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Abstract:

CIliff collapses in small lakes, and reservoirs induce powerful waves, threatening
the offshore infrastructure. Unlike previous studies on waves induced by granular slide,
this study experimentally and numerically investigates the waves induced by rotational
cliff collapse, whereby the cliff fragments upon impact with the water surface, and
determines the wave amplitude, runup, and energy transfer mechanics. Results indicate
that as the water depth decreased, the impact Froude number and relative wave
amplitude increased, wave velocity decreased, and splash showed greater elongation.
The numerical modelling results also confirmed the experimental trends. Moreover,
compared to an equivalent amount of granular mass sliding down a 30° slope, rotational
cliff collapse produced 28-42% higher wave amplitudes due to the acute impact that
transfers energy more efficiently. Machine learning based prediction models were
subsequently developed to predict the wave amplitude and runup. The prediction
models performed well both in the training and testing stages, with high R? values, and
were validated via established statistical indices, sensitivity, and parametric analysis.
The prediction models highlighted a cumulative 90% contribution of impact velocity,
cliff height, and the number of fragments on the wave amplitude. In comparison, runup
was greatly influenced by bank slope angle, impact velocity, cliff mass, and height. The
experimental results and developed prediction models can provide the basis for

understanding the rotational cliff collapse-induced waves and can help with disaster
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mitigation and risk assessment by effectively predicting the wave amplitude and runup.

Keywords: Cliff fragmentation; landslide tsunami; prediction models; rotational cliff
collapse; wave amplitude, and runup.

1. Introduction

The phenomenon of cliff overturning is common along rivers and reservoirs (glacial
lakes, recreational lakes). The cliffs around these lakes are weathered due to climate
change and wave action (R6 and Cerkowniak, 2024; Young et al., 2021) and can no
longer be supported by the parent rock. When these initially intact, weathered cliffs fall
into water, they usually fragment upon impact with the water surface, and as a result,
induce an impulse water wave. Upon impact, the energy of gravitational mass is
transferred to the water body, resulting in a huge splash and a wave train, propagating
away from the point of impact. In the reservoirs and water channels located in
mountainous regions, such as glacial lakes, dams, and a river flowing through valleys,
these waves do not travel a long distance before reaching obstacles, opposite shores, or
other infrastructure. As the waves retain most of their energy, size, and strength, the
impact can cause significant damage to the population and infrastructure located along
the banks of the reservoir. Historically, extreme impulse wave heights have been
observed induced by landslides in events of 1958 Lituya Bay, USA, which caused a
wave height of 524 m (Boultbee et al., 2006; Franco et al., 2020; Miller, 1960a), 2007
Chehalis Lake, Canada, induced a wave of 38 m (Wang et al., 2015), 2015 Taan Fjord,
USA, caused a wave of 193 m (Higman et al., 2018), and 2014 Lake Askaja (Gylfadottir
et al., 2017). More recently, a volcanic activity in 2018 at Anak Krakatoa, Indonesia,
triggered a tsunami reaching up to a height of 13 m, and in 2023, the Dickson Fjord ice-
rock avalanche caused a wave height of 200 m (Svennevig et al., 2024).

The cases mentioned above are extreme, whereas the phenomena of sliding,
toppling, and falling of cliffs in small lakes and reservoirs are quite frequent and have
been captured by various people around the globe. Fig. 1 (a, b, and c) indicates a
rotational (topple) cliff collapse in Furnas Lake, Brazil, on 8 January 2022, killing 10
people (Maciel et al., 2023; Sun et al., 2024). As a result of the collapse, a huge splash

and induced waves can be seen in Fig. 1 (¢). Despite recurring events of cliff collapse
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along the water banks, the rotational failure of cliffs accompanied by fragmentation
upon impact with the water surface remains poorly understood. Recent studies on water
waves have focused on block slides, translational slides, or granular flows, where the
mass moves along a predefined basal plane. Moreover, physical modeling has also been
carried out to analyse the amplitude and runup of the landslides-induced water waves
either by using block slide or granular slide (Heller and Spinneken, 2015, 2013;
Lindstrem, 2016; Lindstrom et al., 2014; McFall and Fritz, 2016; Miller, 1960;
Mohammed and Fritz, 2012; Montagna et al., 2011; Romano et al., 2023, 2020; Selevik
etal., 2009; Yin et al., 2015). However, the rotational collapse is different from the type
of failure mentioned above. In rotational collapse, the cliff rotates along the base and
falls into water, thus inducing a huge splash and fragmenting upon impact.

While a few relevant studies provide partial understandings on the phenomena,
such as as Liu et al. (2025) numerically analyzed the waves induced by different types
of mass movements, considering different shapes using smoothed particles, similarly,
Heller et al. (2021) experimentally analyzed the waves induced by iceburg calving and
Yin et al. (2015) studied the potential cliff collapse of Jianchuandong rock mass in
Three Gorges dam. While these studies contribute to the broader understanding of the
impact induced by water waves, they do not consider the combined effect of rotational
collapse and fragmentation. Moreover, the shape of the induced splash, as observed in
Lake Furnas, has also not been properly explored either experimentally or numerically,
as can be seen in Fig. 1 (a, b, and ¢), the falling cliff was still intact and broke under its
own weight upon impact with the water surface and induced a huge splash.

Parallel advancements in numerical modeling have enhanced our understanding of
landslide induced water waves thorugh, computational fluid dynamics (CFD), Eulerian
and Lagrangian methods, employing depth-averaged model, nonlinear shallow water,
Navier-Stokes model, or Boussinesq equation, for both two- and three-dimensional
modelling (Franci et al., 2020; Grilli et al., 2019; Guan and Shi, 2023; Heidarzadeh et
al., 2020; Kim et al., 2020; Mulligan et al., 2020; Paris et al., 2021; Rauter et al., 2022;
Ruffini et al., 2019). Though these methods have successfully analysed the wave

generation, propagation, and wave dynamics either induced by granular slide or block
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slide, their direct application to rotational cliff collapse remains limited.

Furthermore, empirical and regression-based hybrid prediction models have been
developed for landslide-induced water waves by considering geometric, geological, and
kinematic parameters, as shown in Table 1. Das and Wiegel (1972) proposed that the
sliding velocity and water depth are the main factors affecting the wave amplitude.
Watts (1998) emphasised the role of slope angle, length, and mass, while Fritz et al.
(2003) highlighted the role of landslide mass thickness governing the amplitude of the
induced wave. While these models provide important parameteric correlations, they
were developed for translational or granular slides and show limited application for
complex rotational cliff collapses involving fragmentation (Dai et al., 2023; Dignan et
al., 2023; Esposti Ongaro et al., 2021).

