

Style Definition: Normal: Font: (Default) +Body (等线), (Asian) +Body Asian (等线), 五号, (Asian) Chinese (Simplified, Mainland China), (Other) English (United Kingdom), Ligatures: Standard + Contextual, Justified, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Style Definition: Heading 1

Style Definition: List Paragraph: Font: (Default) +Body (等线), (Asian) +Body Asian (等线), 五号, (Asian) Chinese (Simplified, Mainland China), (Other) English (United Kingdom), Ligatures: Standard + Contextual, Justified, Indent: Left: 0 cm, First line: 2 ch, Space Before: 0 pt, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Style Definition: Body Text

Style Definition: Table Paragraph

Formatted

Formatted

Formatted: Normal, Centered, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 15.87 ch

Formatted

Formatted

Formatted

Formatted: Normal, Left, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted

Formatted

Formatted: Normal, Left, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted

Formatted

Formatted

Formatted

Formatted: Normal, Left, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted: Font: (Default) Times New Roman, 小四, Bold, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted

30 Formatted: Header

runup model. The prediction models performed well both in the training and testing stages, with higher high R^2

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Red

31 values. The developed model was, and were validated by comparing the results with via
 established

32 statistical indices and by performing, sensitivity, and parametric analysis, highlighting
 33 that wave amplitude is greatly influenced by. The prediction models highlighted a cumulative
 34 90% contribution of impact velocity, cliff height, and the
 35 number of fragments, contributing approximately 90% to on the wave amplitude. In
 36 comparison, runup is was greatly influenced by bank slope angle, impact velocity, cliff mass,
 37 and height. The experimental results and developed prediction models can provide the
 38 basis for understanding the rotational cliff collapse-induced waves and can help with
 39 disaster mitigation and risk assessment by effectively predicting the wave amplitude
 and runup.

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Normal, Left, Indent: First line: 0.74 cm, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, 小四, Bold, Not Expanded by / Condensed by

Formatted: List Paragraph, Left, Line spacing: 1.5 lines, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm, Tab stops: Not at 5.87 ch

Formatted

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted

61 Moreover, the highly energetic gravity waves are capable of overtopping the dam
 62 wall, especially where the freeboard is just a few meters. The overtopping can result in
 63 dam failure and can lead to catastrophic events, such as caused by 1963 Vajont rock
 64 slide, in North Italy, where a 250 Mm^3 of rock mass slid into the dam reservoir and
 65 induced a huge wave that ran to a height of 200 m at the opposite bank (Franci, Svennevig et al., 2024).

66 2020; Heller and Ruffini, 2023; Ward, N. Steve and Day, Simon, 2011; Zhao et al.,
 67 2016), the resultant wave overtopped the dam and destroyed an entire village
 68 downstream. Similarly, in 2003 Qianjiangping landslide with a volume of 24 Mm^3 , and
 69 in 2008 Gongjiafang landslide with a volume of 0.38 Mm^3 in Three Gorges dam
 70 reservoir area induced a water wave that had an amplitude of 30 m and 32 m
 71 respectively (Wang et al., 2021). Gongjiafang landslide induced wave ran up to a height
 72 of 12.4 m on opposite bank (Huang et al., 2012).

73 These incidents highlight the need for predicting the subsequent energy transfer of
 74 such cliff collapses for disaster mitigation. The wave amplitude and runup height are of
 75 great importance. In contrast, the The cases mentioned above are extreme; whereas the
 76 small phenomena of sliding,

77 toppling, and falling events of cliffs, in small lakes and reservoirs can induce a wave of
 78 comparably small amplitude but capable of causing substantial damage to densely
 79 populated areas along the shoreline. Particularly, in the case of glacial lakes,
 80 recreational lakes, and lakes formed by previous landslides are prone to cause major
 81 disasters as they are considerably smaller compared to dam reservoirs (Gardezi et al.,
 82 2021). The phenomena of cliff overturning and falling are common around these lakes
 83 quite frequent and have been captured by various people around the globe. Fig. 1 (a, b, and c)
 84 indicates

85 a rotational (topple) cliff collapse in Furnas Lake, Brazil, on 8 January 2022, killing 10
 86 people (Maciel et al., 2023; Sun et al., 2024). As a result of the collapse, a huge splash and
 87 induced waves can be seen in Fig.

88 1 (c). Though scientists have analyzed the amplitude and runup of the waves induced
 89 by sliding masses, the literature lacks in providing detailed information. Despite recurring
 90 events of cliff collapse along the water banks, the rotational failure of cliffs accompanied by
 91 fragmentation upon impact with the water surface remains poorly understood. Recent studies on
 92 the
 93 formation and propagation of the wave induced by rotational cliff collapse. Moreover,
 94 the literature also lacks in elaborating water waves have focused on the shape of the induced splash.
 95 Effect of cliff
 96 fragmentation on the induced wave, as can be seen in Fig. 1 (a, b, and c), the falling
 97 cliff was still intact and broke under its own weight upon impact with the water surface

Formatted: Font: (Default) Times New Roman, Font color: Red, Ligatures: None

Formatted

Formatted: Normal, Left, Indent: First line: 0.63 cm, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Font: (Default) Times New Roman

Formatted

Formatted

Formatted

Formatted

Formatted

91 and induced a huge splash. Furthermore, though there are numerous prediction models
 92 available for the amplitude and runup of landslide induced water waves, the prediction
 93 models for water waves induced by rotational fall of cliffs considering fragmentation
 94 are nonexistent.

95 Field data related to historical events is critical for disaster mitigation, but due to
 96 their occurrence in remote areas, the unavailability of measuring devices makes it
 97 difficult, leaving the physical modeling as the only source for understanding the wave
 98 generation, and propagation phenomena (Bellotti and Romano, 2017; Grilli et al., 2017;
 99 Takabatake et al., 2022; Wang et al., 2017a; Watts, 1998a). Previously, scientists have
 100 performed both two, and three-dimensional physical modeling for landslide induced
 101 water waves using either block slide (Heinrich, 1992; Heller and Spinneken, 2013;
 102 Najafi-Jilani and Ataie-Ashtiani, 2008; Sælevik et al., 2009), (M. Di Risi et al., 2009;
 103 Marcello Di Risi et al., 2009; Lindstrøm et al., 2014; Montagna et al., 2011; Panizzo
 104 et al., 2005; Wang et al., 2016) block slides, translational slides, or granular slide (Fritz et al.,
 2003a, 2003b; Lindstrøm,

105 2016; Miller et al., 2016; Zweifel et al., 2006), (flows, where the mass moves along a predefined
 106 basal plane. Moreover, physical modeling has also been carried out to analyse the amplitude and
 107 runup of the landslides-induced water waves either by using block slide or granular slide (Heller
 108 and Spinneken, 2015; Huang, 2013; Lindstrøm, 2016; Lindstrøm et
 109 al., 2014; McFall and Fritz, 2016; Miller, 1960; Mohammed and Fritz, 2012; Montagna et al., 2011;
 110 Romano et al., 2023, 2020; Sælevik et al., 2009; Yin et al., 2015). However, the rotational collapse is different
 111 from the type of failure mentioned above. In rotational collapse, the cliff rotates along the base and falls into
 water, thus inducing a huge splash and fragmenting upon impact. Romano et al., 2023),

Formatted

Formatted

Formatted

Formatted

Formatted: Normal, Left, Indent: First line: 0.63 cm, Don't adjust right indent when grid is defined, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

107 But none have developed a physical model to quantify the amplitude and runup of the
 108 waves induced by rotational cliff collapse, incorporating cliff fragmentation.

109 Along with the physical modeling, the wave generation and propagation
 110 phenomena have also been analyzed using While a few relevant studies provide partial understandings on
 the phenomena, such as as Liu et al. (2025) numerically analyzed the waves induced by different types of mass
 movements, considering different shapes using smoothed particles, similarly, Heller et al. (2021) experimentally
 analyzed the waves induced by iceburg calving and Yin et al. (2015) studied the potential cliff collapse of
 Jianchuandong rock mass in Three Gorges dam. While these studies contribute to the broader understanding of
 the impact induced by water waves, they do not consider the combined effect of rotational collapse and
 fragmentation. Moreover, the shape of the induced splash, as observed in Lake Furnas, has also not been properly
 explored either experimentally or numerically, as can be seen in Fig. 1 (a, b, and c), the falling cliff was still intact
 and broke under its own weight upon impact with the water surface and induced a huge splash.

110 Parallel advancements in numerical modeling by using have enhanced our understanding of
 111 landslide induced water waves thorough, computational fluid dynamics (CFD), Eulerian and

112 Lagrangian methods, employing depth-averaged model, nonlinear shallow water,

Formatted

Formatted

Formatted: Header

112 — Navier-Stokes model, or Boussinesq equation, for both two- and three-dimensional
113 — modeling (Cecioni modelling (Franci et al., 2011-2020; Grilli et al., 2019; Guan and Shi, 2023;
Heidarzadeh et al., 2020; Lovholt et
114 — al., 2005; Ruffini et al., 2019; Watts et al., 2003; Whittaker et al., 2017; Yavari and
115 — Ataie Ashtiani, 2017). Moreover, numerous scientists have also used computational
116 — fluid dynamics (CFD) methods to analyze wave phenomena, just like experimental
117 — modeling, considering the sliding phase as solid material and water as the fluid phase
118 — (Abadie et al., 2010; Chen et al., 2020; Clous and Abadie, 2019; Franei et al., 2020b;
119 — Guan and Shi, 2023; Heller et al., 2016; Kim et al., 2020; Ma et al., 2015; Montagna et
120 — al., 2011; Mulligan et al., 2020; Paris et al., 2021; Rauter et al., 2022; Ruffini et al., 2019). Though these
methods have successfully analysed the wave generation, propagation, and wave dynamics either induced by
granular slide or block slide, their direct application to rotational cliff collapse remains limited. 2022; Romano et
al.

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Normal, Left, Indent: First line: 0.74 cm, Don't
adjust right indent when grid is defined, Space Before: 0
pt, Line spacing: 1.5 lines. No bullets or numbering,
Don't adjust space between Latin and Asian text, Don't
adjust space between Asian text and numbers, Tab stops:
Not at 5.87 ch

121 2020; Shi et al., 2016).

122 Furthermore, scientists have also developed empirical and regression-based hybrid
123 prediction models have been developed for

124 landslide-induced water waves by considering a combination of several parameters, i.e.,

125 geometric, geological, and kinematic characteristics of slides that contribute to wave

126 generation parameters, as shown in Table 1. Scientists have M. M. Das and Wiegel (1972) proposed

127 that the sliding velocity of the sliding material and water depth are the main components

128 factors affecting the wave amplitude of the waves. Watts (1998) emphasised Stated that the role
129 of slope angle, length,

130 and mass of the slide are major factors influencing the amplitude of the wave, while Fritz et
131 al. (2003) highlighted stated that the role of landslide mass, thickness, mainly drives governing the
132 amplitude of the

133 induced wave. The empirical relations mentioned in Table 1 are mainly for the

134 landslide induced water waves, not for cliff collapse induced water waves. Since this

135 study is related to the wave induced by rotational cliff collapse, not the granular slide,

136 the contributing parameters should also be different. Here in this study, we have

137 considered seven parameters for developing a prediction model, i.e., water depth, fall

138 height of the cliff, number of fragments, runup slope angle, height of the cliff, and

139 impact velocity. In this study, we have incorporated a new parameter, i.e., the number

140 of fragments, as the induced waves from fragments better replicate actual geohazard

141 events.

142 Since the experimental and numerical models are expensive, laborious, time-

143 consuming, and require a lot of expertise, to overcome While these problems, there is a need

144 for models that are quick and require less effort and cost. Consequently, the use of AI provide important

145 parameteric correlations, they were developed for translational or granular slides and show limited application

146 for complex rotational cliff collapses involving fragmentation (Dai et al., 2023; Dignan et al., 2023; Esposti

147 Ongaro et al., 2021).

148 and ML based models is gaining fame in the field of engineering. Previous prediction

149 models for wave amplitude and runup employ simple regression analysis, which is

150 insufficient for complex problems involving multiple parameters, but recently Recently, scientists

151 have shifted towards more advanced ML models to machine learning (ML) approaches for
152 predicting wave dynamics (Bujak et al., 2023; Cesario et al.,

153 2024; Li et al., 2024, 2023a2023; Romano et al., 2009; Tarwidi et al., 2023; Tian et al., 2025;

154 Wang et al., 2017b2017, Wiguna, 2022). While these prediction models have shown improved
155 performance over traditional regression and hybrid models, there is a need to develop an ML).

156 Though scientists have used machine learning for

157 wave amplitude and runup prediction modeling induced by various types of gravity

158 flows, the prediction model for the waves induced by the rotational collapse of the cliff

159 involving fragmentation is nonexistent to the authors' knowledge. Here in this study,

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted

Formatted: Normal, Left, Indent: First line: 0.74 cm, Don't
156 adjust right indent when grid is defined, Line spacing: 1.5
157 lines, No bullets or numbering, Don't adjust space
158 between Latin and Asian text, Don't adjust space between
159 Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted

Formatted

Formatted

Formatted

151 we have developed prediction models for wave amplitude and runup using genetic
152 programming (GP).

153 GP-based models have recently gained traction for prediction, and multi framework for predicting

amplitude and runup of the waves induced by rotational cliff collapse, considering fragmentation.

154 expression programming To address this gap, the current study uses Genetic Programming (GP),
and specifically Multi-Expression Programming (MEP) and genetic expression programming
(GEP) are the

155 most advanced, sophisticated, and widely used models. Both models are gene type

156 programming models that form tree-like models. These models are), to develop a data-driven
prediction model for the wave amplitude and runup. This model is similar to living

157 organisms, which can learn, adapt, and modify their composition, size, and shape

158 (Gardezi et al., 2024); Usama et al., 2023), MEP is a cutting-edge, advanced form of

159 GEP GP that adopts a demonstrative model for programming and uses linear chromosomes

160 to determine optimum population size, mutation probability, and evolutionary model.

161 Compared to other ML models, it can produce more precise results even when the

162 problem complexity is unknown (Usama et al., 2023).

Formatted

Formatted: Normal, Left, Indent: First line: 0.74 cm, Don't
adjust right indent when grid is defined, Line spacing: 1.5
lines, No bullets or numbering, Don't adjust space
between Latin and Asian text, Don't adjust space between
Asian text and numbers, Tab stops: Not at 7.87 ch

Formatted

163 In this study, we have experimentally and numerically analyzed the hydrodynamics

164 of the wave induced by rotational cliff collapse, considering fragmentation of the cliff upon
impact, and have also developed a prediction

165 model for wave amplitude and runup. The physical modeling was carried out by

166 developing a scaled water flume and a platform inducing rotational motion of the cliff.

167 A total of 162 experiments were carried out by varying the seven control parameters,

168 i.e., water depth, fall height, cliff mass, impact velocity, cliff height, runup slope angle,

169 and number of fragments; for the sake of. To improve accuracy, each experiment was conducted

170 twice, for and consistency, thus making it each parametric combination was averaged from two

171 experimental values; hence, a total of 81 experiments experimental results were obtained. The
parameters were selected to

172 comprehensively elaborate on the distinct phases of rotational cliff collapse and induced

173 waves. Water depth and runup slope angle provide the basis for wave propagation and

174 runup. Whereas, the cliff collapse dynamics are explained by cliff mass (which governs

175 the energy input), height of the cliff (defines the initial potential energy), and fall height

176 (determines the transformation of potential to kinetic energy). Cliff impact velocity

177 determines the amount of kinetic energy imparted to the water body at the time of

178 impact, which is important for wave generation. Finally, the number of fragments is

179 selected to demonstrate the effect of fragments of cliff upon impact with the water

180 surface on wave amplitude and runup height. Together, these parameters define the

181 energy budget from the state of rest to its release and then transfer to the water body to

Formatted

Formatted: Font: (Default) Times New Roman, Not
Expanded by / Condensed by

181— its final stage as amplitude and runup. Since the wave velocity was not directly measured during
 182— the experiments, it was measured using a 2D numerical model was developed using Ansys-
 Fluent, and wave
 183— velocity was measured; moreover, Furthermore, the numerical modeling results from the
 experiment for wave amplitude and runup, were also cross-
 184— validated with their experimental counterparts.

185— Finally, based on experimental results, prediction modeling for the amplitude and
 186— runup of water waves was carried out using multi-expression programming (MEP), and
 187— a novel prediction model was developed for the water waves induced by rotational cliff
 188— collapse, considering fragmentation of the cliff upon impact with the water surface.

Formatted

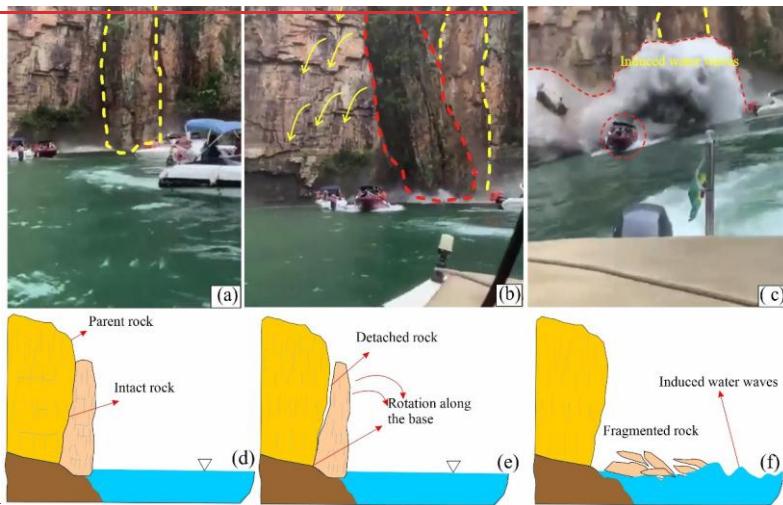
Formatted

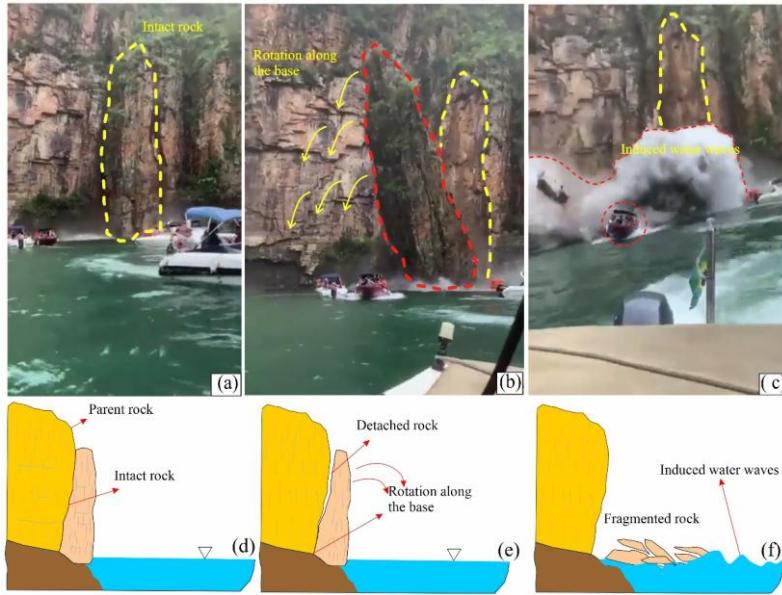
Formatted

Formatted: Font: (Default) Times New Roman, Font color: Red, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted: Normal, Left, Indent: First line: 0.74 cm, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch


Formatted


Formatted

Formatted

Formatted

Formatted: Normal, Left, Indent: First line: 0.74 cm, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

190 Fig. 1: (a, b, and c) waves induced by a cliff collapse in Lake Furnas, Brazil. (d, e, and
191 f) sketch diagram indicating the detachment and rotational fall process.

