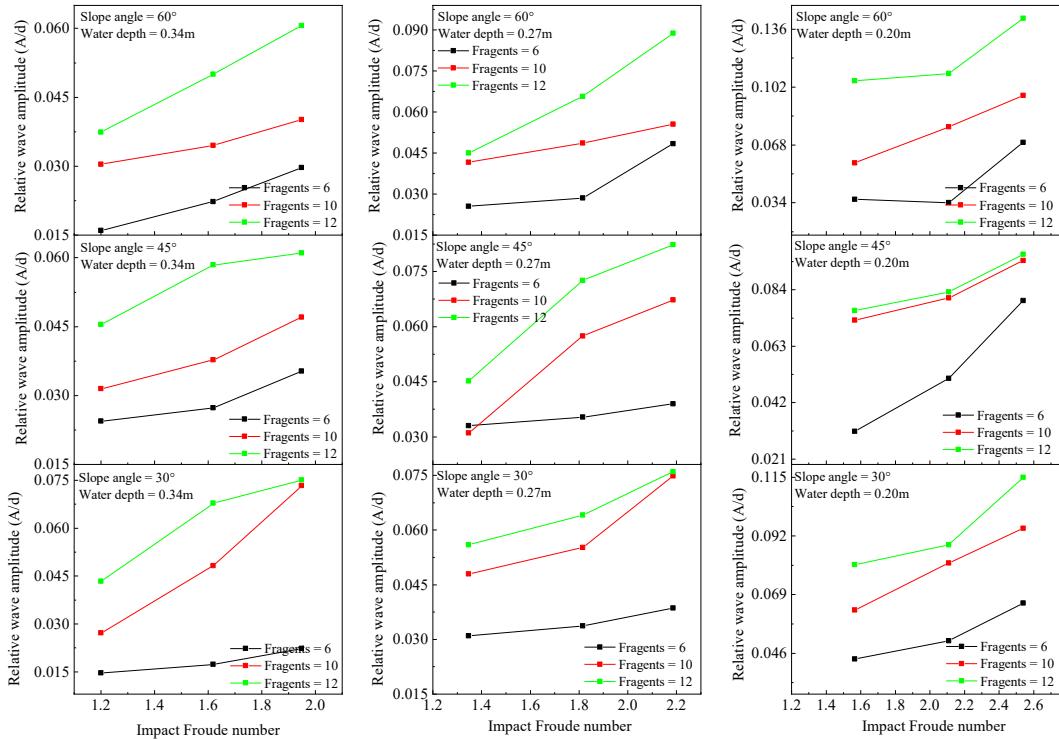
381 **Fig. 7: Relative wave amplitude vs relative wave runup at various slope angles and**
 382 **water depth.**

383 The results for the relative wave height and runup for all three water depths and
 384 three runup slope angles are shown in Fig. 7. The relationship indicates a strong
 385 correlation between wave amplitude and runup for all three slope angles. The
 386 decreasing line-slope values with increasing runup slope angle indicate that wave runup
 387 increases at a slower rate for sharp slope angles compared to mild slopes. The trend
 388 highlights the effect of slope angle on the runup. The result also indicates that the mild
 389 slope angles help wave runup amplification, as they dissipate a very small amount of
 390 energy, whereas steeper angles result in lower runup heights because of higher energy
 391 losses (Wu et al., 2018).

392 **3.1.2 Impact Froude no vs Relative wave amplitude**

393 Fig. 8 indicates the relationship between the impact Froude number and relative
 394 wave amplitude (A/d), under varying experimental conditions for the first gauge, i.e.,
 395 near the impact zone. Since we are interested in the immediate response of the wave

396 influenced by the impact Froude number. The results indicate that as the water depth
 397 decreases, the relative wave amplitude and impact Froude number increase, indicating
 398 a reduction in the dissipation of impact energy, causing pronounced surface turbulence
 399 and increased wave height. Additionally, the decreased water depth also increased the
 400 value of the impact Froude number by reducing its characteristic velocity, resulting in
 401 stronger wave generation upon impact. The calculations for Reynolds number for the
 402 experiments resulted in very high values, thus indicating a strong turbulent flow, which
 403 is also evident from Fig. 5, so viscous effects are very, very small and can be ignored,
 404 thus indicating the Froude dynamics similarity. The experimental results indicate the
 405 complex interaction between wave propagation, impact dynamics, and bathymetrical
 406 effects in waves induced by rotational cliff collapse. Moreover, upon impact, the cliff
 407 fragmentation distributes impact energy over a larger area of water, thus increasing
 408 wave height by enhanced turbulence and water splashing effects.



409

410 **Fig. 8: Relationship between impact Froude number and relative wave amplitude.**

411 **3.1.3 Wave amplitude results**

412 The results for the wave amplitude for various parameters are shown in Figs. 9, 10,

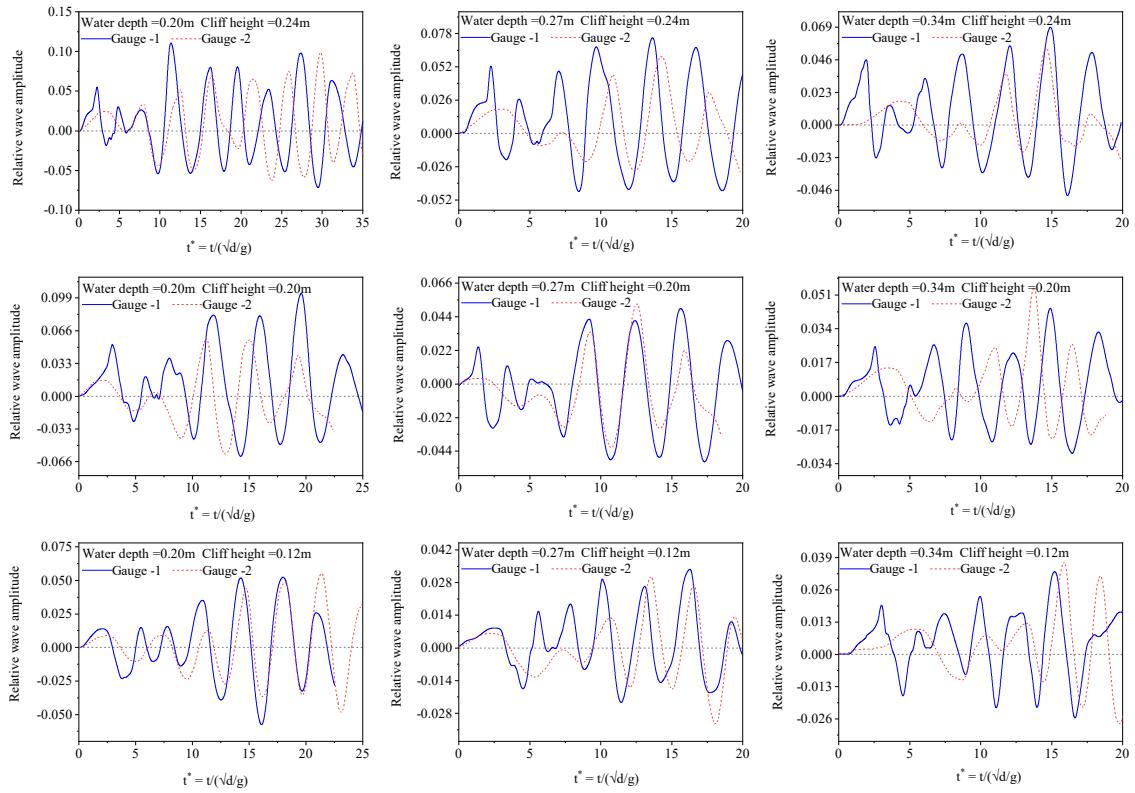
413 and 11. As mentioned earlier, two gauges were used to measure the induced wave
414 amplitude. Fig. 9 provides a detailed comparison of the wave amplitude recorded at
415 both gauges **for a 60° runup** slope angle and a 0.445 m fall height. It can be observed
416 that gauge-1, which is near to impact zone, has a higher relative amplitude compared to
417 gauge-2. Furthermore, the results for the relative wave amplitude against the
418 normalized time were also analysed for all the water depths (0.20 m, 0.27 m, and 0.34
419 m), fall height (0.245 m, 0.445 m, and 0.645 m), and cliff height (0.12 m, 0.20 m, and
420 0.24 m). The results indicate that the wave amplitude increases as the cliff height,
421 impact velocity, and number of fragments increase for all the water depths, as can be
422 observed in Fig. 10, thus demonstrating that the potential energy of the falling cliff
423 plays a critical role in the magnitude of the resulting wave.

424 Interestingly, comparing the wave amplitude induced by cliffs of various heights
425 falling from the same height revealed that the water depth and the wave have an inverse
426 relationship. As shown in Fig. 10 (a, b, and c), the average wave amplitude for various
427 cliff heights and the same fall height of 0.245 m at 0.20 m water depth is 26% more
428 than the average wave amplitude induced by 0.27 m water depth and 50% more than
429 the 0.34m water depth wave amplitude. Similarly, Fig. 10 (d, e, and f) indicates that the
430 average wave amplitude for 0.445 m fall height at 0.20 m water depth is 18% more than
431 0.027 m and 47% more than 0.34 m water depth, whereas, for 0.645 m fall height wave
432 amplitude induced by 0.20 m water depth is 25% more than 0.27 m and 37% more than
433 0.34 m water depth (Fig. 10 g, h & i), thus suggesting that the deeper water dissipates
434 the impact energy more effectively, as the deep water have more mass available to
435 absorb and redistribute the impact energy, compared to shallower water thus reducing
436 the overall amplitude of the induced wave. Moreover, a similar trend was observed for
437 the wave amplitude involving 45°and 60°runup slope angle.

