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Abstract: 11 

Cliff collapses in small lakes, and reservoirs induce powerful waves, threatening 12 

the offshore infrastructure. Unlike previous studies on waves induced by granular slide, 13 

this study experimentally and numerically investigates the waves induced by rotational 14 

cliff collapse, whereby the cliff fragments upon impact with the water surface, and 15 

determines the wave amplitude, runup, and energy transfer mechanics. Results indicate 16 

that as the water depth decreased, the impact Froude number and relative wave 17 

amplitude increased, wave velocity decreased, and splash showed greater elongation. 18 

The numerical modelling results also confirmed the experimental trends. Moreover, 19 

compared to an equivalent amount of granular mass sliding down a 30° slope, rotational 20 

cliff collapse produced 28-42% higher wave amplitudes due to the acute impact that 21 

transfers energy more efficiently. Machine learning based prediction models were 22 

subsequently developed to predict the wave amplitude and runup. The prediction 23 

models performed well both in the training and testing stages, with high R2 values, and 24 

were validated via established statistical indices, sensitivity, and parametric analysis. 25 

The prediction models highlighted a cumulative 90% contribution of impact velocity, 26 

cliff height, and the number of fragments on the wave amplitude. In comparison, runup 27 

was greatly influenced by bank slope angle, impact velocity, cliff mass, and height. The 28 

experimental results and developed prediction models can provide the basis for 29 

understanding the rotational cliff collapse-induced waves and can help with disaster 30 
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mitigation and risk assessment by effectively predicting the wave amplitude and runup. 31 

Keywords: Cliff fragmentation; landslide tsunami; prediction models; rotational cliff 32 

collapse; wave amplitude, and runup. 33 

1. Introduction 34 

The phenomenon of cliff overturning is common along rivers and reservoirs (glacial 35 

lakes, recreational lakes). The cliffs around these lakes are weathered due to climate 36 

change and wave action (Ró and Cerkowniak, 2024; Young et al., 2021) and can no 37 

longer be supported by the parent rock. When these initially intact, weathered cliffs fall 38 

into water, they usually fragment upon impact with the water surface, and as a result, 39 

induce an impulse water wave. Upon impact, the energy of gravitational mass is 40 

transferred to the water body, resulting in a huge splash and a wave train, propagating 41 

away from the point of impact. In the reservoirs and water channels located in 42 

mountainous regions, such as glacial lakes, dams, and a river flowing through valleys, 43 

these waves do not travel a long distance before reaching obstacles, opposite shores, or 44 

other infrastructure. As the waves retain most of their energy, size, and strength, the 45 

impact can cause significant damage to the population and infrastructure located along 46 

the banks of the reservoir. Historically, extreme impulse wave heights have been 47 

observed induced by landslides in events of 1958 Lituya Bay, USA, which caused a 48 

wave height of 524 m (Boultbee et al., 2006; Franco et al., 2020; Miller, 1960a), 2007 49 

Chehalis Lake, Canada, induced a wave of 38 m (Wang et al., 2015), 2015 Taan Fjord, 50 

USA, caused a wave of 193 m (Higman et al., 2018), and 2014 Lake Askaja (Gylfadóttir 51 

et al., 2017). More recently, a volcanic activity in 2018 at Anak Krakatoa, Indonesia, 52 

triggered a tsunami reaching up to a height of 13 m, and in 2023, the Dickson Fjord ice-53 

rock avalanche caused a wave height of 200 m (Svennevig et al., 2024).  54 

The cases mentioned above are extreme, whereas the phenomena of sliding, 55 

toppling, and falling of cliffs in small lakes and reservoirs are quite frequent and have 56 

been captured by various people around the globe. Fig. 1 (a, b, and c) indicates a 57 

rotational (topple) cliff collapse in Furnas Lake, Brazil, on 8 January 2022, killing 10 58 

people (Maciel et al., 2023; Sun et al., 2024). As a result of the collapse, a huge splash 59 

and induced waves can be seen in Fig. 1 (c). Despite recurring events of cliff collapse 60 
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along the water banks, the rotational failure of cliffs accompanied by fragmentation 61 

upon impact with the water surface remains poorly understood. Recent studies on water 62 

waves have focused on block slides, translational slides, or granular flows, where the 63 

mass moves along a predefined basal plane. Moreover, physical modeling has also been 64 

carried out to analyse the amplitude and runup of the landslides-induced water waves 65 

either by using block slide or granular slide (Heller and Spinneken, 2015, 2013; 66 

Lindstrøm, 2016; Lindstrøm et al., 2014; McFall and Fritz, 2016; Miller, 1960; 67 

Mohammed and Fritz, 2012; Montagna et al., 2011; Romano et al., 2023, 2020; Sælevik 68 

et al., 2009; Yin et al., 2015). However, the rotational collapse is different from the type 69 

of failure mentioned above. In rotational collapse, the cliff rotates along the base and 70 

falls into water, thus inducing a huge splash and fragmenting upon impact.  71 

While a few relevant studies provide partial understandings on the phenomena, 72 

such as as Liu et al. (2025) numerically analyzed the waves induced by different types 73 

of mass movements, considering different shapes using smoothed particles, similarly, 74 

Heller et al. (2021) experimentally analyzed the waves induced by iceburg calving and 75 

Yin et al. (2015) studied the potential cliff collapse of Jianchuandong rock mass in 76 

Three Gorges dam. While these studies contribute to the broader understanding of the 77 

impact induced by water waves, they do not consider the combined effect of rotational 78 

collapse and fragmentation. Moreover, the shape of the induced splash, as observed in 79 

Lake Furnas, has also not been properly explored either experimentally or numerically, 80 

as can be seen in Fig. 1 (a, b, and c), the falling cliff was still intact and broke under its 81 

own weight upon impact with the water surface and induced a huge splash.  82 

Parallel advancements in numerical modeling have enhanced our understanding of 83 

landslide induced water waves thorugh, computational fluid dynamics (CFD), Eulerian 84 

and Lagrangian methods, employing depth-averaged model, nonlinear shallow water, 85 

Navier-Stokes model, or Boussinesq equation, for both two- and three-dimensional 86 

modelling (Franci et al., 2020; Grilli et al., 2019; Guan and Shi, 2023; Heidarzadeh et 87 

al., 2020; Kim et al., 2020; Mulligan et al., 2020; Paris et al., 2021; Rauter et al., 2022; 88 

Ruffini et al., 2019). Though these methods have successfully analysed the wave 89 

generation, propagation, and wave dynamics either induced by granular slide or block 90 
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slide, their direct application to rotational cliff collapse remains limited.  91 

Furthermore, empirical and regression-based hybrid prediction models have been 92 

developed for landslide-induced water waves by considering geometric, geological, and 93 

kinematic parameters, as shown in Table 1. Das and Wiegel (1972) proposed that the 94 

sliding velocity and water depth are the main factors affecting the wave amplitude. 95 

Watts (1998) emphasised the role of slope angle, length, and mass, while Fritz et al. 96 

(2003) highlighted the role of landslide mass thickness governing the amplitude of the 97 

induced wave. While these models provide important parameteric correlations, they 98 

were developed for translational or granular slides and show limited application for 99 

complex rotational cliff collapses involving fragmentation (Dai et al., 2023; Dignan et 100 

al., 2023; Esposti Ongaro et al., 2021).  101 

Recently, scientists have shifted to machine learning (ML) approaches for 102 

predicting wave dynamics (Bujak et al., 2023; Cesario et al., 2024; Li et al., 2024, 2023; 103 

Romano et al., 2009; Tarwidi et al., 2023; Tian et al., 2025; Wang et al., 2017; Wiguna, 104 

2022). While these prediction models have shown improved performance over 105 

traditional regression and hybrid models, there is a need to develop an ML-based 106 

framework for predicting amplitude and runup of the waves induced by rotational cliff 107 

collapse, considering fragmentation.  108 

To address this gap, the current study uses Genetic Programming (GP), and 109 

specifically Multi-Expression Programming (MEP), to develop a data-driven prediction 110 

model for the wave amplitude and runup. This model is similar to living organisms, 111 

which can learn, adapt, and modify their composition, size, and shape (Gardezi et al., 112 