Formatted

Formatted

Formatted: Normal, Centered, Don't adjust right indent when grid is defined, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 9.4 ch

192 Table 1: Historical overview of the prediction models for wave amplitude

Authors	Predictive model		
(Kamphuis and Bowering	ν_s	θ^2	t_s

Formatted: Font: (Default) Times New Roman

Formatted

Formatted: Normal, Left, Don't adjust right indent when grid is defined, Space After: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted: Font: (Asian) +Body Asian (等线), 8 pt, Not Expanded by / Condensed by

Formatted: Font: 8 pt

Formatted: Font: (Asian) +Body Asian (等线), 8 pt, Not Expanded by / Condensed by

Formatted: Font: 8 pt

Formatted: Normal, Centered, Indent: Left: 0 cm, Space Before: 0 pt

Formatted Table

Formatted

Formatted: Header

(1970)	$A_m = \left(\frac{v_s}{\sqrt{gh}} \right)^{0.7} (0.31 + 0.2 \log \left(\frac{l}{h} \right) + 0.35 e^{-0.08(x/h)})$
(Noda et al., 1970)	$A_m = 1.32 \frac{v_s}{\sqrt{gh}}$
(Huber and Hager, 1997)	$A_m = 2 \times 0.88 \sin \theta \cos^2 \left(\frac{2\alpha}{3} \right) \left(\frac{V}{h} \right)^{0.25} \left(\frac{w}{h} \right)^{0.5} \left(\frac{l}{h} \right)^{\frac{2}{3}}$
(Fritz et al., 2004)	$A_m = 0.25 \left(\frac{v_s}{\sqrt{gh}} \right)^{1.4} \left(\frac{s}{h} \right)^{0.8}$
(Panizzo et al., 2005)	$A_m = 0.07 \left(\frac{T_s h^2}{ws} \right)^{-0.45} (\sin \alpha)^{-0.88} e^{0.6 \cos \theta} \left(\frac{r}{n} \right)^{-0.44}$
(Heller, 2007)	$A_m = \frac{4}{9} \left[F \left(\frac{s}{h} \right)^{1/2} \rho^{1/4} \left(\cos \frac{6\alpha}{7} \right)^2 \right]^{4/5}$
(Mohammed and Fritz, 2012)	$A_m = \max(A_{c1}, A_{c2})$ $A_{c1} = 0.3 F^{2.1} \left(\frac{s}{h} \right)^{0.6} \left(\frac{l}{h} \right)^{0.25} \left(\frac{V}{h} \right)^{0.02} \left(\frac{w}{h} \right)^{-0.33} \cos \alpha$ $A_{c2} = 1.0 F^{0.8} \left(\frac{w}{h} \right)^{-0.4} \left(\frac{l}{h} \right)^{-0.5} \left(\frac{V}{h} \right)^{-1.5 F^{0.5} \left(\frac{w}{h} \right)^{-0.07} \left(\frac{V}{h} \right)^{-0.3}} \cos^2 \alpha$
(Wang et al., 2016)	$A_m = 1.17 F \left(\frac{sl}{bh} \right)^{0.25} \left(\frac{swl}{b} \right)^{0.45} (\sin^2 \alpha + 0.6 \cos^2 \alpha)$
(Li et al., 2023)	$A_m = 0.59 V \frac{\sqrt{2h(1-f \cot \alpha)}}{h} \left(\frac{swl}{h^3} \right)^{N-0.11} \left(\frac{s}{h} \right)^{-0.43} \cos^2 \left(\frac{2}{3} \alpha \right)$

Note: l is the landslide length; s is the landslide thickness; w is the landslide width; m is the landslide mass weight; V is the landslide volume; H is the landslide height; T_s time for motion of slide; b is the river width; h is the still water depth; $x(r)$ is the offshore distance from the bank slope; α is the slope angle; θ is the angular direction; v_s is the impact velocity.

Fritz et al. (2004)	$A_m = 0.25 \left(\frac{v_s}{\sqrt{gh}} \right)^{1.4} \left(\frac{s}{h} \right)^{0.8}$
Panizzo et al. (2005)	$A_m = 0.07 \left(\frac{T_s h^2}{ws} \right)^{-0.45} (\sin \alpha)^{-0.88} e^{0.6 \cos \theta} \left(\frac{r}{n} \right)^{-0.44}$
Heller (2007)	$A_m = \frac{4}{9} \left[F \left(\frac{s}{h} \right)^{1/2} \rho^{1/4} \left(\cos \frac{6\alpha}{7} \right)^2 \right]^{4/5}$
Mohammed and Fritz (2012)	$A_m = \max(A_{c1}, A_{c2})$ $A_{c1} = 0.3 F^{2.1} \left(\frac{s}{h} \right)^{0.6} \left(\frac{l}{h} \right)^{0.25} \left(\frac{V}{h} \right)^{0.02} \left(\frac{w}{h} \right)^{-0.33} \cos \alpha$ $A_{c2} = 1.0 F^{0.8} \left(\frac{w}{h} \right)^{-0.4} \left(\frac{l}{h} \right)^{-0.5} \left(\frac{V}{h} \right)^{-1.5 F^{0.5} \left(\frac{w}{h} \right)^{-0.07} \left(\frac{V}{h} \right)^{-0.3}} \cos^2 \alpha$
Wang et al. (2016)	$A_m = 1.17 F \left(\frac{sl}{bh} \right)^{0.25} \left(\frac{swl}{b} \right)^{0.45} (\sin^2 \alpha + 0.6 \cos^2 \alpha)$
Li et al. (2023)	$A_m = 0.59 V \frac{\sqrt{2h(1-f \cot \alpha)}}{h} \left(\frac{swl}{h^3} \right)^{N-0.11} \left(\frac{s}{h} \right)^{-0.43} \cos^2 \left(\frac{2}{3} \alpha \right)$

Note: l is the landslide length; s is the landslide thickness; w is the landslide width; m is the landslide mass weight; V is the landslide volume; H is the landslide height; b is the river width; h is the still water depth; $x(r)$ is the offshore distance from the bank slope; α is the slope angle; θ is the angular direction; v_s is the impact velocity.

Formatted

Formatted: Normal, Centered, Indent: Left: 0 cm, Right: 0 cm, Space Before: 0 pt

Formatted: Font: Times New Roman, 8 pt, Not Raised by / Lowered by

Formatted: Normal, Centered, Indent: Left: 0 cm, Line spacing: single, Tab stops: Not at 16.28 ch

Formatted

Formatted: Normal, Centered, Indent: Left: 0 cm, Right: 0 cm, Space Before: 0 pt

Formatted: Font: Times New Roman, 8 pt

Formatted: Normal, Centered, Indent: Left: 0 cm, Line spacing: single, Tab stops: Not at 15.33 ch

Formatted

Formatted: Normal, Centered, Indent: Left: 0 cm, Right: 0 cm, Space Before: 0 pt

Formatted: Font: Times New Roman, 8 pt

Formatted: Normal, Centered, Indent: Left: 0 cm, Line spacing: single, Tab stops: Not at 14.01 ch + 15.94 ch + 19.48 ch + 23.22 ch

1932. 2. Research methodology

194 2.1 Model Preparation Experimental setup

195 The physical modeling for wave amplitude and runup induced by rotational cliff

Formatted

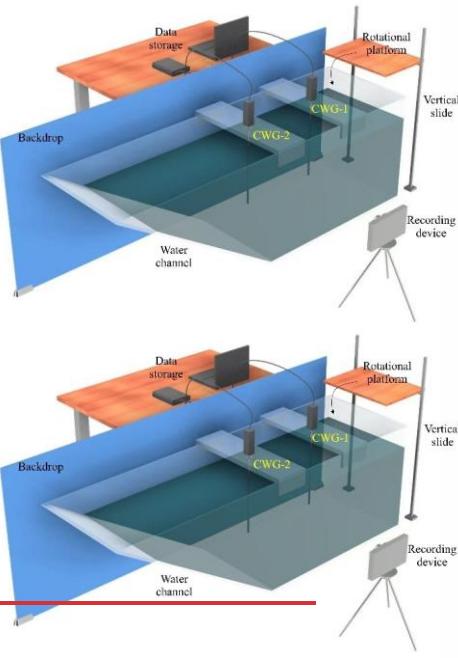
Formatted: List Paragraph, Left, Don't adjust right indent when grid is defined, Space Before: 0.5 line, Line spacing: 1.5 lines, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted

Formatted

196 collapse was carried out in a three-dimensional water flume made up of plexiglass, as
197 shown in Figs. 2 and 3. One end of the flume is vertical at 90° , whereas the other end
198 is inclined and fixed at 30° (Fig. 3a and b). The flume is 0.55 m high, 0.5 m wide, and
199 1.4 m long along the base and 2.35 m long at the top. Furthermore, to measure the runup
200 of induced water waves at various slope angles, two sliding rails were installed towards
201 the inclined end at 45° and 60° . So, upon insertion of the gate at 45° and 60° , the top
202 length of the flume was further reduced according to the Pythagoras theorem. To induce
203 the rotational cliff collapse, a 0.55 m wide and 0.6 m high movable platform was
204 prepared designed, which can move in the vertical direction and can also rotate about its axis.

205 The rotational motion was induced by pulling the hinge; the release ensured a pure rotational motion, which was visually verified by video analysis. The flume was marked with a vertical scale to measure the water depth. The wave amplitude was measured using capacitance-type wave gauges with an accuracy of ± 0.5 mm, placed along the centerline at specified intervals. The runup height was measured using a graduated paper attached to the inclined surface. The entire process was recorded using a digital camera (240 fps, 720p resolution) placed perpendicular to the experimental flume; the velocity of the falling cliff was verified by frame-by-frame video analysis using Particle Image Velocimeter (PIV).

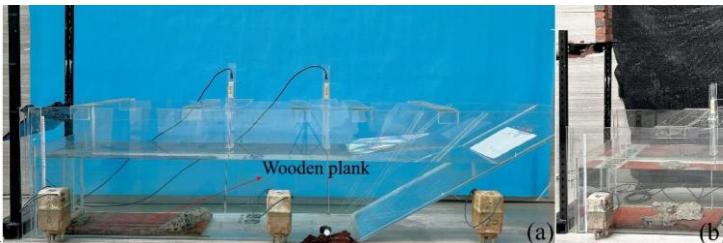

206

Formatted

Formatted: Normal, Left, Indent: First line: 0.63 cm, Don't adjust right indent when grid is defined, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted

207


208 Fig. 2: Illustration of experimental setup including wave gauges, rotational platform,
209 recording, and data storage devices.

Formatted

Formatted

Formatted: Normal, Centered, Don't adjust right indent when grid is defined, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 17.46 ch

210

211 Fig. 3: Photographs of the setup, (a) Experimental flume, (b) platform for inducing
212 rotational cliff collapse.

Formatted

Formatted

Formatted: Normal, Centered, Don't adjust right indent when grid is defined, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 20.22 ch

2.2 Test preparation and materials

214 Physical experiments were carried out by varying the water depth, fall height,

215 number of fragments, bank slope angle, mass of falling rock, cliff height, and impact
216 velocity. The tests were carried out for three water depths, i.e., 0.34 m, 0.27 m, and 0.20
217 m, and three fall heights, i.e., 0.64 m, 0.44 m, and 0.245 m from the surface of the water
218 level. Furthermore, the number of blocks was also varied, i.e., 6, 10, and 12 blocks
219 having combined weights of 1.445 kg, 2.29 kg, and 2.82 kg, respectively. At the same
220 time, the impact velocity changed by changing the fall height. The wave runup was
221 measured by varying the bank slope angle, i.e., 30°, 45°, and 60°.

222 To replicate the field density of the rocks, red gutka bricks having a density of
223 around 2000 kg/m³ were used. The singleA singular,block had a dimension of 0.55055x0.05x0.042

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Don't adjust right indent when grid is defined, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted

Formatted

224 m. m. The mass volume and dimension of all the blocks were unchanged to ensure consistency in the experiments. A combination of 6, 10, and 12 blocks of red gutka bricks were used to form a cliff

Formatted

225 and measure the wave amplitude and runup of induced waves. The blocks were joined together with the help of cement paste having a water-cement ratio W/C 0.8 and cured

Formatted

226 227 for 2 hours in front of an electric heater at 150 °C. To ensure the weak bond strength, several trials for bond strength were carried out after a curing period of 2 hours, and it was found to be in the range of 0.42–0.5 MPa. In contrast, the inertial stresses at the time of impact were several times higher, such that the bond is weak enough they caused the fragmentation of the cliff. This condition was purposely designed to imitate naturally fractured cliff materials, confirming that it

Formatted

228 fragments at the structure fragmented primarily along the joints upon impacting impact with the water surface, consistent with field observations of rotational cliff collapses. The bonded blocks were

Formatted

229 placed on the rotational platform at specific heights, i.e., 0.64 m, 0.44 m, and 0.245 m from the water level, and were allowed to rotate under their own weight by pulling the hinge, such that the placed block falls in the water following rotation motion along its

Formatted

230 231 232 base, Fig. 3(b). To avoid the slippage of blocks and to replicate field conditions, fine grained ensure that it had sufficient frictional resistance needed for pure rotational motion of the simulated cliff, finely-grounded bricks of the same cliff material as the cliff were pasted on the rotational platform, thereby preventing translational motion or vertical free fall into the water.

233 Formatted: Normal, Indent: First line: 0.74 cm, Don't adjust right indent when grid is defined, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

234 Furthermore, to reduce the impact of falling blocks on the base of the flume, a wooden 235 plank weighing 2.69 kg and dimensions 0.65m x 0.37m x 0.01 m was placed at the 236 point of impact inside the flume. Due to its large surface area and lighter density, it 237 tends to float in the flume, so two blocks of concrete weighing 3.58 kg were placed on 238 it, Fig. 3 (a). Since the fall height was small, no considerable local breakage was observed in the blocks.

239 Formatted: Normal, Indent: First line: 0.74 cm, Don't adjust right indent when grid is defined, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

240 and the brief water contact minimised the water absorption effect.

241 Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线)

242 243 The induced wave amplitude was measured by placing the wave measuring gauges at a distance of 0.65 m and 0.135 m from the vertical face; the gauges were wired and connected to the laptop. At the same time, the runup was measured manually with the help of a scale by pasting a scaled paper on the slope. Furthermore, the experiments were also recorded with the help of a high-resolution camera for verification purposes.

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

244 2.3 Numerical Modeling

245 246 247 248 249 250 Simulating multi-phase flows is challenging due to the constant deformation of the liquid-gas interface. Various numerical methods have been developed to model these flows, each offering unique advantages depending on the specific flow regime and characteristics of interest. In this study, the Volume of Fluid (VOF) method is utilized for its effectiveness in handling significant interface distortions and topological changes. The VOF method offers superior mass conservation, which is critical in high velocity

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

244 Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted

251 impact conditions where liquid fragmentation and wave generation are significant

252 (Brackbill (Backbill) et al., 1992; Hirt and Nichols, 1981). Alternative numerical schemes, such as the Front Tracking approach, are generally limited. Other approaches provide superior

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

accuracy in modeling interfaces and surface tension, but they struggle to manage handling complex scenarios (topological changes (Tryggvason et al., 2001; Liu and Liu, 2010; Monaghan, 1994; Yang and Kong, 2018). Another approach is the Level Set method, but it suffers from mass conservation and convergence issues. The Lattice Boltzmann Method (LBM) is also common; however, its applicability to high velocity impact is rather limited (Aidun & Clausen, 2010). Given these trade-offs, the Volume of Fluid (VOF) method finds an optimal balance of computational efficiency, interface tracking capability, and proven reliability for modeling multiphase flow in the moderate-to-high velocity range relevant to this study. Therefore, a two-dimensional numerical model of a cliff, having the same properties as the experimental cliff mentioned previously, hitting the water surface is developed using the VOF method to accurately capture the liquid-gas interface.

In this approach, a volume fraction (α), ranging between 0 and 1, is applied across the entire computational domain. A value of $\alpha = 1$ indicates a control volume filled with liquid, while $\alpha = 0$ denotes a control volume filled with gas. The interface is represented by values where $0 < \alpha < 1$. In the Volume of Fluid (VOF) method, the momentum equation is solved across the entire computational domain, with the resulting velocity field shared by all phases. To account for surface tension effects, a continuum surface force (CSF) model is employed (Backbill et al., 1992). The normal vector \mathbf{n} and interface mean curvature k are as follows, respectively:

interface mean curvature k are as follows, respectively:

$$\mathbf{n} = \frac{\nabla \alpha}{|\nabla \alpha|} \quad (1)$$

and

$$k = \nabla \cdot \frac{\nabla \alpha}{|\nabla \alpha|} \quad (2)$$

The interface is maintained as sharp through the use of geometric reconstruction to ensure its clarity. The volume fraction (α) is discretized with the geo-reconstruct scheme, while the convective terms in the momentum equation are handled using a second-order upwind method. The PISO (Pressure-Implicit with Splitting of Operators) algorithm was employed for pressure-velocity coupling, which is well-suited for transient flows. Temporal discretization employs a second-order implicit scheme, and spatial gradients are calculated using the Least Squares Cell-Based method.

To have an The boundary conditions were defined as follows: the bottom boundary was modeled as a no-slip wall, while the top boundary was set as a pressure outlet at atmospheric conditions, and the lateral sides were modeled as stationary walls to

main. For accurate simulation of the rotational motion of the cliff through the air-water interface in a multi-phase flow environment, dynamic meshing was implemented within the ANSYS Fluent framework. This approach facilitated the adaptation of the

Formatted

282 computational mesh to accommodate the cliff's movement while maintaining the
 283 integrity of the liquid-gas interface captured by the Volume of Fluid (VOF) method.
 284 Dynamic meshing was critical for modeling the complex interactions between the
 285 falling cliff and the surrounding air and water phases, allowing the mesh to deform and
 286 adapt in response to the cliff's trajectory. In ANSYS Fluent, the dynamic meshing
 287 strategy employed a combination of mesh deformation and local remeshing techniques
 288 to handle the cliff's motion. Mesh deformation was applied to adjust the existing mesh
 289 nodes smoothly as the cliff moved, preserving mesh quality in regions experiencing
 290 moderate displacement. For areas near the cliff where significant deformation could
 291 lead to poor mesh quality, local remeshing was utilized to regenerate mesh elements for
 292 better numerical stability and accuracy. The smoothing and remeshing algorithms were
 293 configured to maintain high mesh quality, with a skewness threshold set to prevent
 294 excessive element distortion.

295 The rotational cliff collapse was simulated using an in-house user-defined function
 296 (UDF). This UDF interfaced with ANSYS Fluent to dynamically update the rock's
 297 position and velocity. To enhance computational efficiency, a dynamic mesh zone was
 298 defined around the cliff, with a finer mesh resolution near its surface to capture the
 299 sharp gradients in the flow field and interface dynamics. The mesh was gradually
 300 coarsened away from the rock to reduce computational cost while maintaining
 301 sufficient resolution in the far-field regions. The dynamic meshing process was
 302 synchronized with the transient flow solver, using a time step size determined through
 303 a time step independence study to balance accuracy and computational efficiency. It is also worth

mentioning that the numerical simulations were performed considering the rock as a unified mass. This approach describes the slight differences between the experimental and numerical results, which are nonetheless within the acceptable range.

304 2.4 Multi-expression programming

305 The MEP model was developed for predicting wave amplitude and runup using
 306 experimental data, as shown in Table 2. A dataset of 81 experiments was prepared by
 307 alternately varying seven different parameters, and the results for wave amplitude and
 308 runup were recorded. experimental results was used as an input to a machine learning model.
 Furthermore, the data was divided into 70/30 ratios for training
 309 and validation purposes before developing the model. The model starts working by
 310 generating a random chromosome population, and it continues to generate the
 311 chromosomes until a terminal condition is achieved, generating an optimal expression

Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted: Normal, Indent: First line: 0.74 cm, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted

312 from the data having input and output pairs over a certain number of generations, as
 313 shown in Fig. 4.