438 Later on, we performed another experiment by using granular material of
439 equivalent mass as of cliff and slid it on a 30° slope, for all the water depths, and
440 amplitude of the induced wave was measured as shown in Fig. 11. Fig. 11(a) indicates
441 that the wave amplitude for 0.20 m water depth and 1.445 kg granular mass (equivalent
442 to 0.12 m cliff height) was 15% more than 0.27 m water depth and 65% more than wave

443 amplitude induced by 0.34 m water depth. Whereas for 2.29kg and 2.82kg granular
444 mass equivalent to 0.20 m and 0.24 m cliff height similar trend was observed as shown
445 in Fig. 11 (b and c), thus indicating that as the water depth increases, the wave amplitude
446 decreases for all the equivalent **granular masses**, as happened in the case of cliff fall.

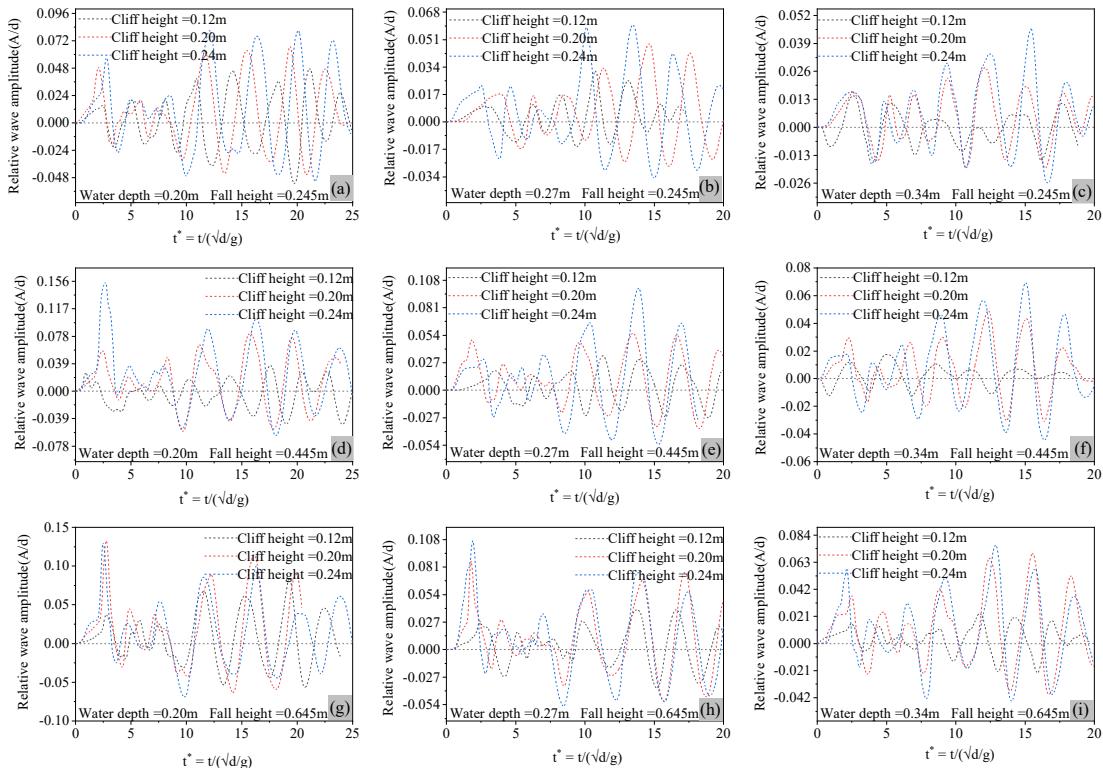
447 Furthermore, a comparison between the wave amplitude induced by a falling cliff
448 and equivalent granular mass at various water depths indicates that the amplitude of the
449 wave induced by an equivalent granular mass in 0.34 m, 0.27 m, and 0.20 m water depth
450 was on average 28%, 35% and 42% less than the wave amplitude induced falling cliff.
451 The substantial difference in wave amplitude highlights the importance of energy
452 transfer in wave formation. The falling cliff following a rotational motion imparts a
453 more sudden and concentrated impact that allows an efficient energy transfer to water,
454 leading to higher wave amplitudes. On the other hand, granular flows, being more
455 deformable and flowing along a slope, result in gradual energy transfer over a wide area,
456 thus resulting in lower wave amplitudes. The results highlight that it's not only the total
457 impact energy that affects the behavior of the induced wave, but the mode of energy
458 transfer also plays a critical role (Mohammed and Fritz, 2012; Wunnemann and Weiss,
459 2015). Based on the experimental results for wave amplitude and runup induced by
460 rotational cliff collapse that fragments upon impact with the water surface, a novel
461 prediction model was prepared using multi-expression programming. The justifications
462 for the use of MEP have been well explained in the previous sections.



463

464
465

Fig. 9: A comparative display of the water waves recorded at gauge 1&2 for a 60° slope angle, and 0.445 m fall height.

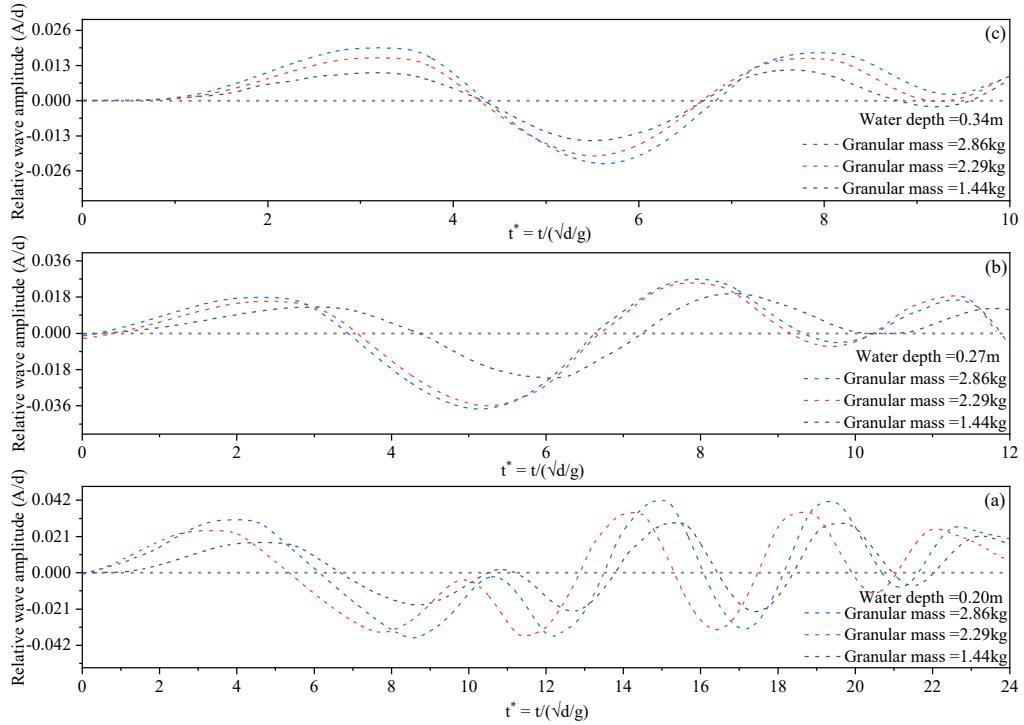


466

467

Fig. 10: Relative wave amplitude for various water depths, cliff height, and fall height

468 at 30°runup slope angle, (a, b&c) relative wave amplitude induced by 0.245 m fall
469 height, (d, e&f) relative wave amplitude induced by 0.445 m fall height, (g, h&i)
470 relative wave amplitude induced by 0.645 m fall height.



471

472 Fig. 11: Water waves induced by equivalent granular mass at 30° slope angle

473 **3.2 Numerical modeling results**

474 The numerical simulations conducted in this study successfully captured key
475 dynamic characteristics of the wave generated by the rotational cliff collapse,
476 specifically the wave amplitude and wave runup, across a range of test cases. Moreover,
477 the front velocity of the incident wave was also measured. The simulations were also
478 focused on verifying the results obtained from the rotational cliff collapse in the
479 experiments. To quantify the wave amplitude, runup, and velocity, a post-processing
480 technique was employed. To establish the reliability of the wave front velocity
481 measurements, the velocity was calculated at 5–7 distinct locations along the wave's
482 propagation path and at multiple time steps during the simulation. This multi-point
483 sampling approach minimized errors due to spatial and temporal variations. Fig. 12
484 shows a representative case of wave formation and propagation in a water tank at a
485 depth of $d = 0.2$ m at various time frames.

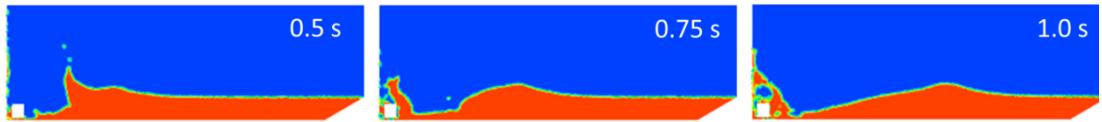
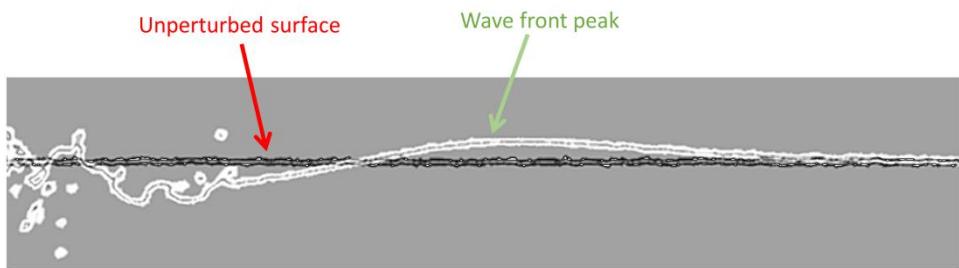


Fig. 12: Wave formation and propagation at water depth of $d = 0.2$ m at various time frames.