Recently, scientists have shifted to machine learning (ML) approaches for
predicting wave dynamics (Bujak et al., 2023; Cesario et al., 2024; Li et al., 2024, 2023;
Romano et al., 2009; Tarwidi et al., 2023; Tian et al., 2025; Wang et al., 2017; Wiguna,
2022). While these prediction models have shown improved performance over
traditional regression and hybrid models, there is a need to develop an ML-based
framework for predicting amplitude and runup of the waves induced by rotational cliff
collapse, considering fragmentation.

To address this gap, the current study uses Genetic Programming (GP), and
specifically Multi-Expression Programming (MEP), to develop a data-driven prediction
model for the wave amplitude and runup. This model is similar to living organisms,
which can learn, adapt, and modify their composition, size, and shape (Gardezi et al.,
2024). MEP is a cutting-edge, advanced form of GP that adopts a demonstrative model
for programming and uses linear chromosomes to determine optimum population size,
mutation probability, and evolutionary model. Compared to other ML models, it can
produce more precise results even when the problem complexity is unknown (Usama
etal., 2023)

In this study, we have experimentally and numerically analyzed the hydrodynamics
of the wave induced by rotational cliff collapse, considering fragmentation of the cliff

upon impact, and have also developed a prediction model for wave amplitude and runup.
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The physical modeling was carried out by developing a scaled water flume and a
platform inducing rotational motion of the cliff. A total of 162 experiments were carried
out, varying seven control parameters: water depth, fall height, cliff mass, impact
velocity, cliff height, runup slope angle, and number of fragments. To improve accuracy
and consistency, each parametric combination was averaged from two experimental
values; hence, a total of 81 experimental results were obtained. The parameters were
selected to comprehensively elaborate on the distinct phases of rotational cliff collapse
and induced waves. Water depth and runup slope angle provide the basis for wave
propagation and runup. Whereas, the cliff collapse dynamics are explained by cliff mass
(which governs the energy input), height of the cliff (defines the initial potential energy),
and fall height (determines the transformation of potential to kinetic energy). Cliff
impact velocity determines the amount of kinetic energy imparted to the water body at
the time of impact, which is important for wave generation. Finally, the number of
fragments is selected to demonstrate the effect of fragments of cliff upon impact with
the water surface on wave amplitude and runup height. Together, these parameters
define the energy budget from the state of rest to its release and then transfer to the
water body to its final stage as amplitude and runup. Since the wave velocity was not
directly measured during the experiments, it was measured using a 2D numerical model
developed using Ansys-Fluent. Furthermore, the numerical modeling results for wave
amplitude and runup were cross-validated with their experimental counterparts.
Finally, based on experimental results, prediction modeling for the amplitude and
runup of water waves was carried out using multi-expression programming (MEP), and
a novel prediction model was developed for the water waves induced by rotational cliff

collapse, considering fragmentation of the cliff upon impact with the water surface.
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Fig. 1: (a, b, and c¢) waves induced by a cliff collapse in Lake Furnas, Brazil. (d, e, and
f) sketch diagram indicating the detachment and rotational fall process.
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Table 1: Historical overview of the prediction models for wave amplitude

Authors Predictive model
v\’ l
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(Li et al., 2023) A, =059 /M (sh_Wl)N (%)_O‘Bcosz(g )

Note: [ is the landslide length; s is the landslide thickness; w is the landslide width; m is the landslide mass weight; Vis the

cos’a

landslide volume; H is the landslide height; T time for motion of slide, b is the river width; / is the still water depth; x() is

the offshore distance from the bank slope; « is the slope angle; 6 is the angular direction; v, is the impact velocity.

2. Research methodology

2.1 Experimental setup

The physical modeling for wave amplitude and runup induced by rotational cliff
collapse was carried out in a three-dimensional water flume made up of plexiglass, as
shown in Figs. 2 and 3. One end of the flume is vertical at 90°, whereas the other end
is inclined and fixed at 30° (Fig. 3a and b). The flume is 0.55 m high, 0.5 m wide, and
1.4 m long along the base and 2.35 m long at the top. Furthermore, to measure the runup
of induced water waves at various slope angles, two sliding rails were installed towards
the inclined end at 45° and 60°. So, upon insertion of the gate at 45°and 60°, the top
length of the flume was further reduced according to the Pythagoras theorem. To induce

the rotational cliff collapse, a 0.55 m wide and 0.6 m high movable platform was
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designed, which can move in the vertical direction and can also rotate about its axis.
The rotational motion was induced by pulling the hinge; the release ensured a pure
rotational motion, which was visually verified by video analysis. The flume was marked
with a vertical scale to measure the water depth. The wave amplitude was measured
using capacitance-type wave gauges with an accuracy of = 0.5 mm, placed along the
centerline at specified intervals. The runup height was measured using a graduated
paper attached to the inclined surface. The entire process was recorded using a digital
camera (240 fps, 720p resolution) placed perpendicular to the experimental flume; the
velocity of the falling cliff was verified by frame-by-frame video analysis using Particle

Image Velocitymeter (PIV).

Recording
device

Water 1
channel \\

Fig. 2: Tllustration of experimental setup including wave gauges, rotational platform,

recording, and data storage devices.

Fig. 3: Photographs of the setup, (a) Experimental flume, (b) platform for inducing
rotational cliff collapse.

2.2 Test preparation and materials

Physical experiments were carried out by varying the water depth, fall height,
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number of fragments, bank slope angle, mass of falling rock, cliff height, and impact
velocity. The tests were carried out for three water depths, i.e., 0.34 m, 0.27 m, and 0.20
m, and three fall heights, i.e., 0.64 m, 0.44 m, and 0.245 m from the surface of the water.
Furthermore, the number of blocks was also varied, i.e., 6, 10, and 12 blocks having
combined weights of 1.445 kg, 2.29 kg, and 2.82 kg, respectively. At the same time, the
impact velocity changed by changing the fall height. The wave runup was measured by
varying the bank slope angle, i.e., 30°, 45°, and 60°.

