
1 
 

Explicit simulation of chemical composition, size distribution and 
cloud condensation nuclei of secondary organic aerosol from α-pinene 
ozonolysis 

Zhen Song1,2,3,4, Chenqi Zhang1, Hongru Shen1,†, Hao Ma1, Iida Pullinen6,‡
, Defeng Zhao1,3,4,5 

1Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, China 5 
2Shanghai Frontiers Science Center of Atmosphere-Ocean Interaction, Fudan University, Shanghai, 200438, China 
3Shanghai Key Laboratory of Ocean-land-atmosphere Boundary Dynamics and Climate Change, Fudan University, Shanghai, 

200438, China 
4National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai, 

200438, China 10 
5Institute of Eco-Chongming (IEC), 1050 Baozhen, Lühua Town, Chongming District, Shanghai 202151, China 
6Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich, Germany 
†Present address: Department of Chemical Engineering and Applied Chemistry/Department of Chemistry, University of 
Toronto, Toronto, Ontario M5S 3E5, Canada 
‡ Present address: Department of Applied Physics, University of Eastern Finland, Kuopio, 70210, Finland 15 
 

Correspondence to: Defeng Zhao (dfzhao@fudan.edu.cn) 

Abstract. Secondary organic aerosols (SOA) contribute significantly to cloud condensation nuclei (CCN), which depend on 

size distribution, chemical composition and hygroscopicity parameter (κ). However, how well current understanding of SOA 

formation can reproduce CCN concentrations and the influence these factors on modelled CCN uncertainties are still unclear. 20 

In chemical transport models, it is difficult to address the issue due to model complexity and oversimplified representation of 

chemical mechanisms, particle size and κ. Here, we explicitly simulated CCN concentrations of SOA from α-pinene ozonolysis, 

a bench-mark system for SOA studies using a box model (PyCHAM). Using state-of-the-art treatment of chemical mechanisms, 

aerosol size and κ, we assessed how CCN as well as chemical composition, aerosol size and κ can be modelled against 

measurement and evaluated the influence of these factors on CCN simulation. The model well simulated SOA mass 25 

concentration but overestimated O:C and H:C ratios, suggesting lack of particle-phase chemistry. Highly oxygenated 

molecules contributed substantially to SOA mass and thus CCN. Modeled κ closely aligned with measurements at moderate 

supersaturation (0.37%) but overestimate κ (by 19%) at low supersaturation (~0.19%) and underestimate κ (by 21%) at high 

supersaturation (0.73%). The model well reproduced particle growth, but exhibited wider and flatter size distribution compared 

with measurement. The simulated CCN concentrations agreed well with measurement at moderate to high SS (0.37–0.73%) 30 

but had a significant bias at low SS. Sensitivity analysis highlights the importance of accurate representation of both size 

distribution and κ for CCN prediction especially at lower SS (<0.4%). 

1 Introduction 

Secondary organic aerosol (SOA), formed through the oxidation of volatile organic compounds (VOCs) and gas-particle 

partitioning, constitutes a significant fraction of atmospheric submicron aerosol mass (Jimenez et al., 2009; Huang et al., 2014; 35 

Shrivastava et al., 2017). As a result, SOA contributes significantly to global cloud condensation nuclei (CCN), influencing 

aerosol indirect effects (aerosol-cloud interaction) and radiative forcing (IPCC, 2021). 

Despite numerous research efforts, uncertainties persist in assessing indirect effects of SOA. These uncertainties are 

closely linked to inaccuracies in simulated CCN number concentrations within chemical transport models (IPCC, 2021). The 

contribution of SOA to CCN concentrations depends on the SOA concentration (Liu and Wang, 2010; Mei et al., 2013) and 40 

CCN activity of SOA, which is determined by their particle size distribution and hygroscopicity (Farmer et al., 2015; Seinfeld 
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and Pandis, 2016). Therefore, uncertainties in modeled CCN levels are strongly influenced by these parameters, which are 

often oversimplified in current chemical transport models. For example, chemical transport models often employ simplified 

chemical mechanisms, such as CBM (Carbon Bond Mechanism), RACM (Regional Atmospheric Chemistry Mechanism), and 

SAPRC (Statewide Air Pollution Research Center), to enhance computational efficiency and numerical stability. Regarding 45 

the size distribution, the sectional approach is widely used to simulate aerosol size distributions (Topping and Bane, 2022). 

However, limited bin resolution compromises the accuracy of size distribution and number concentration simulations 

(Kanakidou et al., 2005; Yu and Luo, 2009; Luo and Yu, 2011). Additionally, the hygroscopicity parameter (κ), derived from 

Köhler theory (Petters and Kreidenweis, 2007), is often simplified in chemical transport models, either by assuming a uniform 

κ for organic aerosols in most global models (Fanourgakis et al., 2019) or various constant κ for different types of OA in 50 

regional models (Wang et al., 2019; Kuang et al., 2020). These simplifications introduce uncertainties in CCN simulations. 

However, in chemical transport models, it is difficult to assess the influence of these parameters on the uncertainties of CCN 

from SOA due to the mixing of SOA with other aerosol components, lack of direct observation constraints on all these 

parameters and complex factors influencing these parameters. Moreover, even without these simplifications, it is still not clear 

how well we can model CCN concentration of SOA. Therefore, it is imperative to assess how well current understanding of 55 

SOA formation, i.e., chemical mechanisms can reproduce the SOA size distribution, chemical composition and κ. Such an 

assessment can only be achieved by comprehensive modelling of SOA formed in laboratory studies, where SOA precursors 

and formation conditions are well known and comprehensive measurements of SOA (mass, size distribution and CCN) are 

available. 