486 The wave amplitude was defined as the peak vertical displacement of the liquid
 487 surface relative to the undisturbed free surface level. Fig. 13 illustrates a representative
 488 case, depicting the wave front propagation.



489
 490 Fig. 13: Wave dynamics following a rotational cliff collapse in water depth $d = 0.34$
 491 m. Stable liquid surface before impact (black line); wave front propagating away from
 492 the point of impact (white line).

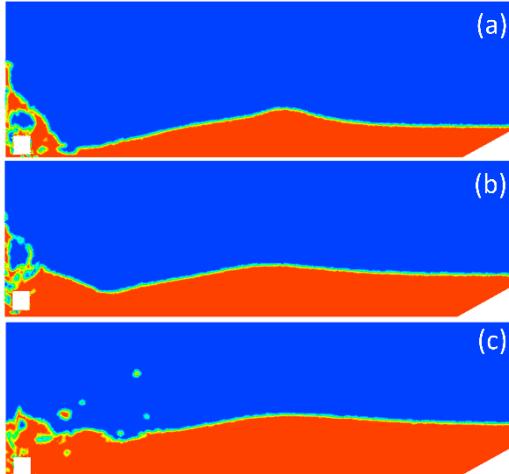
493 To validate the results of simulations, we compared the results of the runup height
 494 with the experimental values. Table 3 presents the runup values for various runup slope
 495 angles, i.e., 30° , 45° , and 60° for a water depth of 0.27 m. The comparison of simulated
 496 values was performed at this depth, as it lies in the middle of the experimental test range
 497 of water depths. Numerical modeling results indicate that for a fixed water depth, the
 498 runup values consistently decrease as the runup slope angle increases from 30° to 60° .
 499 At a water depth of 0.27 m, the runup decreases from 0.2 m at 30° to 0.17 m at 45° , and
 500 further to 0.11 m at 60° . This reduction is attributed to the changing momentum transfer
 501 dynamics with increasing slope angle. At less steep angles (closer to horizontal, e.g.,
 502 30°), the rock's momentum generates a stronger radial splash and greater upslope
 503 displacement of the liquid along the cliff. As the angle increases toward 60° , a larger
 504 component of the momentum is directed parallel to the cliff, reducing the vertical
 505 impulse. The experimental and numerical results agree well, and the difference lies
 506 within the acceptable range of 4-5%. The experimental results for the other two water
 507 depths also indicate similar behavior.

508 Table 3: Peak runup values along the various slope angles at a water depth of 0.27 m

Depth d (m)	Numerical-30°	Exp- 30°	Numerical-45°	Exp- 45°	Numerical-60°	Exp-60°
0.27	0.20	0.19	0.17	0.16	0.11	0.102

509 Next, we measured the wave velocity through the numerical results, as it wasn't
 510 captured accurately through experimental images. Fig. 14 illustrates the simulated wave
 511 fronts at a time instant of $t = 1$ second following the impact of the solid rock on the
 512 liquid pool, for various water depths and a fixed slope angle of 30 degrees. These
 513 visualizations highlight the propagation of the waves from the impact zone. The slope
 514 angle was varied across simulations to assess its influence on wave characteristics. It
 515 was observed that changes in the slope angle induced only minor variations in both the
 516 wave front velocity and wave amplitude for a given pool depth. These perturbations
 517 were typically within 1–2% of the mean values. Consequently, to streamline the
 518 analysis and focus on dominant trends, the wave front velocity and height were
 519 averaged over the range of slope angles for each specific water depth.

520 However, variations in water depth exerted a pronounced effect on the wave
 521 dynamics, leading to significant alterations in both the propagation velocity and
 522 amplitude of the generated waves. This depth-dependent behavior is quantified in Table
 523 4, which presents the averaged results from the numerical simulations. For a shallow
 524 water depth of $d=0.2$ m, the average wave front velocity was computed as 1.48 m/s,
 525 with a corresponding average wave height of 0.11 m. As the pool depth increased to
 526 $d=0.27$ m, the velocity rose to 1.58 m/s, while the wave height decreased to 0.07 m.
 527 Further deepening to 0.34 m yielded a velocity of 1.74 m/s and a reduced wave
 528 amplitude of 0.06 m. These trends indicate an approximately linear increase in velocity
 529 with depth, accompanied by an inverse relationship for wave amplitude.



530

531 Fig. 14: Propagating wave fronts after the impact at time $t = 1$ s for a slope angle of
 532 30-degree. (a) $d = 0.2$ m, (b) $d = 0.27$ m, (c) $d = 0.34$ m.

533 The observed depth dependence can be rationalized through fundamental
 534 principles of wave propagation in gravity-dominated, multi-phase flows. In the shallow
 535 water regime, given that the pool depths (0.2–0.34 m) are comparable to or smaller than
 536 the wavelengths of the generated waves, the phase velocity c of long gravity waves
 537 approximates $c \approx \sqrt{gh}$, where g is the gravitational acceleration (9.81 m/s²), and h is the
 538 undisturbed water depth. This relation arises from the shallow water equations, where
 539 hydrostatic pressure balance and negligible vertical acceleration dominate, leading to a
 540 dispersionless incident wave speed that scales with the square root of depth.
 541 Substituting the water depths yields theoretical velocities of approximately 1.40 m/s for
 542 $d=0.2$ m, 1.63 m/s for $d=0.27$ m, and 1.83 m/s for $d=0.34$ m, which align closely with
 543 the simulated values (discrepancies of 7–10% may stem from viscous dissipation, non-
 544 hydrostatic effects near the impact zone, or spreading of the wave front). A comparative
 545 analysis of the results is shown in Table 4.

546 Conversely, the decrease in wave amplitude with increasing water depth aligns with
 547 energy conservation and volume displacement considerations in impact-generated
 548 waves. The impact of rotational cliff collapse imparts a fixed kinetic energy and
 549 displaces a finite volume of liquid, creating an initial cavity and subsequent outflow
 550 that evolves into a propagating wave. In shallower pools, the displaced volume is
 551 confined to a smaller cross-sectional area, resulting in greater vertical amplification to

552 accommodate the same mass redistribution. For deeper water depths, the energy is
 553 distributed over a larger water column, diluting the surface perturbation and yielding
 554 lower amplitudes. The trends observed in the numerical simulations for water waves
 555 induced by rotational cliff collapse are in good agreement with theoretical and
 556 experimental results, indicating that water depth has a direct effect on the wave velocity
 557 and an inverse effect on the wave amplitude and runup.

558 Table 4: The average wave propagation velocity and amplitude for various water depths.

Water depth d (m)	Avg. wave velocity v (m/s)	Theoretical wave velocity c (m/s)	Wave amplitude A (m)
0.2	1.48	1.40	0.11
0.27	1.58	1.63	0.07
0.34	1.74	1.83	0.06

559 **3.3 MEP model results**

560 The purpose was to develop a precise model for wave amplitude and runup induced
 561 by rotational cliff collapse. The predicted model is a function of seven variables, i.e.,
 562 water depth, fall height, cliff mass, impact velocity, cliff height, runup slope angle, and
 563 number of fragments, and can be described as follows,

564 $Wave\ amplitude\ and\ runup = f(d, H, m, v, h, \alpha, N_f)$ (3)

565 The relation among the parameters was evaluated using Pearson's correlation to
 566 analyze the multicollinearity and interdependency between the parameters, as they can
 567 obscure the interpretation of the developed model. The model was developed by
 568 splitting the data into two subsets, i.e., training (70%) and testing (30%). The
 569 randomization was done by MEP itself. Following the criteria, 70% of the data, i.e., 57
 570 data points, were taken as training data, whereas 30% of the data, i.e., 24 data points,
 571 were considered for validation of the model. The mathematical expression for MEP is
 572 obtained by solving the C++ code and representing it as per optimized hyperparameter
 573 settings, as shown in Table 5. The prediction model for wave amplitude and runup was
 574 developed by analyzing the MEP code in MATLAB, as shown in Equations 4 and 5.

575 Table 5: Parametric settings of the MEP algorithm for wave amplitude and runup

Sr.No.	Parameters	Wave amplitude	Wave runup
1	Number of sub-populations	125	85
2	Sub-population size	115	75
3	Crossover probability	0.85	0.60
4	Code length	35	25
5	Tournament size	30	10
6	Mutation probability	0.085	0.06
7	Number of generations	250	120
8	Crossover type	Uniform	Uniform
9	Error measure	Mean absolute error	Mean absolute error
10	Problem type	Regression	Regression
11	Function set	+, -, x, /, ^	+, -, x, /, ^
12	Terminal set	Problem Input	Problem Input
13	Operators	0.5	0.5
14	Simplified	Yes	Yes
15	Variables	0.5	0.5
16	Random seed	0	0
17	Constants	0	0

576 $Wave\ amplitude\ A = d^{\left(\frac{\alpha}{d(d+N_f+m)}\right)} + \frac{2vh^2}{m+N_f+d(d+N_f+m)} + 2vh d^{\left(\frac{\alpha}{d(d+N_f+m)}\right)}$ (4)

577 $Wave\ runup\ R = \frac{A\left(h + \left(A \cdot \left(d - \frac{B}{\alpha}\right)\right)^{B/\alpha}\right)^A \cdot B}{\alpha}$ (5)

578 $A = v + h^d$

579 $B = v + m + h^d$

580 Whereas d is the water depth (m), m is the mass of the cliff (kg), v is the
 581 impact velocity (m/s), h is the cliff height (m), α is the runup slope angle, and N_f
 582 is the number of fragments.

583 **3.3.1 Prediction performance of the developed model**

584 The robustness of the proposed model was evaluated by comparing it with well-
 585 established statistical indices, i.e., mean absolute error (MAE), root mean square error
 586 (RMSE), correlation coefficient (Cr), Nash–Sutcliffe efficiency (NSE), and
 587 performance index (PI). The indices can be represented by equation (6-10) (Khan et al.,
 588 2022).