314 Based on a binary tournament process, parents are selected and then undergo a
 315 recombination process through a consistent crossover probability. This recombination
 316 produces two more offspring. These offspring go through mutation, and if these
 317 offspring perform better than the least fitting offspring in the current population, then
 318 the better offspring replace them. The illustrations used by MEP are similar to the ones
 319 used by C++ and Pascal compilers. The MEP chromosomes are comprised of numerous
 320 genes combined using various mathematical operators such as addition (+), subtraction
 321 (-), multiplication (x), and division (/), and these genes create expression trees (ETs)
 322 (Cheng et al., 2020). Moreover, there are several parameters hyperparameters such as code length,
 sub-
 323 population size and number, crossover probability, and other sets of various functions
 324 involved in in generation of MEP code, and they also govern the overall performance
 325 of the code. Among these parameters, the size of the population tells us about the
 326 number of programs being generated, whereas an increase or decrease in subpopulation
 327 size directly affects the complexity and computation time of the model. Moreover, the
 328 length of the developed model is controlled by varying the code length parameter. During model
 development, prerequisite tuning procedures were applied to optimize these hyperparameters. This careful
 selection minimized the risk of premature convergence or underfitting while ensuring computational efficiency.

329 **Table 2: Input parameters** Experimental dataset used for training and corresponding wave amplitude and runup heights validation of the machine learning model.

S/No.	Water depth (d (m))	Drop Fall height (H) (m)	Fragments (N)	Angle (α)	Cliff Mass(m) Mass(m) (kg)	Cliff height (h) (m)	Velocity (v (m/s))	Amplitude (A (m))	Runup (R (m))
1	0.34	0.245	6	30	1.445	0.12	2.19	0.0225	0.051
2	0.34	0.445	6	30	1.445	0.12	2.95	0.0230	0.056
3	0.34	0.645	6	30	1.445	0.12	3.56	0.0365	0.068
4	0.34	0.245	6	45	1.445	0.12	2.19	0.0370	0.045
5	0.34	0.445	6	45	1.445	0.12	2.95	0.0425	0.051
6	0.27	0.245	10	30	2.295	0.20	2.19	0.0431	0.116
7	0.27	0.445	10	30	2.295	0.20	2.95	0.0510	0.129
8	0.27	0.645	10	30	2.295	0.20	3.56	0.0685	0.141
9	0.27	0.245	10	45	2.295	0.20	2.19	0.0390	0.085
10	0.27	0.445	10	45	2.295	0.20	2.95	0.0523	0.102
11	0.27	0.645	10	45	2.295	0.20	3.56	0.0750	0.141
12	0.27	0.245	10	30	2.295	0.20	2.19	0.0431	0.116
13	0.27	0.445	10	30	2.295	0.20	2.95	0.0510	0.129
14	0.27	0.645	10	30	2.295	0.20	3.56	0.0685	0.141
15	0.27	0.245	10	45	2.295	0.20	2.19	0.0390	0.085
16	0.27	0.445	10	45	2.295	0.20	2.95	0.0523	0.102
17	0.27	0.645	10	45	2.295	0.20	3.56	0.0750	0.141
18	0.27	0.245	10	30	2.295	0.20	2.19	0.0431	0.116
19	0.27	0.445	10	30	2.295	0.20	2.95	0.0510	0.129
20	0.27	0.645	10	30	2.295	0.20	3.56	0.0685	0.141
21	0.27	0.245	10	45	2.295	0.20	2.19	0.0390	0.085
22	0.27	0.445	10	45	2.295	0.20	2.95	0.0523	0.102
23	0.27	0.645	10	45	2.295	0.20	3.56	0.0750	0.141
24	0.27	0.245	10	30	2.295	0.20	2.19	0.0431	0.116
25	0.27	0.445	10	30	2.295	0.20	2.95	0.0510	0.129
26	0.27	0.645	10	30	2.295	0.20	3.56	0.0685	0.141
27	0.27	0.245	10	45	2.295	0.20	2.19	0.0390	0.085
28	0.27	0.445	10	45	2.295	0.20	2.95	0.0523	0.102
29	0.27	0.645	10	45	2.295	0.20	3.56	0.0750	0.141
30	0.27	0.245	10	30	2.295	0.20	2.19	0.0431	0.116
31	0.27	0.445	10	30	2.295	0.20	2.95	0.0510	0.129
32	0.27	0.645	10	30	2.295	0.20	3.56	0.0685	0.141
33	0.27	0.245	10	45	2.295	0.20	2.19	0.0390	0.085
34	0.27	0.445	10	45	2.295	0.20	2.95	0.0523	0.102
35	0.27	0.645	10	45	2.295	0.20	3.56	0.0750	0.141
36	0.27	0.245	10	30	2.295	0.20	2.19	0.0431	0.116
37	0.27	0.445	10	30	2.295	0.20	2.95	0.0510	0.129
38	0.27	0.645	10	30	2.295	0.20	3.56	0.0685	0.141
39	0.27	0.245	10	45	2.295	0.20	2.19	0.0390	0.085
40	0.27	0.445	10	45	2.295	0.20	2.95	0.0523	0.102
41	0.27	0.645	10	45	2.295	0.20	3.56	0.0750	0.141

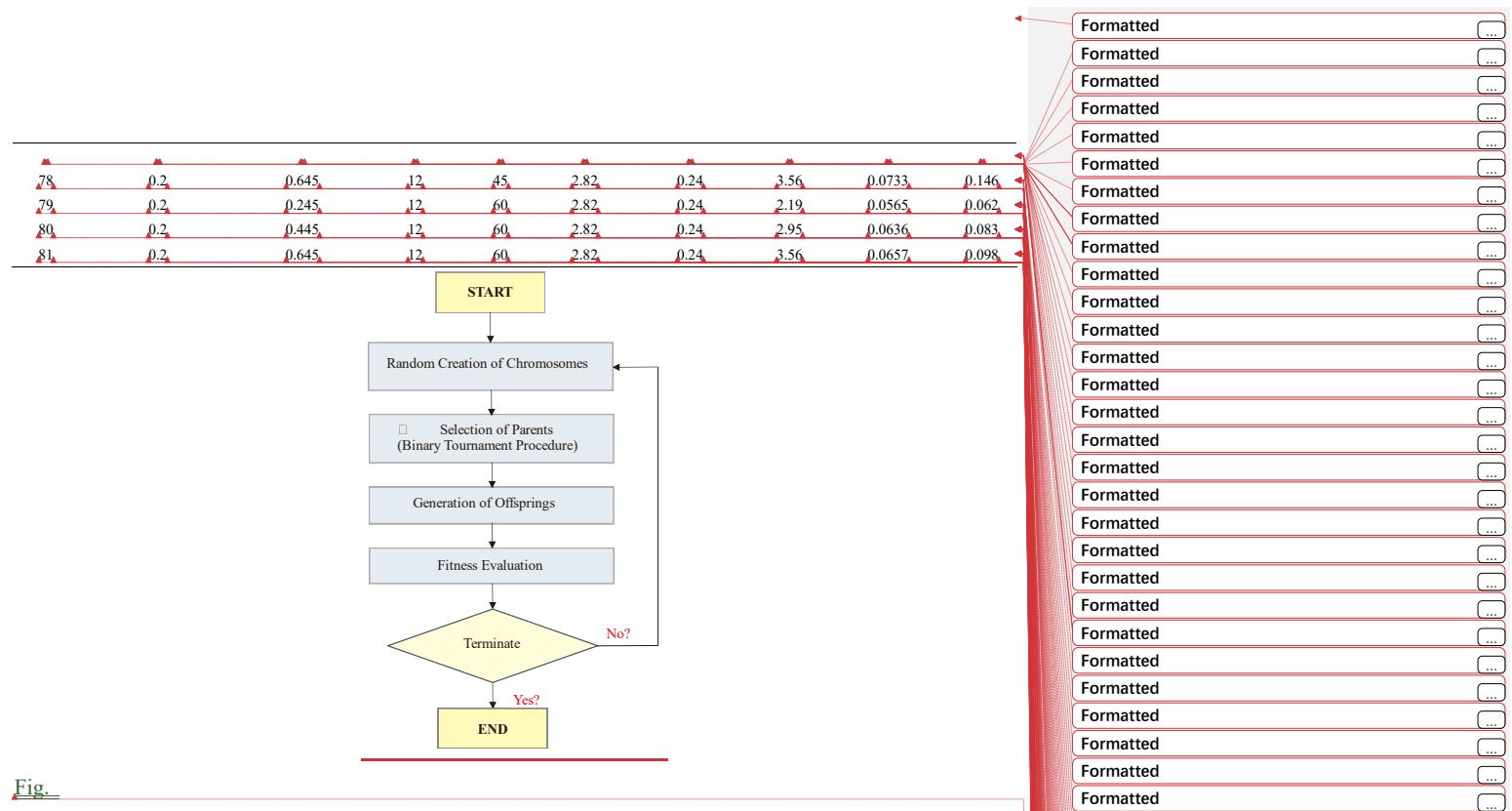
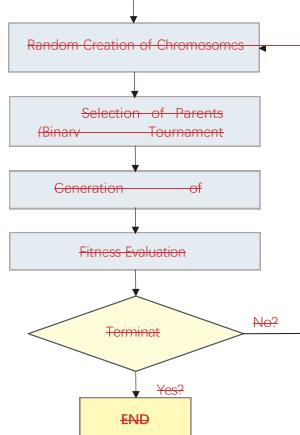


Fig. .

330

3.1 Experimental results


331

332 4 Schematic representation of

333 MEP workflow used in this

study

3. Results and discussions

Formatted: Header

Fig. 4 MEP flowchart

334 The experimental results of the wave amplitude and runup, induced by rotational
 335 cliff collapse, reveal complex hydrodynamic processes. As shown in Fig. 5, the failure
 336 is initiated by the rotational fall of the cliff, leading to a significant amount of impact
 337 energy upon hitting the water surface. The impact induced a huge splash, which is
 338 evident from Fig. 5 (b, e & h). It was observed that the shape of the splash also varies
 339 with water depth for all the cases; higher water depths resulted in a mushroom-shaped
 340 splash, i.e., broader on the top, as the momentum dissipates before interacting with the bottom
 surface, resulting in a vertical jet and the formation of a mushroom-shaped splash, as can be seen in
 Fig. 5(h). The observed phenomena
 341 perfectly align with the basic concepts of fluid dynamics, which state that greater depths
 342 absorb more impact energy compared to shallow waters. Shallow waters produced a
 343 vertically elongated splash as can be seen in Fig. 5 (b & e). It can be observed that as
 344 the depth decreases, the splash becomes more elongated, and this is due to the fact that
 345 as shallower depths intensify the upward momentum transfer, thus resulting in a more

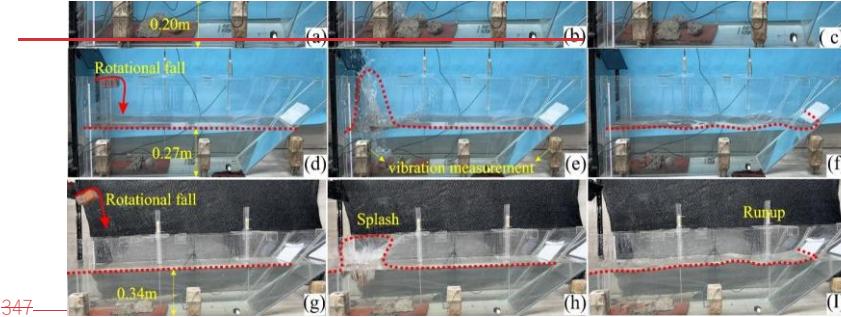
Formatted: Font color: Red

Formatted

Formatted: Font: (Default) Times New Roman, (Asian)

+Body Asian (等线), Not Expanded by / Condensed by

Formatted

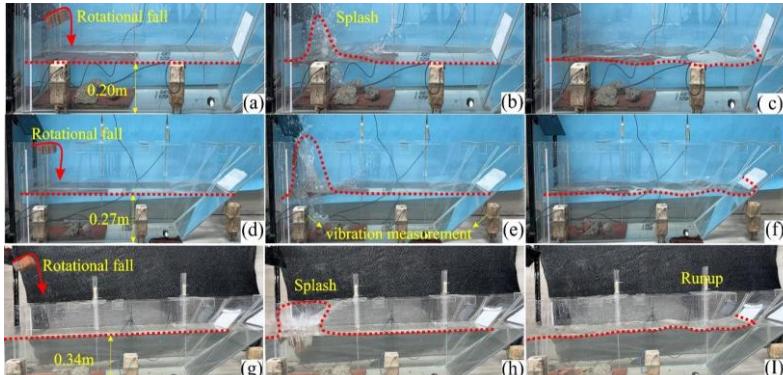

Formatted

Formatted

Formatted

Formatted

346 elongated shape (Kubota and Mochizuki, 2009).



Formatted

Formatted

Formatted: Normal, Indent: First line: 0.63 cm, Don't adjust right indent when grid is defined, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

347

348 Fig. 5: A pictorial display of the experimental setup for various water depths, i.e., 0.20
 349 m, 0.27m, and 0.34 m. (a, d & g) indicate rotational fall of the cliff, (b, e & h)
 350 showing splash as a result of cliff impact, (c, f & l) formation and propagation of
 351 induced wave and runup at various slope angles.

Formatted

Formatted

Formatted

Formatted

Formatted: Normal, Centered, Don't adjust right indent when grid is defined, Space After: 0.5 line, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 14.57 ch

352 3.1.1 Relation between energy and amplitude

353 Further, the relationship between impact energy and wave response was also
 354 investigated by establishing a dimensionless impact energy parameter ($K.E/\rho gh^3$).
 355 Where $K.E$ is the kinetic energy of the cliff, ρ is the density, and h is the water depth.
 356 The negative quadratic coefficient in Fig. 6(a) indicates a nonlinear response, such that
 357 at the start, the wave amplitude increases as the impact energy increases, but later it
 358 decreases, due to reduced energy transfer at higher impact values. At higher impact values, the released energy
 359 was not fully used in the wave formation and propagation; instead, a part of the energy was dissipated in the
 formation of splash, and in the formation of air pockets and their subsequent collapse. Moreover, the
 coefficient of determination was found to be 77% indicating a good data fit.

360 Moreover, the results for the relative wave amplitude and wave energy were
 361 analyzed for three water depths, i.e., 0.34 m, 0.27 m, and 0.20 m, as shown in Fig. 6(b).

Formatted

Formatted

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, 五号

Formatted

Formatted

Formatted

Formatted

Formatted: Normal (Web), Justified, Indent: First line: 0.74 cm, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted

Formatted

362 The results indicate a strong correlation for all three cases, with coefficients of
363 determination around 0.96. The results indicate a direct relation between wave height
364 and energy, whereas the decreasing slope values with the increasing water depth
365 suggest that for deeper water the wave amplitude decreases at a slower rate with
366 increasing wave energy, thus highlighting the impact of water depth on the wave
367 dynamics, such that shallower water allows more amplification of waves for the same

Formatted

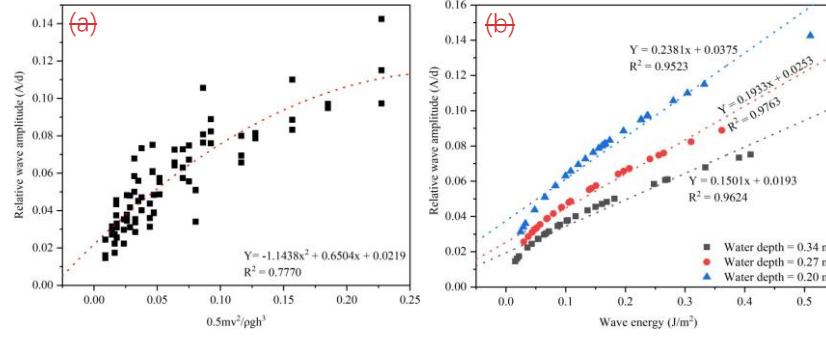
Formatted

Formatted

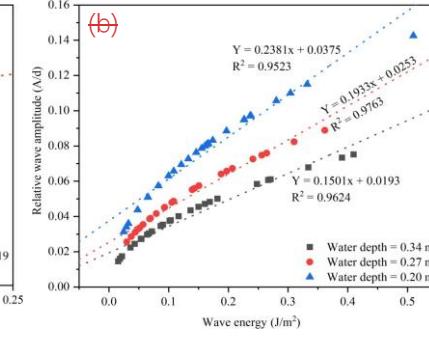
Formatted

Formatted

Formatted

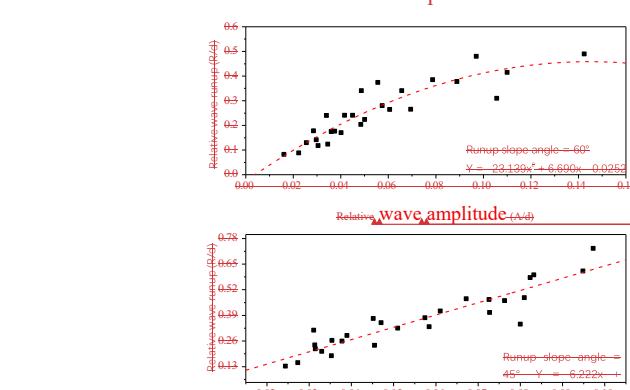

368 energy level, and this is due to the increased non-linear interactions and enhanced
 369 energy concentrations in shallower depths (Myrhaug and Lader, 2019).

Formatted


Formatted

Formatted

Formatted: Normal (Web), Justified, Indent: First line: 0.74 cm, Space Before: 0 pt, Line spacing: 1.5 lines, No
 bullets or numbering, Tab stops: Not at 5.87 ch



370

371 Fig. 6: (a) Impact Dimensionless impact energy ($K.E./\rho gh^3$) vs relative wave amplitude, indicating a nonlinear
 372 trend. (b) Wave energy vs relative wave amplitude

Formatted

373 indicating higher wave amplifications in shallow waters.

Formatted

Formatted

Formatted: Normal (Web), Centered, Indent: Left: 0 cm, Space Before: 0 pt

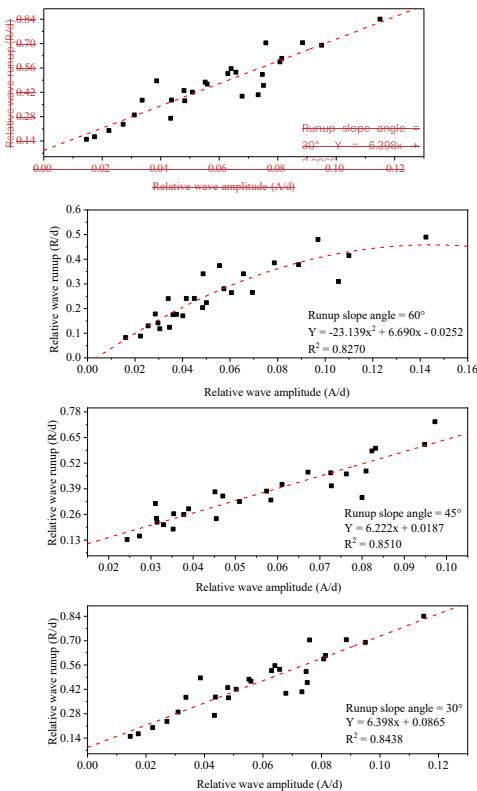
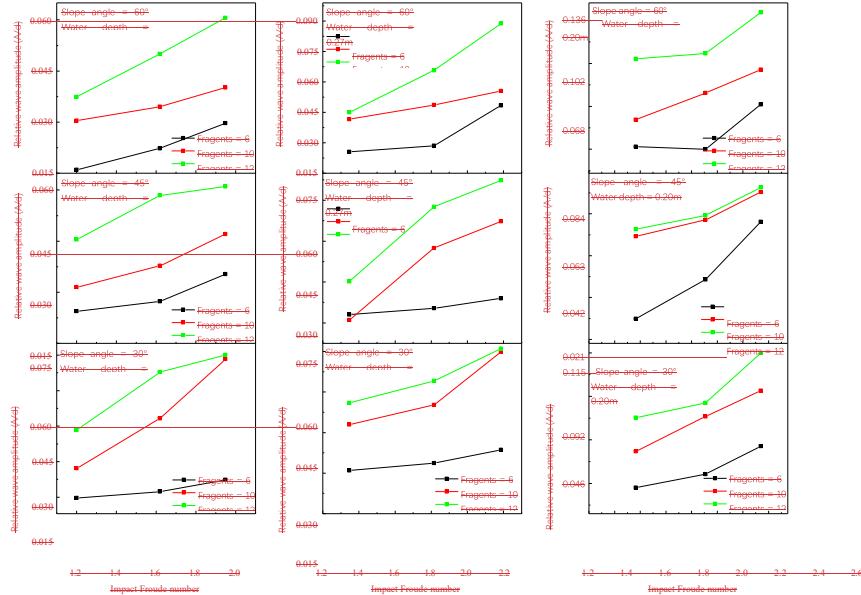

373
374
375
376
377

Fig. 7: Relative wave amplitude vs. relative wave height/runup at various slope angles and water depth.