2024). MEP is a cutting-edge, advanced form of GP that adopts a demonstrative model 113 

for programming and uses linear chromosomes to determine optimum population size, 114 

mutation probability, and evolutionary model. Compared to other ML models, it can 115 

produce more precise results even when the problem complexity is unknown (Usama 116 

et al., 2023) 117 

In this study, we have experimentally and numerically analyzed the hydrodynamics 118 

of the wave induced by rotational cliff collapse, considering fragmentation of the cliff 119 

upon impact, and have also developed a prediction model for wave amplitude and runup. 120 
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The physical modeling was carried out by developing a scaled water flume and a 121 

platform inducing rotational motion of the cliff. A total of 162 experiments were carried 122 

out, varying seven control parameters: water depth, fall height, cliff mass, impact 123 

velocity, cliff height, runup slope angle, and number of fragments. To improve accuracy 124 

and consistency, each parametric combination was averaged from two experimental 125 

values; hence, a total of 81 experimental results were obtained. The parameters were 126 

selected to comprehensively elaborate on the distinct phases of rotational cliff collapse 127 

and induced waves. Water depth and runup slope angle provide the basis for wave 128 

propagation and runup. Whereas, the cliff collapse dynamics are explained by cliff mass 129 

(which governs the energy input), height of the cliff (defines the initial potential energy), 130 

and fall height (determines the transformation of potential to kinetic energy). Cliff 131 

impact velocity determines the amount of kinetic energy imparted to the water body at 132 

the time of impact, which is important for wave generation. Finally, the number of 133 

fragments is selected to demonstrate the effect of fragments of cliff upon impact with 134 

the water surface on wave amplitude and runup height. Together, these parameters 135 

define the energy budget from the state of rest to its release and then transfer to the 136 

water body to its final stage as amplitude and runup. Since the wave velocity was not 137 

directly measured during the experiments, it was measured using a 2D numerical model 138 

developed using Ansys-Fluent. Furthermore, the numerical modeling results for wave 139 

amplitude and runup were cross-validated with their experimental counterparts.   140 

Finally, based on experimental results, prediction modeling for the amplitude and 141 

runup of water waves was carried out using multi-expression programming (MEP), and 142 

a novel prediction model was developed for the water waves induced by rotational cliff 143 

collapse, considering fragmentation of the cliff upon impact with the water surface.  144 
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 145 

Fig. 1: (a, b, and c) waves induced by a cliff collapse in Lake Furnas, Brazil. (d, e, and 146 

f) sketch diagram indicating the detachment and rotational fall process. 147 
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Table 1: Historical overview of the prediction models for wave amplitude  162 

Authors Predictive model 

(Kamphuis and Bowering, 1970) 𝐴𝑚 = (
𝑣𝑠

√𝑔ℎ
)

0.7

(0.31 + 0.2 𝑙𝑜𝑔 (
𝑙𝑠

ℎ2
)) + 0.35ⅇ−0.08(𝑥/ℎ) 

(Noda, 1970) 𝐴𝑚 = 1.32
𝑣𝑠

√𝑔ℎ
 

(Huber and Hager, 1997) 
𝐻𝑚

ℎ
= 2 × 0.88 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠2 (
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3
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)
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(Fritz et al., 2004) 𝐴𝑚 = 0.25 (
𝑣𝑠

√𝑔ℎ

)

1⋅4

(
𝑠

ℎ
)

0.8

 

(Panizzo et al., 2005) 
𝐻𝑚

ℎ
= 0.07 (

𝑇𝑠ℎ2

𝑤𝑠
)

−0.45

(𝑠𝑖𝑛 𝛼)−0.88ⅇ0.6𝑐𝑜𝑠𝜃
(

𝑟

𝑛
)

−0.44

 

(Heller, 2007) 𝐴𝑚 =
4

9
[𝐹 (

𝑠

ℎ
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6𝛼

7
)

2

]
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(Mohammed and Fritz, 2012) 

𝐴𝑚 = 𝑚𝑎𝑥(𝐴𝐶1
, 𝐴𝐶2) 

𝐴𝑐1 = 0.3𝐹2.1 (
𝑠

ℎ
)

0.6

(
𝑟

ℎ
)

(−1.2𝐹0.25(
𝑠

ℎ
)
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𝐴𝑐2 = 1.0𝐹𝑆0.8 (
𝑤

ℎ
)
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𝑙

ℎ
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(
𝛾

ℎ
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𝑤
ℎ
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(
𝑤
ℎ

)
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𝑐𝑜𝑠2 𝛼 

(Wang et al., 2016) 𝐴𝑚 = 1.17𝐹 (
𝑠𝑙

𝑏ℎ
)

0.25

(
𝑤

𝑏
)

0.45

(Sin2α + 0.6cos2α) 

(Li et al., 2023) 𝐴𝑚 = 0.59√
2𝐻(1−𝑓𝑐𝑜𝑡𝛼)

ℎ
(

𝑠𝑤𝑙
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2
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Note: l is the landslide length; s is the landslide thickness; w is the landslide width; m is the landslide mass weight; V is the 

landslide volume; H is the landslide height; 𝑇𝑠 time for motion of slide, b is the river width; h is the still water depth; x(r) is 

the offshore distance from the bank slope; α is the slope angle; θ is the angular direction; 𝑣𝑠 is the impact velocity. 

2. Research methodology 163 

2.1 Experimental setup 164 

The physical modeling for wave amplitude and runup induced by rotational cliff 165 

collapse was carried out in a three-dimensional water flume made up of plexiglass, as 166 

shown in Figs. 2 and 3. One end of the flume is vertical at 90°, whereas the other end 167 

is inclined and fixed at 30° (Fig. 3a and b). The flume is 0.55 m high, 0.5 m wide, and 168 

1.4 m long along the base and 2.35 m long at the top. Furthermore, to measure the runup 169 

of induced water waves at various slope angles, two sliding rails were installed towards 170 

the inclined end at 45° and 60°. So, upon insertion of the gate at 45°and 60°, the top 171 

length of the flume was further reduced according to the Pythagoras theorem. To induce 172 

the rotational cliff collapse, a 0.55 m wide and 0.6 m high movable platform was 173 
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designed, which can move in the vertical direction and can also rotate about its axis. 174 

The rotational motion was induced by pulling the hinge; the release ensured a pure 175 

rotational motion, which was visually verified by video analysis. The flume was marked 176 

with a vertical scale to measure the water depth. The wave amplitude was measured 177 

using capacitance-type wave gauges with an accuracy of ± 0.5 mm, placed along the 178 

centerline at specified intervals. The runup height was measured using a graduated 179 

paper attached to the inclined surface. The entire process was recorded using a digital 180 

camera (240 fps, 720p resolution) placed perpendicular to the experimental flume; the 181 

velocity of the falling cliff was verified by frame-by-frame video analysis using Particle 182 

Image Velocitymeter (PIV).  183 

 184 

Fig. 2: Illustration of experimental setup including wave gauges, rotational platform, 185 

recording, and data storage devices. 186 

 187 

Fig. 3: Photographs of the setup, (a) Experimental flume, (b) platform for inducing 188 

rotational cliff collapse. 189 

2.2 Test preparation and materials 190 

Physical experiments were carried out by varying the water depth, fall height, 191 
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number of fragments, bank slope angle, mass of falling rock, cliff height, and impact 192 

velocity. The tests were carried out for three water depths, i.e., 0.34 m, 0.27 m, and 0.20 193 

m, and three fall heights, i.e., 0.64 m, 0.44 m, and 0.245 m from the surface of the water. 194 