589 $MAE = \frac{\sum_{i=1}^n |e_i - p_i|}{n}$ (6)

590 $RMSE = \sqrt{\frac{\sum_{i=1}^n (e_i - p_i)^2}{n}}$ (7)

591 $NSE = 1 - \frac{\sum_{i=1}^n (e_i - p_i)^2}{\sum_{i=1}^n (e_i - \bar{e}_i)^2}$ (8)

592 $PI = \frac{RRMSE}{1+R}$ (9)

593 $R^2 = \left(\frac{\sum_{i=1}^n (e_i - \bar{e}_i)(p_i - \bar{p}_i)}{\sum_{i=1}^n (e_i - \bar{e}_i)^2 \sum_{i=1}^n (p_i - \bar{p}_i)^2} \right)^2$ (10)

594 Whereas, \bar{e}_i and \bar{p}_i are the average values of the experimental and predicted
 595 results, and e_i and p_i are i^{th} values of the modeled and predicted results, for n total
 596 samples. It is good to consider the error indices while analyzing the predictive capability
 597 of complex models. The wave runup model demonstrated a robust performance for both
 598 training and testing datasets. The lower values of RMSE and MAE indicate little
 599 deviation from experimental values, while RSE and RMSE values confirm lower
 600 normalized error, as shown in Table 6. The higher values of NSE and Cr further
 601 validated the model reliability for the training phase. Whereas for the validation dataset,
 602 i.e., the unseen data model displays even stronger performance with lower RMSE and
 603 MAE values compared to the training dataset. Moreover, higher Cr and lower
 604 performance index values highlight enhanced model efficiency. This suggests that the
 605 model works well for unseen data, making it suitable for predicting the wave runup
 606 induced by rotational cliff collapse (Gardezi et al., 2024).

607 The predictive performance of the wave amplitude model in the case of training
 608 data demonstrated a strong correlation with high R^2 values and low RMSE and MAE
 609 values corresponding to 13.14% relative error, thus suggesting a good agreement
 610 between experimental and predicted values, as shown in Table 6. The higher NSE and
 611 C_r values further confirmed the model's reliability for the training dataset with minimal
 612 systematic bias. When the model was exposed to unseen data, it still maintained
 613 reasonable accuracy with an R^2 value of 0.78. Though the values of error matrices, i.e.,
 614 RMSE, MAE, and RRMSE, are a bit higher than the training data set, this is expected
 615 due to inherent generalization challenges. Similarly, the higher NSE and C_r values,
 616 though lower than the training dataset, indicate consistent predictive performance of the
 617 wave amplitude model with little increase in bias. Overall model exhibited strong

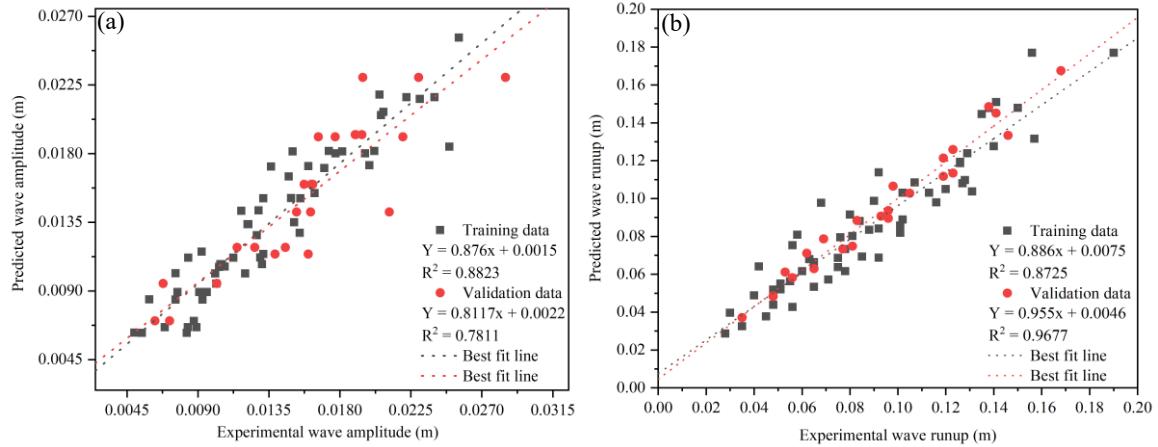
618 predictive performance in the training and testing phase, with a little expected decline
619 in the validation phase.

620 **Table 6: Performance index values for the MEP-based water wave amplitude and**
621 **runup prediction model.**

Performance parameters	Wave Amplitude		Wave Runup	
	Training data	Validation data	Training data	Validation data
RSQ	0.8823	0.7811	0.8748	0.9691
RMSE	0.00178	0.0025	0.01327	0.00617
MAE	0.00135	0.00176	0.0108	0.00504
RSE	0.1180	0.2439	0.1306	0.0312
RRMSE	0.1314	0.1594	0.1472	0.0660
P. index	0.0698	0.0908	0.076	0.0333
NSE	0.8819	0.7560	0.8693	0.9687
C_r	0.9393	0.8829	0.9353	0.9844

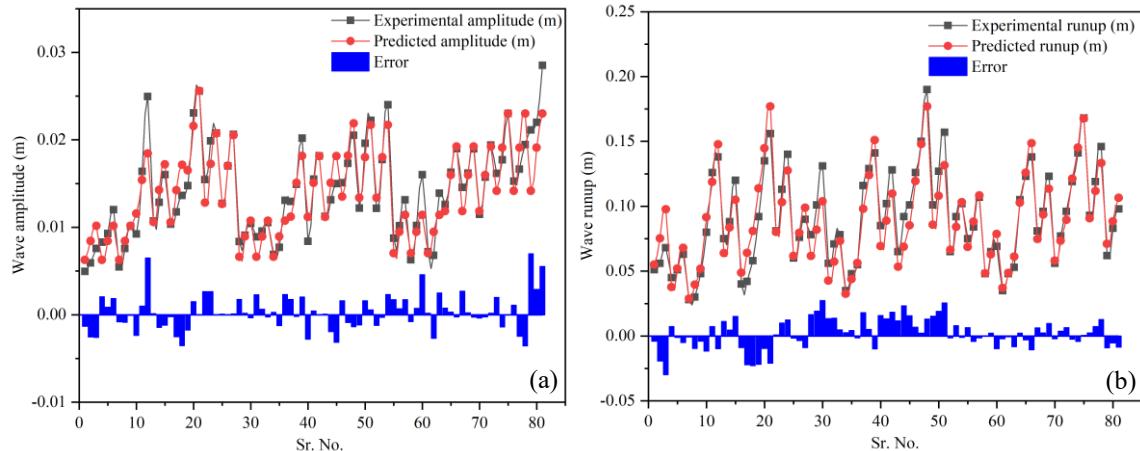
622 Previously, scientists have also used the slope of the regression line as a
623 performance indicator for AI models, thus representing a correlation between
624 experimental and predicted results. Fig. 15 (a & b) shows the regression line for our
625 wave amplitude and runup model. For wave amplitude, the slope value for the training
626 data set is 0.88, which is adequate, and 0.78 in validation, which is still greater than the
627 minimum value of 0.7; it can happen as the model involving numerous parameters and
628 complex phenomena usually performs slower for the unseen data (Yarkoni and Westfall,
629 2019). Whereas, for wave runup, the model performed very well for both training and
630 validation data sets with an R^2 value of 0.87 and 0.96, respectively.

631 The accuracy of the proposed model can also be checked using residual error plots,
632 which are obtained by subtracting experimental and predicted values. The results
633 indicate that the amplitude model has minimum and maximum values of -0.004 m and
634 0.0065 m, as shown in Fig. 16 (a), whereas for wave runup the minimum and maximum
635 values are -0.01875 and 0.024 (Fig. 16b). Moreover, it can also be observed that error
636 values are populated along the x-axis, therefore, showing low error frequency, and
637 accuracy of both the models.



638

639 Fig. 15 Tracing the experimental results by predicted values, (a) wave amplitude and
 640 (b) wave runup



641

642 Fig. 16 Indicating error values between experimental and predicted model (a) wave
 643 amplitude, and (b) Wave runup

644

645 3.2 Validation of the developed model

646 The validation of the proposed model is an important feature in predictive modeling.
 647 It has been observed that sometimes the model performs very well for training data sets,
 648 but fails to perform during the validation stage for unseen data. So, the developed
 649 prediction model was further validated by conducting the sensitivity and parametric
 650 analysis for both the wave amplitude and runup.

651 3.2.1 Sensitivity analysis

652 Sensitivity and parametric analysis play a vital role in determining the robustness
 653 of the proposed model. The sensitivity analysis (SA) of the developed prediction model
 654 for the entire dataset tells us how sensitive the model is to any changes in input

655 parameters. So, for an independent parameter Y_i the SA can be calculated using
 656 equations 11 and 12, which indicates that for any parameter, the values were varied
 657 between two extremes, and others were constant at their average, and the outcome was
 658 found in the form of Y_i , and then the same process was repeated for all the remaining
 659 parameters.

