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Abstract 

We evaluate the performance of the Super-Fast INundation of CoastS (SFINCS) hydrodynamic model 15 
for simulating riverine floods, combined with a fully automated open-source data preprocessing 

pipeline. To do this, we assessed the simulated extent of 499 historic flood events against the satellite 

derived flood extents using the Critical Success Index (CSI) as a performance metric. We utilised 

simulated discharges from the Global Flood Awareness System (GloFAS) hydrological model and found 

that SFINCS performance improved with upstream basin size, with a global mean CSI of 0.42 for basins 20 
with large upstream area (>1,000 km²) and a CSI of 0.29 for basins with small upstream area (<50 km²). 

Our results illustrate the importance of accurate discharge data input to flood hazard simulations.  When 

the (globally simulated) GloFAS data replaced with observed discharge data for ten events in the US, 

the CSI improved from 0.39 to 0.67. These results suggest that global hydrological model performance 

limits the accuracy of the flood hazard simulations.  Our findings also showed a significant 25 
improvement in the CSI (from 0.37 to 0.57) when changing to a higher-resolution elevation input by 

contrasting a ~1m digital elevation model (DEM; 3DEP) with our default ~30m global DEM 

(FABDEM) in six U.S. events. Sensitivity analysis of bathymetric calculations revealed a systematic 

underestimation of the default 2-year return period estimated by GloFAS discharge, likely driven by 

underrepresentation of annual block maxima, which resulted in underestimated channel dimensions. All 30 
of these factors resulted in a loss of detail, which impacted model performance, especially in smaller 

headwater rivers. We recommend to improve the estimation of bathymetry, for instance by employing 

the "gradually varying solver" method or using data from the SWOT mission. Furthermore, 

incorporating additional validation data which ideally includes flood depth measurements can largely 

enhance our understanding of the model performance. 35 

 

1. Introduction 

Riverine floods pose a significant global challenge, which makes their assessment crucial for designing 

effective flood management strategies that reduce flood damage and fatalities (Merz et al., 2021). Over 

the past decades, flood inundation modelling has become an important tool for assessing flood hazard 40 
and supporting flood managers in prioritising interventions to reduce risk (Teng et al., 2017). These 

modelling efforts often involve using hydrological forcings in hydrodynamic models to simulate water 

movement. These models usually solve equations derived from physical laws of fluid motion to produce 
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flood extent and depth maps (e.g. Guo et al., 2021). However, other approaches exist, such as using 

machine learning (Nevo et al., 2022). 45 

While local flood inundation studies have demonstrated promising results, large-scale or global 

inundation modelling still faces several challenges, such as topography and bathymetry data, 

computational intensity, and open accessibility of data (Wing et al., 2020; Wing et al., 2021; Dottori et 

al., 2022). For example, in recent years, several high-resolution global topography datasets have become 

available (Hawker et al., 2022; Abrams et al., 2020; Copernicus DEM, 2022), with increasing accuracy. 50 
Nevertheless, this data is too coarse to include river flood defences (Wing et al., 2019). Another 

significant challenge is the lack of open, high-resolution bathymetry data (Hawker et al., 2018). While 

river-width data has become available for rivers wider than 30 metres (Allen & Pavelsky, 2018), data 

on river depth is still missing.  

Furthermore, the computational demand to run large-scale models is high (Leijnse et al., 2021). Two-55 
dimensional hydrodynamic models, such as the state-of-the-art global LISFLOOD-FP model, offer high 

detail but at a substantial computational cost (e.g. Wing et al., 2021; Bates, 2023). The computational 

intensity at the global scale has led to different modelling simplifications (e.g. Winsemius et al., 2015; 

Van Ormondt et al., 2025) and the development of novel computational approaches using graphic 

processing unit (GPU) architecture (Shaw et al., 2021; Apel et al., 2024). Lastly, not all parts of the code 60 
for setting up global flood models are open-source, which limits comparability and reproducibility (Hall 

et al., 2022; Hoch and Trigg, 2019).  

Due to these challenges, there is growing interest in open-source hydrological and hydrodynamic 

models (e.g. HEC-RAS; Zeiger and Hubart, 2021) that are easily applicable to data-scarce regions and 

computationally efficient (Kim et al., 2019). One such model is the Super-Fast INundation of CoastS 65 
(SFINCS) model (Leijnse et al. 2021), which has shown promise in coastal and compound flooding 

scenarios (Eilander et al., 2023b; Nederhoff et al., 2024) but can also be applied to fluvial and pluvial 

flooding. SFINCS achieves fast computational speeds by simplifying dynamic flow equations and using 

efficient spatial discretisation techniques with a subgrid (Leijnse et al., 2021). Another key advantage 

of the SFINCS model is that it is fully open-source, alongside (Python) packages to preprocess the data 70 
(Eilander et al., 2023a).  