Over the past two decades, based on comprehensive explicit gas-phase chemical mechanisms, numerous studies have 60 

modeled SOA formation by oxidation of biogenic VOCs (Jenkin, 2004; Xia et al., 2008; Capouet et al., 2008; Ceulemans et 

al., 2010; Chen et al., 2011; Valorso et al., 2011; Zuend and Seinfeld, 2012; Gatzsche et al., 2017; Galeazzo et al., 2021) or 

anthropogenic VOCs (Johnson et al., 2004, 2005; Hu et al., 2007; Camredon et al., 2007; Kelly et al., 2010; Xu, 2014; La et 

al., 2016; Lannuque et al., 2023) under different conditions in chamber environment. The MCM (Master Chemical Mechanism), 

comprising 143 VOCs species and approximately 17,000 reactions, is the most widely used explicit mechanism (Jenkin et al., 65 

1997, 2003; Saunders et al., 2003). Similar near-explicit or quasi-explicit chemical mechanisms include CACM (Caltech 

Atmosphere Chemistry Mechanism) (Griffin et al., 2002), GECKO-A (Generator for Explicit Chemistry and Kinetics of 

Organics in the Atmosphere) (Aumont et al., 2005; Camredon et al., 2007), PRAM (Peroxy Radical Autoxidation Mechanism) 

for the production of gas-phase Highly Oxygenated organic Molecules (HOMs) (Roldin et al., 2019), and other diversified 

VOCs oxidation mechanisms constructed by different studies (Peeters et al., 2001; Capouet et al., 2004, 2008; Hu et al., 2007; 70 

Ceulemans et al., 2010). HOMs, a group of VOCs oxidation products formed through rapid autoxidation, play a critical role 

in SOA formation due to their low volatility and high oxygen content (Ehn et al., 2014; Bianchi et al., 2019). Modeling studies 

have demonstrated the importance of HOMs in SOA production from α-pinene and △3-carene ozonolysis reactions (Roldin et 

al., 2019; Xu, 2021; Luo et al., 2024; Thomsen et al., 2024). In the models simulating SOA formation, gas-particle partitioning 

has been modeled based on thermodynamic absorption partitioning theory (Pankow, 1994) or dynamic gas-particle mass 75 

transfer following Raoult’s law (Seinfeld and Pandis, 2016). Besides gas-phase reaction and gas-particle partitioning, particle-

phase reactions, such as oligomerization and polymerization, have also been shown to significantly affect SOA speciation 

(Jenkin, 2004; Johnson et al., 2004, 2005; Xu, 2014; Hu et al., 2007; Chen et al., 2011; Galeazzo et al., 2021; Jia and Xu, 

2021). For example, Hu et al. (2007) demonstrated that up to 70% of SOA mass from toluene photooxidation originated from 

oligomers and polymers, underscoring the importance of particle-phase chemistry. Additionally, model studies have also 80 

indicated the importance of non-ideality and vapor pressure estimation methods in SOA simulations (Ceulemans et al., 2010; 

Kelly et al., 2010; Valorso et al., 2011; Zuend and Seinfeld, 2012). 

Despite advancements in chemical mechanisms and gas-particle partitioning models, SOA simulations still have limits. 

Most SOA modeling studies have focused on mass concentration and SOA yield, while far fewer studies have simulated the 
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chemical composition, particle size distribution and CCN concentrations (Jenkin, 2004; Johnson et al., 2004, 2005; Hu et al., 85 

2007; Xia et al., 2008; Capouet et al., 2008; Chen et al., 2011; Xu, 2014). In general, the simulation of SOA chemical 

composition is relatively poor. For example, the average oxygen-to-carbon ratio (O:C) and hydrogen-to-carbon ratio (H:C) of 

simulated SOA showed significant gaps compared with measured SOA in different VOCs oxidation reactions (Chen et al., 

2011). Moreover, few studies have simulated the particle size, which is crucial to SOA physical properties. Jia and Xu (2021) 

developed the CSVA (Core-Shell box model for Viscosity dependent SOA) model, which simulates SOA size distribution 90 

evolution using a core-shell structure to account for viscosity effects in the gas-particle mass transfer. O’Meara et al. (2021) 

developed a python box model PyCHAM (CHemistry with Aerosol Microphysics in Python) for simulating aerosol chambers, 

which can also simulate particle size distribution. By using PyCHAM, Xu (2021) modeled SOA size distribution from α-

pinene ozonolysis and showed a good envelope between the simulated and measured particle size evolution, though in the 

simulation it was shifted to a later position, meaning the delayed particle growth compared to measurement. Furthermore, up 95 

to now, there is still a lack of simulation for hygroscopicity of SOA and CCN number concentration based on explicit chemical 

mechanisms. 

In this study we simulated mass concentration, chemical composition, size distribution and CCN concentrations of SOA 

formed in α-pinene ozonolysis, a bench-mark system in SOA studies, using PyCHAM. We integrated MCM and PRAM 

mechanisms and consider gas-particle partitioning, gas-wall partitioning, nucleation, coagulation, and particle wall loss to 100 

investigate SOA formation and growth. Simulated SOA mass, number concentration, chemical composition, size distribution, 

κ, and CCN number concentration are compared with measurement. This analysis aims to identify key chemical processes 

influencing SOA mass and chemical composition, and highlights the importance of accurate simulation of κ and particle size 

distribution in CCN simulations. 