Furthermore, the number of blocks was also varied, i.e., 6, 10, and 12 blocks having 195 

combined weights of 1.445 kg, 2.29 kg, and 2.82 kg, respectively. At the same time, the 196 

impact velocity changed by changing the fall height. The wave runup was measured by 197 

varying the bank slope angle, i.e., 30°, 45°, and 60°.  198 

To replicate the field density of the rocks, red gutka bricks having a density of 199 

around 2000 kg/m3 were used. A singular block had a dimension of 0.055ⅹ0.05ⅹ200 

0.042 m. The mass volume and dimension of all the blocks were unchanged to ensure 201 

consistency in the experiments. A combination of 6, 10, and 12 blocks of red gutka 202 

bricks was used to form a cliff and measure the wave amplitude and runup of induced 203 

waves. The blocks were joined together with the help of cement paste having a water-204 

cement ratio W/C 0.8 and cured for 2 hours in front of an electric heater at 150 °C. To 205 

ensure the weak bond strength, several trials for bond strength were carried out after a 206 

curing period of 2 hours, and it was found to be in the range of 0.42-0.5 MPa. In contrast, 207 

the inertial stresses at the time of impact were several times higher, such that they 208 

caused the fragmentation of the cliff. This condition was purposely designed to imitate 209 

naturally fractured cliff materials, confirming that the structure fragmented primarily 210 

along the joints upon impact with the water surface, consistent with field observations 211 

of rotational cliff collapses. The bonded blocks were placed on the rotational platform 212 

at specific heights, i.e., 0.64 m, 0.44 m, and 0.245 m from the water level, and were 213 

allowed to rotate under their own weight by pulling the hinge, such that the placed block 214 

falls in the water following rotation motion along its base Fig. 3 (b). To avoid the 215 

slippage of blocks and to ensure that it had sufficient frictional resistance needed for 216 

pure rotational motion of the simulated cliff, finely-grounded bricks of the same cliff 217 

material were pasted on the rotational platform, thereby preventing translational motion 218 

or vertical free fall into the water. 219 

 220 
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 Furthermore, to reduce the impact of falling blocks on the base of the flume, a 221 

wooden plank weighing 2.69 kg and dimensions 0.65mⅹ0.37mⅹ0.01 m was placed 222 

at the point of impact inside the flume. Due to its large surface area and lighter density, 223 

it tends to float in the flume, so two blocks of concrete weighing 3.58 kg were placed 224 

on it, Fig. 3 (a). Since the fall height was small, no considerable local breakage was 225 

observed in the blocks, and the brief water contact minimised the water absorption 226 

effect.  227 

The induced wave amplitude was measured by placing the wave measuring gauges 228 

at a distance of 0.65 m and 0.135 m from the vertical face; the gauges were wired and 229 

connected to the laptop. At the same time, the runup was measured manually with the 230 

help of a scale by pasting a scaled paper on the slope. Furthermore, the experiments 231 

were also recorded with the help of a high-resolution camera for verification purposes. 232 

2.3 Numerical Modeling 233 

Simulating multi-phase flows is challenging due to the constant deformation of the 234 

liquid-gas interface. Various numerical methods have been developed to model these 235 

flows, each offering unique advantages depending on the specific flow regime and 236 

characteristics of interest. In this study, the Volume of Fluid (VOF) method is utilized 237 

for its effectiveness in handling significant interface distortions and topological changes. 238 

The VOF method offers superior mass conservation, which is critical in high velocity 239 

impact conditions where liquid fragmentation and wave generation are significant 240 

(Backbill et al., 1992; Hirt and Nichols, 1981). Alternative numerical schemes, such as 241 

the Front Tracking approach, are generally limited in handling complex topological 242 

changes (Tryggvason et al., 2001; Liu and Liu, 2010; Monaghan, 1994; Yang and Kong, 243 

2018). Another approach is the Level Set method, but it suffers from mass conservation 244 

and convergence issues. The Lattice Boltzmann Method (LBM) is also common; 245 

however, its applicability to high velocity impact is rather limited (Aidun & Clausen, 246 

2010). Given these trade-offs, the Volume of Fluid (VOF) method finds an optimal 247 

balance of computational efficiency, interface tracking capability, and proven reliability 248 

for modeling multiphase flow in the moderate-to-high velocity range relevant to this 249 
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study. Therefore, a two-dimensional numerical model of a cliff, having the same 250 

properties as the experimental cliff mentioned previously, hitting the water surface is 251 

developed using the VOF method to accurately capture the liquid-gas interface. 252 

In this approach, a volume fraction (α), ranging between 0 and 1, is applied across 253 

the entire computational domain. A value of α = 1 indicates a control volume filled with 254 

liquid, while α = 0 denotes a control volume filled with gas. The interface is represented 255 

by values where 0 < α < 1. In the Volume of Fluid (VOF) method, the momentum 256 

equation is solved across the entire computational domain, with the resulting velocity 257 

field shared by all phases. To account for surface tension effects, a continuum surface 258 

force (CSF) model is employed (Backbill et al., 1992). The normal vector 𝑛  and 259 

interface mean curvature 𝑘 are as follows, respectively: 260 

𝑛 =
𝛻α

|𝛻α|
                                                                                                                        (1) 261 

and 262 

𝑘 = 𝛻 ⋅
𝛻α

|𝛻α|
                                                                                                                     (2) 263 

The interface is maintained as sharp through the use of geometric reconstruction to 264 

ensure its clarity. The volume fraction (α) is discretised with the geo-reconstruct scheme, 265 

while the convective terms in the momentum equation are handled using a second-order 266 

upwind method. The PISO (Pressure-Implicit with Splitting of Operators) algorithm 267 

was employed for pressure-velocity coupling, which is well-suited for transient flows. 268 

Temporal discretisation employs a second-order implicit scheme, and spatial gradients 269 

are calculated using the Least Squares Cell-Based method. 270 

The boundary conditions were defined as follows: the bottom boundary was 271 

modeled as a no-slip wall, while the top boundary was set as a pressure outlet at 272 

atmospheric conditions, and the lateral sides were modeled as stationary walls to 273 

confine the liquid film within the domain. For accurate simulation of the rotational 274 

motion of the cliff through the air-water interface in a multi-phase flow environment, 275 

dynamic meshing was implemented within the ANSYS Fluent framework. This 276 

approach facilitated the adaptation of the computational mesh to accommodate the 277 

cliff's movement while maintaining the integrity of the liquid-gas interface captured by 278 
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the Volume of Fluid (VOF) method. Dynamic meshing was critical for modeling the 279 

complex interactions between the falling cliff and the surrounding air and water phases, 280 

allowing the mesh to deform and adapt in response to the cliff’s trajectory. In ANSYS 281 

Fluent, the dynamic meshing strategy employed a combination of mesh deformation 282 

and local remeshing techniques to handle the cliff's motion. Mesh deformation was 283 

applied to adjust the existing mesh nodes smoothly as the cliff moved, preserving mesh 284 

quality in regions experiencing moderate displacement. For areas near the cliff where 285 

significant deformation could lead to poor mesh quality, local remeshing was utilized 286 

to regenerate mesh elements for better numerical stability and accuracy. The smoothing 287 

and remeshing algorithms were configured to maintain high mesh quality, with a 288 

skewness threshold set to prevent excessive element distortion. 289 

The rotational cliff collapse was simulated using an in-house user-defined function 290 

(UDF). This UDF interfaced with ANSYS Fluent to dynamically update the rock’s 291 

position and velocity. To enhance computational efficiency, a dynamic mesh zone was 292 

defined around the cliff, with a finer mesh resolution near its surface to capture the 293 

sharp gradients in the flow field and interface dynamics. The mesh was gradually 294 

coarsened away from the rock to reduce computational cost while maintaining 295 

sufficient resolution in the far-field regions. The dynamic meshing process was 296 

synchronised with the transient flow solver, using a time step size determined through 297 

a time step independence study to balance accuracy and computational efficiency. It is 298 

also worth mentioning that the numerical simulations were performed considering the 299 

rock as a unified mass. This approach describes the slight differences between the 300 

experimental and numerical results, which are nonetheless within the acceptable range.  301 