To replicate the field density of the rocks, red gutka bricks having a density of

around 2000 kg/m® were used. A singular block had a dimension of 0.055 x 0.05 x

0.042 m. The mass volume and dimension of all the blocks were unchanged to ensure
consistency in the experiments. A combination of 6, 10, and 12 blocks of red gutka
bricks was used to form a cliff and measure the wave amplitude and runup of induced

waves. The blocks were joined together with the help of cement paste having a water-

cement ratio W/C 0.8 and cured for 2 hours in front of an electric heater at 150 °C. To

ensure the weak bond strength, several trials for bond strength were carried out after a
curing period of 2 hours, and it was found to be in the range 0f 0.42-0.5 MPa. In contrast,
the inertial stresses at the time of impact were several times higher, such that they
caused the fragmentation of the cliff. This condition was purposely designed to imitate
naturally fractured cliff materials, confirming that the structure fragmented primarily
along the joints upon impact with the water surface, consistent with field observations
of rotational cliff collapses. The bonded blocks were placed on the rotational platform
at specific heights, i.e., 0.64 m, 0.44 m, and 0.245 m from the water level, and were
allowed to rotate under their own weight by pulling the hinge, such that the placed block
falls in the water following rotation motion along its base Fig. 3 (b). To avoid the
slippage of blocks and to ensure that it had sufficient frictional resistance needed for
pure rotational motion of the simulated cliff, finely-grounded bricks of the same cliff
material were pasted on the rotational platform, thereby preventing translational motion

or vertical free fall into the water.
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Furthermore, to reduce the impact of falling blocks on the base of the flume, a

wooden plank weighing 2.69 kg and dimensions 0.65m x 0.37m x 0.01 m was placed

at the point of impact inside the flume. Due to its large surface area and lighter density,
it tends to float in the flume, so two blocks of concrete weighing 3.58 kg were placed
on it, Fig. 3 (a). Since the fall height was small, no considerable local breakage was
observed in the blocks, and the brief water contact minimised the water absorption
effect.

The induced wave amplitude was measured by placing the wave measuring gauges
at a distance of 0.65 m and 0.135 m from the vertical face; the gauges were wired and
connected to the laptop. At the same time, the runup was measured manually with the
help of a scale by pasting a scaled paper on the slope. Furthermore, the experiments
were also recorded with the help of a high-resolution camera for verification purposes.
2.3 Numerical Modeling

Simulating multi-phase flows is challenging due to the constant deformation of the
liquid-gas interface. Various numerical methods have been developed to model these
flows, each offering unique advantages depending on the specific flow regime and
characteristics of interest. In this study, the Volume of Fluid (VOF) method is utilized
for its effectiveness in handling significant interface distortions and topological changes.
The VOF method offers superior mass conservation, which is critical in high velocity
impact conditions where liquid fragmentation and wave generation are significant
(Backbill et al., 1992; Hirt and Nichols, 1981). Alternative numerical schemes, such as
the Front Tracking approach, are generally limited in handling complex topological
changes (Tryggvason et al., 2001; Liu and Liu, 2010; Monaghan, 1994; Yang and Kong,
2018). Another approach is the Level Set method, but it suffers from mass conservation
and convergence issues. The Lattice Boltzmann Method (LBM) is also common;
however, its applicability to high velocity impact is rather limited (Aidun & Clausen,
2010). Given these trade-offs, the Volume of Fluid (VOF) method finds an optimal
balance of computational efficiency, interface tracking capability, and proven reliability

for modeling multiphase flow in the moderate-to-high velocity range relevant to this
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study. Therefore, a two-dimensional numerical model of a cliff, having the same
properties as the experimental cliff mentioned previously, hitting the water surface is
developed using the VOF method to accurately capture the liquid-gas interface.

In this approach, a volume fraction (o), ranging between 0 and 1, is applied across
the entire computational domain. A value of a = 1 indicates a control volume filled with
liquid, while o= 0 denotes a control volume filled with gas. The interface is represented
by values where 0 < a < 1. In the Volume of Fluid (VOF) method, the momentum
equation is solved across the entire computational domain, with the resulting velocity
field shared by all phases. To account for surface tension effects, a continuum surface
force (CSF) model is employed (Backbill et al., 1992). The normal vector n and

interface mean curvature k are as follows, respectively:

Va
nee (1)
and
Va
k=70 )

The interface is maintained as sharp through the use of geometric reconstruction to
ensure its clarity. The volume fraction (o) is discretised with the geo-reconstruct scheme,
while the convective terms in the momentum equation are handled using a second-order
upwind method. The PISO (Pressure-Implicit with Splitting of Operators) algorithm
was employed for pressure-velocity coupling, which is well-suited for transient flows.
Temporal discretisation employs a second-order implicit scheme, and spatial gradients
are calculated using the Least Squares Cell-Based method.

The boundary conditions were defined as follows: the bottom boundary was
modeled as a no-slip wall, while the top boundary was set as a pressure outlet at
atmospheric conditions, and the lateral sides were modeled as stationary walls to
confine the liquid film within the domain. For accurate simulation of the rotational
motion of the cliff through the air-water interface in a multi-phase flow environment,
dynamic meshing was implemented within the ANSYS Fluent framework. This
approach facilitated the adaptation of the computational mesh to accommodate the

cliff's movement while maintaining the integrity of the liquid-gas interface captured by

11
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the Volume of Fluid (VOF) method. Dynamic meshing was critical for modeling the
complex interactions between the falling cliff and the surrounding air and water phases,
allowing the mesh to deform and adapt in response to the cliff’s trajectory. In ANSYS
Fluent, the dynamic meshing strategy employed a combination of mesh deformation
and local remeshing techniques to handle the cliff's motion. Mesh deformation was
applied to adjust the existing mesh nodes smoothly as the cliff moved, preserving mesh
quality in regions experiencing moderate displacement. For areas near the cliff where
significant deformation could lead to poor mesh quality, local remeshing was utilized
to regenerate mesh elements for better numerical stability and accuracy. The smoothing
and remeshing algorithms were configured to maintain high mesh quality, with a
skewness threshold set to prevent excessive element distortion.

The rotational cliff collapse was simulated using an in-house user-defined function
(UDF). This UDF interfaced with ANSYS Fluent to dynamically update the rock’s
position and velocity. To enhance computational efficiency, a dynamic mesh zone was
defined around the cliff, with a finer mesh resolution near its surface to capture the
sharp gradients in the flow field and interface dynamics. The mesh was gradually
coarsened away from the rock to reduce computational cost while maintaining
sufficient resolution in the far-field regions. The dynamic meshing process was
synchronised with the transient flow solver, using a time step size determined through
a time step independence study to balance accuracy and computational efficiency. It is
also worth mentioning that the numerical simulations were performed considering the
rock as a unified mass. This approach describes the slight differences between the
experimental and numerical results, which are nonetheless within the acceptable range.
2.4 Multi-expression programming

The MEP model was developed for predicting wave amplitude and runup using
experimental data, as shown in Table 2. A dataset of 81 experimental results was used
as an input to a machine learning model. Furthermore, the data was divided into 70/30
ratios for training and validation purposes before developing the model. The model
starts working by generating a random chromosome population, and it continues to

generate the chromosomes until a terminal condition is achieved, generating an optimal
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309 expression from the data having input and output pairs over a certain number of
310  generations, as shown in Fig. 4.