2 Methods 105 

2.1 SAPHIR Chamber and Experiment 

The α-pinene ozonolysis experiment was conducted in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large 

Reaction) chamber at Forschungszentrum Jülich, Germany. SAPHIR is a 270 m3 double-walled cylindrical Teflon chamber 

with a surface-to-volume ratio of ~1 m2 m-3, as previously described (Rohrer et al., 2005; Zhao et al., 2015a, b). The chamber 

utilizes natural sunlight for illumination and features a louvre system to switch between light and dark conditions. For this 110 

study, the experiment was performed in the dark with the louvres closed. Prior to the experiment, the chamber was flushed 

with high-purity synthetic air (purity > 99.9999% O2 and N2). The experiment was conducted at a relative humidity (RH) of 

37–79% and a temperature range of 291.2–299.1 K (Fig. S1). A total of 20 ppbv of α-pinene was introduced into the chamber, 

followed by the addition of 50 ppbv O3 after 30 minutes to initiate organic chemistry. The experiment lasted approximately 

8.5 hours, and no seed aerosols were used. 115 

Temperature and RH were monitored continuously throughout the experiment. A Scanning Mobility Particle Sizer (SMPS) 

coupled with a Condensation Particle Counter (CPC, TSI3785) measured SOA mass and number concentrations and size 

distributions. A Cloud Condensation Nuclei Counter (CCNc, Droplet Measurement Technique, USA) measured CCN number 

concentrations at four supersaturations (SS): 0.19%, 0.37%, 0.55%, and 0.73%. The SS calibration and κ parameter 

calculations followed Zhang et al. (2023). An Aerosol Mass Spectrometer (AMS) provided SOA chemical composition data, 120 

including O:C and H:C elemental ratios. O3 concentrations were measured using a UV photometer O3 analyzer (ANSYCO, 

model O341M). OH, HO2, and RO2 radical concentrations were quantified using a laser-induced fluorescence system (LIF) 

(Fuchs et al., 2012). VOCs were characterized using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-

ToF-MS, Ionicon Analytik, Austria). Gas-phase oxygenated products from α-pinene ozonolysis, including HOMs, were 
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analyzed using a Chemical Ionization Atmospheric Pressure Interface Time-of-Flight Mass Spectrometer (CIMS, Tofwerk 125 

AG/Aerodyne Research, Inc.) with nitrate (NO3
-) as the reagent ion (NO3

--CIMS). 

2.2 PyCHAM Box Modeling 

The α-pinene ozonolysis experiment was simulated using the PyCHAM (CHemistry with Aerosol Microphysics in Python) 

model (O'Meara et al., 2021). PyCHAM was developed with two precursor models as platforms: the Microphysical Aerosol 

Numerical model Incorporating Chemistry (MANIC) for multiphase processes (Lowe et al., 2009) and PyBox for Python-130 

based parsing and automatic generation of chemical reaction modules (Topping et al., 2018). PyCHAM is designed to simulate 

aerosol chamber experiments, enabling comparisons between simulations and observations to improve process understanding 

for atmospheric applications. 

PyCHAM solves coupled ordinary differential equations for gas-phase chemistry, gas-particle partitioning, and gas-wall 

partitioning following Jacobson (2005). Gas–particle partitioning follows the formulation of Zaveri et al. (2008): 135 

ୢ஼೔,೒
ௗ௧

 ൌ  െ෌ 𝑘௜,௝
ே

௝ ୀ ଵ
൫𝐶௜,௚ െ 𝑥௜,௝𝑝௜

଴𝐾௩,௝𝛾௜,௝൯, (1) 

ୢ஼೔,ೕ
ௗ௧

 ൌ  𝑘௜,௝൫𝐶௜,௚ െ 𝑥௜,௝𝑝௜
଴𝐾௩,௝𝛾௜൯, (2) 

where component i partitions into size bin j from the gas phase g, with N total size bins. Here, x is the particle-phase mole 

fraction, p0 is the pure component liquid (sub-cooled if necessary) vapour pressure, Kv is the Kelvin factor and γ is the activity 

coefficient. The first-order mass transfer coefficient ki,j for component i to size bin j incorporates the Fuchs-Sutugin transition 140 

regime correction (Fuchs and Sutugin, 1971) and can be adjusted based on γ and accommodation coefficient of individual 

component. 

Gas–wall partitioning follows an analogous framework: 

ୢ஼೔,೒
ௗ௧

 ൌ  െ𝑘୵ ቀ𝐶௜,௚ െ
஼೔,౭
஼౭

𝑝௜
଴𝛾௜ቁ, (3) 

ୢ஼೔,ೢ
ௗ௧

 ൌ  𝑘୵ ቀ𝐶௜,௚ െ
஼೔,౭
஼౭

𝑝௜
଴𝛾௜ቁ, (4) 145 

where 𝑝௜
଴ is the liquid (sub-cooled if necessary) saturation vapour pressure of component i and γi is its activity coefficient on 

the wall. kw (s-1) accounts for gas- and wall-phase diffusion, turbulence, accommodation coefficient, and chamber surface-

area-to-volume ratio. kw was set to 2.2×10-3 s-1 according to experimental measurement (Guo et al., 2022). Meanwhile, Cw (g 

m-3) represents wall adsorption/absorption properties, including effects of RH, surface area, diffusivity, and porosity. We 

conducted a sensitivity analysis of SOA mass concentration to a series of Cw values (Fig. S2), and SOA mass concentration 150 

showed no apparent change when Cw increased by one magnitude from 1×10-7 to 1×10-6 g m-3. Therefore, Cw was set to 1×10-

6 g m-3. 

PyCHAM also simulates microphysical processes, including coagulation, nucleation, and particle wall loss, which 

influence particle number evolution. Using a semi-implicit equation, coagulation process accounts for Brownian diffusion, 

convective Brownian diffusion enhancement, gravitational collection, turbulent inertial motion, turbulent shear, and Vander 155 

Waals collisions (Jacobson, 2005), without adjustable parameters. 