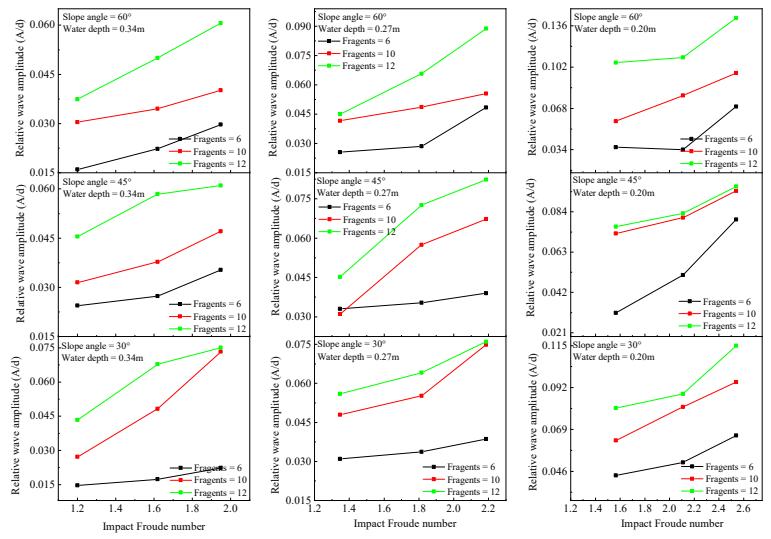
The results for the relative wave height and runup for all three water depths and three runup slope angles are shown in Fig. 7. The relationship indicates a strong correlation between wave amplitude and runup for all three slope angles. The decreasing line-slope values with increasing runup slope angle indicate that wave runup increases at a slower rate for sharp slope angles compared to mild slopes. The trend highlights the effect of slope angle on the runup. The result also indicates that the mild slope angles help wave runup amplification, as they dissipate a very small amount of energy, whereas steeper angles result in lower runup heights because of higher energy losses (Wu et al., 2018).

378 decreasing line slope values with increasing runup slope angle indicate that wave runup
 379 increases at a slower rate for sharp slope angles compared to mild slopes. The trend
 380 highlights the effect of slope angle on the runup. The result also indicates that the mild
 381 slope angles help wave runup amplification, as they dissipate a very small amount of
 382 energy, whereas steeper angles result in lower runup heights because of higher energy
 383 losses (Wu et al., 2018).

384 3.1.2 Impact Froude no vs Relative wave amplitude


385 Fig. 8 indicates the relationship between the impact Froude number and relative
 386 wave amplitude (A/d), under varying experimental conditions for the first gauge, i.e.,
 387 near the impact zone. Since we are interested in the immediate response of the wave
 388 influenced by the impact Froude number. The results indicate that as the water depth
 389 decreases, the relative wave amplitude and impact Froude number increase, indicating
 390 a reduction in the dissipation of impact energy, causing pronounced surface turbulence
 391 and increased wave height. Additionally, the decreased water depth also increased the
 392 value of the impact Froude number by reducing its characteristic velocity, resulting in
 393 stronger wave generation upon impact. The calculations for Reynolds number for the
 394 experiments resulted in very high values, thus indicating a strong turbulent flow, which
 395 is also evident from Fig. 5, so viscous effects are very, very small and can be ignored,
 396 thus indicating the Froude dynamics similarity. The experimental results indicate the
 397 complex interaction between wave propagation, impact dynamics, and bathymetrical
 398 effects in waves induced by rotational cliff collapse. Moreover, upon impact, the cliff
 399 fragmentation distributes impact energy over a larger area of water, thus increasing
 400 wave height by enhanced turbulence and water splashing effects.

Formatted: Font: (Default) Times New Roman, 小四, Bold


Formatted

Formatted: Normal, Don't adjust right indent when grid is defined, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted

401

402 Fig. 8: Relationship between impact Froude number and relative wave height amplitude.

403 3.1.3 Wave amplitude results

404 The results for the wave amplitude for various parameters are shown in Figs. 9, 10,

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted

Formatted: Normal, Centered, Don't adjust right indent when grid is defined, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 7.99 ch

Formatted

Formatted

405 and 11. As mentioned earlier, two gauges were used to measure the induced wave
406 amplitude. Fig. 9 provides a detailed comparison of the wave amplitude recorded at
407 both gauges for a 60° runup slope angle and a 0.445 m fall height. It can be observed that
408 gauge-1, which is near to impact zone, has a higher relative amplitude compared to
409 gauge-2. Furthermore, the results for the relative wave amplitude against the
410 normalized time were also analyzed for all the water depths (0.20 m, 0.27 m, 0.27 m, and
0.34 m).
411 fall height (0.245 m, 0.445 m, and 0.645 m), and cliff height (0.12 m, 0.12 m,
0.20 m, and 0.24 m). The results indicate that the wave amplitude increases as the cliff height, impact
412 velocity, and number of fragments increase for all the water depths, as can be observed
413 in Fig. 10, thus demonstrating that the potential energy of the falling cliff plays a critical
414 role in the magnitude of the resulting wave.
415 Interestingly, comparing the wave amplitude induced by cliffs of various heights
416 falling from the same height revealed that the water depth and the wave have an inverse

Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Don't

adjust right indent when grid is defined, Space Before: 0

pt, Line spacing: 1.5 lines, No bullets or numbering,

Don't adjust space between Latin and Asian text, Don't

adjust space between Asian text and numbers, Tab stops:

Not at 5.87 ch

Formatted

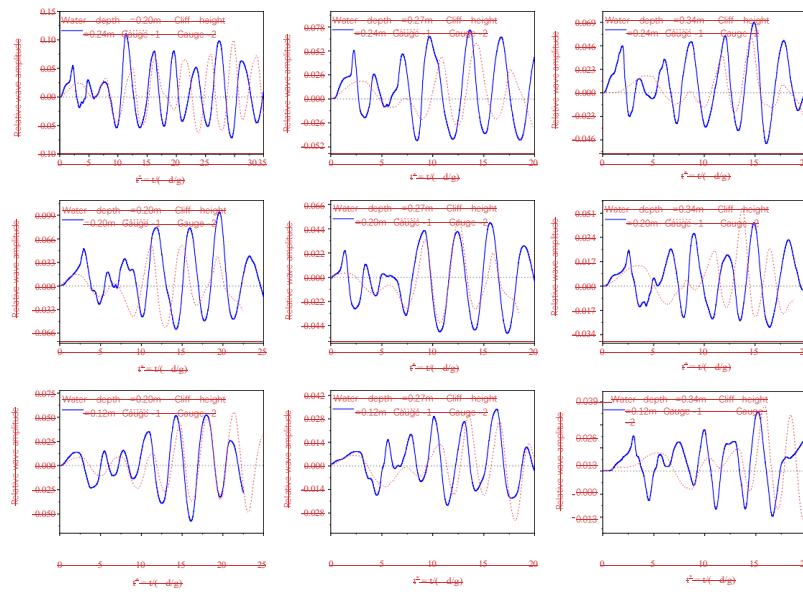
Formatted

Formatted

Formatted

418 relationship. As shown in Fig. 10 (a, b, and c), the average wave amplitude for various
 419 cliff heights and the same fall height of 0.245 m at 0.20 m water depth is 26% more than
 420 the average wave amplitude induced by 0.27 m water depth and 50% more than the
 421 0.34 m water depth wave amplitude. Similarly, Fig. 10 (d, e, and f) indicates that the
 422 average wave amplitude for 0.445 m fall height at 0.20 m water depth is 18% more than
 423 0.027 m and 47% more than 0.34 m water depth, whereas, for 0.645 m fall height wave
 424 amplitude induced by 0.20 m water depth is 25% more than 0.27 m and 37% more than
 425 0.34 m water depth (Fig. 10 g, h & i), thus suggesting that the deeper water dissipates
 426 the impact energy more effectively, as the deep water have more mass available to
 427 absorb and redistribute the impact energy, compared to shallower water thus reducing
 428 the overall amplitude of the induced wave. Moreover, a similar trend was observed for
 429 the wave amplitude involving 45° and 60° runup slope angle.

430 Later on, we performed another experiment by using granular material of
 431 equivalent mass as of cliff and slid it on a 30° slope, for all the water depths, and
 432 amplitude of the induced wave was measured as shown in Fig. 11. Fig. 11(a) indicates
 433 that the wave amplitude for 0.20 m water depth and 1.445 kg granular mass (equivalent
 434 to 0.12 m cliff height) was 15% more than 0.27 m water depth and 65% more than wave
 435 amplitude induced by 0.34 m water depth. Whereas for 2.29 kg and 2.82 kg granular
 436 mass equivalent to 0.20 m and 0.24 m cliff height similar trend was observed as shown
 437 in Fig. 11 (b and c), thus indicating that as the water depth increases, the wave amplitude
 438 decreases for all the equivalent granular masses, as happened in the case of cliff fall.


439 Furthermore, a comparison between the wave amplitude induced by a falling cliff
 440 and equivalent granular mass at various water depths indicates that the amplitude of the
 441 wave induced by an equivalent granular mass in 0.34 m, 0.27 m, and 0.20 m water
 442 depth was on average 28%, 35% and 42% less than the wave amplitude induced falling cliff.
 443 The substantial difference in wave amplitude highlights the importance of energy
 444 transfer in wave formation. The falling cliff following a rotational motion imparts a
 445 more sudden and concentrated impact that allows an efficient energy transfer to water,
 446 leading to higher wave amplitudes. On the other hand, granular flows, being more
 447 deformable and flowing along a slope, result in gradual energy transfer over a wide area.

Formatted

448 thus resulting in lower wave amplitudes. The results highlight that it's not only the total
 449 impact energy that affects the behavior of the induced wave, but the mode of energy
 450 transfer also plays a critical role (Mohammed and Fritz, 2012; Wunnemann and Weiss,
 451 2015). Based on the experimental results for wave amplitude and runup induced by
 452 rotational cliff collapse that fragments upon impact with the water surface, a novel
 453 prediction model was prepared using multi-expression programming. The justifications
 454 for the use of MEP have been well explained in the previous sections.

Formatted
 Formatted
 Formatted
 Formatted
 Formatted
 Formatted
 Formatted
 Formatted
 Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Don't adjust right indent when grid is defined, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

455

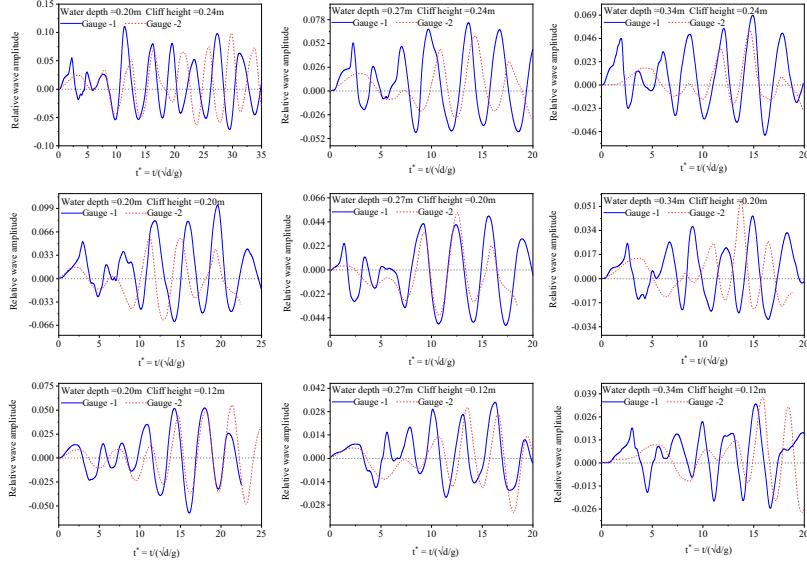
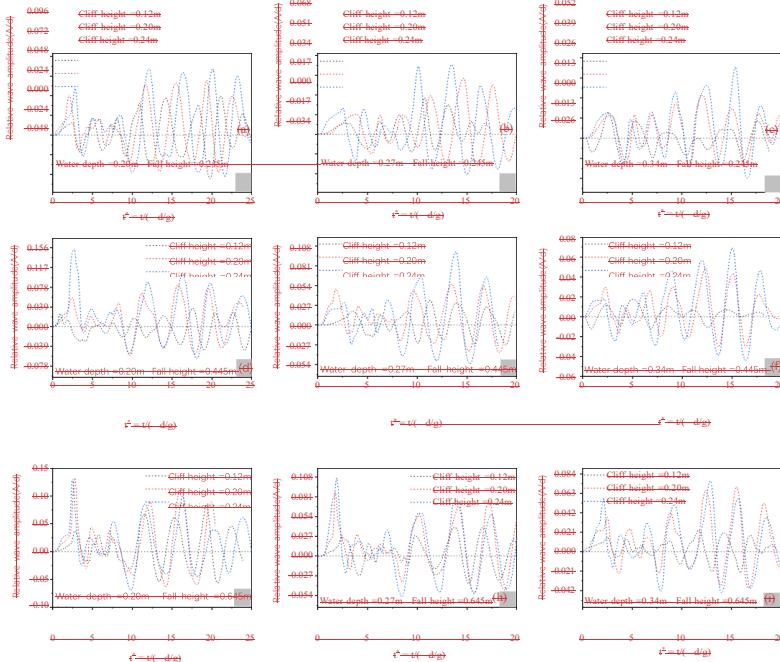
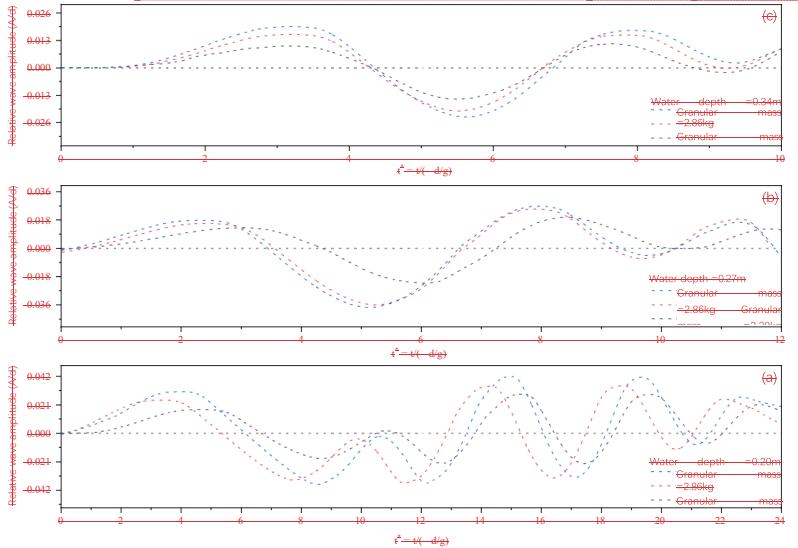



Fig. 9: A comparative display of the wave recorded at gauge 1&2 for a 60° slope angle, and 0.445 m fall height.

Formatted: Not Expanded by / Condensed by
 Formatted: Font color: Red
 Formatted: Font color: Red, Not Expanded by / Condensed by
 Formatted: Font color: Red, Not Expanded by / Condensed by
 Formatted: Font: (Default) Times New Roman, 小四, Ligatures: None
 Formatted: Font: (Default) Times New Roman, 小四, Not Expanded by / Condensed by, Ligatures: None
 Formatted: Font: (Default) Times New Roman, 小四, Ligatures: None
 Formatted: Font: (Default) Times New Roman, 小四, Not Expanded by / Condensed by, Ligatures: None
 Formatted: Font: (Default) Times New Roman, 小四, Ligatures: None
 Formatted: Font: (Default) Times New Roman, 小四, Not Expanded by / Condensed by, Ligatures: None
 Formatted: Font: (Default) Times New Roman, 小四, Not Expanded by / Condensed by, Ligatures: None
 Formatted: Font: (Default) Times New Roman, 小四, Not Expanded by / Condensed by, Ligatures: None
 Formatted: Font: (Default) Times New Roman, 小四, Not Expanded by / Condensed by, Ligatures: None
 Formatted: Font: (Default) Times New Roman, 小四, Not Expanded by / Condensed by, Ligatures: None
 Formatted: Normal, Centered, Indent: Left: 0 cm, Don't adjust right indent when grid is defined, Line spacing: single, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 18.67 ch

458

459


Fig. 10: Relative wave amplitude for various water depths, cliff height, and fall height

460 at 30°runup slope angle, (a, b&c) relative wave amplitude induced by 0.245m/245 m fall

Formatted: Header

461 height, (d, e&f) relative wave amplitude induced by 0.445m 445 m fall height, (g, h&i)

462 relative wave amplitude induced by 0.645m 645 m fall height.

463

464

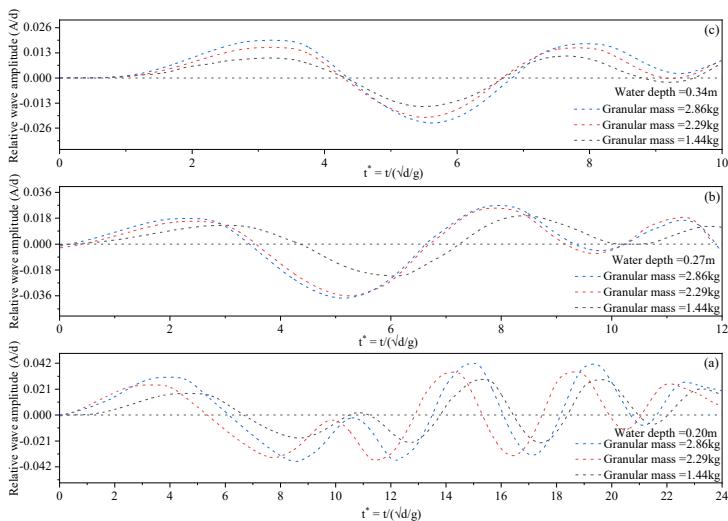


Fig. 11: Water waves induced by equivalent granular mass at 30° slope angle

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font color: Red, Not Expanded by / Condensed by

Formatted: Font color: Red

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), 小四, Font color: Red, Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), 小四, Font color: Red, Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), 小四, Font color: Red

Formatted: Normal, Centered, Indent: Left: 0 cm, Don't adjust right indent when grid is defined, Line spacing: single, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 13 ch

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), 小四, Font color: Red, Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), 小四, Font color: Red, Not Expanded by / Condensed by , Ligatures: None

Formatted

Formatted

465 3.2 Numerical modeling results

466 The numerical simulations conducted in this study successfully captured key
 467 dynamic characteristics of the wave generated by the rotational cliff collapse,
 468 specifically the wave amplitude and wave runup, across a range of test cases. Moreover,
 469 the front velocity of the incident wave was also measured. The simulations were also
 470 focused on verifying the results obtained from the rotational cliff collapse in the
 471 experiments. To quantify the wave amplitude, runup, and velocity, a post-processing
 472 technique was employed. To establish the reliability of the wave front velocity
 473 measurements, the velocity was calculated at 5–7 distinct locations along the wave's
 474 propagation path and at multiple time steps during the simulation. This multi-point
 475 sampling approach minimized errors due to spatial and temporal variations. Fig. 12
 476 shows a representative case of wave formation and propagation in a water tank at a
 477 depth of $d = 0.2$ m at various time frames.

