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which was visually verified by video analysis. The flume was marked with a vertical scale to measure the water

depth._ The wave amplitude was measured using capacitance-type wave gauges with an accuracy of + 0.5 mm

placed along the centerline at specified intervals. The runup height was measured using a graduated paper attached

to the inclined surface. The entire process was recorded using a digital camera (240 fps, 720p resolution) placed

erpendicular to the experimental flume; the velocity of the falling cliff was verified by frame-by-frame video

analysis using Particle Image Velocitymeter (PIV).
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277 terms jn the momentum equation are handled using a second-order upwind method. The PISO (Pressure-

Implicit with Splitting of Operators) algorithm was employed for pressure-velocity coupling, which is

239 well-suited for transient flows. Temporal diseretizationdiscretisation employs a second-order implicit

28+ scheme, and spatial gradients are calculated using the Least Squares Cell-Based method.

Te-have-anThe boundary conditions were defined as follows: the bottom boundary

was modeled as a no-slip wall, while the top boundary was set as a pressure outlet at

atmospheric_conditions, and the lateral sides were modeled as stationary walls to
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mentioning that the numerical simulations were performed considering the rock as a unified mass. This approach
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The results for the relative wave height and runup for all three water depths and three runup slope
angles are shown in Fig. 7. The relationship indicates a strong correlation between, wave amplitude and,

runup, for, all three slope angles, FheThe decreasing line-slope values with increasing runup slope angle

indicate that wave runup increases at a slower rate for sharp slope angles compared to mild slopes. The

trend highlights the effect of slope angle on the runup. The result also indicates that the mild slope |

angles help wave runup amplification, as they dissipate a very small amount of energy, whereas steeper

angles result in lower runup heights because of higher energy losses (Wu et al., 2018).
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Fig. 12: Wave formation and propagation at water depth of ¢ = 0.2 m at various time

frames.
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3.2.2 Parametric Analysis

648——Parametric analysis results for the input parameters for the wave amplitude used in this study are
displayed in Fig. 18. The parametric analysis indicates that wave amplitude decreases as the water
depth, number of fragments, and cliff mass increase, whereas it increases with the increase in cliff
height and impact velocity. These trends are in line with the fundamental physics principles
(Bougouin et al., 2020:; Lipiejko et al., 2023). Deep waters dissipate more energy, and greater impact
velocities and larger cliff heights impart more kinetic and potential energies to water bodies for wave
generation. In contrast, the inverse relation between the number of fragments and wave amplitude
proposes a potential threshold effect in which initial fragmentation contributes to wave formation
whereas excessive fragments contribute to energy dissipation owing to increased turbulence. The
sensitivity analysis further quantified the effect of these parameters, classifying cliff height as a
major contributing factor in wave _amplitude variations, followed by i i umber of
fragments, water
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697———While designing wave protection structures along the banks of reservoirs, it is
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696——_common to use the empirical relations developed for granular flows, i.e., landslides and
699——_avalanches, to predict the amplitude and runup of the waves. However, the waves
#66——_induced by various types of slides behave differently and should be treated accordingly.
76— The dynamics of the waves induced by falling cliffs are entirely different from the
#62——_ waves induced by continuous granular flows. Similarly, the dynamics of the waves
#63—— _induced by falling cliffs following different types of motion (translational, rotational)
+04——_are also different. This study aimed to develop a novel wave amplitude and runup
+95——_prediction model for waves induced by rotational fall of the cliff using a combination
06— _of seven governing parameters, and then compare it with the dynamics of the wave

#97——_induced by continuous granular flows. Based on the results and discussions, the study

768 _concludes as follows, -

#99—+—]t was concluded that water depth strongly controls the shape of the induced splash depends—en

s eenide
10— inereased-depth-formsaand wave amplification. Shallow water induced elongated, tall splashes,
and higher wave amplitudes; in contrast, deep water produced mushroom-shaped splash;

whereas-shallow—waterforms-a
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A novel MEP-based prediction model was developed for wave amplitude and runup. The model showed

great performance during the training and testing stage, and showed high sensitivity to the used parameters

thus confirming its reliability.

Research findings highlight that accurate hazard assessment of the cliff collapse requires models that account

for the rotational failure mode and the fragmentation upon impact with the water surface. Traditional granular

slide models may result in an underestimation of the initial wave amplitude and energy transferred.
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