Nucleation is modeled using a tuned Gompertz function to fit measured particle number size distributions during the 

initial reaction phase, without inferring mechanistic details: 

𝑃ଵሺ𝑡ሻ  ൌ   𝑛𝑢𝑐௩ଵ  ቆexp൭𝑛𝑢𝑐௩ଶ ቆexp ቀെ
௧

௡௨௖ೡయ
ቁቇ൱ቇ, (5) 

where P1 (no. cm−3) is the number concentration of new particles after time t that enter the smallest size bin, and nucvn represents 160 

the user-defined parameters which allow the amplitude (nucv1), onset (nucv2) and duration (nucv3) of the curve to be adjusted. 

Note that Eq. (5) is independent of chemistry. In this study, particle number concentrations were firstly fitted to CPC 

measurements during the initial 0.57 hours by setting nucvn (nucv1 = 22403, nucv2 = -17.66, nucv3 = 317.88). Particle size range 
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of formed SOA was set as 0–500 nm, and the radius of newly nucleated particles was set as 10.9 nm according to lower limit 

of the size range of SMPS. PyCHAM employs a sectional approach, dividing particles into a number of size bins (set as 128 165 

in this study) and simulating size changes using the moving-center or full-moving approaches (Jacobson, 2005); the latter was 

adopted in this study. In this way, the constrained and subsequently simulated number concentrations excluding coagulation 

agree well with CPC measurements (R2 = 0.89; NMB = 0.29%; Fig. S3), nevertheless, the particle size distribution simulation 

deviates significantly from measurement (Fig. S4). 

Therefore, to accurately simulate CCN which depends on both particle number and size distribution, nucleation scheme 170 

was not used and the particle number size distribution was instead constrained using the particle size distribution measured by 

SMPS during the initial 0.6 hours in the model assuming the species C20H30O17 to represent low-volatile HOMs dimers as seed 

particle. The vapor pressure of C20H30O17 at normal temperature calculated by default method of Nannoolal et al. (2008) is 

2.14×10-29 Pa, which is extremely low to act as a seed aerosol. The lower and upper boundaries and mean radii of size bins 

were constrained according to SMPS measurements (9.6–437.2 nm) and size bin number was 106. Under this configuration, 175 

the simulated SOA mass concentration and chemical composition were significantly influenced by the presence of assumed 

seed particles. Therefore, to balance the simulation of chemical composition and particle size, the simulation of SOA mass 

concentration and chemical composition are based on the scheme of nucleation, as in Sect. 3.1. While as for particle number 

concentration and size distribution, the simulation adopts the scheme of constraining SMPS size distribution and number 

concentration of seed particles together, as in Sect. 3.2. Subsequently, the κ is derived from the chemical composition of SOA 180 

displayed in Sect. 3.1. This was combined with the particle size distribution described in Sect. 3.2 to calculate CCN number 

concentrations, as in Sect. 3.3. 

Particle wall deposition is simulated using either the McMurry and Rader (1985) model or a customized size-dependent 

deposition rate: 

𝐷୮  ൏  𝐷୮,୤୪ୣୡ  185 

logଵ଴ ቀ𝛽൫𝐷୮൯ቁ  ൌ  logଵ଴൫𝐷୮,୤୪ୣୡ൯ െ logଵ଴൫𝐷୮൯ ∇୮୰ୣ ൅ 𝛽flec, (6) 

𝐷୮ ൒  𝐷୮,୤୪ୣୡ  

logଵ଴ ቀ𝛽൫𝐷୮൯ቁ  ൌ  logଵ଴൫𝐷୮൯ െ logଵ଴൫𝐷୮,୤୪ୣୡ൯ ∇୮୰୭ ൅ 𝛽flec, (7) 

where Dp,flec marks the inflection diameter for deposition rates, and βflec gives the deposition rate (s-1) at this inflection point. 

∇pre and ∇pro represent the log-log slopes of deposition rate versus diameter before and after the inflection point. This study 190 

used a uniformed value (βflec = 2.37×10-5 s-1) based on the measured particle loss rates without considering the size dependence. 

Moreover, other parameters such as time series of temperature (291.2–299.1 K) and RH (37–79%), and dilution rate 

(9×10-6 s-1) during the experiment were constrained according to measurements. 

The gas-phase chemical mechanism for α-pinene we used in PyCHAM draw upon previous studies as MCM coupled 

with PRAM mechanisms (Roldin et al., 2019; O'Meara et al., 2021; Luo et al., 2024; Thomsen et al., 2024). PyCHAM currently 195 

lacks explicit treatment of particle-phase reactions and dissolution, which are hence not considered in our simulation. The 

simulated α-pinene concentrations agree with measurement (R2 = 0.99) in this study (Fig. S5), indicating the capability to 

describe gas-phase chemistry of α-pinene ozonolysis by PyCHAM with MCM + PRAM mechanism. 

2.3 Hygroscopicity Parameter (κ) and CCN Concentration 

The hygroscopicity parameter (κ) of bulk SOA was calculated using the UManSysProp module (Topping et al., 2016), an 200 

open-source tool for predicting molecular and atmospheric aerosol properties 

(https://github.com/loftytopping/UManSysProp_public/). UManSysProp estimates pure component vapor pressures, critical 

properties, sub-cooled densities of organic molecules; activity coefficients for mixed inorganic-organic liquid systems; 

hygroscopic growth factors and CCN activation potential of mixed inorganic–organic aerosol particles with associated κ–
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Köhler values (Kreidenweis et al., 2005); and absorptive partitioning calculations with/without a treatment of non-ideality. 205 

Users input molecular information as SMILES (Simplified Molecular Input Line Entry System) strings, and UManSysProp 

automatically extracts relevant information for calculations. 