2.4 Multi-expression programming   302 

The MEP model was developed for predicting wave amplitude and runup using 303 

experimental data, as shown in Table 2. A dataset of 81 experimental results was used 304 

as an input to a machine learning model. Furthermore, the data was divided into 70/30 305 

ratios for training and validation purposes before developing the model. The model 306 

starts working by generating a random chromosome population, and it continues to 307 

generate the chromosomes until a terminal condition is achieved, generating an optimal 308 



 13 

expression from the data having input and output pairs over a certain number of 309 

generations, as shown in Fig. 4.  310 

Based on a binary tournament process, parents are selected and then undergo a 311 

recombination process through a consistent crossover probability. This recombination 312 

produces two more offspring. These offspring go through mutation, and if these 313 

offspring perform better than the least fitting offspring in the current population, then 314 

the better offspring replace them. The illustrations used by MEP are similar to the ones 315 

used by C++ and Pascal compilers. The MEP chromosomes are comprised of numerous 316 

genes combined using various mathematical operators such as addition (+), subtraction 317 

(-), multiplication (x), and division (/), and these genes create expression trees (ETs) 318 

(Cheng et al., 2020). Moreover, there are several hyperparameters such as code length, 319 

sub-population size and number, crossover probability, and other sets of various 320 

functions involved in in generation of MEP code, and they also govern the overall 321 

performance of the code. Among these parameters, the size of the population tells us 322 

about the number of programs being generated, whereas an increase or decrease in 323 

subpopulation size directly affects the complexity and computation time of the model. 324 

Moreover, the length of the developed model is controlled by varying the code length 325 

parameter. During model development, prerequisite tuning procedures were applied to 326 

optimize these hyperparameters. This careful selection minimized the risk of premature 327 

convergence or underfitting while ensuring computational efficiency. 328 

Table 2: Experimental dataset used for training and validation of the machine learning 329 

model. 330 

S/No. 
Water depth d 

(m) 

Fall height H 

(m)  

Fragments 

(Nf) 

Angle α 

() 

Cliff Mass

m (Kg) 

Cliff height h 

(m) 

Velocity 

v (m/s) 

Amplitude A 

(m) 

Runup 

R (m) 

1 0.34 0.245 6 30 1.445 0.12 2.19 0.0225 0.051 

2 0.34 0.445 6 30 1.445 0.12 2.95 0.0230 0.056 

3 0.34 0.645 6 30 1.445 0.12 3.56 0.0365 0.068 

4 0.34 0.245 6 45 1.445 0.12 2.19 0.0370 0.045 

5 0.34 0.445 6 45 1.445 0.12 2.95 0.0425 0.051 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

37 0.27 0.245 10 30 2.295 0.20 2.19 0.0431 0.116 
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38 0.27 0.445 10 30 2.295 0.20 2.95 0.0510 0.129 

39 0.27 0.645 10 30 2.295 0.20 3.56 0.0685 0.141 

40 0.27 0.245 10 45 2.295 0.20 2.19 0.0390 0.085 

41 0.27 0.445 10 45 2.295 0.20 2.95 0.0523 0.102 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

78 0.2 0.645 12 45 2.82 0.24 3.56 0.0733 0.146 

79 0.2 0.245 12 60 2.82 0.24 2.19 0.0565 0.062 

80 0.2 0.445 12 60 2.82 0.24 2.95 0.0636 0.083 

81 0.2 0.645 12 60 2.82 0.24 3.56 0.0657 0.098 

 331 

Fig. 4 Schematic representation of MEP workflow used in this study 332 

3. Results and discussions 333 

3.1 Experimental results 334 

The experimental results of the wave amplitude and runup, induced by rotational 335 

cliff collapse, reveal complex hydrodynamic processes. As shown in Fig. 5, the failure 336 

is initiated by the rotational fall of the cliff, leading to a significant amount of impact 337 

energy upon hitting the water surface. The impact induced a huge splash, which is 338 

evident from Fig. 5 (b, e & h). It was observed that the shape of the splash also varies 339 

with water depth for all the cases; higher water depths resulted in a mushroom-shaped 340 

splash, i.e., broader on the top, as the momentum dissipates before interacting with the 341 

bottom surface, resulting in a vertical jet and the formation of a mushroom-shaped 342 
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splash. as can be seen in Fig. 5(h). The observed phenomena perfectly align with the 343 

basic concepts of fluid dynamics, which state that greater depths absorb more impact 344 

energy compared to shallow waters. Shallow waters produced a vertically elongated 345 

splash as can be seen in Fig. 5 (b & e). It can be observed that as the depth decreases, 346 

the splash becomes more elongated, as shallower depths intensify the upward 347 

momentum transfer, thus resulting in a more elongated shape (Kubota and Mochizuki, 348 

2009).    349 

 350 

Fig. 5: A pictorial display of the experimental setup for various water depths, i.e., 0.20 351 

m, 0.27m, and 0.34 m. (a, d & g) indicate rotational fall of the cliff, (b, e & h) 352 

showing splash as a result of cliff impact, (c, f & I) formation and propagation of 353 

induced wave and runup at various slope angles. 354 

3.1.1 Relation between energy and amplitude 355 

Further, the relationship between impact energy and wave response was also 356 

investigated by establishing a dimensionless impact energy parameter (K.E/ρgh3). 357 

Where K.E is the kinetic energy of the cliff, ρ is the density, and h is the water depth. 358 

The negative quadratic coefficient in Fig. 6(a) indicates a nonlinear response, such that 359 

at the start, the wave amplitude increases as the impact energy increases, but later it 360 

decreases, due to reduced energy transfer at higher impact values. At higher impact 361 

values, the released energy was not fully used in the wave formation and propagation; 362 

instead, a part of the energy was dissipated in the formation of splash, and in the 363 

formation of air pockets and their subsequent collapse. Moreover, the coefficient of 364 

determination was found to be 77% indicating a good data fit. 365 
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The results for the relative wave amplitude and wave energy were analyzed for 366 

three water depths, i.e., 0.34 m, 0.27 m, and 0.20 m., as shown in Fig. 6(b). The results 367 

indicate a strong correlation for all three cases, with coefficients of determination 368 

around 0.96. The results indicate a direct relation between wave height and energy, 369 

whereas the decreasing slope values with the increasing water depth suggest that for 370 

deeper water the wave amplitude decreases at a slower rate with increasing wave energy, 371 

thus highlighting the impact of water depth on the wave dynamics, such that shallower 372 

water allows more amplification of waves for the same energy level, and this is due to 373 

the increased non-linear interactions and enhanced energy concentrations in shallower 374 

depths (Myrhaug and Lader, 2019). 375 

 376 

Fig. 6: (a) Dimensionless impact energy (K.E/ρgh3) vs relative wave amplitude, 377 

indicating a nonlinear trend, (b) Wave energy vs relative wave amplitude, indicating 378 

higher wave amplifications in shallow waters.  379 

(a) (b)
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 380 

Fig. 7: Relative wave amplitude vs relative wave runup at various slope angles and 381 

water depth. 382 

The results for the relative wave height and runup for all three water depths and 383 

three runup slope angles are shown in Fig. 7. The relationship indicates a strong 384 

correlation between wave amplitude and runup for all three slope angles. The 385 

decreasing line-slope values with increasing runup slope angle indicate that wave runup 386 

increases at a slower rate for sharp slope angles compared to mild slopes. The trend 387 

highlights the effect of slope angle on the runup. The result also indicates that the mild 388 

slope angles help wave runup amplification, as they dissipate a very small amount of 389 

energy, whereas steeper angles result in lower runup heights because of higher energy 390 

losses (Wu et al., 2018).  391 

3.1.2 Impact Froude no vs Relative wave amplitude 392 

Fig. 8 indicates the relationship between the impact Froude number and relative 393 

wave amplitude (A/d), under varying experimental conditions for the first gauge, i.e., 394 

near the impact zone. Since we are interested in the immediate response of the wave 395 
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influenced by the impact Froude number. The results indicate that as the water depth 396 

decreases, the relative wave amplitude and impact Froude number increase, indicating 397 

a reduction in the dissipation of impact energy, causing pronounced surface turbulence 398 

and increased wave height. Additionally, the decreased water depth also increased the 399 

value of the impact Froude number by reducing its characteristic velocity, resulting in 400 

stronger wave generation upon impact. The calculations for Reynolds number for the 401 

experiments resulted in very high values, thus indicating a strong turbulent flow, which 402 

is also evident from Fig. 5, so viscous effects are very, very small and can be ignored, 403 

thus indicating the Froude dynamics similarity. The experimental results indicate the 404 

complex interaction between wave propagation, impact dynamics, and bathymetrical 405 

effects in waves induced by rotational cliff collapse. Moreover, upon impact, the cliff 406 

fragmentation distributes impact energy over a larger area of water, thus increasing 407 

wave height by enhanced turbulence and water splashing effects.  408 

 409 

Fig. 8: Relationship between impact Froude number and relative wave amplitude. 410 