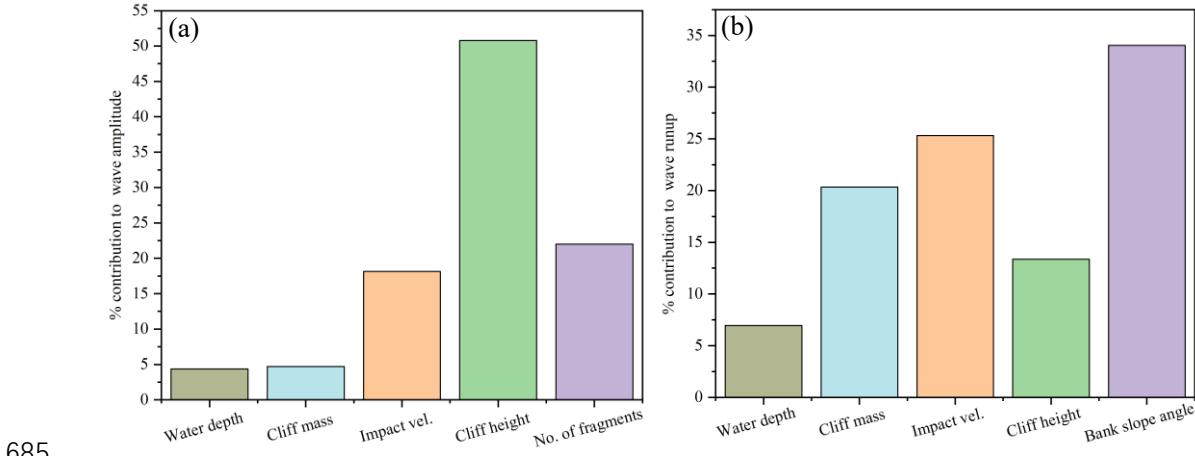
660
$$R_k = f_{max}(Y_k) - f_{min}(Y_k) \quad (11)$$

661
$$\text{Relative Importance SA (\%)} = \frac{R_k}{\sum_{j=1}^n R_j} \times 100 \quad (12)$$

662 Whereas, $f_{max}(Y_k)$ and $f_{min}(Y_k)$ represent the minimum and maximum values
 663 of the model-based results grounded on the k th domain of the input parameters in the
 664 above equation. Fig. 17 (a & b) shows the results of the sensitivity analysis of the
 665 developed prediction model for the wave amplitude and runup. Figure 17 (a) indicates
 666 that the wave amplitude is greatly influenced by the height of the cliff (h) and has an
 667 effect of almost 51%. The water depth (d) contributes 4.36% to wave amplitude, cliff
 668 mass (m) contributes 4.69%, and impact velocity (v) and number of fragments (N_f)
 669 contribute 18% and 22% to the induced wave amplitude. Whereas the fall height (H)
 670 and runup slope angle (α) do not affect the wave amplitude. Since the impact velocity
 671 parameters have already catered for the fall height that's why it is not visible in the
 672 proposed model. The model tells us that impact velocity, cliff height, and number of
 673 fragments contribute approximately 90% to the wave amplitude induced by the
 674 rotational fall of the cliff. It can be concluded that the effect of $h > N_f > v > m > d$
 675 on the induced wave amplitude.

676 Similarly, the sensitivity analysis of wave runup (Fig. 17b) indicates that runup is
 677 greatly influenced by bank slope angle (α) and has an effect of 34%. Impact velocity
 678 (v) contributes 25.3%, cliff mass (m) 20.3%, cliff height (h) 13.3%, and water depth
 679 (d) contributes around 7% to wave runup. Whereas, the number of fragments and fall
 680 height that have already been catered in impact velocity don't contribute to wave runup.
 681 This suggests that wave runup is primarily governed by coastal geometry, i.e., bank
 682 slope angle and cliff height, and hydrodynamic forces, i.e., impact velocity, whereas
 683 water depth contributes a little to wave runup. It can also be concluded as the effect of

684 $\alpha > v > m > h > d$ on the induced wave amplitude.



686 Fig. 17 Sensitivity analysis of the MEP-based wave amplitude and runup
687 prediction model

688 3.2.2 Parametric Analysis

689 Parametric analysis results for the input parameters for the wave amplitude used in
690 this study are displayed in Fig. 18. The parametric analysis indicates that wave
691 amplitude decreases as the water depth, number of fragments, and cliff mass increase,
692 whereas it increases with the increase in cliff height and impact velocity. These trends
693 are in line with the fundamental physics principles (Bougouin et al., 2020; Lipiejko et
694 al., 2023). Deep waters dissipate more energy, and greater impact velocities and larger
695 cliff heights impart more kinetic and potential energies to water bodies for wave
696 generation. In contrast, the inverse relation between the number of fragments and wave
697 amplitude proposes a potential threshold effect in which initial fragmentation
698 contributes to wave formation, whereas excessive fragments contribute to energy
699 dissipation owing to increased turbulence. The sensitivity analysis further quantified
700 the effect of these parameters, classifying cliff height as a major contributing factor in
701 wave amplitude variations, followed by impact velocity, number of fragments, water
702 depth, and mass of cliff. The strong influence of cliff height indicates its direct effect in
703 determining the potential energy for wave generation. Moreover, the larger sensitivity
704 value of fragments regardless of their inverse parametric relation shows a complex
705 relation, where fragment count plays a considerable but context-dependent role in wave
706 generation and propagation. The dominance of cliff height, impact velocity, and

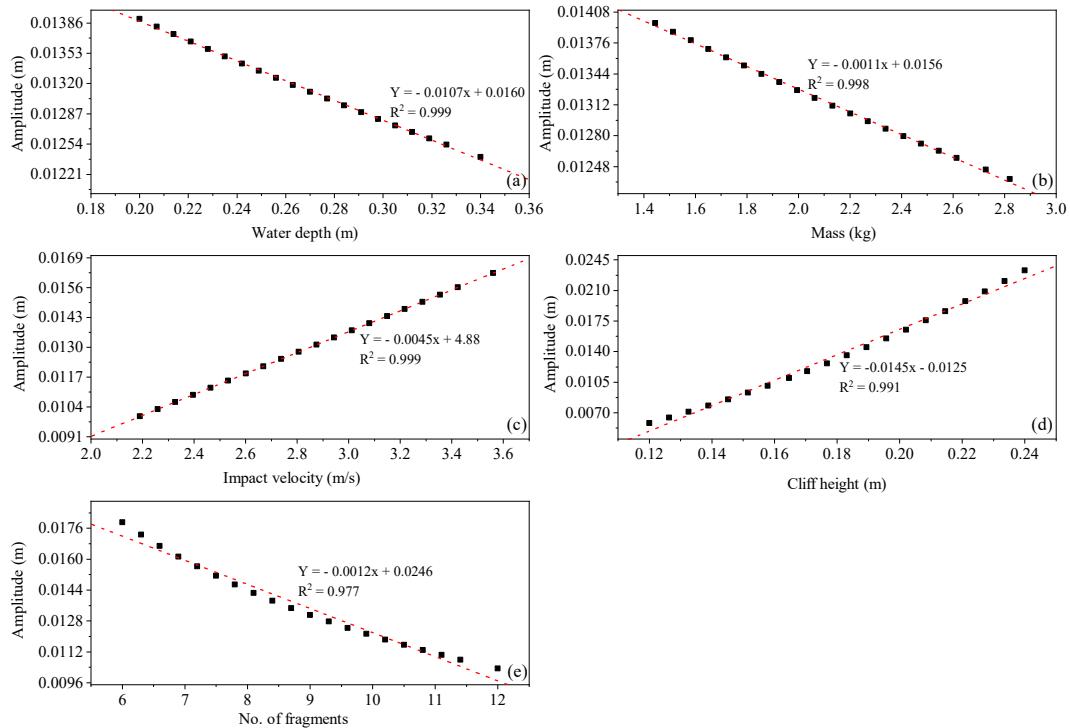
707 fragment count suggests that these parameters should be prioritized in future prediction
708 models. These findings are important for developing predictive models for wave
709 generations due to rotational cliff collapse.

710 The developed model for wave amplitude provides valuable insights into
711 fundamental physics governing wave formation and propagation induced because of
712 rotational cliff collapse. The strong height dependence of the model confirms the
713 classical principle of conservation of potential energy, whereas the fragment count
714 dependence reveals energy partitioning mechanisms. The results of performance
715 indices and sensitivity, and parametric analysis increase our understanding of how
716 geometric and dynamic characteristics govern the wave characteristics, with relevance
717 to hazard assessment and disaster mitigation in coastal regions prone to cliff collapse
718 following rotational motion.

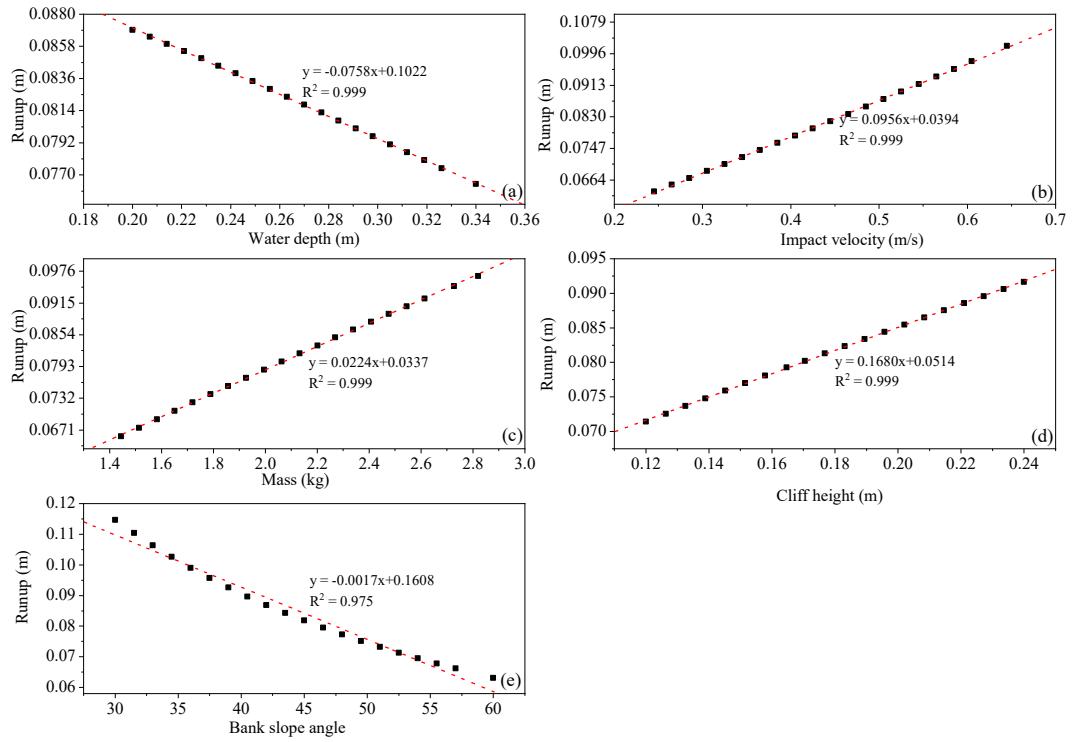
719 The results of the parametric analysis for wave runup are presented in Fig. 19. It
720 can be observed from Fig. 19 (a & e) that as the water depth and bank slope angle
721 increase, the wave runup decreases, due to energy dissipation and different wave
722 breaking dynamics. Conversely, as the cliff mass, cliff height, and impact velocity
723 increase, the wave runup increases, as greater kinetic energy and inertia impart greater
724 uprush. Notably, all the parameters present a strong correlation with the runup (more
725 than 97%), highlighting their statistical significance. The results agree with the general
726 physics laws, where mild slopes and larger impact forces result in higher runups,
727 whereas deep waters attenuate wave energy.