In PyCHAM, UManSysProp predicts molecular weight, pure liquid density, and liquid saturation vapor pressure for 

individual components. Default methods include Girolami (1994) for liquid density and Nannoolal et al. (2008) for vapor 

pressure estimation. Since PyCHAM does not currently include κ prediction, we further calculated the κ values for bulk SOA 210 

under ideal condition given molar concentrations, vapor pressures, densities, temperatures, dry particle sizes, and a surface 

tension of 72 mN m-1. The critical activated dry particle size (Dp,dry) for CCN activation at different SS levels was derived from 

the κ–Köhler equation (Petters and Kreidenweis, 2007): 

ୖୌ

ଵ଴଴
 ൌ  

஽౦, wet 
యି஽౦, dry 

య

஽౦, wet 
యିሺଵି఑ሻ஽౦, dry 

య exp ൬
ସఙ౩ெ౭

ோ்ఘ౭஽౦, wet 
൰, (8) 

where σs is the surface tension of the wet particle at the solution-air interface, Mw is the molecular weight of water, R is the 215 

ideal gas constant, T is temperature, ρw is the density of water, and Dp,wet is the diameter of the wet particle. 

Particles larger than Dp,dry can act as CCN and Dp,dry decreases with increasing SS. Then CCN number concentrations at 

different SS (NCCN,SS) were calculated by integrating the simulated particle number size distribution PNSD(D) over size bins 

exceeding Dp,dry: 

𝑁஼஼ே,ௌௌ  ൌ ׬  𝑃𝑁𝑆𝐷ሺ𝐷ሻ𝑑𝐷
஽೘ೌೣ
஽೛,೏ೝ೤

, (9) 220 

where D is dry particle diameter, and Dmax is the maximum D. 

3 Results and Discussion 

3.1 Simulation of Particle Formation and Chemical Composition 

Figure 1 shows the simulated and measured SOA mass concentrations. The simulated SOA mass concentration exhibited 

a high correlation (R2 = 0.97) with measurements and the two showed similar temporal trends, characterized by a rapid increase 225 

within the first ~3 hours followed by a gradual decline. The simulated decline rate closely matched measurements (Fig. 1b), 

except for a faster decrease around ~6 hours. This discrepancy is likely attribute to a rapid temperature increase during this 

period (Fig. S1), as elevated temperature can cause organic compounds to evaporate from the particle phase, reducing SOA 

formation (Donahue et al., 2006; Xia et al., 2008; Ceulemans et al., 2010). Simulated particle-phase HOMs accounted for ~43% 

of total SOA mass concentration (Fig. 1a), highlighting the important contribution of HOMs to SOA and necessity of including 230 

HOMs formation in the chemical mechanisms as done here by coupling MCM with the PRAM mechanism. Without PRAM 

mechanism, the onset of SOA growth was significantly delayed and mass concentration was obviously lower. The significant 

contribution of HOMs to SOA is consistent with previous studies. For example, Roldin et al. (2019) found ~50% of SOA mass 

from α-pinene ozonolysis with ammonium sulfate seeds originated from HOMs condensation. Gatzsche et al. (2017) reported 

HOMs contributed up to 65% of SOA mass during early-stage α-pinene ozonolysis and accounted for about 27% of the total 235 

SOA mass throughout the simulation. 

Despite good correlation with measured SOA concentration, simulated SOA mass concentration was consistently 

underestimated (19.1% ± 10.4%). The underestimation can be attributed to incomplete description of gas-phase chemistry, 

gas-particle partitioning, and/or particle-phase chemistry. The gas-phase chemistry such as α-pinene losses (Fig. S5) and 

HOMs composition are well generally simulated (Fig. S6), showing the bimodal distribution of monomers (m/z 230–380) and 240 

dimers (m/z 400–550). This also indicates the capability of PRAM mechanism to effectively characterize gas-phase HOMs 

formation, as shown by Roldin et al. (2019). The gas-particle partitioning mass transfer coefficient in the model also influences 

SOA mass concentration. PyCHAM allows adjustment of activity and accommodation coefficients to modify this parameter. 

However, the simulated SOA mass concentration rise rate closely matched measurements (Fig. 1b), indicating that the mass 
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transfer coefficient adequately represents gas-particle partitioning. Therefore, the underestimation is likely attributed to 245 

missing particle-phase chemistry. Particle-phase accretion reactions or oligomerization processes can produce larger, higher-

molecular-weight species, increasing SOA mass concentration (Pun and Seigneur, 2007; Kroll and Seinfeld, 2008; Hallquist 

et al., 2009). The influence of particle-phase reaction on SOA mass concentration has been reported in previous studies. For 

example, Hu et al. (2007) attributed up to 70% of SOA mass to oligomers and polymers in toluene photooxidation, highlighting 

the importance of particle-phase reactions. By adjusting branching ratio for HOMs formation and gas-wall partitioning 250 

parameters, Xu (2021) performed a good consistency between simulated and measured SOA mass concentrations from α-

pinene ozonolysis. However, the simulated SOA mass concentration was still underestimated from their data even after 

considering OH-initiated secondary autoxidation, which might be due to the lack of particle-phase reactions in their simulation. 