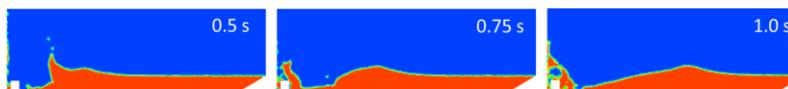


Fig. 12 Wave formation and propagation at water depth of $d = 0.2$ m at various time frames.

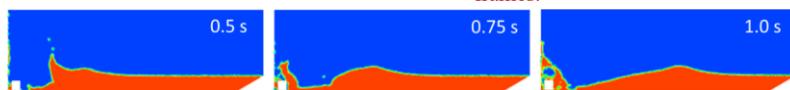


Fig. 12: Wave formation and propagation at water depth of $d = 0.2$ m at various time frames.

478 The wave amplitude was defined as the peak vertical displacement of the liquid
 479 surface relative to the undisturbed free surface level. Fig. 13 illustrates a representative
 480 case depicting the wave front propagation.

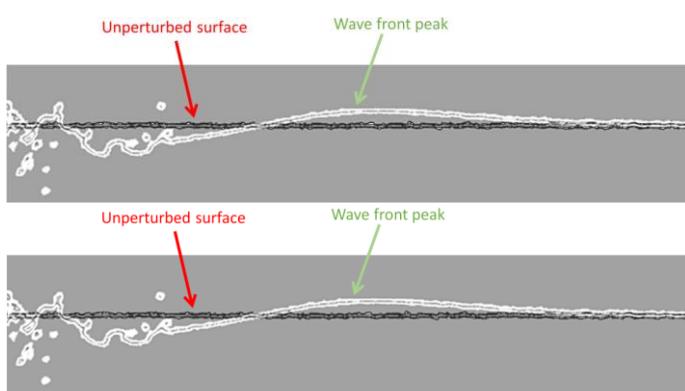


Fig. 13: Wave dynamics following a rotational cliff collapse in water depth $d = 0.34$

Formatted: Font: (Default) Times New Roman, 小四, Bold

Formatted

Formatted: Normal, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Font: (Default) Times New Roman

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Don't adjust right indent when grid is defined, Space After: 0.5 line, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted

Formatted

Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted: Header

m. Stable liquid surface before impact (black line); wave front propagating to away from the right point of impact (white line).

Formatted

Formatted: Normal, Centered, Indent: Left: 0 cm, First line: 0 cm, Right: 0 cm, Space Before: 0 pt, Line spacing: 1.5 lines

To validate the results of simulations, we compared the results of the runup height with the experimental values. Table 3 presents the runup values for various

Formatted

runup slope angles, i.e., 30° , 45° , and 60° for a water depth of $d=0.27\text{m}$. The comparison of simulated values was performed at this depth, as it lies in the middle of the experimental test range of water depths. Numerical modeling results indicate that for a fixed water depth, the runup values consistently decrease as the runup slope angle increases from 30° to 60° . At a water depth of $d=0.27\text{ m}$, the runup decreases from 0.2 m at 30° to 0.17 m at 45° , and further to 0.11 m at 60° . This reduction is attributed to the changing momentum transfer dynamics with increasing slope angle. At less steep angles (closer to horizontal, e.g., 30°), the rock's momentum generates a stronger radial splash and greater upslope displacement of the liquid along the cliff. As the angle increases toward 60° , a larger component of the momentum is directed parallel to the cliff, reducing the vertical impulse. The experimental and numerical results agree well, and the difference lies within the acceptable range of 4-5%. The experimental results for the other two water depths also indicate similar behavior.

Table 3: Peak runup values along the various slope angles at a water depth of $d=0.27\text{m}$

Depth d (m)	Numerical- 30°	Exp- 30°	Numerical- 45°	Exp- 45°	Numerical- 60°	Exp- 60°
0.27	0.20	0.19	0.17	0.16	0.11	0.102

Next, we measured the wave velocity through the numerical results, as it wasn't captured accurately through experimental images. Fig. 14 illustrates the simulated wave fronts at a time instant of $t=1$ second following the impact of the solid rock on the liquid pool, for various water depths and a fixed slope angle of 30 degrees. These visualizations highlight the propagation of the waves from the impact zone. The slope angle was varied across simulations to assess its influence on wave characteristics. It was observed that changes in the slope angle induced only minor variations in both the wave front velocity and wave amplitude for a given pool depth. These perturbations were typically within 1-2% of the mean values. Consequently, to streamline the analysis and focus on dominant trends, the wave front velocity and height were averaged over the range of slope angles for each specific water depth.

However, variations in water depth exerted a pronounced effect on the wave

Formatted

Formatted: Normal, Left, Indent: Left: 0 cm, First line: 0.74 cm, Right: 0 cm, Space Before: 0 pt, Line spacing: 1.5 lines

Formatted

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Not Expanded by / Condensed by

Formatted: Font: 10 pt, Font color: Text 1, Not Expanded by / Condensed by

Formatted: Font: 10 pt, Font color: Text 1, Not Expanded by / Condensed by

Formatted: Font: 10 pt, Font color: Text 1, Not Expanded by / Condensed by

Formatted: Font: 10 pt, Font color: Text 1, Not Expanded by / Condensed by

Formatted: Font: 10 pt, Font color: Text 1, Not Expanded by / Condensed by

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

Formatted: Font: 10 pt, Font color: Text 1, Superscript

Formatted

dynamics, leading to significant alterations in both the propagation velocity and amplitude of the generated waves. This depth-dependent behavior is quantified in Table 4, which presents the averaged results from the numerical simulations. For a shallow water depth of $d=0.2$ m, the average wave front velocity was computed as

1.48 m/s, with a corresponding average wave height of 0.11 m. As the pool depth increased to $d=0.27$ m, the velocity rose to 1.58 m/s, while the wave height decreased to 0.07 m. Further deepening to $d=0.34$ m yielded a velocity of 1.74 m/s and a reduced wave height amplitude of 0.06 m. These trends indicate an approximately linear increase in velocity with depth, accompanied by an inverse relationship for wave amplitude.

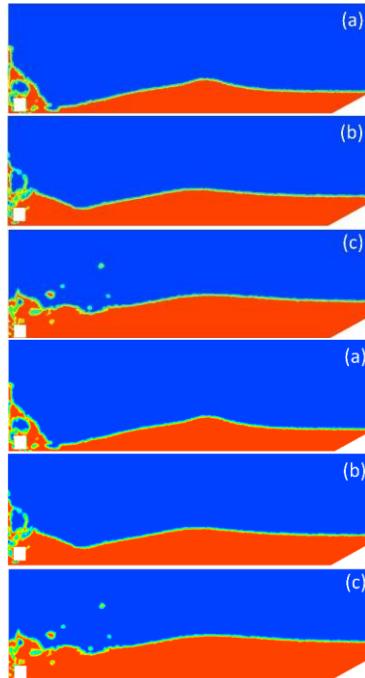


Fig. 14: Propagating wave fronts after the impact at time $t = 1$ s for a slope angle of 30-degree. (a) $d = 0.2$ m, (b) $d = 0.27$ m, (c) $d = 0.34$ m.

481 The observed depth dependence can be rationalized through fundamental
 482 principles of wave propagation in gravity-dominated, multi-phase flows. In the shallow
 483 water regime, given that the pool depths (0.2–0.34 m) are comparable to or smaller than
 484 the wavelengths of the generated waves, the phase velocity c of long gravity waves
 485 approximates $c \approx \sqrt{gh}$, where g is the gravitational acceleration (9.81 m/s²), and h is the
 486 undisturbed water depth. This relation arises from the shallow water equations, where
 487 hydrostatic pressure balance and negligible vertical acceleration dominate, leading to a

Formatted: Font: (Default) Times New Roman, 小四

Formatted

Formatted: Normal, Centered, Indent: Left: 0 cm, First line: 0 cm, Right: 0 cm, Space Before: 0 pt, Line spacing: 1.5 lines

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

488 dispersionless incident wave speed that scales with the square root of depth.

Formatted

489 Substituting the water depths yields theoretical velocities of approximately 1.40 m/s for

Formatted

490 $d=0.2$ m, 1.63 m/s for $d=0.27$ m, and 1.83 m/s for $d=0.34$ m, which align closely with

Formatted

491 the simulated values (discrepancies of 7–10% may stem from viscous dissipation, non-

Formatted

492 hydrostatic effects near the impact zone, or spreading of the wave front). A comparative
 493 analysis of the results is shown in Table 4.

494 Conversely, the decrease in wave amplitude with increasing water depth aligns with
 495 energy conservation and volume displacement considerations in impact-generated
 496 waves. The impact of rotational cliff collapse imparts a fixed kinetic energy and
 497 displaces a finite volume of liquid, creating an initial cavity and subsequent outflow
 498 that evolves into a propagating wave. In shallower pools, the displaced volume is
 499 confined to a smaller cross-sectional area, resulting in greater vertical amplification to
 500 accommodate the same mass redistribution. For deeper water depths, the energy is
 501 distributed over a larger water column, diluting the surface perturbation and yielding
 502 lower amplitudes. The trends observed in the numerical simulations for water waves
 503 induced by rotational cliff collapse are in good agreement with theoretical and
 504 experimental results, indicating that water depth has a direct effect on the wave velocity
 505 and an inverse effect on the wave amplitude and runup.

506 Table 4: The average wave propagation velocity and amplitude for various water depths.

Water depth d (m)	Avg. wave velocity v (m/s)	Theoretical wave velocity c (m/s)	Wave amplitude A (m)
0.2	1.48	1.40	0.11
0.27	1.58	1.63	0.07
0.34	1.74	1.83	0.06

507

3.3 MEP model results

508 The purpose was to develop a precise model for wave amplitude and runup induced
 509 by rotational cliff collapse. The predicted model is a function of seven variables, i.e.,
 510 water depth, fall height, cliff mass, impact velocity, cliff height, runup slope angle, and
 511 number of fragments, and can be described as follows,

512 $Wave\ amplitude\ and\ runup = f(d, H, m, v, h, \alpha, N_f)$ (3)

513 The relation among the parameters was evaluated using Pearson's correlation to
 514 analyze the multicollinearity and interdependency between the parameters, as they can

3.3 MEP model results

The purpose was to develop a precise model for wave amplitude and runup induced by rotational cliff collapse.

The predicted model is a function of seven variables, i.e., water depth, fall height, cliff mass, impact velocity, cliff height, runup slope angle, and number of fragments, and can be described as follows.

$$\text{Wave amplitude and runup} = f(d, H, m, v, h, \alpha, N_f) \quad (3)$$

516 The relation among the parameters was evaluated using Pearson's correlation to analyze the multicollinearity and interdependency between the parameters, as they can obscure the interpretation of the developed model. The model was developed by
 517 splitting the data into two subsets, i.e., training (70%) and testing (30%). The
 518 randomization was done by MEP itself. Following the criteria, 70% of the data, i.e., 57
 519 data points, were taken as training data, whereas 30% of the data, i.e., 24 data points,
 520 were considered for validation of the model. The mathematical expression for MEP is
 521 obtained by solving the C++ code and representing it as per optimized hyperparameter
 522 settings, as shown in Table 5. The prediction model for wave amplitude and runup was
 523 developed by analyzing the MEP code in MATLAB, as shown in Equations 4 and 5.

524 Table 5: Parametric settings of the MEP algorithm for wave amplitude and runup.

Sr.No.	Parameters	Wave amplitude	Wave runup
1	Number of sub-populations	125	85
2	Sub-population size	115	75
3	Crossover probability	0.85	0.60
4	Code length	35	25
5	Tournament size	30	10
6	Mutation probability	0.085	0.06
7	Number of generations	250	120
8	Crossover type	Uniform	Uniform
9	Error measure	Mean absolute error	Mean absolute error
10	Problem type	Regression	Regression
11	Function set	+,-,x,/,^	+,-,x,/,^
12	Terminal set	Problem Input	Problem Input
13	Operators	0.5	0.5
14	Simplified	Yes	Yes
15	Variables	0.5	0.5
16	Random seed	0	0
17	Constants	0	0

$$525 \text{ Wave amplitude } A = d \left(\frac{\alpha}{d(dGN_fGm)} \right) + \frac{2vh^k}{m+N_f+d(d+N_f+m)} + 2vh \left(\frac{\alpha}{d(dGN_fGm)} \right) \quad (4)$$

$$526 \text{ Wave runup } R = \frac{A(h + (A - d \frac{p}{\alpha}) - B)}{\alpha} \quad (5)$$

$$527 A = v + h^d$$

$$528 B = v + m + h^d$$

$$\text{Wave amplitude } A = d^{\left(\frac{\alpha}{d(d+N_f+m)}\right)} + \frac{2vh^2}{m+N_f+d(d+N_f+m)} + 2vhd^{\left(\frac{\alpha}{d(d+N_f+m)}\right)} \quad (4)$$

$$\text{Wave runup } R = \frac{A\left(h + \left(A\left(d - \frac{B}{\alpha}\right)\right)^{B/\alpha}\right)^A \cdot B}{\alpha} \quad (5) \quad A = v + h^d$$

$$B = v + m + h^d$$

529 Whereas d is the water depth (m), m is the mass of the cliff (kg), v is the
 530 impact velocity (m/s), h is the cliff height (m), α is the runup slope angle, and N_f is

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, Not
Expanded by / Condensed by

531 the number of fragments.

532 3.3.1 Prediction performance of the developed model

533 The robustness of the proposed model was evaluated by comparing it with well-established statistical indices, i.e., mean absolute error (MAE), root mean square error (RMSE), correlation coefficient (Cr), Nash-Sutcliffe efficiency (NSE), and performance index (PI). The indices can be represented by equation (6-10) (Khan et al., 2022).

534 established statistical indices, i.e., mean absolute error (MAE), root mean square error
 535 (RMSE), correlation coefficient (Cr), Nash-Sutcliffe efficiency (NSE), and
 536 performance index (PI). The indices can be represented by equation (6-10) (Alavi et al.,
 537 2010; Khan et al., 2022).

$$538 MAE = \frac{\sum_{i=1}^n |e_i - p_i|}{n} \quad (6)$$

$$539 RMSE = \sqrt{\frac{\sum_{i=1}^n (e_i - p_i)^2}{n}} \quad (7)$$

$$540 NSE = 1 - \frac{\sum_{i=1}^n (e_i - \bar{e}_i)^2}{\sum_{i=1}^n (e_i - \bar{p}_i)^2} \quad (8)$$

$$541 PI = \frac{RMSE}{1+R} \quad (9)$$

$$542 R^2 = \frac{\sum_{i=1}^n (e_i - \bar{e}_i)(p_i - \bar{p}_i)}{\sqrt{\sum_{i=1}^n (e_i - \bar{e}_i)^2 \sum_{i=1}^n (p_i - \bar{p}_i)^2}} \quad (10)$$

$$MAE = \frac{\sum_{i=1}^n |e_i - p_i|}{n} \quad (6)$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^n (e_i - p_i)^2}{n}} \quad (7)$$

$$NSE = 1 - \frac{\sum_{i=1}^n (e_i - p_i)^2}{\sum_{i=1}^n (e_i - \bar{e}_i)^2} \quad (8)$$

$$PI = \frac{RMSE}{1+R} \quad (9)$$

$$R^2 = \left(\frac{\sum_{i=1}^n (e_i - \bar{e}_i)(p_i - \bar{p}_i)}{\sqrt{\sum_{i=1}^n (e_i - \bar{e}_i)^2 \sum_{i=1}^n (p_i - \bar{p}_i)^2}} \right)^2 \quad (10)$$

543 Whereas, \bar{e}_i and \bar{p}_i are the average values of the experimental and predicted
 544 results, and e_i and p_i are i^{th} values of the modeled and predicted results, for n total
 545 samples. It is good to consider the error indices while analyzing the predictive

Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted

Formatted

Formatted: Font: (Default) Times New Roman

Formatted: Header

546 capability of complex models. The wave runup model demonstrated a robust
547 performance for both training and testing datasets. The lower values of RMSE and
548 MAE indicate little deviation from experimental values, while RSE and RMSE values
549 confirm lower normalized error, as shown in Table 6. The higher values of NSE and Cr
550 further validated the model reliability for the training phase. Whereas for the validation
551 dataset, i.e., the unseen data model displays even stronger performance with lower
552 RMSE and MAE values compared to the training dataset. Moreover, higher Cr and
553 lower performance index values highlight enhanced model efficiency. This suggests
554 that the model works well for unseen data, making it suitable for predicting the wave
555 runup induced by rotational cliff collapse (Gardezi et al., 2024).
556 The predictive performance of the wave amplitude model in the case of training
557 data demonstrated a strong correlation with high R^2 values and low RMSE and MAE

Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Don't adjust right indent when grid is defined, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted

Formatted

Formatted: Header

558 values corresponding to 13.14% relative error, thus suggesting a good agreement
559 between experimental and predicted values, as shown in Table 6. The higher NSE and
560 C_r values further confirmed the model's reliability for the training dataset with minimal
561 systematic bias. When the model was exposed to unseen data, it still maintained
562 reasonable accuracy with an R^2 value of 0.78. Though the values of error matrices, i.e.,
563 RMSE, MAE, and RRMSE, are a bit higher than the training data set, this is expected
564 due to inherent generalization challenges. Similarly, the higher NSE and C_r values,
565 though lower than the training dataset, indicate consistent predictive performance of
566 the wave amplitude model with little increase in bias. Overall model exhibited strong
567 predictive performance in the training and testing phase, with a little expected decline
568 in the validation phase.

569 Table 6: Performance index values for the MEP-based velocity prediction model.

water	Wave Amplitude		Wave Runup	
Performance	Training data	Validation data	Training data	Validation data
e				
parameters				
RSQ	0.8823	0.7811	0.8748	0.9691
RMSE	0.00178	0.0025	0.01327	0.00617
MAE	0.00135	0.00176	0.0108	0.00504
RSE	0.1180	0.2439	0.1306	0.0312
RRMSE	0.1314	0.1594	0.1472	0.0660
P_index	0.0698	0.0908	0.076	0.0333
NSE	0.8819	0.7560	0.8693	0.9687
C_r	0.9393	0.8829	0.9353	0.9844

Formatted

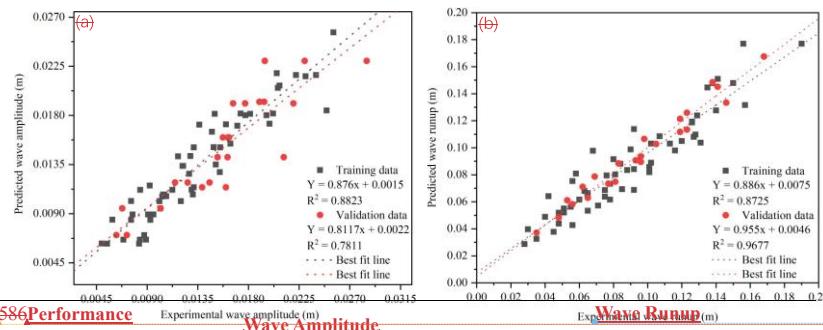
Formatted: Normal, Indent: First line: 0.74 cm, Don't adjust right indent when grid is defined, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted

570 Previously, scientists have also used the slope of the regression line as a
571 performance indicator for AI models, thus representing a correlation between
572 experimental and predicted results. Fig. 15 (a & b) shows the regression line for our
573 wave amplitude and runup model. For wave amplitude, the slope value for the training prediction model,

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Red


Formatted

Formatted: Normal, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

574 data set is 0.88, which is adequate, and 0.78 in validation, which is still greater than the
575 minimum value of 0.7; it can happen as the model involving numerous parameters and
576 complex phenomena usually performs slower for the unseen data (Yarkoni and Westfall,
577 2019). Whereas, for wave runup, the model performed very well for both training and
578 validation data sets with an R^2 value of 0.87 and 0.96, respectively.