3.1.3 Wave amplitude results 411 

The results for the wave amplitude for various parameters are shown in Figs. 9, 10, 412 
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and 11. As mentioned earlier, two gauges were used to measure the induced wave 413 

amplitude. Fig. 9 provides a detailed comparison of the wave amplitude recorded at 414 

both gauges for a 60° runup slope angle and a 0.445 m fall height. It can be observed 415 

that gauge-1, which is near to impact zone, has a higher relative amplitude compared to 416 

gauge-2. Furthermore, the results for the relative wave amplitude against the 417 

normalized time were also analysed for all the water depths (0.20 m, 0.27 m, and 0.34 418 

m), fall height (0.245 m, 0.445 m, and 0.645 m), and cliff height (0.12 m, 0.20 m, and 419 

0.24 m). The results indicate that the wave amplitude increases as the cliff height, 420 

impact velocity, and number of fragments increase for all the water depths, as can be 421 

observed in Fig. 10, thus demonstrating that the potential energy of the falling cliff 422 

plays a critical role in the magnitude of the resulting wave.  423 

Interestingly, comparing the wave amplitude induced by cliffs of various heights 424 

falling from the same height revealed that the water depth and the wave have an inverse 425 

relationship. As shown in Fig. 10 (a, b, and c), the average wave amplitude for various 426 

cliff heights and the same fall height of 0.245 m at 0.20 m water depth is 26% more 427 

than the average wave amplitude induced by 0.27 m water depth and 50% more than 428 

the 0.34m water depth wave amplitude. Similarly, Fig. 10 (d, e, and f) indicates that the 429 

average wave amplitude for 0.445 m fall height at 0.20 m water depth is 18% more than 430 

0.027 m and 47% more than 0.34 m water depth, whereas, for 0.645 m fall height wave 431 

amplitude induced by 0.20 m water depth is 25% more than 0.27 m and 37% more than 432 

0.34 m water depth (Fig. 10 g, h & i), thus suggesting that the deeper water dissipates 433 

the impact energy more effectively, as the deep water have more mass available to 434 

absorb and redistribute the impact energy, compared to shallower water thus reducing 435 

the overall amplitude of the induced wave. Moreover, a similar trend was observed for 436 

the wave amplitude involving 45°and 60°runup slope angle.    437 

Later on, we performed another experiment by using granular material of 438 

equivalent mass as of cliff and slid it on a 30° slope, for all the water depths, and 439 

amplitude of the induced wave was measured as shown in Fig. 11. Fig. 11(a) indicates 440 

that the wave amplitude for 0.20 m water depth and 1.445 kg granular mass (equivalent 441 

to 0.12 m cliff height) was 15% more than 0.27 m water depth and 65% more than wave 442 
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amplitude induced by 0.34 m water depth. Whereas for 2.29kg and 2.82kg granular 443 

mass equivalent to 0.20 m and 0.24 m cliff height similar trend was observed as shown 444 

in Fig. 11 (b and c), thus indicating that as the water depth increases, the wave amplitude 445 

decreases for all the equivalent granular masses, as happened in the case of cliff fall. 446 

Furthermore, a comparison between the wave amplitude induced by a falling cliff 447 

and equivalent granular mass at various water depths indicates that the amplitude of the 448 

wave induced by an equivalent granular mass in 0.34 m, 0.27 m, and 0.20 m water depth 449 

was on average 28%, 35% and 42% less than the wave amplitude induced falling cliff. 450 

The substantial difference in wave amplitude highlights the importance of energy 451 

transfer in wave formation. The falling cliff following a rotational motion imparts a 452 

more sudden and concentrated impact that allows an efficient energy transfer to water, 453 

leading to higher wave amplitudes. On the other hand, granular flows, being more 454 

deformable and flowing along a slope, result in gradual energy transfer over a wide area, 455 

thus resulting in lower wave amplitudes. The results highlight that it’s not only the total 456 

impact energy that affects the behavior of the induced wave, but the mode of energy 457 

transfer also plays a critical role (Mohammed and Fritz, 2012; Wunnemann and Weiss, 458 

2015). Based on the experimental results for wave amplitude and runup induced by 459 

rotational cliff collapse that fragments upon impact with the water surface, a novel 460 

prediction model was prepared using multi-expression programming. The justifications 461 

for the use of MEP have been well explained in the previous sections.  462 
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 463 

Fig. 9: A comparative display of the water waves recorded at gauge 1&2 for a 60° 464 

slope angle, and 0.445 m fall height. 465 

 466 

Fig. 10: Relative wave amplitude for various water depths, cliff height, and fall height 467 
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at 30°runup slope angle, (a, b&c) relative wave amplitude induced by 0.245 m fall 468 

height, (d, e&f) relative wave amplitude induced by 0.445 m fall height, (g, h&i) 469 

relative wave amplitude induced by 0.645 m fall height. 470 

 471 

Fig. 11: Water waves induced by equivalent granular mass at 30 slope angle 472 

3.2 Numerical modeling results 473 

The numerical simulations conducted in this study successfully captured key 474 

dynamic characteristics of the wave generated by the rotational cliff collapse, 475 

specifically the wave amplitude and wave runup, across a range of test cases. Moreover, 476 

the front velocity of the incident wave was also measured. The simulations were also 477 

focused on verifying the results obtained from the rotational cliff collapse in the 478 

experiments. To quantify the wave amplitude, runup, and velocity, a post-processing 479 

technique was employed. To establish the reliability of the wave front velocity 480 

measurements, the velocity was calculated at 5–7 distinct locations along the wave’s 481 

propagation path and at multiple time steps during the simulation. This multi-point 482 

sampling approach minimized errors due to spatial and temporal variations. Fig. 12 483 

shows a representative case of wave formation and propagation in a water tank at a 484 

depth of d = 0.2 m at various time frames. 485 
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Fig. 12: Wave formation and propagation at water depth of d = 0.2 m at various 

time frames. 

The wave amplitude was defined as the peak vertical displacement of the liquid 486 

surface relative to the undisturbed free surface level. Fig. 13 illustrates a representative 487 

case, depicting the wave front propagation.  488 

 489 

Fig. 13: Wave dynamics following a rotational cliff collapse in water depth d = 0.34 490 

m. Stable liquid surface before impact (black line); wave front propagating away from 491 

the point of impact (white line). 492 

To validate the results of simulations, we compared the results of the runup height 493 

with the experimental values. Table 3 presents the runup values for various runup slope 494 

angles, i.e., 30°, 45°, and 60°, for a water depth of 0.27 m. The comparison of simulated 495 

values was performed at this depth, as it lies in the middle of the experimental test range 496 

of water depths. Numerical modeling results indicate that for a fixed water depth, the 497 

runup values consistently decrease as the runup slope angle increases from 30° to 60°. 498 

At a water depth of 0.27 m, the runup decreases from 0.2 m at 30° to 0.17 m at 45°, and 499 

further to 0.11 m at 60°. This reduction is attributed to the changing momentum transfer 500 

dynamics with increasing slope angle. At less steep angles (closer to horizontal, e.g., 501 