Particle-phase reactions, including heterogeneous reactions on aerosol surfaces and in particles of organic compounds, can 

also alter SOA properties, such as solubility, viscosity, hygroscopicity, and optical properties (Farmer et al., 2015; Shrivastava 255 

et al., 2017; Jia and Xu, 2021). For example, Galeazzo et al. (2021) found that missing autoxidation and particle-phase reactions 

in α-pinene ozonolysis simulations led to underestimated SOA viscosity. 

 

Figure 1: (a) Mass concentrations (μg m-3) of simulated (blue line) and measured (circles) SOA, alongside simulated particle-phase 
HOMs mass concentration (green line). The blue dashed line refers to simulated SOA without considering PRAM mechanism. (b) 260 
Scatter plot of measured versus simulated SOA mass concentrations, with a linear fit (red line). The coefficients a and b represent 
the intercept and slope, respectively, and R2 denotes the correlation coefficient. Colors indicate the reaction time of the experiment. 

Simulated O:C and H:C ratios of SOA were compared with measurements as AMS can only provide bulk O:C and H:C 

ratios of SOA rather than molecular chemical composition (Fig. 2). Compared to measured O:C (0.44 ± 0.03) and H:C (1.35 

± 0.02) ratios, the simulated average O:C (0.58 ± 0.03) and H:C (1.64 ± 0.00) ratios were overestimated. Without PRAM 265 
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mechanism, the simulation showed lower O:C and higher H:C as a result of less gas-phase HOMs formation, while still 

overestimating the two ratios. Overestimation of H:C (21.2% ± 2.1%) and O:C (32.4% ± 2.2%) ratios is likely attributed to the 

absence of particle-phase reactions in our simulations as mentioned above, emphasizing the importance of particle-phase 

chemistry in determining SOA chemical composition. The difference between modelled and measured O:C and H:C has also 

been reported by previous studies. Using similar gas-phase chemical mechanism, Roldin et al. (2019) reported similar 270 

overestimations in modelled H:C ratios, while modelled O:C ratios agree with measurements in their studies. Chen et al. (2011) 

observed overestimated O:C and H:C ratios in α-pinene ozonolysis simulations. However, HOMs are not included in the 

mechanism of their study. They proposed a chemical mechanism involving particle-phase decomposition of organic 

hydroperoxides and subsequent oligomerization involving free radicals to explain the discrepancies. Although HOMs 

formation was included in our study, the lack of similar particle-phase reactions can still contribute the overestimation of H:C 275 

and O:C ratios. 

Regarding the temporal changes, both the measured and simulated average O:C increased gradually over time before 

stabilizing, which is possibly attributed to the dilution of SOA concentration and/or the increasing fraction of particle-phase 

HOMs during the experiment (Fig. S7). In contrast, the measured H:C decreased over time, while the simulated H:C showed 

no apparent variations. Particle-phase reactions, such as oligomerization, typically generate high-molecular-weight compound 280 

and alter O:C and H:C ratios of organic matter (Kroll and Seinfeld, 2008; Hallquist et al., 2009), and their absence in 

simulations likely contributed to the discrepancy between modelled and measured time series of O:C and H:C ratios. 

 

Figure 2: Chemical composition represented by the average O:C and H:C ratios of simulated (circles) and measured (crosses) SOA, 
as well as simulated SOA without considering PRAM mechanism (triangles). The symbol sizes refer to SOA mass concentrations. 285 
Valid SOA measurement data were available from 0.45 hours due to the low SOA concentrations before that. 

3.2 Simulation of Particle Number Concentrations and Size Distribution 

Despite a slight underestimation (7.3% ± 2.8%) of the simulated number concentration since the model run freely following 

the constrained particle number size distribution (an intercept of -1657 # cm-3), the simulated particle number concentration 

showed good agreement with measurements (Fig. 3), with a linear fit yielding a slope of 1.04 and a correlation coefficient of 290 

R2 = 0.99. Our result is similar to the report of Xu (2021) which also exhibited an underestimation of particle number 

concentration when coagulation was included. 
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Particle number concentration is primarily influenced by microphysical processes such as nucleation, coagulation, particle 

wall loss, and gas-particle partitioning. In our simulation for particle number, the initial phase of particle growth was 

constrained by particle size distribution of SMPS measurement instead of setting nucleation parameters, as detailed in Sect. 295 

2.2. Besides, particle loss rate to wall was fully constrained by measurements, and gas-particle partitioning showed good 

performance in simulated SOA mass concentration. To explore the impact of coagulation on particle number concentration 

and size distribution, we tested including and excluding coagulation in our simulation (Fig. S8-10). Coagulation, particularly 

among nanoparticles, increases collision probabilities, leading to the formation of larger particles and reduction in particle 

number concentration, and a shift in size distribution toward larger diameters (Jacobson, 2005; Seinfeld and Pandis, 2016). In 300 

this study, the simulated number concentration without coagulation declined more slowly than measurements throughout the 

whole simulation period (Fig. S8), resulting in an overestimation of 14.4% ± 7.9%, which is much more deviated from 

measured than that when including coagulation. In spite of using a semi-implicit coagulation equation (Jacobson, 2005) without 

adjustable parameters, our result suggests that the rates of coagulation of particles are well represented in PyCHAM model. 

 305 

Figure 3: (a-b) Same as Fig. 1, but for SOA number concentration (# cm-3). Scatters from the initial 0.6 hours were excluded, as the 
number concentration during this period was fitted to SMPS measurements and assumed to match measurements perfectly. Note 
that the coagulation is included. 