579 The accuracy of the proposed model can also be checked using residual error plots,
 580 which are obtained by subtracting experimental and predicted values (Alavi et al., 2013).
 581 The results indicate that the amplitude model has minimum and maximum values of
 582 0.004 m and 0.0065 m, as shown in Fig. 16 (a), whereas for wave runup the minimum
 583 and maximum values are 0.01875 and 0.024 (Fig. 16b). Moreover, it can also be
 584 observed that error values are populated along the x-axis, therefore, showing low error
 585 frequency, and accuracy of both the models.

Formatted

586 **Performance parameters**
 587 **Fig. 15**
 588 **Tracing the experimental results by predicted values, (a) wave amplitude and Training data**
 589 **Validation data**

588RSQ	(b) wave runup		0.8748	0.9691
	0.8823	0.7811		
RMSE	0.00178	0.0025	0.01327	0.00617
MAE	0.00135	0.00176	0.0108	0.00504
RSE	0.1180	0.2439	0.1306	0.0312
RRMSE	0.1314	0.1594	0.1472	0.0660
P_index	0.0698	0.0908	0.076	0.0333
NSE	0.8819	0.7560	0.8693	0.9687
C _c	0.9393	0.8829	0.9353	0.9844

Previously, scientists have also used the slope of the regression line as a performance indicator for AI models, thus representing a correlation between experimental and predicted results. Fig. 15 (a & b) shows the regression line for our wave amplitude and runup model. For wave amplitude, the slope value for the training data set is 0.88, which is adequate, and 0.78 in validation, which is still greater than the minimum value of 0.7; it can happen

Inserted Cells

Merged Cells

Formatted

Formatted: Normal, Centered, Indent: Left: 0 cm, Line spacing: single

Formatted: Font: (Asian) +Body Asian (等线), Not Expanded by / Condensed by

Formatted: Font: Bold

Formatted: Normal, Centered

Inserted Cells

Formatted: Normal, Centered, Indent: Left: 0 cm, Space Before: 0 pt

Formatted: Font: Times New Roman, 10 pt, Bold

Formatted: Normal, Centered, Indent: Left: 0 cm, Space Before: 0 pt, Line spacing: single

Inserted Cells

Formatted

Inserted Cells

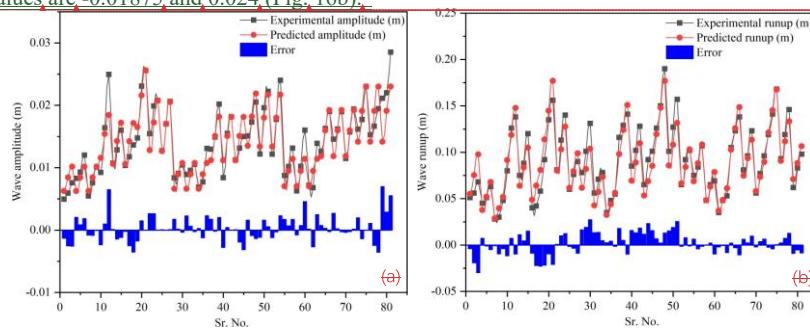
Inserted Cells

Formatted: Font: Times New Roman, 10 pt

Formatted: Normal, Centered, Indent: Left: 0 cm, Line spacing: single

Formatted Table

Inserted Cells


Formatted: Font: 10 pt

Formatted: Normal, Centered, Indent: Left: 0 cm, Space Before: 0 pt, Line spacing: single

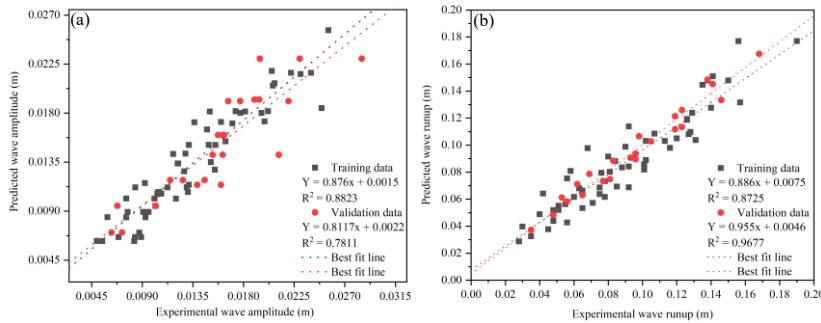
Formatted

as the model involving numerous parameters and complex phenomena usually performs slower for the unseen data (Yarkoni and Westfall, 2019). Whereas, for wave runup, the model performed very well for both training and validation data sets with an R^2 value of 0.87 and 0.96, respectively.

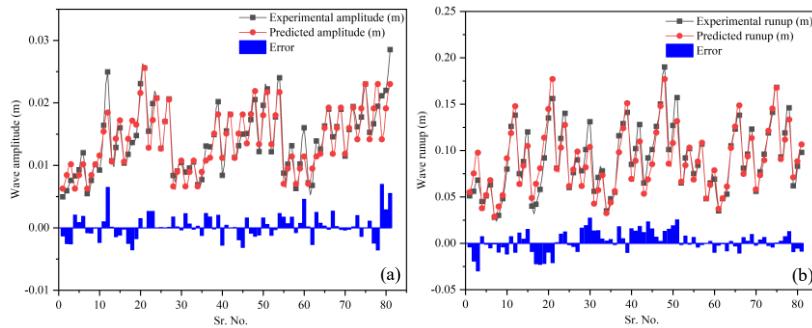
The accuracy of the proposed model can also be checked using residual error plots, which are obtained by subtracting experimental and predicted values. The results indicate that the amplitude model has minimum and maximum values of -0.004 m and 0.0065 m, as shown in Fig. 16 (a), whereas for wave runup the minimum and maximum values are -0.01875 and 0.024 (Fig. 16b).

589

590 Fig. 16 Indicating error values between experimental and predicted model (a) wave
591 amplitude, and (b) Wave runup


592

593 3.2 Validation of the developed model


594 The validation of the proposed model is an important feature in predictive modeling.
595 It has been observed that sometimes the model performs very well for training data sets,

Formatted: Not Expanded by / Condensed by
Formatted: Not Expanded by / Condensed by

596 Moreover, it can also be observed that error values are populated along the x-axis, therefore,
 597 showing low error frequency, and accuracy of both the models.
 598

600 Fig. 15 Tracing the experimental results by predicted values, (a) wave amplitude and (b) wave runup

601 Fig. 16 Indicating error values between experimental and predicted model (a) wave amplitude, and (b)
 602 Wave runup

603 3.2 Validation of the developed model

604 The validation of the proposed model is an important feature in predictive modeling. It has been
 605 observed that sometimes the model performs very well for training data sets, but fails to perform during
 606 the validation stage for unseen data. So, the developed prediction model was further validated by
 607 conducting the sensitivity and parametric analysis for both the wave amplitude and runup.

Formatted: Normal, Left, Indent: Left: 0 cm, First line: 0.74 cm, Right: 0 cm, Don't adjust right indent when grid is defined, Space Before: 0 pt, Line spacing: 1.5 lines, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

Formatted: Font: (Default) Times New Roman, 小四

3.2.1 3.2.1 Sensitivity analysis

Sensitivity and parametric analysis play a vital role in determining the robustness of the proposed model. The sensitivity analysis (SA) of the developed prediction model for the entire dataset tells us how sensitive the model is to any changes in input parameters. So, for an independent parameter Y_i the SA can be calculated using equations 11 and 12, which indicates that for any parameter, the values were varied between two extremes, and others were constant to their average, and the outcome was found in the form of Y_{ik} , and then the same process was repeated for all the remaining parameters.

$$R_k = f_{\max}(Y_{ik}) - f_{\min}(Y_{ik}) \quad (11)$$

Formatted: Header

$f_{min}(Y_k)$ represent the minimum and maximum values of the model-based results grounded on the k th domain of the input parameters in the above equation. Fig. 17 (a & b) shows the results of the sensitivity analysis of the developed prediction model for the wave amplitude and runup. Figure 17 (a) indicates that the wave amplitude is greatly influenced by the height of the cliff (h) and has an effect of almost 51%. The water depth (d) contributes 4.36% to wave amplitude, cliff mass (m) contributes 4.69%, and impact velocity (v) and number of fragments (N_f) contribute 18% and 22% to the induced wave amplitude. Whereas the fall height (H) and runup slope angle (α) do not affect the wave amplitude. Since the impact velocity parameters have already catered for the fall height that's why it is not visible in the proposed model. The model tells us that impact velocity, cliff height, and number of fragments contribute approximately 90% to the wave amplitude induced by the rotational fall of the cliff. It can be concluded that the effect of $h > N_f > v > m > d$ on the induced wave amplitude.

Relative importance of d on the induced wave amplitude.

Similarly, the sensitivity analysis of wave runup (Fig. 17b) indicates that runup is

Formatted

Formatted: Font: (Default) Times New Roman, 小四

Formatted: Font: (Default) Times New Roman, 小四

Formatted: Font: (Default) Times New Roman, 小四

Formatted

Formatted: Font: (Default) Times New Roman, 小四

Formatted: Font: (Default) Times New Roman, 小四

Formatted

Formatted: Font: (Default) Times New Roman

Formatted

Formatted: Indent: Left: 0 cm, Don't adjust right indent when grid is defined, Line spacing: 1.5 lines, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 39.14 ch

Formatted

(11)

R_k

\times

10

$SA (\%) =$

$$\frac{R_k}{\sum_{j=1}^n R_j} \times$$

10

(12)

Σ

R

j

When

reasons,

$f_{max}(Y_k)$

$f_{max}(Y_k)$

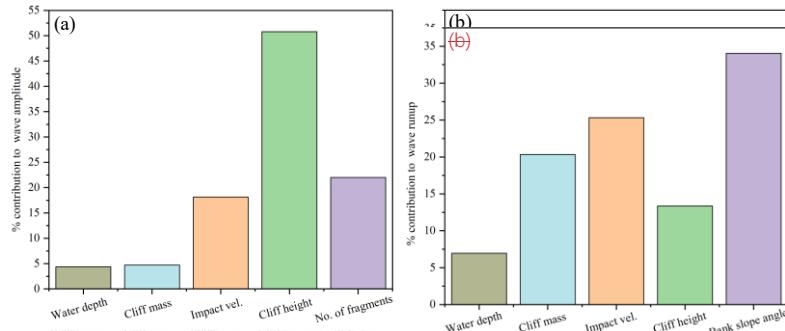
and

$f_{min}(Y_k)$

Formatted

Formatted: Font: (Default) Times New Roman, 小四

Formatted: Normal, Left, Indent: Left: 0 cm, Right: 0 cm, Don't adjust right indent when grid is defined, Line spacing: 1.5 lines, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers


Formatted: Font: (Default) Times New Roman, 小四, Not Expanded by / Condensed by

Formatted

625 greatly influenced by bank slope angle (α) and has an effect of 34%. Impact velocity
 626 (v) contributes 25.3%, cliff mass (m) 20.3%, cliff height (h) 13.3%, and water depth
 627 (d) contributes around 7% to wave runup. Whereas, the number of fragments and fall
 628 height that have already been catered in impact velocity don't contribute to wave runup.
 629 This suggests that wave runup is primarily governed by coastal geometry, i.e., bank
 630 slope angle and cliff height, and hydrodynamic forces, i.e., impact velocity, whereas
 631 water depth contributes a little to wave runup. It can also be concluded as the effect of $a > v > m >$

$h > d$ on the induced wave amplitude.

$a > v > m > h > d$ on

632 Fig. 17 Sensitivity analysis of the induced MEP-based wave amplitude and runup prediction model.

Formatted
 Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Don't adjust right indent when grid is defined, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted: Font: (Default) Times New Roman

633
 634 Fig. 17 Sensitivity analysis of the MEP based wave amplitude and runup model

635 3.2.2 Parametric Analysis

636 Parametric analysis results for the input parameters for the wave amplitude used in
 637 this study are displayed in Fig. 18. The parametric analysis indicates that wave
 638 amplitude decreases as the water depth, number of fragments, and cliff mass increase,
 639 whereas it increases with the increase in cliff height and impact velocity. These trends

Formatted

Formatted: Normal, Centered, Indent: First line: 0.74 cm, Don't adjust right indent when grid is defined, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

640 are in line with the fundamental physics principles (Bougouin et al., 2020; Lipiejko et
641 al., 2023) deep waters dissipate more energy, and greater impact velocities and larger
642 cliff heights impart more kinetic and potential energies to water bodies for wave
643 generation. Whereas, the inverse relation between the number of fragments and wave
644 amplitude proposes a potential threshold effect in which initial fragmentation
645 contributes to wave formation, whereas excessive fragments contribute to energy
646 dissipation owing to increased turbulence. The sensitivity analysis further quantified
647 the effect of these parameters, classifying cliff height as a major contributing factor in

3.2.2 Parametric Analysis

648 Parametric analysis results for the input parameters for the wave amplitude used in this study are displayed in Fig. 18. The parametric analysis indicates that wave amplitude decreases as the water depth, number of fragments, and cliff mass increase, whereas it increases with the increase in cliff height and impact velocity. These trends are in line with the fundamental physics principles (Bouguin et al., 2020; Lipiejko et al., 2023). Deep waters dissipate more energy, and greater impact velocities and larger cliff heights impart more kinetic and potential energies to water bodies for wave generation. In contrast, the inverse relation between the number of fragments and wave amplitude proposes a potential threshold effect in which initial fragmentation contributes to wave formation, whereas excessive fragments contribute to energy dissipation owing to increased turbulence. The sensitivity analysis further quantified the effect of these parameters, classifying cliff height as a major contributing factor in wave amplitude variations, followed by impact velocity, number of fragments, water

649 depth, and mass of cliff. The strong influence of cliff height indicates its direct effect in
 650 determining the potential energy for wave generation. Moreover, the larger sensitivity
 651 value of fragments regardless of their inverse parametric relation shows a complex
 652 relation, where fragment count plays a considerable but context-dependent role in wave
 653 generation and propagation. The dominance of cliff height, impact velocity, and
 654 fragment count suggests that these parameters should be prioritized in future prediction
 655 models. These findings are important for developing predictive models for wave
 656 generations due to rotational cliff collapse.

657 The developed model for wave amplitude provides valuable insights into
 658 fundamental physics governing wave formation and propagation induced because of
 659 rotational cliff collapse. The strong height dependence of the model confirms the
 660 classical principle of conservation of potential energy, whereas the fragment count
 661 dependence reveals energy partitioning mechanisms. The results of performance
 662 indices and sensitivity, and parametric analysis increase our understanding of how
 663 geometric and dynamic characteristics govern the wave characteristics, with relevance
 664 to hazard assessment and disaster mitigation in coastal regions prone to cliff collapse
 665 following rotational motion.

666 The results of the parametric analysis for wave runup are presented in Fig. 19. It
 667 can be observed from Fig. 19 (a & e) that as the water depth and bank slope angle
 668 increase, the wave runup decreases, due to energy dissipation and different wave
 669 breaking dynamics. Conversely, as the cliff mass, cliff height, and impact velocity
 670 increase, the wave runup increases, as greater kinetic energy and inertia impart greater
 671 uprush. Notably, all the parameters present a strong correlation with the runup (more
 672 than 97%), highlighting their statistical significance. The results agree with the general
 673 physics laws, where mild slopes and larger impact forces result in higher runups,
 674 whereas deep waters attenuate wave energy.

675 An important observation from parametric analysis of wave amplitude and runup,
 676 as shown in Fig. 18b, and 19c, indicates that cliff mass represents a nonlinear relation

Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Don't adjust right indent when grid is defined, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted

677 with wave amplitude and a linear relation with runup. This is due to the fact that the

678 variations in wave amplitude are governed by a nonlinear energy dissipation, where
 679 hydrodynamic forces follow a quadratic dependence on the velocity. In the case of light
 680 cliff collapses, the dynamic responses result in complex absorption and distribution,
 681 whereas heavier cliff collapses promote wave reflection along with nonlinear effects of
 682 wave breaking and splash-induced turbulence, as can be observed in Fig. 5 (b, e&h).
 683 Conversely, the wave runup exhibits a linear relation with cliff mass, and this is due to
 684 the law of conservation of momentum, such that the resisting inertial force is directly
 685 proportional to cliff mass. The greater resistance to motion of heavier cliffs allows more
 686 energy to be conserved and utilized for higher wave runups before dissipation. The
 687 main difference between the two trends is that the wave amplitude is controlled by
 688 localized energy losses, whereas runup is governed by bulk momentum transfer rather
 689 than localized losses.

Formatted
 Formated

Formatted: Normal (Web), Justified, Indent: First line: 0.74 cm, Space Before: 0 pt, Line spacing: 1.5 lines, No bullets or numbering, Pattern: Clear (White), Tab stops: Not at 5.87 ch

690

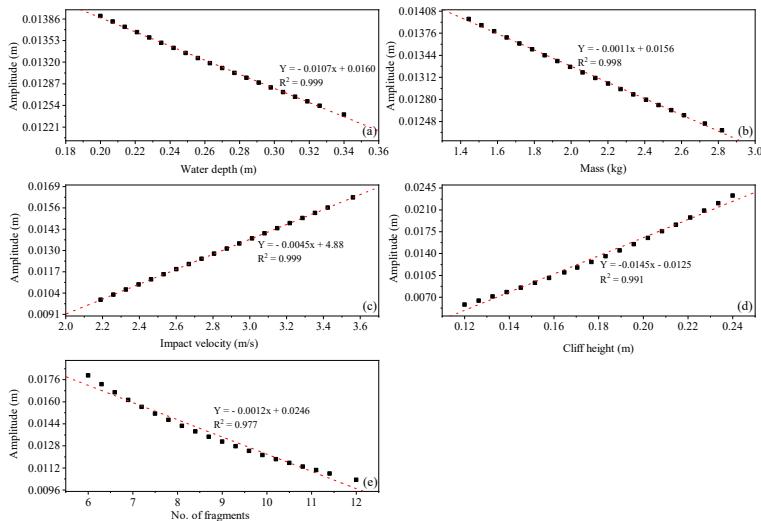
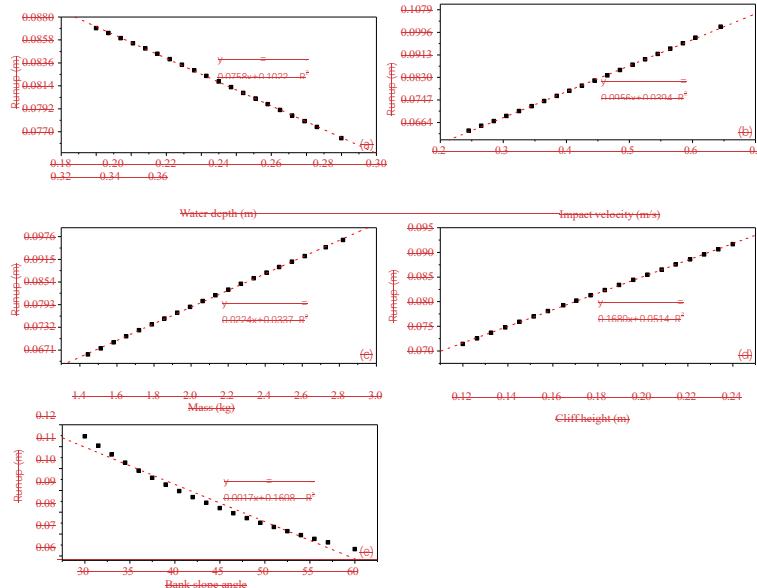
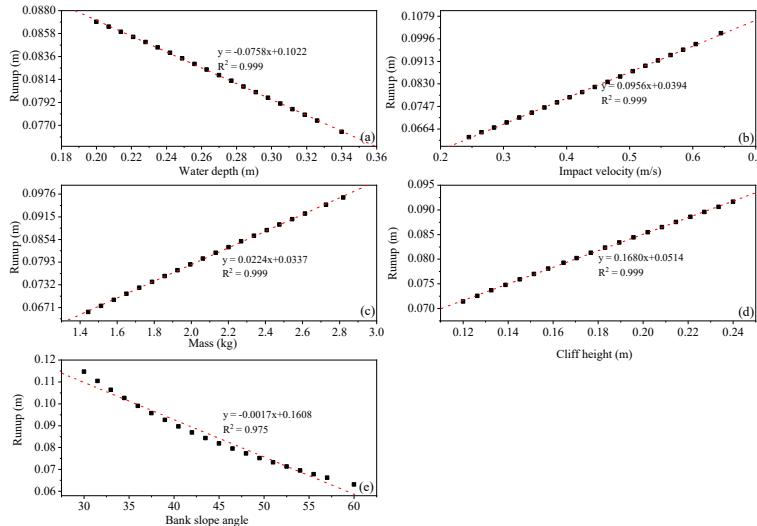




Fig. 18 Parametric analysis for wave amplitude (a) water depth, (b) cliff mass, (c) impact velocity, (d) cliff height, (e) number of fragments.