311 Based on a binary tournament process, parents are selected and then undergo a
312  recombination process through a consistent crossover probability. This recombination
313  produces two more offspring. These offspring go through mutation, and if these
314  offspring perform better than the least fitting offspring in the current population, then
315  the better offspring replace them. The illustrations used by MEP are similar to the ones
316  used by C++ and Pascal compilers. The MEP chromosomes are comprised of numerous
317  genes combined using various mathematical operators such as addition (+), subtraction
318 (), multiplication (x), and division (/), and these genes create expression trees (ETs)
319  (Cheng et al., 2020). Moreover, there are several hyperparameters such as code length,
320  sub-population size and number, crossover probability, and other sets of various
321  functions involved in in generation of MEP code, and they also govern the overall
322  performance of the code. Among these parameters, the size of the population tells us
323  about the number of programs being generated, whereas an increase or decrease in
324  subpopulation size directly affects the complexity and computation time of the model.
325  Moreover, the length of the developed model is controlled by varying the code length
326  parameter. During model development, prerequisite tuning procedures were applied to
327  optimize these hyperparameters. This careful selection minimized the risk of premature
328  convergence or underfitting while ensuring computational efficiency.

329  Table 2: Experimental dataset used for training and validation of the machine learning

330 model.
N Water depth d Fall height H Fragments Angle a  Cliff Mass  CIiff height & Velocity Amplitude A Runup
oo (m) (m) ) © m (Kg) (m) v (m/s) (m) R (m)
1 0.34 0.245 6 30 1.445 0.12 2.19 0.0225 0.051
2 0.34 0.445 6 30 1.445 0.12 295 0.0230 0.056
3 0.34 0.645 6 30 1.445 0.12 3.56 0.0365 0.068
4 0.34 0.245 6 45 1.445 0.12 2.19 0.0370 0.045
5 0.34 0.445 6 45 1.445 0.12 295 0.0425 0.051
37 0.27 0.245 10 30 2.295 0.20 2.19 0.0431 0.116

13



38 0.27 0.445 10 30 2.295 0.20 2.95 0.0510 0.129
39 0.27 0.645 10 30 2.295 0.20 3.56 0.0685 0.141
40 0.27 0.245 10 45 2.295 0.20 2.19 0.0390 0.085
41 0.27 0.445 10 45 2.295 0.20 295 0.0523 0.102
78 0.2 0.645 12 45 2.82 0.24 3.56 0.0733 0.146
79 0.2 0.245 12 60 2.82 0.24 2.19 0.0565 0.062
80 0.2 0.445 12 60 2.82 0.24 295 0.0636 0.083
81 0.2 0.645 12 60 2.82 0.24 3.56 0.0657 0.098
START
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(Binary Tournament Procedure)
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3. Results and discussions

3.1 Experimental results

END

«—

Fig. 4 Schematic representation of MEP workflow used in this study

The experimental results of the wave amplitude and runup, induced by rotational

cliff collapse, reveal complex hydrodynamic processes. As shown in Fig. 5, the failure

is initiated by the rotational fall of the cliff, leading to a significant amount of impact

energy upon hitting the water surface. The impact induced a huge splash, which is

evident from Fig. 5 (b, e & h). It was observed that the shape of the splash also varies

with water depth for all the cases; higher water depths resulted in a mushroom-shaped

splash, i.e., broader on the top, as the momentum dissipates before interacting with the

bottom surface, resulting in a vertical jet and the formation of a mushroom-shaped
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splash. as can be seen in Fig. 5(h). The observed phenomena perfectly align with the
basic concepts of fluid dynamics, which state that greater depths absorb more impact
energy compared to shallow waters. Shallow waters produced a vertically elongated
splash as can be seen in Fig. 5 (b & e). It can be observed that as the depth decreases,
the splash becomes more elongated, as shallower depths intensify the upward
momentum transfer, thus resulting in a more elongated shape (Kubota and Mochizuki,

2009).

0.20m |

Rotational fall Ll

F1g 5: A p1ctor1a1 d1splay of the experlmental setup for various water depths ie., 0.20
m, 0.27m, and 0.34 m. (a, d & g) indicate rotational fall of the cliff, (b, e & h)
showing splash as a result of cliff impact, (c, f & I) formation and propagation of
induced wave and runup at various slope angles.

3.1.1 Relation between energy and amplitude

Further, the relationship between impact energy and wave response was also
investigated by establishing a dimensionless impact energy parameter (K.E/pgh?).
Where K.E is the kinetic energy of the cliff, p is the density, and /4 is the water depth.
The negative quadratic coefficient in Fig. 6(a) indicates a nonlinear response, such that
at the start, the wave amplitude increases as the impact energy increases, but later it
decreases, due to reduced energy transfer at higher impact values. At higher impact
values, the released energy was not fully used in the wave formation and propagation;
instead, a part of the energy was dissipated in the formation of splash, and in the
formation of air pockets and their subsequent collapse. Moreover, the coefficient of

determination was found to be 77% indicating a good data fit.
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The results for the relative wave amplitude and wave energy were analyzed for

three water depths, i.e., 0.34 m, 0.27 m, and 0.20 m., as shown in Fig. 6(b). The results

indicate a strong correlation for all three cases, with coefficients of determination

around 0.96. The results indicate a direct relation between wave height and energy,

whereas the decreasing slope values with the increasing water depth suggest that for

deeper water the wave amplitude decreases at a slower rate with increasing wave energy,

thus highlighting the impact of water depth on the wave dynamics, such that shallower

water allows more amplification of waves for the same energy level, and this is due to

the increased non-linear interactions and enhanced energy concentrations in shallower

depths (Myrhaug and Lader, 2019).
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Fig. 6: (a) Dimensionless impact energy (K.E/pgh?) vs relative wave amplitude,
indicating a nonlinear trend, (b) Wave energy vs relative wave amplitude, indicating
higher wave amplifications in shallow waters.
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Fig. 7: Relative wave amplitude vs relative wave runup at various slope angles and
water depth.

The results for the relative wave height and runup for all three water depths and
three runup slope angles are shown in Fig. 7. The relationship indicates a strong
correlation between wave amplitude and runup for all three slope angles. The
decreasing line-slope values with increasing runup slope angle indicate that wave runup
increases at a slower rate for sharp slope angles compared to mild slopes. The trend
highlights the effect of slope angle on the runup. The result also indicates that the mild
slope angles help wave runup amplification, as they dissipate a very small amount of
energy, whereas steeper angles result in lower runup heights because of higher energy
losses (Wu et al., 2018).