30°), the rock’s momentum generates a stronger radial splash and greater upslope 502 

displacement of the liquid along the cliff. As the angle increases toward 60°, a larger 503 

component of the momentum is directed parallel to the cliff, reducing the vertical 504 

impulse. The experimental and numerical results agree well, and the difference lies 505 

within the acceptable range of 4-5%. The experimental results for the other two water 506 

depths also indicate similar behavior.  507 
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Table 3: Peak runup values along the various slope angles at a water depth of 0.27 m 508 

Depth d 

(m) 

Numerical-30o Exp-

30o 

Numerical-45o Exp-

45o 

Numerical-60o Exp-60o 

0.27 0.20 0.19 0.17 0.16 0.11 0.102 

Next, we measured the wave velocity through the numerical results, as it wasn’t 509 

captured accurately through experimental images. Fig. 14 illustrates the simulated wave 510 

fronts at a time instant of t =1 second following the impact of the solid rock on the 511 

liquid pool, for various water depths and a fixed slope angle of 30 degrees. These 512 

visualizations highlight the propagation of the waves from the impact zone. The slope 513 

angle was varied across simulations to assess its influence on wave characteristics. It 514 

was observed that changes in the slope angle induced only minor variations in both the 515 

wave front velocity and wave amplitude for a given pool depth. These perturbations 516 

were typically within 1–2% of the mean values. Consequently, to streamline the 517 

analysis and focus on dominant trends, the wave front velocity and height were 518 

averaged over the range of slope angles for each specific water depth.  519 

However, variations in water depth exerted a pronounced effect on the wave 520 

dynamics, leading to significant alterations in both the propagation velocity and 521 

amplitude of the generated waves. This depth-dependent behavior is quantified in Table 522 

4, which presents the averaged results from the numerical simulations. For a shallow 523 

water depth of d=0.2 m, the average wave front velocity was computed as 1.48 m/s, 524 

with a corresponding average wave height of 0.11 m. As the pool depth increased to 525 

d=0.27 m, the velocity rose to 1.58 m/s, while the wave height decreased to 0.07 m. 526 

Further deepening to 0.34 m yielded a velocity of 1.74 m/s and a reduced wave 527 

amplitude of 0.06 m. These trends indicate an approximately linear increase in velocity 528 

with depth, accompanied by an inverse relationship for wave amplitude.  529 



 25 

 530 

Fig. 14: Propagating wave fronts after the impact at time t = 1 s for a slope angle of 531 

30-degree. (a) d = 0.2 m, (b) d = 0.27 m, (c) d = 0.34 m. 532 

The observed depth dependence can be rationalized through fundamental 533 

principles of wave propagation in gravity-dominated, multi-phase flows. In the shallow 534 

water regime, given that the pool depths (0.2–0.34 m) are comparable to or smaller than 535 

the wavelengths of the generated waves, the phase velocity c of long gravity waves 536 

approximates c≈√gh, where g is the gravitational acceleration (9.81 m/s²), and h is the 537 

undisturbed water depth. This relation arises from the shallow water equations, where 538 

hydrostatic pressure balance and negligible vertical acceleration dominate, leading to a 539 

dispersionless incident wave speed that scales with the square root of depth. 540 

Substituting the water depths yields theoretical velocities of approximately 1.40 m/s for 541 

d=0.2 m, 1.63 m/s for d=0.27 m, and 1.83 m/s for d=0.34 m, which align closely with 542 

the simulated values (discrepancies of 7–10% may stem from viscous dissipation, non-543 

hydrostatic effects near the impact zone, or spreading of the wave front). A comparative 544 

analysis of the results is shown in Table 4. 545 

Conversely, the decrease in wave amplitude with increasing water depth aligns with 546 

energy conservation and volume displacement considerations in impact-generated 547 

waves. The impact of rotational cliff collapse imparts a fixed kinetic energy and 548 

displaces a finite volume of liquid, creating an initial cavity and subsequent outflow 549 

that evolves into a propagating wave. In shallower pools, the displaced volume is 550 

confined to a smaller cross-sectional area, resulting in greater vertical amplification to 551 
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accommodate the same mass redistribution. For deeper water depths, the energy is 552 

distributed over a larger water column, diluting the surface perturbation and yielding 553 

lower amplitudes. The trends observed in the numerical simulations for water waves 554 

induced by rotational cliff collapse are in good agreement with theoretical and 555 

experimental results, indicating that water depth has a direct effect on the wave velocity 556 

and an inverse effect on the wave amplitude and runup.  557 

Table 4: The average wave propagation velocity and amplitude for various water depths. 558 

Water depth d 

(m) 

Avg. wave 

velocity v (m/s) 

Theoretical wave 

velocity c (m/s) 

Wave amplitude A 

(m)  

0.2 1.48 1.40 0.11 

0.27 1.58 1.63 0.07 

0.34 1.74 1.83 0.06 

3.3 MEP model results 559 

The purpose was to develop a precise model for wave amplitude and runup induced 560 

by rotational cliff collapse. The predicted model is a function of seven variables, i.e., 561 

water depth, fall height, cliff mass, impact velocity, cliff height, runup slope angle, and 562 

number of fragments, and can be described as follows, 563 

𝑊𝑎𝑣ⅇ 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑ⅇ 𝑎𝑛𝑑 𝑟𝑢𝑛𝑢𝑝 = 𝑓(𝑑, 𝐻, 𝑚, 𝑣, ℎ, 𝛼, 𝑁𝑓)                   (3) 564 

The relation among the parameters was evaluated using Pearson’s correlation to 565 

analyze the multicollinearity and interdependency between the parameters, as they can 566 

obscure the interpretation of the developed model. The model was developed by 567 

splitting the data into two subsets, i.e., training (70%) and testing (30%). The 568 

randomization was done by MEP itself. Following the criteria, 70% of the data, i.e., 57 569 

data points, were taken as training data, whereas 30% of the data, i.e., 24 data points, 570 

were considered for validation of the model. The mathematical expression for MEP is 571 

obtained by solving the C++ code and representing it as per optimized hyperparameter 572 

settings, as shown in Table 5. The prediction model for wave amplitude and runup was 573 

developed by analyzing the MEP code in MATLAB, as shown in Equations 4 and 5. 574 

Table 5: Parametric settings of the MEP algorithm for wave amplitude and runup 575 
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Sr.No. Parameters Wave amplitude Wave runup 

1 Number of sub-populations 125 85 

2 Sub-population size 115 75 

3 Crossover probability 0.85 0.60 

4 Code length 35 25 

5 Tournament size 30 10 

6 Mutation probability 0.085 0.06 

7 Number of generations 250 120 

8 Crossover type Uniform Uniform 

9 Error measure Mean absolute error Mean absolute error 

10 Problem type Regression Regression 

11 Function set +, -, ⅹ, /, ^ +, -, ⅹ, /, ^ 

12 Terminal set Problem Input Problem Input 

13 Operators 0.5 0.5 

14 Simplified Yes Yes 

15 Variables 0.5 0.5 

16 Random seed 0 0 

17 Constants 0 0 

𝑊𝑎𝑣ⅇ 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑ⅇ 𝐴 = 𝑑
(

𝛼

ⅆ(ⅆ+𝑁𝑓+𝑚)
)

+
2𝑣ℎ2

𝑚+𝑁𝑓+ⅆ(ⅆ+𝑁𝑓+𝑚)
+ 2𝑣ℎ𝑑

(
𝛼

ⅆ(ⅆ+𝑁𝑓+𝑚)
)

  (4) 576 

𝑊𝑎𝑣ⅇ 𝑟𝑢𝑛𝑢𝑝 𝑅 =
𝐴(ℎ+(𝐴⋅(ⅆ−

𝐵

𝛼
))

𝐵/𝛼

)