693

694 Fig. 19 Parametric analysis for wave runup (a) water depth, (b) impact velocity, (c) mass of the cliff, (d) cliff height, (e) bank slope angle.

695

696 4. Conclusions

697 While designing wave protection structures along the banks of reservoirs, it is

Formatted

Formatted

Formatted: Normal, Centered, Don't adjust right indent when grid is defined, Space After: 0.5 line, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 13.31 ch

Formatted: Font: (Default) Times New Roman, 小四, Bold, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

common to use the empirical relations developed for granular flows, i.e., landslides and avalanches, to predict the amplitude and runup of the waves. However, the waves induced by various types of slides behave differently and should be treated accordingly. The dynamics of the waves induced by falling cliffs are entirely different from the waves induced by continuous granular flows. Similarly, the dynamics of the waves induced by falling cliffs following different types of motion (translational, rotational) are also different. This study aimed to develop a novel wave amplitude and runup prediction model for waves induced by rotational fall of the cliff using a combination of seven governing parameters, and then compare it with the dynamics of the wave induced by continuous granular flows. Based on the results and discussions, the study concludes as follows,

709 1. It was concluded that water depth strongly controls the shape of the induced splash depends on water depth;

710 increased depth forms a and wave amplification. Shallow water induced elongated, tall splashes, and higher wave amplitudes; in contrast, deep water produced mushroom-shaped splash, whereas shallow water forms a

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Pattern: Clear (White)

Formatted: Normal, Indent: First line: 0.63 cm, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted: Font: (Default) Times New Roman, Font color: Red, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Font color: Red, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Font color: Red, Pattern: Clear (White)

711 vertically elongated splash. Moreover, shallow water allows more amplification of
 712. waves for the same splashes with higher energy level compared to deep water dissipation and lower wave
 amplitudes.

713 2. The effect of viscous forces is very, very small and can be ignored, since the
 714. Reynold higher values of Froude number (> 1.2) for all the experiments is very high, thus
 leaving indicate that the viscous effects were negligible, so the Froude
 715. number was selected as the best possible most suitable dynamic scaling factor. It is concluded that the
 Froude for describing the behaviour of the waves.

716 number also increases as the water depth decreases.

717. 3. The study concludes that wave amplitude is was greatly influenced by cliff height, (51 %), number
 of fragments (22 %), Impact velocity (18 %), cliff mass (4.69 %), and water depth (4.36 %). Whereas the
 wave runup was governed by the runup slope angle, impact velocity, and cliff mass.

718 impact velocity, and the number of fragments. For all the cases, the deep water
 719. dissipated more energy compared to shallow waters, thus resulting in lower
 720 amplitudes.

721 4. The amplitude of the wave induced by equivalent granular mass is sliding on a 30° slope was
 28-42% lower than the
 722. waves induced by rotational cliff collapse, thus concluding that the mode of energy
 723. transfer to the water body plays a critical role in wave dynamics.

724 5. A second level validation of the developed model was performed by conducting
 725. sensitivity and parametric analysis. It is concluded that the amplitude is highly
 726. sensitive to any change in cliff height, impact velocity, and number of fragments.
 727. In contrast, runup greatly depends on runup slope angle, impact velocity, and mass
 728. of the cliff.

5. A novel MEP-based prediction model was developed for wave amplitude and runup. The model showed great performance during the training and testing stage, and showed high sensitivity to the used parameters, thus confirming its reliability.

6. Research findings highlight that accurate hazard assessment of the cliff collapse requires models that account for the rotational failure mode and the fragmentation upon impact with the water surface. Traditional granular slide models may result in an underestimation of the initial wave amplitude and energy transferred.

729 Funding

730 This work was supported by the National Key R&D Program of China (Grant No.
 731. 2023YFC3007001), the China Postdoctoral Science Foundation (Grant no.
 732. No. 2024M762420), the National Natural Science Foundation of China (Grant no. No. 42120104008),
 and the National Natural Science Foundation of China (Grant No.
 733. 42202312), and the Fundamental Research Funds for the Central Universities.

Author contributions

Formatted

Formatted: Space Before: 0 pt, After: 8 pt, Don't add space between paragraphs of the same style, Line spacing: 1.5 lines, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.78 cm, Tab stops: Not at 7.97 ch

Formatted: Font: (Default) Times New Roman, Font color: Red, Pattern: Clear (White)

Formatted

Formatted: Space After: 8 pt, Don't add space between paragraphs of the same style, Line spacing: 1.5 lines, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.78 cm, Tab stops: Not at 7.97 ch

Formatted

Formatted: Space After: 8 pt, Don't add space between paragraphs of the same style, Line spacing: 1.5 lines, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.78 cm, Tab stops: Not at 5.87 ch + 7.97 ch

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Red, Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Font color: Red, Pattern: Clear (White)

Formatted: Space After: 8 pt, Don't add space between paragraphs of the same style, Line spacing: 1.5 lines, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.78 cm, Tab stops: Not at 7.97 ch

Formatted: Font: (Default) Times New Roman, 小四, Bold, Not Expanded by / Condensed by

Formatted: Normal, Don't adjust right indent when grid is defined, Space Before: 0 pt, After: 0.5 line, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted

Formatted

Formatted

Formatted: Normal, Indent: First line: 0.74 cm, Line spacing: 1.5 lines, No bullets or numbering, Tab stops: Not at 5.87 ch

Formatted

HG wrote the manuscript and performed the experiments, TK performed numerical modeling, XL designed the research, TMS helped in writing the manuscript, YH supervised the project, and ZC helped in conducting experiments.

734 Declarations

735 Competing interests: The authors declare no competing interests.

736 References

737 Alavi, A.H., Gandomi, A.H., Nejad, H.C., Mollahasani, A., Rashed, A., 2013. Design equations for prediction of pressuremeter soil deformation moduli utilizing

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), 小四, Bold, Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线)

Formatted: Normal, Don't adjust right indent when grid is defined, Space Before: 0 pt, After: 0.5 line, Line spacing: 1.5 lines, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 5.87 ch

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Not Expanded by / Condensed by , Ligatures: None

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Ligatures: None

Formatted: Normal, Space Before: 0 pt, No bullets or numbering, Tab stops: Not at 5.87 ch

739 expression programming systems. *Neural Comput. Appl.* 23, 1771–1786.
 740 <https://doi.org/10.1007/s00521-012-1144-6>

741 Alavi, A.H., Gandomi, A.H., Sahab, M.G., Gandomi, M., 2010. Multi expression
 742 programming: A new approach to formulation of soil classification. *Eng. Comput.*
 743 26, 111–118. <https://doi.org/10.1007/s00366-009-0140-7>

744 Aidun, C.K., Clausen, J.R., 2010. Lattice-boltzmann method for complex flows. *Annu. Rev. Fluid Mech.* 42, 439–472. <https://doi.org/10.1146/annurev-fluid-121108-145519>

Backbill, J.U., Kothe, D.B., Zemach, C., 1992. for Modeling Surface Tension *. *J Comput Phys* 100, 335–354.

747 Bougouin, A., Paris, R., Roche, O., 2020. Impact of Fluidized Granular Flows into
 748 Water: Implications for Tsunamis Generated by Pyroclastic Flows. *J. Geophys. Res. Solid Earth* 1–17. <https://doi.org/10.1029/2019JB018954>

749 Boultee, N., Stead, D., Schwab, J., Geertsema, M., 2006. The Zymoetz River rock avalanche, June
 750 2002, British Columbia, Canada. *Eng Geol* 83, 76–93. <https://doi.org/10.1016/j.enggeo.2005.06.038>

751 avalanche, June 2002, British Columbia, Canada. *Eng. Geol.* 83, 76–93.
 752 <https://doi.org/10.1016/j.enggeo.2005.06.038>

753 Brackbill, J.U., D.B. Kothe, and C. Zemach, *A continuum method for modeling surface*
 754 *tension*. *Journal of computational physics*, 1992, 100(2): p. 335–354.

755 Bujak, D., Ilic, S., Milić, H., 2023. Wave Runup Prediction and Alongshore Variability
 756 on a Pocket Gravel Beach under Fetch-Limited Wave Conditions. *J. Mar. Sci. Eng.*

757 Cesario, E., Giampá, S., Baglione, E., Cordrie, L., Selva, J., Talia, D., 2024. Machine
 758 Learning for Tsunami Waves Forecasting Using Regression Trees. *Big Data Res.*
 759 *Research* 36, 100452. <https://doi.org/10.1016/j.bdr.2024.100452>

Dai, Z., Li, X., Lan, B., 2023. Three-Dimensional Modeling of Tsunami Waves Triggered by Submarine
 Landslides Based on the Smoothed Particle Hydrodynamics Method. *J. Mar. Sci. Eng.* 11.
<https://doi.org/10.3390/jmse11102015>

760 Das, M.M., Wiegell, L., R., 1972. Waves Generated by Horizontal Motion of a Wall. *J. Waterw. Harb. J. Waterw. Harb. Journal of the waterways, harbors and coastal Eng. Div. engineering division* 98,

Dignan, J., Hayward, M.W., Salmanidou, D., Heidarzadeh, M., Guillou, S., 2023. Probabilistic Landslide Tsunami
 Estimation in the Makassar Strait, Indonesia, Using Statistical Emulation. *Earth and Space Science* 10.
<https://doi.org/10.1029/2023EA002951>

Espositi Ongaro, T., de' Michieli Vitturi, M., Cerminara, M., Fornaciai, A., Nannipieri, L., Favalli, M., Calusi, B.,
 Macías, J., Castro, M.J., Ortega, S., González-Vida, J.M., Escalante, C., 2021. Modeling Tsunamis
 Generated by Submarine Landslides at Stromboli Volcano (Aeolian Islands, Italy): A Numerical Benchmark
 Study. *Front Earth Sci (Lausanne)* 9. <https://doi.org/10.3389/feart.2021.628652>

762 Franci, A., Cremonesi, M., Perego, U., Crosta, G., Oñate, E., 2020. 3D simulation of
 763 Vajont disaster. Part 1: Numerical formulation and validation. *Eng. Geol.* 279,
 764 105854. <https://doi.org/10.1016/j.enggeo.2020.105854>

765 Franco, A., Moernaut, J., Schneider-Muntau, B., Strasser, M., Gems, B., 2020. The The 1958 Lituya

Formatted

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted: Font: (Default) Times New Roman, (Asian) +Body Asian (等线), Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted: Header

Bay tsunami - Pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D. *Natural Hazards and Earth System Sciences* 20, 2255–2279. <https://doi.org/10.5194/nhess-20-2255-2020>

766 1958 Lituya Bay tsunami - Pre event bathymetry reconstruction and 3D numerical
767 modelling utilising the computational fluid dynamics software Flow-3D. *Nat.
768 Hazards Earth Syst. Sci.* 20, 2255–2279. <https://doi.org/10.5194/nhess-20-2255-2020>

770 Fritz, H., Hager, W., Minor, H., 2004. Near field characteristics of landslide generated
771 impulse waves. *J. Waterw. Waterway, Port, Coast, Coastal and Ocean Eng.* 130, 287–302.

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

772 Fritz, H.M., Hager, W.H., Minor, H.E., 2003. Landslide generated impulse waves. 1.
 773 Instantaneous flow fields. *Exp. Fluids* 35, 505–519.
 774 <https://doi.org/10.1007/s00348-003-0659-0>

775 Gardezi, H., Bilal, M., Cheng, Q., Xing, A., Zhuang, Y., Masood, T., 2021. A
 776 comparative analysis of attabad landslide on january 4, 2010, using two numerical
 777 models. *Nat. Hazards* 107, 519–538. <https://doi.org/10.1007/s11069-021-04593-0>

778 Gardezi, H., Ikrama, M., Usama, M., Iqbal, M., Jalal, F.E., Hussain, A., Li, X., 2024.
 779 Predictive modeling of rutting depth in modified asphalt mixes using gene-
 780 expression programming (GEP): A sustainable use of RAP, fly ash, and plastic
 781 waste. *Constr. Build. Mater.* 443, 137809.
 782 <https://doi.org/10.1016/j.conbuildmat.2024.137809>

783 Grilli, S.T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, Tappin, D., Ma, G., R., Carey, S., Watt,
 784 S.F.L., Ward, S.N., Grilli, A.R., Engwell, S.L., Zhang, C., Kirby, J.T.,
 785 Shi, F., 2017. Modeling coastal. *Schambach, L., Muin, M.* 2019. Modelling of the tsunami
 786 hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East
 Coast. *Nat. Hazards* 86, 353–391. the December 22, 2018 lateral collapse of Anak Krakatau volcano in
 the Sunda Straits, Indonesia. *Sci Rep* 9, 1–13. <https://doi.org/10.1007/s11069-016-2692-3>
 019-48327-6

Guan, X., Shi, H., 2023. Translational momentum of deformable submarine landslides off a slope. *J Fluid Mech*
 960, 1–41. <https://doi.org/10.1017/jfm.2023.177>

787 Gylfadóttir, S.S., Kim, J., Helgason, J.K., Brynjólfsson, S., Höskuldsson, Á.,
 788 Jóhannesson, T., Harbitz, C.B., Løvholt, F., 2017. The 2014 Lake Askja rockslide-
 789 induced tsunami: Optimization of numerical tsunami model using observed data.
 790 *J. Geophys. Res. Ocean. Oceans* 122, 4110–4122. <https://doi.org/10.1002/2016JC012496>

Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., Wijanarto, A.B., 2020. Numerical modeling of the
 subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia. *Ocean
 Engineering* 195, 106733. <https://doi.org/10.1016/j.oceaneng.2019.106733>

791 Heller, V., 2007. Landslide Generated Impulse Waves: Prediction of Near Field
 792 Characteristics (Doctoral dissertation, Eth Zurich).
 Heller, V., Ruffini Attili, T., Chen, F., Gabl, R., Wolters, G., 2023. A critical review about generic subaerial 2021.
 Large-scale investigation into iceberg-tsunamis generated by various iceberg calving mechanisms.

793 Heller, V., Spinneken, J., 2015. On the effect of the water body geometry on landslide-tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter transformation. *Coastal
 Engineering* 104, 113–134. <https://doi.org/10.1016/j.coastaleng.2015.06.006>

794 Heller, V., Spinneken, J., 2013. Improved landslide-tsunami experiments/prediction: Effects of
 block model parameters and options for a needed step change. *Earth Science slide model. J
 Geophys Res Oceans* 118, 1489–1507. *Rev.*
 795 242, 104459. <https://doi.org/10.1016/j.earscirev.2023.104459>
 1002/jgrc.20099

796 Higman, B., Shugar, D.H., Stark, C.P., Ekström, G., Koppes, M.N., Lynett, P.,
 797 Dufresne, A., Haeussler, P.J., Geertsema, M., Gulick, S., Mattox, A., Venditti, J.G.,

798 Walton, M.A.L., McCall, N., Mckittrick, E., MacInnes, B., Bilderback, E.L., Tang,
799 H., Willis, M.J., Richmond, B., Reece, R.S., Larsen, C., Olson, B., Capra, J., Ayca,
800 A., Bloom, C., Williams, H., Bonno, D., Weiss, R., Keen, A., Skanavis, V., Loso,
801 M., 2018. The 2015 landslide and tsunami in Taan Fiord, Alaska. *Sci. Rep.* 8, 1–
802 12. <https://doi.org/10.1038/s41598-018-30475-w>

803 Hirt, C.W. and B.D. Nichols, B.D., 1981. Volume of fluid (VOF) method for the
dynamics of free
804 boundaries. *Journal of computational physics*, 1981. 39(1): p. Free Boundaries *. *J Comput Phys* 225, 201–225.