3.1.2 Impact Froude no vs Relative wave amplitude

Fig. 8 indicates the relationship between the impact Froude number and relative
wave amplitude (A/d), under varying experimental conditions for the first gauge, i.e.,

near the impact zone. Since we are interested in the immediate response of the wave
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influenced by the impact Froude number. The results indicate that as the water depth
decreases, the relative wave amplitude and impact Froude number increase, indicating
a reduction in the dissipation of impact energy, causing pronounced surface turbulence
and increased wave height. Additionally, the decreased water depth also increased the
value of the impact Froude number by reducing its characteristic velocity, resulting in
stronger wave generation upon impact. The calculations for Reynolds number for the
experiments resulted in very high values, thus indicating a strong turbulent flow, which
is also evident from Fig. 5, so viscous effects are very, very small and can be ignored,
thus indicating the Froude dynamics similarity. The experimental results indicate the
complex interaction between wave propagation, impact dynamics, and bathymetrical
effects in waves induced by rotational cliff collapse. Moreover, upon impact, the cliff
fragmentation distributes impact energy over a larger area of water, thus increasing

wave height by enhanced turbulence and water splashing effects.
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Fig. 8: Relationship between impact Froude number and relative wave amplitude.
3.1.3 Wave amplitude results

The results for the wave amplitude for various parameters are shown in Figs. 9, 10,
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and 11. As mentioned earlier, two gauges were used to measure the induced wave
amplitude. Fig. 9 provides a detailed comparison of the wave amplitude recorded at
both gauges for a 60° runup slope angle and a 0.445 m fall height. It can be observed
that gauge-1, which is near to impact zone, has a higher relative amplitude compared to
gauge-2. Furthermore, the results for the relative wave amplitude against the
normalized time were also analysed for all the water depths (0.20 m, 0.27 m, and 0.34
m), fall height (0.245 m, 0.445 m, and 0.645 m), and cliff height (0.12 m, 0.20 m, and
0.24 m). The results indicate that the wave amplitude increases as the cliff height,
impact velocity, and number of fragments increase for all the water depths, as can be
observed in Fig. 10, thus demonstrating that the potential energy of the falling cliff
plays a critical role in the magnitude of the resulting wave.

Interestingly, comparing the wave amplitude induced by cliffs of various heights
falling from the same height revealed that the water depth and the wave have an inverse
relationship. As shown in Fig. 10 (a, b, and c), the average wave amplitude for various
cliff heights and the same fall height of 0.245 m at 0.20 m water depth is 26% more
than the average wave amplitude induced by 0.27 m water depth and 50% more than
the 0.34m water depth wave amplitude. Similarly, Fig. 10 (d, e, and f) indicates that the
average wave amplitude for 0.445 m fall height at 0.20 m water depth is 18% more than
0.027 m and 47% more than 0.34 m water depth, whereas, for 0.645 m fall height wave
amplitude induced by 0.20 m water depth is 25% more than 0.27 m and 37% more than
0.34 m water depth (Fig. 10 g, h & 1), thus suggesting that the deeper water dissipates
the impact energy more effectively, as the deep water have more mass available to
absorb and redistribute the impact energy, compared to shallower water thus reducing
the overall amplitude of the induced wave. Moreover, a similar trend was observed for
the wave amplitude involving 45°and 60°runup slope angle.

Later on, we performed another experiment by using granular material of
equivalent mass as of cliff and slid it on a 30° slope, for all the water depths, and
amplitude of the induced wave was measured as shown in Fig. 11. Fig. 11(a) indicates
that the wave amplitude for 0.20 m water depth and 1.445 kg granular mass (equivalent

to 0.12 m cliff height) was 15% more than 0.27 m water depth and 65% more than wave
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amplitude induced by 0.34 m water depth. Whereas for 2.29kg and 2.82kg granular
mass equivalent to 0.20 m and 0.24 m cliff height similar trend was observed as shown
in Fig. 11 (b and c), thus indicating that as the water depth increases, the wave amplitude
decreases for all the equivalent granular masses, as happened in the case of cliff fall.
Furthermore, a comparison between the wave amplitude induced by a falling cliff
and equivalent granular mass at various water depths indicates that the amplitude of the
wave induced by an equivalent granular mass in 0.34 m, 0.27 m, and 0.20 m water depth
was on average 28%, 35% and 42% less than the wave amplitude induced falling cliff.
The substantial difference in wave amplitude highlights the importance of energy
transfer in wave formation. The falling cliff following a rotational motion imparts a
more sudden and concentrated impact that allows an efficient energy transfer to water,
leading to higher wave amplitudes. On the other hand, granular flows, being more
deformable and flowing along a slope, result in gradual energy transfer over a wide area,
thus resulting in lower wave amplitudes. The results highlight that it’s not only the total
impact energy that affects the behavior of the induced wave, but the mode of energy
transfer also plays a critical role (Mohammed and Fritz, 2012; Wunnemann and Wesiss,
2015). Based on the experimental results for wave amplitude and runup induced by
rotational cliff collapse that fragments upon impact with the water surface, a novel
prediction model was prepared using multi-expression programming. The justifications

for the use of MEP have been well explained in the previous sections.
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Fig. 9: A comparative display of the water waves recorded at gauge 1&2 for a 60°
slope angle, and 0.445 m fall height.
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Fig. 11: Water waves induced by equivalent granular mass at 30° slope angle
3.2 Numerical modeling results

The numerical simulations conducted in this study successfully captured key
dynamic characteristics of the wave generated by the rotational cliff collapse,
specifically the wave amplitude and wave runup, across a range of test cases. Moreover,
the front velocity of the incident wave was also measured. The simulations were also
focused on verifying the results obtained from the rotational cliff collapse in the
experiments. To quantify the wave amplitude, runup, and velocity, a post-processing
technique was employed. To establish the reliability of the wave front velocity
measurements, the velocity was calculated at 5-7 distinct locations along the wave’s
propagation path and at multiple time steps during the simulation. This multi-point
sampling approach minimized errors due to spatial and temporal variations. Fig. 12
shows a representative case of wave formation and propagation in a water tank at a

depth of d = 0.2 m at various time frames.
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Fig. 12: Wave formation and propagation at water depth of d = 0.2 m at various

time frames.
The wave amplitude was defined as the peak vertical displacement of the liquid
surface relative to the undisturbed free surface level. Fig. 13 illustrates a representative

case, depicting the wave front propagation.

Unperturbed surface Wave front peak

Fig. 13: Wave dynamics following a rotational cliff collapse in water depth d = 0.34
m. Stable liquid surface before impact (black line); wave front propagating away from
the point of impact (white line).