𝐴

⋅𝐵

𝛼
          (5)  577 

𝐴 = 𝑣 + ℎⅆ  578 

𝐵 = 𝑣 + 𝑚 + ℎⅆ  579 

Whereas 𝑑  is the water depth (m), 𝑚  is the mass of the cliff (kg), 𝑣  is the 580 

impact velocity (m/s), ℎ is the cliff height (m), 𝛼 is the runup slope angle, and 𝑁𝑓  581 

is the number of fragments.  582 

3.3.1 Prediction performance of the developed model 583 

The robustness of the proposed model was evaluated by comparing it with well-584 

established statistical indices, i.e., mean absolute error (MAE), root mean square error 585 

(RMSE), correlation coefficient (Cr), Nash–Sutcliffe efficiency (NSE), and 586 

performance index (PI). The indices can be represented by equation (6-10) (Khan et al., 587 

2022). 588 

𝑀𝐴𝐸 =
∑ |𝑒𝑖−𝑝𝑖|

𝑛

𝑖=1

𝑛
                 (6) 589 

 𝑅𝑀𝑆𝐸 =
∑ (𝑒𝑖−𝑝𝑖)2𝑛

𝑖=1

𝑛
                (7) 590 
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𝑁𝑆𝐸 = 1 −
∑ (𝑒𝑖−𝑝𝑖)2𝑛

𝑖=1

∑ (𝑒𝑖−𝑒̅𝑖)2𝑛

𝑖=1

                (8) 591 

𝑃𝐼 =
𝑅𝑅𝑀𝑆𝐸

1+𝑅
                   (9) 592 

𝑅2 = (
∑ (𝑒𝑖−𝑒̅𝑖)(𝑝𝑖−𝑝̅𝑖)

𝑛

𝑖=1

∑ (𝑒𝑖−𝑒𝑖)2 ∑ (𝑃𝑖−𝑃̅𝑖)2𝑛

𝑖=1

𝑛

𝑖=1

)

2

              (10) 593 

Whereas, ⅇ̅𝑖  and 𝑝̅𝑖  are the average values of the experimental and predicted 594 

results, and ei and pi are ith values of the modeled and predicted results, for n total 595 

samples. It is good to consider the error indices while analyzing the predictive capability 596 

of complex models. The wave runup model demonstrated a robust performance for both 597 

training and testing datasets. The lower values of RMSE and MAE indicate little 598 

deviation from experimental values, while RSE and RMSE values confirm lower 599 

normalized error, as shown in Table 6. The higher values of NSE and Cr further 600 

validated the model reliability for the training phase. Whereas for the validation dataset, 601 

i.e., the unseen data model displays even stronger performance with lower RMSE and 602 

MAE values compared to the training dataset. Moreover, higher Cr and lower 603 

performance index values highlight enhanced model efficiency. This suggests that the 604 

model works well for unseen data, making it suitable for predicting the wave runup 605 

induced by rotational cliff collapse (Gardezi et al., 2024). 606 

The predictive performance of the wave amplitude model in the case of training 607 

data demonstrated a strong correlation with high R2 values and low RMSE and MAE 608 

values corresponding to 13.14% relative error, thus suggesting a good agreement 609 

between experimental and predicted values, as shown in Table 6. The higher NSE and 610 

Cr values further confirmed the model's reliability for the training dataset with minimal 611 

systematic bias. When the model was exposed to unseen data, it still maintained 612 

reasonable accuracy with an R2 value of 0.78. Though the values of error matrices, i.e., 613 

RMSE, MAE, and RRMSE, are a bit higher than the training data set, this is expected 614 

due to inherent generalization challenges. Similarly, the higher NSE and Cr values, 615 

though lower than the training dataset, indicate consistent predictive performance of the 616 

wave amplitude model with little increase in bias. Overall model exhibited strong 617 
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predictive performance in the training and testing phase, with a little expected decline 618 

in the validation phase.   619 

Table 6: Performance index values for the MEP-based water wave amplitude and 620 

runup prediction model. 621 

Performance 

parameters 

Wave Amplitude Wave Runup 

Training data Validation data Training data Validation data 

RSQ 0.8823 
 

    0.7811 
 

0.8748 0.9691 

RMSE 0.00178 0.0025 0.01327 0.00617 

MAE 0.00135 0.00176 0.0108 0.00504 

RSE 0.1180 0.2439 0.1306 0.0312 

RRMSE 0.1314 0.1594 0.1472 0.0660 

P. index 0.0698 0.0908 0.076 0.0333 

NSE 0.8819 0.7560 0.8693 0.9687 

Cr 0.9393 0.8829 0.9353 0.9844 

Previously, scientists have also used the slope of the regression line as a 622 

performance indicator for AI models, thus representing a correlation between 623 

experimental and predicted results. Fig. 15 (a & b) shows the regression line for our 624 

wave amplitude and runup model. For wave amplitude, the slope value for the training 625 

data set is 0.88, which is adequate, and 0.78 in validation, which is still greater than the 626 

minimum value of 0.7; it can happen as the model involving numerous parameters and 627 

complex phenomena usually performs slower for the unseen data (Yarkoni and Westfall, 628 

2019). Whereas, for wave runup, the model performed very well for both training and 629 

validation data sets with an R2 value of 0.87 and 0.96, respectively.  630 

The accuracy of the proposed model can also be checked using residual error plots, 631 

which are obtained by subtracting experimental and predicted values. The results 632 

indicate that the amplitude model has minimum and maximum values of -0.004 m and 633 

0.0065 m, as shown in Fig. 16 (a), whereas for wave runup the minimum and maximum 634 

values are -0.01875 and 0.024 (Fig. 16b). Moreover, it can also be observed that error 635 

values are populated along the x-axis, therefore, showing low error frequency, and 636 

accuracy of both the models.  637 
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 638 

Fig. 15 Tracing the experimental results by predicted values, (a) wave amplitude and 639 

(b) wave runup 640 

  641 

Fig. 16 Indicating error values between experimental and predicted model (a) wave 642 

amplitude, and (b) Wave runup 643 

 644 

3.2 Validation of the developed model  645 

The validation of the proposed model is an important feature in predictive modeling. 646 

It has been observed that sometimes the model performs very well for training data sets, 647 

but fails to perform during the validation stage for unseen data. So, the developed 648 

prediction model was further validated by conducting the sensitivity and parametric 649 

analysis for both the wave amplitude and runup.  650 

3.2.1 Sensitivity analysis 651 

Sensitivity and parametric analysis play a vital role in determining the robustness 652 

of the proposed model. The sensitivity analysis (SA) of the developed prediction model 653 

for the entire dataset tells us how sensitive the model is to any changes in input 654 

(a) (b)

(a) (b)
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parameters. So, for an independent parameter Yi the SA can be calculated using 655 

equations 11 and 12, which indicates that for any parameter, the values were varied 656 

between two extremes, and others were constant at their average, and the outcome was 657 

found in the form of Yi, and then the same process was repeated for all the remaining 658 

parameters.  659 

𝑅𝑘 = 𝑓𝑚𝑎𝑥(𝑌𝑘) − 𝑓𝑚𝑖𝑛(𝑌𝑘)             (11) 660 

Relative Importance 𝑆𝐴 (%) =
𝑅𝑘

∑ 𝑅𝑗

𝑗=1

𝑛

× 10         (12) 661 

Whereas, 𝑓𝑚𝑎𝑥(𝑌𝑘) and 𝑓𝑚𝑖𝑛(𝑌𝑘) represent the minimum and maximum values 662 

of the model-based results grounded on the kth domain of the input parameters in the 663 

above equation. Fig. 17 (a & b) shows the results of the sensitivity analysis of the 664 

developed prediction model for the wave amplitude and runup. Figure 17 (a) indicates 665 

that the wave amplitude is greatly influenced by the height of the cliff (h) and has an 666 

effect of almost 51%. The water depth (𝑑) contributes 4.36% to wave amplitude, cliff 667 

mass (𝑚) contributes 4.69%, and impact velocity (𝑣) and number of fragments (𝑁𝑓) 668 

contribute 18% and 22% to the induced wave amplitude. Whereas the fall height (𝐻) 669 

and runup slope angle (𝛼) do not affect the wave amplitude. Since the impact velocity 670 

parameters have already catered for the fall height that’s why it is not visible in the 671 

proposed model. The model tells us that impact velocity, cliff height, and number of 672 

fragments contribute approximately 90% to the wave amplitude induced by the 673 

rotational fall of the cliff. It can be concluded that the effect of ℎ > 𝑁𝑓 > 𝑣 > 𝑚 > 674 