728 An important observation from parametric analysis of wave amplitude and runup,
729 as shown in Fig. 18b, and 19c, indicates that cliff mass represents a nonlinear relation
730 with wave amplitude and a linear relation with runup. This is due to the fact that the
731 variations in wave amplitude are governed by a nonlinear energy dissipation, where
732 hydrodynamic forces follow a quadratic dependence on the velocity. In the case of light
733 cliff collapses, the dynamic responses result in complex absorption and distribution,
734 whereas heavier cliff collapses promote wave reflection along with nonlinear effects of
735 wave breaking and splash-induced turbulence, as can be observed in Fig. 5 (b, e&h).
736 Conversely, the wave runup exhibits a linear relation with cliff mass, and this is due to

737 the law of conservation of momentum, such that the resisting inertial force is directly
 738 proportional to cliff mass. The greater resistance to motion of heavier cliffs allows more
 739 energy to be conserved and utilized for higher wave runups before dissipation. The
 740 main difference between the two trends is that the wave amplitude is controlled by
 741 localized energy losses, whereas runup is governed by bulk momentum transfer rather
 742 than localized losses.



743
 744 Fig. 18 Parametric analysis for wave amplitude (a) water depth, (b) cliff mass, (c)
 745 impact velocity, (d) cliff height, (e) number of fragments.



746

747 Fig. 19 Parametric analysis for wave runup (a) water depth, (b) impact velocity, (c)
 748 mass of the cliff, (d) cliff height, (e) bank slope angle.

749 **4. Conclusions**

750 While designing wave protection structures along the banks of reservoirs, it is
 751 common to use the empirical relations developed for granular flows, i.e., landslides and
 752 avalanches, to predict the amplitude and runup of the waves. However, the waves
 753 induced by various types of slides behave differently and should be treated accordingly.
 754 The dynamics of the waves induced by falling cliffs are entirely different from the
 755 waves induced by continuous granular flows. Similarly, the dynamics of the waves
 756 induced by falling cliffs following different types of motion (translational, rotational)
 757 are also different. This study aimed to develop a novel wave amplitude and runup
 758 prediction model for waves induced by rotational fall of the cliff using a combination
 759 of seven governing parameters, and then compare it with the dynamics of the wave
 760 induced by continuous granular flows. Based on the results and discussions, the study
 761 concludes as follows,

762 1. It was concluded that water depth strongly controls the shape of the induced splash
 763 and wave amplification. Shallow water induced elongated, tall splashes, and higher

764 wave amplitudes; in contrast, deep water produced mushroom-shaped splashes
765 with higher energy dissipation and lower wave amplitudes.

766 2. The higher values of Froude number (> 1.2) for all the experiments indicate that
767 the viscous effects were negligible, so the Froude number was selected as the most
768 suitable dynamic scaling factor for describing the behaviour of the waves.

769 3. The wave amplitude was greatly influenced by cliff height (51 %), number of
770 fragments (22 %), Impact velocity (18 %), cliff mass (4.69 %), and water depth
771 (4.36 %). Whereas the wave runup was governed by the runup slope angle, impact
772 velocity, and cliff mass.

773 4. The amplitude of the wave induced by equivalent granular mass sliding on a 30°
774 slope was 28-42% lower than the waves induced by rotational cliff collapse, thus
775 concluding that the mode of energy transfer to the water body plays a critical role
776 in wave dynamics.

777 5. A novel MEP-based prediction model was developed for wave amplitude and
778 runup. The model showed great performance during the training and testing stage,
779 and showed high sensitivity to the used parameters, thus confirming its reliability.

780 6. Research findings highlight that accurate hazard assessment of the cliff collapse
781 requires models that account for the rotational failure mode and the fragmentation
782 upon impact with the water surface. Traditional granular slide models may result
783 in an underestimation of the initial wave amplitude and energy transferred.

784 **Funding**

785 This work was supported by the China Postdoctoral Science Foundation (Grant No.
786 2024M762420), the National Natural Science Foundation of China (Grant No.
787 42120104008), and the National Natural Science Foundation of China (Grant No.
788 42202312), and the Fundamental Research Funds for the Central Universities.

789 **Author contributions**

790 HG wrote the manuscript and performed the experiments, TK performed numerical
791 modeling, XL designed the research, TMS helped in writing the manuscript, YH
792 supervised the project, and ZC helped in conducting experiments.

793 **Data availability**

794 Data will be made available upon reasonable request.

795 **Declarations**

796 Competing interests: The authors declare no competing interests.

797 **References**

798 Alavi, A.H., Gandomi, A.H., Sahab, M.G., Gandomi, M., 2010. Multi expression
799 programming: A new approach to formulation of soil classification. *Eng Comput*
800 26, 111–118. <https://doi.org/10.1007/s00366-009-0140-7>.

801 Aidun, C.K., Clausen, J.R., 2010. Lattice-boltzmann method for complex flows. *Annu.*
802 *Rev. Fluid Mech.* 42, 439–472. <https://doi.org/10.1146/annurev-fluid-121108-145519>

803 Backbill, J.U., Kothe, D.B., Zemach, C., 1992. for Modeling Surface Tension *. *J*
804 *Comput Phys* 100, 335–354.

805 Bougouin, A., Paris, R., Roche, O., 2020. Impact of Fluidized Granular Flows into
806 Water : Implications for Tsunamis Generated by Pyroclastic Flows. *J Geophys Res*
807 *Solid Earth* 1–17. <https://doi.org/10.1029/2019JB018954>

808 Boulbee, N., Stead, D., Schwab, J., Geertsema, M., 2006. The Zymoetz River rock
809 avalanche, June 2002, British Columbia, Canada. *Eng Geol* 83, 76–93.
810 <https://doi.org/10.1016/j.enggeo.2005.06.038>

811 Bujak, D., Ilic, S., Milić, H., 2023. Wave Runup Prediction and Alongshore Variability
812 on a Pocket Gravel Beach under Fetch-Limited Wave Conditions. *J Mar Sci Eng*.

813 Cesario, E., Giampá, S., Baglione, E., Cordrie, L., Selva, J., Talia, D., 2024. Machine
814 Learning for Tsunami Waves Forecasting Using Regression Trees. *Big Data*
815 *Research* 36, 100452. <https://doi.org/10.1016/j.bdr.2024.100452>

816 Dai, Z., Li, X., Lan, B., 2023. Three-Dimensional Modeling of Tsunami Waves
817 Triggered by Submarine Landslides Based on the Smoothed Particle
818 Hydrodynamics Method. *J Mar Sci Eng* 11. <https://doi.org/10.3390/jmse11102015>

819 Das, M.M., Wiegel, L.R., 1972. Waves Generated by Horizontal Motion of a Wall.
820 *Journal of the waterways, harbors and costal engineering divison* 98.

821 Dignan, J., Hayward, M.W., Salmanidou, D., Heidarzadeh, M., Guillas, S., 2023.
822 Probabilistic Landslide Tsunami Estimation in the Makassar Strait, Indonesia,
823 Using Statistical Emulation. *Earth and Space Science* 10.
824 <https://doi.org/10.1029/2023EA002951>

825 Esposti Ongaro, T., de' Michieli Vitturi, M., Cerminara, M., Fornaciai, A., Nannipieri,
826 L., Favalli, M., Calusi, B., Macías, J., Castro, M.J., Ortega, S., González-Vida,
827 J.M., Escalante, C., 2021. Modeling Tsunamis Generated by Submarine
828 Landslides at Stromboli Volcano (Aeolian Islands, Italy): A Numerical Benchmark
829 Study. *Front Earth Sci (Lausanne)* 9. <https://doi.org/10.3389/feart.2021.628652>

830 Franci, A., Cremonesi, M., Perego, U., Crosta, G., Oñate, E., 2020. 3D simulation of
831 Vajont disaster. Part 1: Numerical formulation and validation. *Eng Geol* 279,
832

833 105854. <https://doi.org/10.1016/j.enggeo.2020.105854>

834 Franco, A., Moernaut, J., Schneider-Muntau, B., Strasser, M., Gems, B., 2020. The 1958

835 Lituya Bay tsunami - Pre-event bathymetry reconstruction and 3D numerical

836 modelling utilising the computational fluid dynamics software Flow-3D. *Natural*

837 *Hazards and Earth System Sciences* 20, 2255–2279. <https://doi.org/10.5194/nhess-20-2255-2020>

838 Fritz, H., Hager, W., Minor, H., 2004. Near field characteristics of landslide generated

839 impulse waves. *J Waterway Port Coastal and Ocean Eng.* 130, 287–302.