To validate the results of simulations, we compared the results of the runup height
with the experimental values. Table 3 presents the runup values for various runup slope
angles, i.e., 30", 45", and 60™ for a water depth of 0.27 m. The comparison of simulated
values was performed at this depth, as it lies in the middle of the experimental test range
of water depths. Numerical modeling results indicate that for a fixed water depth, the
runup values consistently decrease as the runup slope angle increases from 30" to 60°.
At a water depth of 0.27 m, the runup decreases from 0.2 m at 30" to 0.17 m at 45°, and
further to 0.11 m at 60°. This reduction is attributed to the changing momentum transfer
dynamics with increasing slope angle. At less steep angles (closer to horizontal, e.g.,
30"), the rock’s momentum generates a stronger radial splash and greater upslope
displacement of the liquid along the cliff. As the angle increases toward 60°, a larger
component of the momentum is directed parallel to the cliff, reducing the vertical
impulse. The experimental and numerical results agree well, and the difference lies
within the acceptable range of 4-5%. The experimental results for the other two water

depths also indicate similar behavior.
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Table 3: Peak runup values along the various slope angles at a water depth of 0.27 m

Depthd  Numerical-30° Exp-  Numerical-45° Exp- Numerical-60° Exp-60°

(m) 30° 45°

0.27 0.20 0.19 0.17 0.16 0.11 0.102

Next, we measured the wave velocity through the numerical results, as it wasn’t
captured accurately through experimental images. Fig. 14 illustrates the simulated wave
fronts at a time instant of # =1 second following the impact of the solid rock on the
liquid pool, for various water depths and a fixed slope angle of 30 degrees. These
visualizations highlight the propagation of the waves from the impact zone. The slope
angle was varied across simulations to assess its influence on wave characteristics. It
was observed that changes in the slope angle induced only minor variations in both the
wave front velocity and wave amplitude for a given pool depth. These perturbations
were typically within 1-2% of the mean values. Consequently, to streamline the
analysis and focus on dominant trends, the wave front velocity and height were
averaged over the range of slope angles for each specific water depth.

However, variations in water depth exerted a pronounced effect on the wave
dynamics, leading to significant alterations in both the propagation velocity and
amplitude of the generated waves. This depth-dependent behavior is quantified in Table
4, which presents the averaged results from the numerical simulations. For a shallow
water depth of d=0.2 m, the average wave front velocity was computed as 1.48 m/s,
with a corresponding average wave height of 0.11 m. As the pool depth increased to
d=0.27 m, the velocity rose to 1.58 m/s, while the wave height decreased to 0.07 m.
Further deepening to 0.34 m yielded a velocity of 1.74 m/s and a reduced wave
amplitude of 0.06 m. These trends indicate an approximately linear increase in velocity

with depth, accompanied by an inverse relationship for wave amplitude.
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Fig. 14: Propagating wave fronts after the impact at time ¢ = 1 s for a slope angle of
30-degree. (a) d=0.2 m, (b) d=0.27 m, (¢) d = 0.34 m.
The observed depth dependence can be rationalized through fundamental
principles of wave propagation in gravity-dominated, multi-phase flows. In the shallow
water regime, given that the pool depths (0.2—0.34 m) are comparable to or smaller than

the wavelengths of the generated waves, the phase velocity ¢ of long gravity waves

approximates c~,/gh, where g is the gravitational acceleration (9.81 m/s?), and 4 is the

undisturbed water depth. This relation arises from the shallow water equations, where
hydrostatic pressure balance and negligible vertical acceleration dominate, leading to a
dispersionless incident wave speed that scales with the square root of depth.
Substituting the water depths yields theoretical velocities of approximately 1.40 m/s for
d=0.2 m, 1.63 m/s for d=0.27 m, and 1.83 m/s for d=0.34 m, which align closely with
the simulated values (discrepancies of 7-10% may stem from viscous dissipation, non-
hydrostatic effects near the impact zone, or spreading of the wave front). A comparative
analysis of the results is shown in Table 4.

Conversely, the decrease in wave amplitude with increasing water depth aligns with
energy conservation and volume displacement considerations in impact-generated
waves. The impact of rotational cliff collapse imparts a fixed kinetic energy and
displaces a finite volume of liquid, creating an initial cavity and subsequent outflow
that evolves into a propagating wave. In shallower pools, the displaced volume is

confined to a smaller cross-sectional area, resulting in greater vertical amplification to
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accommodate the same mass redistribution. For deeper water depths, the energy is
distributed over a larger water column, diluting the surface perturbation and yielding
lower amplitudes. The trends observed in the numerical simulations for water waves
induced by rotational cliff collapse are in good agreement with theoretical and
experimental results, indicating that water depth has a direct effect on the wave velocity

and an inverse effect on the wave amplitude and runup.

Table 4: The average wave propagation velocity and amplitude for various water depths.

Water depth d Avg. wave Theoretical wave Wave amplitude A
(m) velocity v (m/s) velocity ¢ (m/s) (m)
0.2 1.48 1.40 0.11
0.27 1.58 1.63 0.07
0.34 1.74 1.83 0.06

3.3 MEP model results

The purpose was to develop a precise model for wave amplitude and runup induced
by rotational cliff collapse. The predicted model is a function of seven variables, i.e.,
water depth, fall height, cliff mass, impact velocity, cliff height, runup slope angle, and

number of fragments, and can be described as follows,
Wave amplitude and runup = f(d, H,m,v, h, a, Ny) (3)

The relation among the parameters was evaluated using Pearson’s correlation to
analyze the multicollinearity and interdependency between the parameters, as they can
obscure the interpretation of the developed model. The model was developed by
splitting the data into two subsets, i.e., training (70%) and testing (30%). The
randomization was done by MEP itself. Following the criteria, 70% of the data, i.e., 57
data points, were taken as training data, whereas 30% of the data, i.e., 24 data points,
were considered for validation of the model. The mathematical expression for MEP is
obtained by solving the C++ code and representing it as per optimized hyperparameter
settings, as shown in Table 5. The prediction model for wave amplitude and runup was
developed by analyzing the MEP code in MATLAB, as shown in Equations 4 and 5.

Table 5: Parametric settings of the MEP algorithm for wave amplitude and runup
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Sr.No.

Parameters

Wave amplitude

Wave runup

1 Number of sub-populations 125 85
2 Sub-population size 115 75
3 Crossover probability 0.85 0.60
4 Code length 35 25
5 Tournament size 30 10
6 Mutation probability 0.085 0.06
7 Number of generations 250 120
8 Crossover type Uniform Uniform
9 Error measure Mean absolute error Mean absolute error
10 Problem type Regression Regression
11 Function set +, - X, /, " + -, X, /,"
12 Terminal set Problem Input Problem Input
13 Operators 0.5 0.5
14 Simplified Yes Yes
15 Variables 0.5 0.5
16 Random seed
17 Constants
Cer) : (&)
Wave amplitude A = d \{@Vrm)) 4 m+Nf+ZIEZ+Nf+m) + 2vhd \4@+Ny+m) 4)
A
A<h+(A.(d_§))B/a) B
Wave runup R = %)

a

A=v+h?