To further evaluate simulation accuracy of particle size, the geometric mean diameter of simulated SOA was calculated 

(Fig. 4), which showed good agreement with measurements (R2 = 0.96) and a slight underestimation of 1.9% ± 2.8%, indicating 310 

an excellent reproduction of the central position of size distribution. Without PRAM mechanism, the geometric mean diameter 

of SOA was lower due to the absent production of larger molecules. When coagulation was excluded, the geometric mean 
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diameter was underestimated by 8.8% ± 1.1% (Fig. S9), and was merely underestimated by 6.9% ± 2.9% compared to the 

result including coagulation, suggesting that particle growth during the reaction was primarily driven by condensation, 

overweighing the influence of coagulation on the size distribution. As a result, the size distribution showed only minor changes 315 

due to coagulation, which is in contrast with the large changes in particle number concentrations (Fig. S8). 

 

Figure 4: (a-b) Same as Fig. 1, but for geometric mean diameter (nm) of SOA. And blue dashed line refers to simulated SOA without 
considering PRAM mechanism. Note that the coagulation is included, and scatters from the initial 0.6 hours were excluded as particle 
size distribution during this period was fitted to SMPS measurements. 320 

Figure 5 compares the measured and simulated number size distributions of SOA, with shaded areas representing 

simulations and contour lines denoting measurements. The simulation effectively captured the trend of particle growth, and 

the simulated size range generally aligned with measurements. However, simulated particle size distribution showed flatter 

and wider distribution patterns than measurement, even though we constrained them by SMPS during the initial 0.6 hours. 

When nucleation parameters were assigned to simulate initial particle growth in PyCHAM, instead of constraining the initial 325 

particle size distribution with SMPS measurements, the simulated size distribution exhibited greater deviation from measured 

data (Fig. S4). Xu (2021) assigned the nucleation parameters for the initial particle growth in PyCHAM, and simulated smaller 

particle sizes and a slower particle growth than measurements. These results indicate that no matter whether nucleation or seed 

particles are used to specify the initial number particle size distribution in PyCHAM, the model currently still needs 

improvement to better represent the evolution of particle size. Nevertheless, as the model has generally well reproduced the 330 

particle size and number concentrations, it can be used for subsequent CCN simulations. When coagulation was excluded in 

our study (Fig. S10), the simulated particle size distribution showed some odd spikes in the early stage and more deviation 
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from the measurement especially in the subsequent growth stage, demonstrating the reliable representation of coagulation in 

PyCHAM model. 

 335 

Figure 5: The time evolution of number size distributions (dN/dlog10Dp) of measured (contour lines) and simulated (shaded areas) 
SOA. Note that the coagulation is included. 

3.3 Simulation of κ and CCN Concentrations 

We calculated the hygroscopicity parameter (κ) of bulk SOA under ideal condition using the UManSysProp and compared 

with measurement (Fig. 6). The measured κ generally increased with higher SS, which is possibly attributed to the size 340 

dependence of chemical composition, consistent with previous monoterpene oxidation studies (Zhao et al., 2015a; Zhang et 

al., 2023). In contrast, the simulated κ was independent of SS and did not show a significant size dependence. From 50.6 to 

84.8 nm of particle size, the κ derived from the chemical composition corresponding to size only decreased by 0.002, indicating 

weak dependence of simulated chemical composition on particle size, which is different from the measurement (Table S1). 

The simulated κ increased during the first hour before stabilizing at 0.172 ± 0.003. Compared to measurements, the simulated 345 

κ was underestimated by 20.7% ± 4.9% at higher SS levels (0.73% and 0.55%), overestimated by 18.6% ± 5.9% at SS = 0.19%, 

and showed the closest agreement at SS = 0.37%, with an overestimation of 9.6% ± 8.5%. Overall, the simulated κ agreed well 

with measurements, particularly at lower SS levels. 

Field observation and laboratory studies have shown that κ of SOA decreases with increasing molecular weight under 

supersaturated conditions (Kuwata et al., 2013; Wang et al., 2019). We computed the average molecular weight of SOA (Fig. 350 

S11) and found that the molecular weight decreased rapidly during the initial phase before stabilizing, explaining the measured 

and simulated increase in κ in the early stage in the experiment and its subsequent leveling off. 
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Figure 6: The hygroscopicity parameter (κ) of simulated (line) and measured (solid circles) SOA with standard deviation (error bar) 
at different supersaturation (SS). 355 

CCN number concentrations at different SS levels were derived using κ and particle size distribution (Fig. 7). At higher 

SS levels (0.73% and 0.55%), the simulated CCN number concentration closely matched measurements throughout the 

reaction time (R2 = 0.88–0.99), with the exception of a more rapid increase during the initial period at SS = 0.73%. Although 

the simulated κ were significantly underestimated compared to the corresponding measured κ at these two SS levels, leading 

to an overestimation of the CCN critical activated dry particle size (Dp,dry), the close agreement between the simulated and 360 

measured geometric mean diameter of SOA (Fig. 4) resulted in a compensatory effect. Specifically, the wider and flatter size 

distribution patterns in the simulation compensated the impact of the lower κ, coincidentally yielding a good agreement in 

CCN number concentrations at these two SS. At SS = 0.37%, the simulated CCN number concentration showed close 

agreement with the measured CCN (R2 = 0.98), with a mean bias of -3.9% ± 1.9%. This consistency in CCN concentration 

corresponded to the smallest discrepancy in κ at this SS. Although the simulated κ was slightly higher, a concurrently slightly 365 

lower simulated particle size resulted in a comparable CCN value. As for SS = 0.19%, the simulated CCN number 

concentration exhibited the largest discrepancy among all SS levels, consistently overestimating the measured values by a 

factor of >4 throughout the reaction. This overestimation was primarily attributed to the excessively wider and flatter simulated 

particle size distribution and a pronounced overestimation of κ at this lowest SS which led to an underestimation of Dp,dry. 