840 Fritz, H.M., Hager, W.H., Minor, H.E., 2003. Landslide generated impulse waves. 1.

841 Instantaneous flow fields. *Exp Fluids* 35, 505–519.

842 <https://doi.org/10.1007/s00348-003-0659-0>

843 Gardezi, H., Ikrama, M., Usama, M., Iqbal, M., Jalal, F.E., Hussain, A., Li, X., 2024.

844 Predictive modeling of rutting depth in modified asphalt mixes using gene-

845 expression programming (GEP): A sustainable use of RAP, fly ash, and plastic

846 waste. *Constr Build Mater* 443, 137809.

847 <https://doi.org/10.1016/j.conbuildmat.2024.137809>

848 Grilli, S.T., Tappin, D.R., Carey, S., Watt, S.F.L., Ward, S.N., Grilli, A.R., Engwell, S.L.,

849 Zhang, C., Kirby, J.T., Schambach, L., Muin, M., 2019. Modelling of the tsunami

850 from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the

851 Sunda Straits, Indonesia. *Sci Rep* 9, 1–13. <https://doi.org/10.1038/s41598-019-48327-6>

852 Guan, X., Shi, H., 2023. Translational momentum of deformable submarine landslides

853 off a slope. *J Fluid Mech* 960, 1–41. <https://doi.org/10.1017/jfm.2023.177>

854 Gylfadóttir, S.S., Kim, J., Helgason, J.K., Brynjólfsson, S., Höskuldsson, Á.,

855 Jóhannesson, T., Harbitz, C.B., Løvholt, F., 2017. The 2014 Lake Askja rockslide-

856 induced tsunami: Optimization of numerical tsunami model using observed data.

857 *J Geophys Res Oceans* 122, 4110–4122. <https://doi.org/10.1002/2016JC012496>

858 Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., Wijanarto, A.B., 2020.

859 Numerical modeling of the subaerial landslide source of the 22 December 2018

860 Anak Krakatoa volcanic tsunami, Indonesia. *Ocean Engineering* 195, 106733.

861 <https://doi.org/10.1016/j.oceaneng.2019.106733>

862 Heller, V., 2007. *Landslide Generated Impulse Waves: Prediction of Near Field*

863 *Characteristics* (Doctoral dissertation, Eth Zurich).

864 Heller, V., Attili, T., Chen, F., Gabl, R., Wolters, G., 2021. Large-scale investigation into

865 iceberg-tsunamis generated by various iceberg calving mechanisms.

866 Heller, V., Spinneken, J., 2015. On the effect of the water body geometry on landslide-

867 tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter

868 transformation. *Coastal Engineering* 104, 113–134.

869 <https://doi.org/10.1016/j.coastaleng.2015.06.006>

870 Heller, V., Spinneken, J., 2013. Improved landslide-tsunami prediction: Effects of block

871 model parameters and slide model. *J Geophys Res Oceans* 118, 1489–1507.

872 <https://doi.org/10.1002/jgrc.20099>

873 Higman, B., Shugar, D.H., Stark, C.P., Ekström, G., Koppes, M.N., Lynett, P., Dufresne,

874 A., Haeussler, P.J., Geertsema, M., Gulick, S., Mattox, A., Venditti, J.G., Walton,

877 M.A.L., McCall, N., Mckittrick, E., MacInnes, B., Bilderback, E.L., Tang, H.,
878 Willis, M.J., Richmond, B., Reece, R.S., Larsen, C., Olson, B., Capra, J., Ayca, A.,
879 Bloom, C., Williams, H., Bonno, D., Weiss, R., Keen, A., Skanavis, V., Loso, M.,
880 2018. The 2015 landslide and tsunami in Taan Fiord, Alaska. *Sci Rep* 8, 1–12.
881 <https://doi.org/10.1038/s41598-018-30475-w>

882 Hirt, C.W., Nichols, B.D., 1981. Volume of Fluid (VOF) Method for the Dynamics of
883 Free Boundaries *. *J Comput Phys* 225, 201–225.

884 Huber, A., Hager, W., 1997. Forecasting impulse waves in reservoirs, in: Proc 19th
885 Congrès Des Grands Barrages, Florence, ICOLD, Paris. pp. 993–1005.

886 Kamphuis, J., Bowering, R., 1970. Kamphuis JW, Bowering RJ (1970) Impulse waves
887 generated by landslides, in: Proc 12th Coastal Eng 1:575–588, ASCE, Washing
888 Ton, USA.

889 Khan, K., Ashfaq, M., Iqbal, M., Khan, M.A., Amin, M.N., Shalabi, F.I., Faraz, M.I.,
890 Jalal, F.E., 2022. Multi Expression Programming Model for Strength Prediction of
891 Fly-Ash-Treated Alkali-Contaminated Soils. *Materials* 15.
892 <https://doi.org/10.3390/ma15114025>

893 Kim, G.B., Cheng, W., Sunny, R.C., Horrillo, J.J., McFall, B.C., Mohammed, F., Fritz,
894 H.M., Beget, J., Kowalik, Z., 2020. Three Dimensional Landslide Generated
895 Tsunamis: Numerical and Physical Model Comparisons. *Landslides* 17, 1145–
896 1161. <https://doi.org/10.1007/s10346-019-01308-2>

897 Kubota, Y., Mochizuki, O., 2009. Splash Formation by a Spherical Body Plunging into
898 Water. *J Vis (Tokyo)* 12, 339–346.

899 Li, Y., Ding, Y., Yang, L., Liu, X., Liu, Y., 2023a. A prediction model for the rockslide-
900 generated wave amplitude under the condition of bedrock mass breakup. *Ocean
901 Engineering* 272, 113845. <https://doi.org/10.1016/j.oceaneng.2023.113845>

902 Li, Y., Ding, Y.N., Yang, L., Liu, X.S., Liu, Y., 2023b. A prediction model for the
903 rockslide-generated wave amplitude under the condition of bedrock mass breakup.
904 *Ocean Engineering* 272. <https://doi.org/10.1016/j.oceaneng.2023.113845>

905 Li, Y., Peng, T., Xiao, L., Wei, H., Li, X., 2024. Wave runup prediction for a semi-
906 submersible based on temporal convolutional neural network. *Journal of Ocean
907 Engineering and Science* 9, 528–540. <https://doi.org/10.1016/j.joes.2022.08.005>

908 Lindstrøm, E.K., 2016. Waves generated by subaerial slides with various porosities.
909 *Coastal Engineering* 116, 170–179.
910 <https://doi.org/10.1016/j.coastaleng.2016.07.001>

911 Lindstrøm, E.K., Pedersen, G.K., Jensen, A., Glimsdal, S., 2014. Experiments on slide
912 generated waves in a 1:500 scale fjord model. *Coastal Engineering* 92, 12–23.
913 <https://doi.org/10.1016/j.coastaleng.2014.06.010>

914 Lipiejko, N., Whittaker, C.N., Lane, E.M., Power, W.L., 2023. Wave Generation by
915 Fluidized Granular Flows : Experimental Insights Into the Maximum Near-Field
916 Wave Amplitude. *J Geophys Res Oceans*. <https://doi.org/10.1029/2022JC019583>

917 Liu, J., Heller, V., Wang, Y., Yin, K., 2025. Investigation of subaerial landslide-
918 tsunamis generated by different mass movement types using smoothed particle
919 hydrodynamics. *Eng Geol* 352. <https://doi.org/10.1016/j.enggeo.2025.108055>

920 Liu, M.B., Liu, G.R., 2010. Smoothed Particle Hydrodynamics (SPH): an Overview

921 and Recent Developments. *Archives of computational methods in engineering* 17,
922 25–76. <https://doi.org/10.1007/s11831-010-9040-7>

923 Maciel, G.D.F., Pereira, J.B., Sáo, Y.T., Ferreira, F.D.O., Ferreira, L.G., n.d. Impulse
924 wave in the Brazilian Lake of Capitólio.

925 McFall, B.C., Fritz, H.M., 2016. Physical modelling of tsunamis generated by three-
926 dimensional deformable granular landslides on planar and conical island slopes.
927 *Proceedings of the Royal Society A: Mathematical, Physical and Engineering
928 Sciences* 472. <https://doi.org/10.1098/rspa.2016.0052>

929 Miller, D.J., 1960a. Giant waves in Lituya Bay, Alaska. *Geological Survey Professional
930 Paper No. 354 C* ; US Governement Printing Office: Washington, DC, USA 51–
931 86.

932 Miller, D.J., 1960b. Giant waves in Lituya Bay, Alaska. *Geological Survey Professional
933 Paper No. 354 C* ; US Governement Printing Office: Washington, DC, USA 51–
934 86.

935 Mohammed, F., Fritz, H.M., 2012a. Physical modeling of tsunamis generated by three-
936 dimensional deformable granular landslides. *J Geophys Res Oceans* 117, 1–20.
937 <https://doi.org/10.1029/2011JC007850>

938 Mohammed, F., Fritz, H.M., 2012b. Physical modeling of tsunamis generated by three-
939 dimensional deformable granular landslides. *J Geophys Res Oceans* 117, 1–20.
940 <https://doi.org/10.1029/2011JC007850>

941 Mohammed, F., Fritz, H.M., 2012c. Physical modeling of tsunamis generated by three-
942 dimensional deformable granular landslides. *J Geophys Res* 117.
943 <https://doi.org/10.1029/2011JC007850>

944 Monaghan, J.J., 1994. Simulating free surface flows with SPH. *J Comput Phys* 110,
945 399–406.

946 Montagna, F., Bellotti, G., Di Risio, M., 2011. 3D numerical modeling of landslide-
947 generated tsunamis around a conical island. *Natural Hazards* 58, 591–608.
948 <https://doi.org/10.1007/s11069-010-9689-0>

949 Mulligan, R.P., Franci, A., Celigueta, M.A., Take, W.A., 2020. Simulations of Landslide
950 Wave Generation and Propagation Using the Particle Finite Element Method. *J
951 Geophys Res Oceans* 125, 1–17. <https://doi.org/10.1029/2019JC015873>

952 Myrhaug, D., Lader, P.F., 2019. Random wave-induced current in shallow water using
953 deep water wind and wave statistics. *Maritime Engineering* 174, 1–20.