B=v+m+h¢

Whereas d is the water depth (m), m is the mass of the cliff (kg), v is the

impact velocity (m/s), h is the cliff height (m), a is the runup slope angle, and Ny

is the number of fragments.

3.3.1 Prediction performance of the developed model

The robustness of the proposed model was evaluated by comparing it with well-

established statistical indices, i.e., mean absolute error (MAE), root mean square error

(RMSE),

correlation coefficient (Cr), Nash—Sutcliffe efficiency (NSE),

and

performance index (PI). The indices can be represented by equation (6-10) (Khan et al.,

2022).
MAE =

RMSE =

n
Yi-.lei—pil
n

Z?ﬂ(ei—l?i)z

(6)
(7
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Z?zl(ei—pi)z

S T era? (8)
RRMSE
Pl = 1+R 9)
2
R2 = 2o, (ei—é)(i—py) (10)

Zn (ei—e)? Y., (P—Py)?
=1

Whereas, e; and p; are the average values of the experimental and predicted
results, and e; and p; are in values of the modeled and predicted results, for n total
samples. It is good to consider the error indices while analyzing the predictive capability
of complex models. The wave runup model demonstrated a robust performance for both
training and testing datasets. The lower values of RMSE and MAE indicate little
deviation from experimental values, while RSE and RMSE values confirm lower
normalized error, as shown in Table 6. The higher values of NSE and Cr further
validated the model reliability for the training phase. Whereas for the validation dataset,
1.e., the unseen data model displays even stronger performance with lower RMSE and
MAE values compared to the training dataset. Moreover, higher Cr and lower
performance index values highlight enhanced model efficiency. This suggests that the
model works well for unseen data, making it suitable for predicting the wave runup
induced by rotational cliff collapse (Gardezi et al., 2024).

The predictive performance of the wave amplitude model in the case of training
data demonstrated a strong correlation with high R? values and low RMSE and MAE
values corresponding to 13.14% relative error, thus suggesting a good agreement
between experimental and predicted values, as shown in Table 6. The higher NSE and
C- values further confirmed the model's reliability for the training dataset with minimal
systematic bias. When the model was exposed to unseen data, it still maintained
reasonable accuracy with an R? value of 0.78. Though the values of error matrices, i.e.,
RMSE, MAE, and RRMSE, are a bit higher than the training data set, this is expected
due to inherent generalization challenges. Similarly, the higher NSE and C, values,
though lower than the training dataset, indicate consistent predictive performance of the

wave amplitude model with little increase in bias. Overall model exhibited strong
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predictive performance in the training and testing phase, with a little expected decline
in the validation phase.
Table 6: Performance index values for the MEP-based water wave amplitude and

runup prediction model.

Performance Wave Amplitude Wave Runup
parameters Training data Validation data Training data Validation data

RSQ 0.8823 0.7811 0.8748 0.9691
RMSE 0.00178 0.0025 0.01327 0.00617
MAE 0.00135 0.00176 0.0108 0.00504
RSE 0.1180 0.2439 0.1306 0.0312
RRMSE 0.1314 0.1594 0.1472 0.0660

P. index 0.0698 0.0908 0.076 0.0333
NSE 0.8819 0.7560 0.8693 0.9687

G 0.9393 0.8829 0.9353 0.9844

Previously, scientists have also used the slope of the regression line as a
performance indicator for Al models, thus representing a correlation between
experimental and predicted results. Fig. 15 (a & b) shows the regression line for our
wave amplitude and runup model. For wave amplitude, the slope value for the training
data set is 0.88, which is adequate, and 0.78 in validation, which is still greater than the
minimum value of 0.7; it can happen as the model involving numerous parameters and
complex phenomena usually performs slower for the unseen data (Yarkoni and Westfall,
2019). Whereas, for wave runup, the model performed very well for both training and
validation data sets with an R? value of 0.87 and 0.96, respectively.

The accuracy of the proposed model can also be checked using residual error plots,
which are obtained by subtracting experimental and predicted values. The results
indicate that the amplitude model has minimum and maximum values of -0.004 m and
0.0065 m, as shown in Fig. 16 (a), whereas for wave runup the minimum and maximum
values are -0.01875 and 0.024 (Fig. 16b). Moreover, it can also be observed that error
values are populated along the x-axis, therefore, showing low error frequency, and

accuracy of both the models.
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Fig. 15 Tracing the experimental results by predicted values, (a) wave amplitude and
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Fig. 16 Indicating error values between experimental and predicted model (a) wave
amplitude, and (b) Wave runup

3.2 Validation of the developed model

The validation of the proposed model is an important feature in predictive modeling.
It has been observed that sometimes the model performs very well for training data sets,
but fails to perform during the validation stage for unseen data. So, the developed
prediction model was further validated by conducting the sensitivity and parametric
analysis for both the wave amplitude and runup.
3.2.1 Sensitivity analysis

Sensitivity and parametric analysis play a vital role in determining the robustness
of the proposed model. The sensitivity analysis (SA) of the developed prediction model

for the entire dataset tells us how sensitive the model is to any changes in input
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parameters. So, for an independent parameter Y; the SA can be calculated using
equations 11 and 12, which indicates that for any parameter, the values were varied
between two extremes, and others were constant at their average, and the outcome was

found in the form of Y;, and then the same process was repeated for all the remaining

parameters.

Ry = fmax(yk) - fmin(Yk) (1)

Relative Importance SA (%) = j-:kl x 10 (12)
R .

n

Whereas, fra(Ye) and fiin (Yy) represent the minimum and maximum values
of the model-based results grounded on the £t domain of the input parameters in the
above equation. Fig. 17 (a & b) shows the results of the sensitivity analysis of the
developed prediction model for the wave amplitude and runup. Figure 17 (a) indicates
that the wave amplitude is greatly influenced by the height of the cliff (#) and has an
effect of almost 51%. The water depth (d) contributes 4.36% to wave amplitude, cliff
mass (m) contributes 4.69%, and impact velocity (v) and number of fragments (Ny)
contribute 18% and 22% to the induced wave amplitude. Whereas the fall height (H)
and runup slope angle () do not affect the wave amplitude. Since the impact velocity
parameters have already catered for the fall height that’s why it is not visible in the
proposed model. The model tells us that impact velocity, cliff height, and number of
fragments contribute approximately 90% to the wave amplitude induced by the
rotational fall of the cliff. It can be concluded that the effect of h > Ny > v > m >
d on the induced wave amplitude.