𝑑 on the induced wave amplitude.  675 

Similarly, the sensitivity analysis of wave runup (Fig. 17b) indicates that runup is 676 

greatly influenced by bank slope angle (α) and has an effect of 34%. Impact velocity 677 

(𝑣) contributes 25.3%, cliff mass (𝑚) 20.3%, cliff height (h) 13.3%, and water depth 678 

(𝑑) contributes around 7% to wave runup. Whereas, the number of fragments and fall 679 

height that have already been catered in impact velocity don’t contribute to wave runup. 680 

This suggests that wave runup is primarily governed by coastal geometry, i.e., bank 681 

slope angle and cliff height, and hydrodynamic forces, i.e., impact velocity, whereas 682 

water depth contributes a little to wave runup. It can also be concluded as the effect of 683 
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α > 𝑣 > 𝑚 > ℎ > 𝑑 on the induced wave amplitude.   684 

 685 

Fig. 17 Sensitivity analysis of the MEP-based wave amplitude and runup 686 

prediction model 687 

3.2.2 Parametric Analysis   688 

Parametric analysis results for the input parameters for the wave amplitude used in 689 

this study are displayed in Fig. 18. The parametric analysis indicates that wave 690 

amplitude decreases as the water depth, number of fragments, and cliff mass increase, 691 

whereas it increases with the increase in cliff height and impact velocity. These trends 692 

are in line with the fundamental physics principles (Bougouin et al., 2020; Lipiejko et 693 

al., 2023). Deep waters dissipate more energy, and greater impact velocities and larger 694 

cliff heights impart more kinetic and potential energies to water bodies for wave 695 

generation. In contrast, the inverse relation between the number of fragments and wave 696 

amplitude proposes a potential threshold effect in which initial fragmentation 697 

contributes to wave formation, whereas excessive fragments contribute to energy 698 

dissipation owing to increased turbulence. The sensitivity analysis further quantified 699 

the effect of these parameters, classifying cliff height as a major contributing factor in 700 

wave amplitude variations, followed by impact velocity, number of fragments, water 701 

depth, and mass of cliff. The strong influence of cliff height indicates its direct effect in 702 

determining the potential energy for wave generation. Moreover, the larger sensitivity 703 

value of fragments regardless of their inverse parametric relation shows a complex 704 

relation, where fragment count plays a considerable but context-dependent role in wave 705 

generation and propagation. The dominance of cliff height, impact velocity, and 706 

(a) (b)
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fragment count suggests that these parameters should be prioritized in future prediction 707 

models. These findings are important for developing predictive models for wave 708 

generations due to rotational cliff collapse. 709 

The developed model for wave amplitude provides valuable insights into 710 

fundamental physics governing wave formation and propagation induced because of 711 

rotational cliff collapse. The strong height dependence of the model confirms the 712 

classical principle of conservation of potential energy, whereas the fragment count 713 

dependence reveals energy partitioning mechanisms. The results of performance 714 

indices and sensitivity, and parametric analysis increase our understanding of how 715 

geometric and dynamic characteristics govern the wave characteristics, with relevance 716 

to hazard assessment and disaster mitigation in coastal regions prone to cliff collapse 717 

following rotational motion.      718 

The results of the parametric analysis for wave runup are presented in Fig. 19. It 719 

can be observed from Fig. 19 (a & e) that as the water depth and bank slope angle 720 

increase, the wave runup decreases, due to energy dissipation and different wave 721 

breaking dynamics. Conversely, as the cliff mass, cliff height, and impact velocity 722 

increase, the wave runup increases, as greater kinetic energy and inertia impart greater 723 

uprush. Notably, all the parameters present a strong correlation with the runup (more 724 

than 97%), highlighting their statistical significance. The results agree with the general 725 

physics laws, where mild slopes and larger impact forces result in higher runups, 726 

whereas deep waters attenuate wave energy.  727 

An important observation from parametric analysis of wave amplitude and runup, 728 

as shown in Fig. 18b, and 19c, indicates that cliff mass represents a nonlinear relation 729 

with wave amplitude and a linear relation with runup. This is due to the fact that the 730 

variations in wave amplitude are governed by a nonlinear energy dissipation, where 731 

hydrodynamic forces follow a quadratic dependence on the velocity. In the case of light 732 

cliff collapses, the dynamic responses result in complex absorption and distribution, 733 

whereas heavier cliff collapses promote wave reflection along with nonlinear effects of 734 

wave breaking and splash-induced turbulence, as can be observed in Fig. 5 (b, e&h). 735 

Conversely, the wave runup exhibits a linear relation with cliff mass, and this is due to 736 
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the law of conservation of momentum, such that the resisting inertial force is directly 737 

proportional to cliff mass. The greater resistance to motion of heavier cliffs allows more 738 

energy to be conserved and utilized for higher wave runups before dissipation. The 739 

main difference between the two trends is that the wave amplitude is controlled by 740 

localized energy losses, whereas runup is governed by bulk momentum transfer rather 741 

than localized losses.  742 

 743 

Fig. 18 Parametric analysis for wave amplitude (a) water depth, (b) cliff mass, (c) 744 

impact velocity, (d) cliff height, (e) number of fragments. 745 
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 746 

Fig. 19 Parametric analysis for wave runup (a) water depth, (b) impact velocity, (c) 747 

mass of the cliff, (d) cliff height, (e) bank slope angle. 748 

4. Conclusions 749 

While designing wave protection structures along the banks of reservoirs, it is 750 

common to use the empirical relations developed for granular flows, i.e., landslides and 751 

avalanches, to predict the amplitude and runup of the waves. However, the waves 752 

induced by various types of slides behave differently and should be treated accordingly. 753 

The dynamics of the waves induced by falling cliffs are entirely different from the 754 

waves induced by continuous granular flows. Similarly, the dynamics of the waves 755 

induced by falling cliffs following different types of motion (translational, rotational) 756 

are also different. This study aimed to develop a novel wave amplitude and runup 757 

prediction model for waves induced by rotational fall of the cliff using a combination 758 

of seven governing parameters, and then compare it with the dynamics of the wave 759 

induced by continuous granular flows. Based on the results and discussions, the study 760 

concludes as follows, 761 

1. It was concluded that water depth strongly controls the shape of the induced splash 762 

and wave amplification. Shallow water induced elongated, tall splashes, and higher 763 
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wave amplitudes; in contrast, deep water produced mushroom-shaped splashes 764 

with higher energy dissipation and lower wave amplitudes. 765 

2. The higher values of Froude number (> 1.2) for all the experiments indicate that 766 

the viscous effects were negligible, so the Froude number was selected as the most 767 

suitable dynamic scaling factor for describing the behaviour of the waves.  768 

3. The wave amplitude was greatly influenced by cliff height (51 %), number of 769 

fragments (22 %), Impact velocity (18 %), cliff mass (4.69 %), and water depth 770 

(4.36 %). Whereas the wave runup was governed by the runup slope angle, impact 771 

velocity, and cliff mass. 772 

4. The amplitude of the wave induced by equivalent granular mass sliding on a 30 773 

slope was 28-42% lower than the waves induced by rotational cliff collapse, thus 774 

concluding that the mode of energy transfer to the water body plays a critical role 775 

in wave dynamics. 776 

5. A novel MEP-based prediction model was developed for wave amplitude and 777 

runup. The model showed great performance during the training and testing stage, 778 

and showed high sensitivity to the used parameters, thus confirming its reliability.  779 

6. Research findings highlight that accurate hazard assessment of the cliff collapse 780 

requires models that account for the rotational failure mode and the fragmentation 781 

upon impact with the water surface. Traditional granular slide models may result 782 

in an underestimation of the initial wave amplitude and energy transferred.  783 
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