To further investigate the influence of κ values and particle size distribution on CCN simulation results, we systematically 370 

examined different scenarios by: 

(1) maintaining the κ, and adopting the number particle size distribution of SMPS measurement or the 8-bin particle size 

scheme simulation which is generally used in conventional 3D models (such as WRF-Chem), or 

(2) maintaining the number particle size distribution, and applying the κ derived by measurements or a fixed κ of 0.1 

generally used in 3D models. 375 

Through separate modifications of κ values and particle size distribution, we calculated the corresponding CCN number 

concentrations. As shown in Fig. S12, when the particle size distribution was varied while maintaining a constant κ, the 106-

bin particle size scheme employed in this study demonstrated superior performance to the conventional 8-bin approach across 

various SS levels. The 106-bin results showed closer agreement with CCN number concentrations derived from SMPS-

measured size distributions, particularly during the initial growth phase of CCN activation. At higher SS levels (0.73% and 380 

0.55%), however, CCN number concentrations exhibited less sensitivity to the bin numbers option, indicating negligible 

https://doi.org/10.5194/egusphere-2025-4393
Preprint. Discussion started: 30 September 2025
c© Author(s) 2025. CC BY 4.0 License.



13 
 

dependence on the number size distribution, which is partly due to the Dp,dry became sufficiently low at higher SS that most 

particles can act as CCN. 

When κ was varied while maintaining the number size distribution (Fig. S13), CCN number concentrations calculated 

using κ from UManSysProp showed excellent agreement with those derived from observationally inferred κ across all SS 385 

levels, except for an overestimation at the lowest SS. In contrast, the fixed κ = 0.1 scheme systematically underestimated CCN 

number concentrations, with the discrepancy increasing at lower SS. These findings indicate that the simulation of CCN 

concentration acted by SOA relies on the accurate representations of κ and particle size distribution, particularly for lower SS 

levels. 

 390 

Figure 7: (a-d) The measured (circles) and simulated (lines) CCN number concentrations (# cm-3) at different SS. 

4 Conclusions and implications 

In this study, we simulated mass concentration, number concentration, chemical composition (O:C and H:C ratios) and 

size distribution of SOA from α-pinene ozonolysis by coupling MCM and PRAM explicit chemical mechanisms in a box 

model PyCHAM. We further simulated CCN number concentrations at a series of SS using hygroscopicity parameter (κ) of 395 

SOA calculated by UManSysProp according to κ-Köhler theory, and particle size distribution. Compared to chamber 

experimental measurement, the SOA mass concentration was well reproduced with an underestimation of 19.1% ± 10.4%. 

O:C and H:C ratios were overestimated by 32.4% ± 2.2% and 21.2% ± 2.1%, respectively. Besides, the time evolution of 

elemental ratios was inconsistent with measurement. These discrepancies were likely attributed to the missing particle-phase 

reactions during the simulation, as gas-phase chemistry including α-pinene decay and HOMs composition were generally well 400 
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represented. Moreover, the contribution of simulated particle-phase HOMs to SOA mass concentration was significant (~43%), 

underscoring the critical role of HOMs in SOA production. 

By constraining SMPS particle size distribution and number concentration during the initial reaction time, the simulated 

SOA number concentration exhibited a good agreement with measurement (R2 = 0.99). The simulated particle size distribution, 

however, showed wider and flatter patterns, suggesting the necessity to better represent size evolution in the PyCHAM model 405 

in the future. Moreover, the simulated κ showed overestimation (18.6% ± 5.9%) at the lowest SS (0.19%) and underestimation 

(20.7% ± 4.9%) at higher SS levels (0.73% & 0.55%), with the closest agreement at SS = 0.37%. Correspondingly, the 

simulated CCN number concentrations had varying levels of bias across different SS levels. Notably, at higher SS levels (0.73% 

and 0.55%), the underestimated κ values led to an overprediction of Dp,dry, yet this bias was compensated by the wider and 

flatter particle size distribution in the simulations. As a result, the CCN number concentrations at these two SS levels exhibited 410 

excellent consistency with measurements (R2 = 0.88–99). At SS = 0.37%, the slightly overestimated κ was balanced by the 

slightly lower simulated particle size, yielding closely matched CCN values (R2 = 0.98). In contrast, at SS = 0.19%, the 

substantial overestimation of κ and the resulted underestimated Dp,dry, coupled with the excessively wider and flatter particle 

size distribution, collectively led to a significant overestimation of CCN number concentrations. 

To further quantify the individual contributions of κ and size distribution on CCN, we conducted comparison analyses by 415 

using different κ schemes and different number of particle size bins to represent the number size distribution. It is found that 

accurate representation of both κ and particle size distribution is critical for reliable CCN simulations acted by SOA, 

particularly at lower SS levels (<0.4%). At higher SS levels (>0.4%), however, the sensitivity of CCN predictions to these 

parameters decreases as SS increases, as the smaller Dp,dry at higher SS render most particles to act as CCN regardless of 

variations in κ or size distribution. 420 

This study advances previous research by simulating CCN number concentrations from SOA using explicit chemical 

mechanisms (MCM + PRAM) for the first time to our knowledge. We comprehensively examined how SOA mass 

concentration, chemical composition, hygroscopicity, and size distribution collectively influence CCN formation. Although 

our simulation, like earlier studies, exhibits biases chemical composition, we highlight the importance of missing particle-

phase processes in SOA production. Crucially, the simulated size distribution and hygroscopicity impact the CCN predictions 425 

especially at lower supersaturations. This study highlights that accurately representing SOA hygroscopicity and size 

distribution is key to reducing modelled CCN uncertainties. 
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