Similarly, the sensitivity analysis of wave runup (Fig. 17b) indicates that runup is
greatly influenced by bank slope angle (o) and has an effect of 34%. Impact velocity
(v) contributes 25.3%, cliff mass (m) 20.3%, cliff height (#) 13.3%, and water depth
(d) contributes around 7% to wave runup. Whereas, the number of fragments and fall
height that have already been catered in impact velocity don’t contribute to wave runup.
This suggests that wave runup is primarily governed by coastal geometry, i.e., bank
slope angle and cliff height, and hydrodynamic forces, i.e., impact velocity, whereas

water depth contributes a little to wave runup. It can also be concluded as the effect of
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a> v > m > h > d onthe induced wave amplitude.
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Fig. 17 Sensitivity analysis of the MEP-based wave amplitude and runup
prediction model

3.2.2 Parametric Analysis

Parametric analysis results for the input parameters for the wave amplitude used in
this study are displayed in Fig. 18. The parametric analysis indicates that wave
amplitude decreases as the water depth, number of fragments, and cliff mass increase,
whereas it increases with the increase in cliff height and impact velocity. These trends
are in line with the fundamental physics principles (Bougouin et al., 2020; Lipiejko et
al., 2023). Deep waters dissipate more energy, and greater impact velocities and larger
cliff heights impart more kinetic and potential energies to water bodies for wave
generation. In contrast, the inverse relation between the number of fragments and wave
amplitude proposes a potential threshold effect in which initial fragmentation
contributes to wave formation, whereas excessive fragments contribute to energy
dissipation owing to increased turbulence. The sensitivity analysis further quantified
the effect of these parameters, classifying cliff height as a major contributing factor in
wave amplitude variations, followed by impact velocity, number of fragments, water
depth, and mass of cliff. The strong influence of cliff height indicates its direct effect in
determining the potential energy for wave generation. Moreover, the larger sensitivity
value of fragments regardless of their inverse parametric relation shows a complex
relation, where fragment count plays a considerable but context-dependent role in wave

generation and propagation. The dominance of cliff height, impact velocity, and
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fragment count suggests that these parameters should be prioritized in future prediction
models. These findings are important for developing predictive models for wave
generations due to rotational cliff collapse.

The developed model for wave amplitude provides valuable insights into
fundamental physics governing wave formation and propagation induced because of
rotational cliff collapse. The strong height dependence of the model confirms the
classical principle of conservation of potential energy, whereas the fragment count
dependence reveals energy partitioning mechanisms. The results of performance
indices and sensitivity, and parametric analysis increase our understanding of how
geometric and dynamic characteristics govern the wave characteristics, with relevance
to hazard assessment and disaster mitigation in coastal regions prone to cliff collapse
following rotational motion.

The results of the parametric analysis for wave runup are presented in Fig. 19. It
can be observed from Fig. 19 (a & e) that as the water depth and bank slope angle
increase, the wave runup decreases, due to energy dissipation and different wave
breaking dynamics. Conversely, as the cliff mass, cliff height, and impact velocity
increase, the wave runup increases, as greater kinetic energy and inertia impart greater
uprush. Notably, all the parameters present a strong correlation with the runup (more
than 97%,), highlighting their statistical significance. The results agree with the general
physics laws, where mild slopes and larger impact forces result in higher runups,
whereas deep waters attenuate wave energy.

An important observation from parametric analysis of wave amplitude and runup,
as shown in Fig. 18b, and 19c, indicates that cliff mass represents a nonlinear relation
with wave amplitude and a linear relation with runup. This is due to the fact that the
variations in wave amplitude are governed by a nonlinear energy dissipation, where
hydrodynamic forces follow a quadratic dependence on the velocity. In the case of light
cliff collapses, the dynamic responses result in complex absorption and distribution,
whereas heavier cliff collapses promote wave reflection along with nonlinear effects of
wave breaking and splash-induced turbulence, as can be observed in Fig. 5 (b, e&h).

Conversely, the wave runup exhibits a linear relation with cliff mass, and this is due to
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the law of conservation of momentum, such that the resisting inertial force is directly
proportional to cliff mass. The greater resistance to motion of heavier cliffs allows more
energy to be conserved and utilized for higher wave runups before dissipation. The
main difference between the two trends is that the wave amplitude is controlled by
localized energy losses, whereas runup is governed by bulk momentum transfer rather

than localized losses.
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Fig. 18 Parametric analysis for wave amplitude (a) water depth, (b) cliff mass, (c)

impact velocity, (d) cliff height, (e) number of fragments.
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Fig. 19 Parametric analysis for wave runup (a) water depth, (b) impact velocity, (¢)
mass of the cliff, (d) cliff height, (e) bank slope angle.

4. Conclusions

While designing wave protection structures along the banks of reservoirs, it is
common to use the empirical relations developed for granular flows, i.e., landslides and
avalanches, to predict the amplitude and runup of the waves. However, the waves
induced by various types of slides behave differently and should be treated accordingly.
The dynamics of the waves induced by falling cliffs are entirely different from the
waves induced by continuous granular flows. Similarly, the dynamics of the waves
induced by falling cliffs following different types of motion (translational, rotational)
are also different. This study aimed to develop a novel wave amplitude and runup
prediction model for waves induced by rotational fall of the cliff using a combination
of seven governing parameters, and then compare it with the dynamics of the wave
induced by continuous granular flows. Based on the results and discussions, the study
concludes as follows,

1. It was concluded that water depth strongly controls the shape of the induced splash

and wave amplification. Shallow water induced elongated, tall splashes, and higher
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wave amplitudes; in contrast, deep water produced mushroom-shaped splashes
with higher energy dissipation and lower wave amplitudes.

The higher values of Froude number (> 1.2) for all the experiments indicate that
the viscous effects were negligible, so the Froude number was selected as the most
suitable dynamic scaling factor for describing the behaviour of the waves.

The wave amplitude was greatly influenced by cliff height (51 %), number of
fragments (22 %), Impact velocity (18 %), cliff mass (4.69 %), and water depth
(4.36 %). Whereas the wave runup was governed by the runup slope angle, impact
velocity, and cliff mass.

The amplitude of the wave induced by equivalent granular mass sliding on a 30°
slope was 28-42% lower than the waves induced by rotational cliff collapse, thus
concluding that the mode of energy transfer to the water body plays a critical role
in wave dynamics.

A novel MEP-based prediction model was developed for wave amplitude and
runup. The model showed great performance during the training and testing stage,
and showed high sensitivity to the used parameters, thus confirming its reliability.
Research findings highlight that accurate hazard assessment of the clift collapse
requires models that account for the rotational failure mode and the fragmentation
upon impact with the water surface. Traditional granular slide models may result

in an underestimation of the initial wave amplitude and energy transferred.
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