805 Huang, B., Yin, Y., Liu, G., Wang, S., Chen, X., Huo, Z., 2012. Analysis of waves
806 generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on

Formatted: Header

Formatted

Formatted

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 9.3 ch

Formatted

		Formatted: Header
807	November 23, 2008. <i>Landslides</i> 9, 395–405. https://doi.org/10.1007/s10346-012-0331-y	Formatted: Font: (Default) Times New Roman, Font color: Black
808		Formatted
809	Huber, A., Hager, W., 1997. Forecasting impulse waves in reservoirs, in: Proc 19th Congrès Des Grands Barrages, Florence, ICOLD, Paris, pp. 993–1005.	Formatted
810		Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch
811	Kamphuis, J., Bowering, R., 1970. Kamphuis, JW, Bowering RJ (1970) Impulse waves generated by landslides, in: Proc 12th Coastal Eng 1:575–588, ASCE, Washing Ton, USA.	Formatted
812	generated by landslides, in: Proc 12th Coastal Eng 1:575–588, ASCE, Washing	Formatted
813	Ton, USA.	Formatted
814	Khan, K., Ashfaq, M., Iqbal, M., Khan, M.A., Amin, M.N., Shalabi, F.I., Faraz, M.I.,	Formatted: Font: (Default) Times New Roman, Font color: Black
815	Jalal, F.E., 2022. Multi Expression Programming Model for Strength Prediction	Formatted
816	of Fly-Ash-Treated Alkali-Contaminated Soils. Materials (Basel) 15.	Formatted
817	https://doi.org/10.3390/ma15114025	Formatted
Kim, G.B., Cheng, W., Sunny, R.C., Horrillo, J.J., McFall, B.C., Mohammed, F., Fritz, H.M., Beget, J., Kowalik, Z., 2020. Three Dimensional Landslide Generated Tsunamis: Numerical and Physical Model Comparisons. <i>Landslides</i> 17, 1145–1161. https://doi.org/10.1007/s10346-019-01308-2	Formatted	
818	Kubota, Y., Mochizuki, O., 2009. Splash Formation by a Spherical Body Plunging into	Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch
819	Water. <i>J. Vis. (Tokyo)</i> 12, 339–346.	Formatted
820	Li, Y., Ding, Y., Yang, L., Liu, X., Liu, Y., 2023a. A prediction model for the rockslide-	Formatted: Font: (Default) Times New Roman, Font color: Black
821	generated wave amplitude under the condition of bedrock mass breakup. <i>Ocean</i>	Formatted
822	<i>Eng. Engineering</i> 272, 113845. https://doi.org/10.1016/j.oceaneng.2023.113845	Formatted
823	Li, Y., Ding, Y.N., Yang, L., Liu, X.S., Liu, Y., 2023b. A prediction model for the	Formatted
824	rockslide-generated wave amplitude under the condition of bedrock mass breakup.	Formatted
825	<i>Ocean Eng. Engineering</i> 272, https://doi.org/10.1016/j.oceaneng.2023.113845	Formatted
826	Li, Y., Peng, T., Xiao, L., Wei, H., Li, X., 2024. Wave runup prediction for a semi-submersible based on temporal convolutional neural network. <i>Journal of Ocean Engineering and Science</i> 9, 528–540. https://doi.org/10.1016/j.joes.2022.08.005	Formatted
827	submersible based on temporal convolutional neural network. <i>J. Ocean Eng. Sci.</i>	Formatted
828	9, 528–540. Lindström, E.K., 2016. Waves generated by subaerial slides with various porosities. <i>Coastal Engineering</i> 116, 170–179. https://doi.org/10.1016/j.joes.2022.08.005 https://doi.org/10.1016/j.coastaleng.2016.07.001	Formatted
Lindström, E.K., Pedersen, G.K., Jensen, A., Glimsdal, S., 2014. Experiments on slide generated waves in a 1:500 scale fjord model. <i>Coastal Engineering</i> 92, 12–23. https://doi.org/10.1016/j.coastaleng.2014.06.010	Formatted	
829	Lipiejko, N., Whittaker, C.N., Lane, E.M., Power, W.L., 2023. Wave Generation by	Formatted
830	Fluidized Granular Flows; Experimental Insights Into the Maximum Near-Field	Formatted
831	Wave Amplitude. <i>J. Geophys. Res. Ocean.</i>	Formatted
832	<i>Oceans</i> . https://doi.org/10.1029/2022JC019583	Formatted
833	Liu, M. and G. Liu, <i>Smoothed particle hydrodynamics (SPH): an overview and recent developments</i> . Liu, J., Heller, V., Wang, Y., Yin, K., 2025. Investigation of subaerial landslide–tsunamis generated by different mass movement types using smoothed particle hydrodynamics. <i>Eng. Geol.</i> 352. https://doi.org/10.1016/j.enggeo.2025.108055	Formatted
834	Liu, M.B., Liu, G.R., 2010. Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments. <i>Archives of computational methods in engineering</i> 2010, 17: p. 25–17, 25–76. https://doi.org/10.1007/s11831-010-9040-7	Formatted

835 76.

Maciel, G.D.F., Pereira, J.B., Sáo, Y.T., Ferreira, F.D.O., Ferreira, L.G., n.d. Impulse wave in the Brazilian Lake of Capitólio.

McFall, B.C., Fritz, H.M., 2016. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* 472. <https://doi.org/10.1098/rspa.2016.0052>

836 Miller, D.J., 1960a. Giant waves in Lituya Bay, Alaska. *Geol. Surv. Prof. Pap. Geological Survey Professional Paper* No. 354

C. US Government Print. Off. Printing Office: Washington, DC, USA 51–86.

837 Miller, D.J., 1960b. Giant waves in Lituya Bay, Alaska. *Geological Survey Professional Paper No. 354-C*; US Government Printing Office, Washington, DC, USA 51–86.

838 Mohammed, F., Fritz, H.M., 2012a. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. *J. Geophys. Res. Oceans* 117, 1–20. <https://doi.org/10.1029/2011JC007850>

839 Mohammed, F., Fritz, H.M., 2012b. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. *J. Geophys. Res. Oceans* 117, 1–20.

840 <https://doi.org/10.1029/2011JC007850>

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted: Header

841 Mohammed, F., Fritz, H.M., 2012b. Mohammed, F., Fritz, H.M., 2012c. Physical modeling of
tsunamis generated by three-
842 dimensional deformable granular landslides. *J. Geophys. Res.* 117.
843 <https://doi.org/10.1029/2011JC007850>

844 Monaghan, J.J., 1994. Simulating free surface flows with SPH. *Journal of computational
845 physics*, 1994. *J Comput Phys*, 110(2): p. 399–406.

846 Montagna, F., Bellotti, G., Di Risi, M., 2011. 3D numerical modeling of landslide-generated tsunamis
around a conical island. *Natural Hazards* 58, 591–608. <https://doi.org/10.1007/s11069-010-9689-0>

Mulligan, R.P., Franci, A., Celigueta, M.A., Take, W.A., 2020. Simulations of Landslide Wave Generation and
Propagation Using the Particle Finite Element Method. *J Geophys Res Oceans* 125, 1–17.
<https://doi.org/10.1029/2019JC015873>

Myrhaug, D., Lader, P.F., 2019. Random wave-induced current in shallow water using
847 deep water wind and wave statistics. *Marit. Eng-Maritime Engineering* 174, 1–20.

848 Noda, E., 1970. Water waves generated by landslides. *J Water Port Coast Coastal Ocean Div,*
849 Am Soc Civ Eng. 96, 835–855.

850 Panizzo, A., De Girolamo, P., Petaccia, A., 2005. Forecasting impulse waves generated by subaerial
landslides. *J Geophys Res Oceans* 110, 1–23. <https://doi.org/10.1029/2004JC002778>

851 by subaerial landslides. *J. Geophys. Res. Ocean.* 110, 1–23.

Paris, A., Heinrich, P., Abadie, S., 2021. Landslide tsunamis: Comparison between depth-averaged and Navier–
Stokes models. *Coastal Engineering* 170, 104022. <https://doi.org/10.1016/j.coastaleng.2021.104022>

Rauter, M., Viroulet, S., Gylfadóttir, S.S., Fellin, W., Løvholt, F., 2022. Granular porous landslide tsunami
modelling – the 2014 Lake Askja flank collapse. *Nat Commun* 13. <https://doi.org/10.1038/s41467-022-28296-7>

852 <https://doi.org/10.1029/2004JC002778>

853 Ró, G., Cerkowniak, G., 2024. Soft postglacial cliffs in Poland under climate change.

854 *oceanologia*, 66, <https://doi.org/10.1016/j.oceano.2024.01.003>

Romano, A., Lara, J.L., Barajas, G., Di Paolo, B., Bellotti, G., Di Risi, M., Losada, I.J., De Girolamo, P., 2020.
Tsunamis Generated by Submerged Landslides: Numerical Analysis of the Near-Field Wave Characteristics.
J Geophys Res Oceans 125, 1–26. <https://doi.org/10.1029/2020JC016157>

Romano, A., Lara, J.L., Barajas, G., Losada, I., 2023. Numerical modeling of tsunamis generated by granular
landslides in OpenFOAM®: A Coulomb viscoplastic rheology. *Coastal Engineering* 186, 104391.
<https://doi.org/10.1016/j.coastaleng.2023.104391>

855 Romano, M., Romano, M., Lioung, S., Vu, M.T., Zemskyy, P., Doan, C.D., Dao, M.H.,
856 Tkalich, P., 2009. Artificial neural network for tsunami forecasting. *J. Asian Earth
857 Sci.* 36, 29–37. <https://doi.org/10.1016/j.jseas.2008.11.003>

858 Sohag, M., et al., Ruffini, G., Heller, V., Briganti, R., 2019. Numerical *study of drop spread and
rebound on heated surfaces with*
859 *consideration* modelling of landslide-tsunami propagation in a wide range of *high pressure*.
Physics of Fluids, 2022. 34(11).

860 Sohag, M., W. Zhang, and X. Yang, *Three dimensional numerical study of two drops
861 impacting on a heated solid surface by smoothed particle hydrodynamics*.
862 *Physics of Fluids*, 2023. 35(12).

863 Takabatake, T., Han, D.C., Valdez, J.J., Inagaki, N., Mäll, M., Esteban, M., Shibayama,

Formatted: Font: (Default) Times New Roman, Font color: Black
Formatted
Formatted
Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by
Formatted
Formatted
Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8
ch, Line spacing: single, No bullets or numbering, Don't
adjust space between Latin and Asian text, Don't adjust
space between Asian text and numbers, Tab stops: Not at
8.16 ch
Formatted
Formatted
Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8
ch, Line spacing: single, Don't adjust space between Latin
and Asian text, Don't adjust space between Asian text and
numbers, Tab stops: Not at 9.3 ch
Formatted: Font color: Black
Formatted
Formatted
Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8
ch, Line spacing: single, Don't adjust space between Latin
and Asian text, Don't adjust space between Asian text and
numbers, Tab stops: Not at 9.3 ch
Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8
ch, Line spacing: single, Don't adjust space between Latin
and Asian text, Don't adjust space between Asian text and
numbers, Tab stops: Not at 8.16 ch
Formatted
Formatted
Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8
ch, Line spacing: single, Don't adjust space between Latin
and Asian text, Don't adjust space between Asian text and
numbers, Tab stops: Not at 8.16 ch
Formatted
Formatted
Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8
ch, Line spacing: single, Don't adjust space between Latin
and Asian text, Don't adjust space between Asian text and
numbers, Tab stops: Not at 8.16 ch
Formatted
Formatted
Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8
ch, Line spacing: single, No bullets or numbering, Don't
adjust space between Latin and Asian text, Don't adjust
space between Asian text and numbers, Tab stops: Not at
8.16 ch
Formatted: Font: (Default) Times New Roman, Font color:
Black
Formatted
Formatted
Formatted
Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8
ch, Line spacing: single, No bullets or numbering, Don't
adjust space between Latin and Asian text, Don't adjust
space between Asian text and numbers, Tab stops: Not at
8.16 ch
Formatted
Formatted
Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8
ch, Line spacing: single, No bullets or numbering, Don't
adjust space between Latin and Asian text, Don't adjust
space between Asian text and numbers, Tab stops: Not at
8.16 ch
Formatted
Formatted
Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8
ch, Line spacing: single, No bullets or numbering, Don't
adjust space between Latin and Asian text, Don't adjust
space between Asian text and numbers, Tab stops: Not at
8.16 ch

864 T., 2022. Three Dimensional Physical Modeling of Tsunamis Generated by
 865 Partially Submerged Landslides. *J. Geophys. Res. Ocean.* 127.

866 idealised water body geometries. *Coastal Engineering* 153, 103518. <https://doi.org/10.1029/2021JC0178261016/j.coastaleng.2019.103518>

Sælevik, G., Jensen, A., Pedersen, G., 2009. Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway. *Coastal Engineering* 56, 897–906. <https://doi.org/10.1016/j.coastaleng.2009.04.007>

Sun, S.W., Wen, Q., do Carmo Reis Cavalcanti, M., Yang, X.R., Wang, J.Q., 2024. Numerical and laboratory experiments on the toppling behavior of a massive single block: a case study of the Furnas Reservoir, Brazil. *Landslides* 21, 2327–2347. <https://doi.org/10.1007/s10346-024-02288-8>

Svennevig, K., Hicks, S.P., Forbriger, T., Lecocq, T., Widmer-Schnidrig, R., Mangeney, A., Hibert, C., Korsgaard, N.J., Lucas, A., Satriano, C., Anthony, R.E., Mordret, A., Schippkus, S., Rysgaard, S., Boone, W., Gibbons, S.J., Cook, K.L., Glimsdal, S., Løvholt, F., Van Noten, K., Assink, J.D., Marboeuf, A., Lomax, A., Vanneste, K., Taira, T., Spagnolo, M., De Plaein, R., Koelemeijer, P., Ebeling, C., Cannata, A., Harcourt, W.D., Cornwell, D.G., Caudron, C., Poli, P., Bernard, P., Larose, E., Stutzmann, E., Voss, P.H., Lund, B., Cannavo, F., Castro-Díaz, M.J., Chaves, E., Dahl-Jensen, T., De Pinho Dias, N., Déprez, A., Develter, R., Dreger, D., Evers, L.G., Fernández-Nieto, E.D., Ferreira, A.M.G., Funning, G., Gabriel, A.A., Hendrickx, M., Kafka, A.L., Keiding, M., Kerby, J., Khan, S.A., Dideriksen, A.K., Lamb, O.D., Larsen, T.B., Lipovsky, B., Magdalena, I., Malet, J.P., Myrup, M., Rivera, L., Ruiz-Castillo, E., Wetter, S., Wirtz, B., 2024. A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days. *Science* (1979) 385, 1196–1205. <https://doi.org/10.1126/science.adm9247>

867 Tarwidi, D., Redjeki, S., Adytia, D., Apri, M., 2023. MethodsX An optimized
 868 XGBoost-based machine learning method for predicting wave run-up on a sloping
 869 beach. *MethodsX* 10, 102119. <https://doi.org/10.1016/j.mex.2023.102119>

870 Tian, L., Lei, J., Mao, P., Xie, W., 2025. Landslide-Induced Wave Run-Up Prediction Based on Large-Scale Geotechnical Experiment : A Case Study of Wangjiashan Landslide Area of Baihetan Reservoir, China. *Water (Basel)*.

871 Based on Large Scale Geotechnical Experiment : A Case Study of Wangjiashan
 872 Landslide Area of Baihetan Reservoir, China. *Water*.

Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J., 2001. A Front-Tracking Method for the Computations of Multiphase Flow. *J. Comput. Phys.* 169, 708–759. <https://doi.org/10.1006/jcph.2001.6726>

873 Usama, M.Mr.M., Gardezi, H., Jalal, M.Mr.F.E., Rehman, M.Mr.M.A., Javed, M.Ms.N., Janjua, D.Dr.S.,
 874 Iqbal, M.Mr.M., 2023. Predictive Modelling of Compression Strength of Waste Gp/Fa
 875 Blended Expansive Soils Using Multi-Expression Programming. *Constr. Build.*

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted

Formatted

Formatted

876 Mater. 392, 131956. <https://doi.org/10.2139/ssrn.4227552>

877 Wang, J., Wang, S., Su, A., Xiang, W., Xiong, C., Blum, P., 2021. Simulating landslide
878 induced tsunamis in the Yangtze River at the Three Gorges in China. *Acta Geotech.*
879 16, 2487–2503. <https://doi.org/10.1007/s11440-020-01131-3>

880 Wang, J., Ward, S.N., Xiao, L., 2015. Numerical simulation of the December 4, 2007
881 landslide-generated tsunami in Chehalis Lake, Canada. *Geophys. J. Int.* 201, 372–
882 376. <https://doi.org/10.1093/gji/ggv026>

883 Wang, W., Chen, G., Yin, K., Wang, Y., Zhou, S., Liu, Y., 2016. Modeling of landslide 2016a. Modeling
of landslide generated impulsive waves considering complex topography in reservoir area. *Environ.
Earth Sci.* 75, 1–15. <https://doi.org/10.1007/s12665-016-5252-y>

884 Wang, W., Chen, G., Yin, K., Wang, Y., Zhou, S., Liu, Y., 2016b. Modeling of landslide
generated impulsive waves considering complex topography in reservoir area.

885 *Environ. Earth Sci.* 75, 1–15. <https://doi.org/10.1007/s12665-016-5252-y>

886 Wang, Y., Liu, J., Li, D., Yan, S., 2017a2017. Optimization model for maximum tsunami
887 amplitude generated by riverfront landslides based on laboratory investigations.

888 *Ocean Eng.* 142, 433–440. <https://doi.org/10.1016/j.oceaneng.2017.07.030>

889 Wang, Y., Liu, J., Li, D., Yan, S., 2017b. Optimization model for maximum tsunami
890 amplitude generated by riverfront landslides based on laboratory investigations.

891 *Ocean Eng. Engineering* 142, 433–440. <https://doi.org/10.1016/j.oceaneng.2017.07.030>

892 Ward, N. Steve, Day, Simon, 2011. The 1963 Landslide and Flood at Vajont Reservoir
893 Italy. A tsunami ball simulation. *Ital. J. Geosci.* 130, 16–26.
894 <https://doi.org/10.3301/ijg.2010.21>

895 Watts, P., 1998a. Wavemaker Curves for Tsunamis Generated by Underwater
896 Landslides. *J. Waterw. Port, Coastal, Ocean Eng.* 124, 127–137.
897 [https://doi.org/10.1061/\(asce\)0733-950x\(1998\)124:3\(127\)](https://doi.org/10.1061/(asce)0733-950x(1998)124:3(127))

898 Watts, P., 1998b. Wavemaker curves for tsunamis generated by underwater landslides.

899 *J. Waterw. Port, Coast, Ocean Eng.* 124, 1998.

900 Wiguna, E.A., 2022. Development of Real-Time Tsunami Early Warning System
901 Dashboard Based on Tsunami-F1 and Machine Learning in Sunda Arc, Indonesia,
902 in: 2022 IEEE Ocean Engineering Technology and Innovation Conference:
903 Management and Conservation for Sustainable and Resilient Marine and Coastal
904 Resources (OETIC). IEEE, pp. 23–29.
905 <https://doi.org/10.1109/OETIC57156.2022.10176243>

906 Wu, Y., Liu, L.-F.P., Hwang, K., Hwung, H.-H., 2018. A unified runup formula for
907 breaking solitary waves on a uniform beach, in: Costal Engineering Proceedings.

908 Wunnemann, K., Weiss, R., 2015. The meteorite impact-induced tsunami hazard. *Philosophical
Transactions.*

909 *Philos. Trans.*

Formatted: Header

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Space Before: 0 pt, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted: Header

1 [Yang, X., Kong, S., 2018. 3D Simulation of Drop Impact on Dry Surface. Int J Comput Methods 15, 1–23. https://doi.org/10.1142/S0219876218500111](https://doi.org/10.1142/S0219876218500111)

2
3 [910 Yarkoni, T., Westfall, J., 2019. Choosing prediction over explanation in psychology: 911 lessons from machine learning. Prospect psychol Sei. 912 https://doi.org/10.1177/1745691617693393. Choosing](https://doi.org/10.1177/1745691617693393)

4
5
6
7
8 [913 Yin, Y., Huang, B., Liu, G., Wang, S., Yang, X. and S. C. Kong, 3D Simulation of Drop Impact on Dry Surface Using SPH](https://doi.org/10.1177/1745691617693393)

9
10 [914 Method. International Journal of Computational Methods, 2018, 15\(03\): p.](https://doi.org/10.1177/1745691617693393)

11
12 [915 1850011.](https://doi.org/10.1177/1745691617693393)

13 [916 2015. Potential risk analysis on a Jianchuandong dangerous rockmass-generated impulse wave in the Three Gorges Reservoir, China. Environ Earth Sci 74, 2595–2607. https://doi.org/10.1007/s12665-015-4278-x](https://doi.org/10.1007/s12665-015-4278-x)

14
15 [917 918 919 Young, A.P., Guza, R.T., Matsumoto, H., Merri, M.A., Reilly, W.C.O., Swirad, Z.M., 2021. Geomorphology Three years of weekly observations of coastal cliff erosion by waves and rainfall Mean Profile Change \(m \). Geomorphology 375. https://doi.org/10.1016/j.geomorph.2020.107545](https://doi.org/10.1016/j.geomorph.2020.107545)

16
17
18
19
20
21
22
23
24
25
26
27
28
29 [920 921 922 923 Zhao, T., Utili, S., Crosta, G.B., 2016. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM CFD Analyses. Rock Mech. Rock Eng. 49, 2437–2456. https://doi.org/10.1007/s00603-015-0731-0](https://doi.org/10.1007/s00603-015-0731-0)

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text; Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted

Formatted: Font: (Default) Times New Roman, Font color: Black, Not Expanded by / Condensed by

Formatted

Formatted

Formatted

Formatted: Normal, Indent: Left: 0.85 cm, Hanging: 4.8 ch, Line spacing: single, No bullets or numbering, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 8.16 ch

Formatted: Font: (Default) Times New Roman, 小四

Formatted: Indent: Left: 0 cm, Space Before: 0 pt

Formatted: Font: 小五

Formatted: Footer, Right: 0.63 cm, Line spacing: single