954 Noda, E., 1970. Water waves generated by landslides. *J Water Port Coastal Ocean Div,
955 Am Soc Civ Eng.* 96, 835–855.

956 Panizzo, A., De Girolamo, P., Petaccia, A., 2005. Forecasting impulse waves generated
957 by subaerial landslides. *J Geophys Res Oceans* 110, 1–23.
958 <https://doi.org/10.1029/2004JC002778>

959 Paris, A., Heinrich, P., Abadie, S., 2021. Landslide tsunamis: Comparison between
960 depth-averaged and Navier–Stokes models. *Coastal Engineering* 170, 104022.
961 <https://doi.org/10.1016/j.coastaleng.2021.104022>

962 Rauter, M., Viroulet, S., Gylfadóttir, S.S., Fellin, W., Løvholt, F., 2022. Granular porous
963 landslide tsunami modelling – the 2014 Lake Askja flank collapse. *Nat Commun
964 13.* <https://doi.org/10.1038/s41467-022-28296-7>

965 Ró, G., Cerkowniak, G., 2024. Soft postglacial cliffs in Poland under climate change.
966 *oceanologia* 66. <https://doi.org/10.1016/j.oceano.2024.01.003>

967 Romano, A., Lara, J.L., Barajas, G., Di Paolo, B., Bellotti, G., Di Risio, M., Losada,
968 I.J., De Girolamo, P., 2020. Tsunamis Generated by Submerged Landslides:
969 Numerical Analysis of the Near-Field Wave Characteristics. *J Geophys Res
970 Oceans* 125, 1–26. <https://doi.org/10.1029/2020JC016157>

971 Romano, A., Lara, J.L., Barajas, G., Losada, I.J., 2023. Numerical modeling of tsunamis
972 generated by granular landslides in OpenFOAM®: A Coulomb viscoplastic
973 rheology. *Coastal Engineering* 186, 104391.
974 <https://doi.org/10.1016/j.coastaleng.2023.104391>

975 Romano, M., Romano, M., Liong, S., Vu, M.T., Zemskyy, P., Doan, C.D., Dao, M.H.,
976 Tkalich, P., 2009. Artificial neural network for tsunami forecasting. *J Asian Earth
977 Sci* 36, 29–37. <https://doi.org/10.1016/j.jseaes.2008.11.003>

978 Ruffini, G., Heller, V., Briganti, R., 2019. Numerical modelling of landslide-tsunami
979 propagation in a wide range of idealised water body geometries. *Coastal
980 Engineering* 153, 103518. <https://doi.org/10.1016/j.coastaleng.2019.103518>

981 Sælevik, G., Jensen, A., Pedersen, G., 2009. Experimental investigation of impact
982 generated tsunami; related to a potential rock slide, Western Norway. *Coastal
983 Engineering* 56, 897–906. <https://doi.org/10.1016/j.coastaleng.2009.04.007>

984 Sun, S.W., Wen, Q., do Carmo Reis Cavalcanti, M., Yang, X.R., Wang, J.Q., 2024.
985 Numerical and laboratory experiments on the toppling behavior of a massive
986 single block: a case study of the Furnas Reservoir, Brazil. *Landslides* 21, 2327–
987 2347. <https://doi.org/10.1007/s10346-024-02288-8>

988 Svennevig, K., Hicks, S.P., Forbriger, T., Lecocq, T., Widmer-Schnidrig, R., Mangeney,
989 A., Hibert, C., Korsgaard, N.J., Lucas, A., Satriano, C., Anthony, R.E., Mordret,
990 A., Schippkus, S., Rysgaard, S., Boone, W., Gibbons, S.J., Cook, K.L., Glimsdal,
991 S., Løvholt, F., Van Noten, K., Assink, J.D., Marboeuf, A., Lomax, A., Vanneste,
992 K., Taira, T., Spagnolo, M., De Plaen, R., Koelemeijer, P., Ebeling, C., Cannata,
993 A., Harcourt, W.D., Cornwell, D.G., Caudron, C., Poli, P., Bernard, P., Larose, E.,
994 Stutzmann, E., Voss, P.H., Lund, B., Cannavo, F., Castro-Díaz, M.J., Chaves, E.,
995 Dahl-Jensen, T., De Pinho Dias, N., Déprez, A., Develter, R., Dreger, D., Evers,
996 L.G., Fernández-Nieto, E.D., Ferreira, A.M.G., Funning, G., Gabriel, A.A.,
997 Hendrickx, M., Kafka, A.L., Keiding, M., Kerby, J., Khan, S.A., Dideriksen, A.K.,
998 Lamb, O.D., Larsen, T.B., Lipovsky, B., Magdalena, I., Malet, J.P., Myrup, M.,
999 Rivera, L., Ruiz-Castillo, E., Wetter, S., Wirtz, B., 2024. A rockslide-generated
1000 tsunami in a Greenland fjord rang Earth for 9 days. *Science (1979)* 385, 1196–
1001 1205. <https://doi.org/10.1126/science.adm9247>

1002 Tarwidi, D., Redjeki, S., Adytia, D., Apri, M., 2023. MethodsX An optimized XGBoost-
1003 based machine learning method for predicting wave run-up on a sloping beach.
1004 MethodsX 10, 102119. <https://doi.org/10.1016/j.mex.2023.102119>

1005 Tian, L., Lei, J., Mao, P., Xie, W., 2025. Landslide-Induced Wave Run-Up Prediction
1006 Based on Large-Scale Geotechnical Experiment : A Case Study of Wangjiashan
1007 Landslide Area of Baihetan Reservoir , China. *Water (Basel)*.

1008 Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han,

1009 J., Nas, S., Jan, Y.J., 2001. A Front-Tracking Method for the Computations of
1010 Multiphase Flow. *J. Comput. Phys.* 169, 708–759.
1011 <https://doi.org/10.1006/jcph.2001.6726>
1012

1013 Usama, Mr.M., Gardezi, H., Jalal, Mr.F.E., Rehman, Mr.M.A., Javed, Ms.N., Janjua,
1014 Dr.S., Iqbal, Mr.M., 2023. Predictive Modelling of Compression Strength of Waste
1015 Gp/Fa Blended Expansive Soils Using Multi-Expression Programming. *Constr
1016 Build Mater* 392, 131956. <https://doi.org/10.2139/ssrn.4227552>
1017 Wang, J., Ward, S.N., Xiao, L., 2015. Numerical simulation of the december 4, 2007
1018 landslide-generated tsunami in Chehalis Lake, Canada. *Geophys J Int* 201, 372–
1019 376. <https://doi.org/10.1093/gji/ggv026>
1020 Wang, W., Chen, G., Yin, K., Wang, Y., Zhou, S., Liu, Y., 2016a. Modeling of landslide
1021 generated impulsive waves considering complex topography in reservoir area.
1022 *Environ Earth Sci* 75, 1–15. <https://doi.org/10.1007/s12665-016-5252-y>
1023 Wang, W., Chen, G., Yin, K., Wang, Y., Zhou, S., Liu, Y., 2016b. Modeling of landslide
1024 generated impulsive waves considering complex topography in reservoir area.
1025 *Environ Earth Sci* 75, 1–15. <https://doi.org/10.1007/s12665-016-5252-y>
1026 Wang, Y., Liu, J., Li, D., Yan, S., 2017. Optimization model for maximum tsunami
1027 amplitude generated by riverfront landslides based on laboratory investigations.
1028 *Ocean Engineering* 142, 433–440.
1029 <https://doi.org/10.1016/j.oceaneng.2017.07.030>
1030 Watts, P., 1998. Wavemaker curves for tsunamis generated by underwater landslides. *J.
1031 Waterw. Port, Coast. Ocean Eng.* 124, 1998.
1032 Wiguna, E.A., 2022. Development of Real-Time Tsunami Early Warning System
1033 Dashboard Based on Tsunami-F1 and Machine Learning in Sunda Arc , Indonesia,
1034 in: 2022 IEEE Ocean Engineering Technology and Innovation Conference:
1035 Management and Conservation for Sustainable and Resilient Marine and Coastal
1036 Resources (OETIC). IEEE, pp. 23–29.
1037 <https://doi.org/10.1109/OETIC57156.2022.10176243>
1038 Wu, Y., Liu, L.-F.P., Hwang, K., Hwung, H.-H., 2018. A unified runup formula for
1039 breaking solitary waves on a uniform beach, in: Costal Engineering Proceedings.
1040 Wunnemann, K., Weiss, R., 2015. The meteorite impact-induced tsunami hazard.
1041 *Philosophical Transactions.*
1042 Yang, X., Kong, S., 2018. 3D Simulation of Drop Impact on Dry Surface. *Int J Comput
1043 Methods* 15, 1–23. <https://doi.org/10.1142/S0219876218500111>
1044 Yarkoni, T., Westfall, J., 2019. Choosing prediction over explanation in psychology:
1045 lessons from machine learning. *Prospect psychol science* 12, 1100–1122.
1046 <https://doi.org/10.1177/1745691617693393.Choosing>
1047 Yin, Y., Huang, B., Liu, G., Wang, S., 2015. Potential risk analysis on a Jianchuandong
1048 dangerous rockmass-generated impulse wave in the Three Gorges Reservoir,
1049 China. *Environ Earth Sci* 74, 2595–2607. [https://doi.org/10.1007/s12665-015-4278-x](https://doi.org/10.1007/s12665-015-
1050 4278-x)
1051 Young, A.P., Guza, R.T., Matsumoto, H., Merri, M.A., Reilly, W.C.O., Swirad, Z.M.,
1052 2021. *Geomorphology* Three years of weekly observations of coastal cliff erosion

1053 by waves and rainfall Mean Profile Change (m). Geomorphology 375.
1054 <https://doi.org/10.1016/j.geomorph.2020.107545>
1055