Although the SFINCS model has demonstrated high performance in modelling compound floods in 

coastal areas at both small and larger scales (e.g. Leijnse et al., 2021; Benito et al., 2024), its 

performance for riverine floods has not yet been investigated. Understanding how SFINCS performs 

for riverine floods, particularly at large scales and across different parts of the world, is important, 75 
especially due to the aforementioned challenges related to input data and model simplifications. 

Validation plays a key role in understanding model reliability, especially for flood hazard models 

applied at continental to global scales (Ward et al., 2013; Bates, 2023). However, global data for model 

validation, such as flood extent observations (e.g. Sampson et al., 2015), are scarce, with most large-

scale studies lacking extensive validation against real flood events. Instead, these studies have often 80 
focused on producing flood hazard maps for several return periods (e.g. Dottori et al., 2022) and 

benchmarking these simulations against other national and regional engineering models (e.g. Wing et 

al, 2024). Studies conducting event-based validation have not been global in scale, or they have focused 

on a limited number of events (e.g. Wing et al., 2021, using 35 events in the US; Bernhofen et al., 2018, 

using five events in Nigeria and Mozambique). In the last decade, the use of satellite imagery has 85 
become an increasingly popular source for validating flood hazard models (e.g. Bernhofen et al., 2018; 

Dottori et al., 2016; Masafu and Williams, 2024; Landwehr et al., 2024). More validation of large-scale 

models can improve our understanding of how flood hazard models perform on a global scale and under 

varying environmental and climatic conditions. The limited validation at larger scales, along with the 

regional focus of many studies, restricts this understanding. 90 
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Therefore, the main goal of this paper is to validate the SFINCS hydrodynamic model using satellite-

derived flood extent observations for a large set of global historical flood events (n = 499; Cloud to 

Street, 2022). The main novelty of our study lies in conducting a comprehensive validation and 

sensitivity analysis of SFINCS performance on a global scale to provide insights into its suitability for 

global flood hazard assessment. In addition, we publish an entirely open-source automated workflow 95 
that leverages only open-source data and inundation models. To achieve this, we couple SFINCS with 

different hydrological models, which provide forcing data at predefined inflow and headwater points 

for SFINCS. This event-based validation approach offers a unique opportunity to understand riverine 

flood behaviour better, as emphasised by Grimaldi et al. (2019). 

 100 
 

2. Methodology 

 

Figure 1. Automated framework for testing of the global hydrodynamic model SFINCS (section 

numbers are in brackets). 105 

Figure 1 presents a fully automated global flood modelling framework integrating various data inputs 

and processing methods with validation steps. We set up this modelling framework for each of the 499 

satellite-derived flood extents (2.4.1). The rectangular yellow boxes represent input datasets: the static 

input data (2.2.1) and the hydrological forcing data from two hydrological models and observed river 

gauges (i.e. the geographical, environmental, and behavioural [GEB] model, the Global Flood 110 
Awareness System [GloFAS], and U.S. Geological Survey [USGS] data; 2.2.2). The diamond-shaped 

boxes (Figure 1) represent the derived data (e.g. event-based hydrographs and bathymetry) made from 

input datasets. Event-based hydrographs were derived by combining the hydrological forcing data with 

the timings of the satellite-derived flood extents. The 499 flood events corresponded to the timings of 

floods within the 2000–2018 period of satellite-derived flood extent (2.4.1). The SFINCS model (2.1) 115 
generated flood extent maps, which were validated (2.4) by comparing SFINCS outputs against 

https://doi.org/10.5194/egusphere-2025-4387
Preprint. Discussion started: 6 November 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

satellite-derived flood extents from the Cloud to Street Database. The validation metrics included the 

hit rate (HR), false-alarm ratio (FAR), Critical Success Index (CSI), and error bias (E). 

 

2.1 The hydrodynamic model SFINCS 120 

SFINCS is a fully automated, 2D reduced-complexity hydrodynamic model that solves simplified Saint-

Venant equations of mass and momentum (Leijnse et al., 2021). The model uses a localised inertial 

equation (LIE) formulation, which neglects advection, Coriolis force, and viscous effects, simplifying 

the full Saint-Venant equations (Bates et al., 2010). These simplifications significantly reduce 

computational costs while retaining sufficient floodplain accuracy (Leijnse et al., 2021). A comparison 125 
with full-physics models such as Delft3D (Deltares, 2022) revealed that SFINCS can achieve up to 100 

times faster computation speed for equivalent domains with negligible loss in accuracy for sub-critical 

flow conditions (Leijnse et al., 2021). The model’s reduced complexity enables rapid simulations, which 

makes it suitable for large-scale or global modelling applications like this study. For this study, we 

utilised SFINCS in subgrid mode to leverage its ability to integrate high-resolution elevation data while 130 
simulating flood dynamics efficiently across large river basins. We developed uncalibrated models by 

automating the model setup and execution process to ensure consistency and minimise manual 

intervention. While SFINCS was originally developed for coastal flooding applications, it has been 

adapted to model riverine flood events in this study. The fluvial setup focuses on river discharge as the 

primary forcing and incorporates several key additions to the coastal-oriented model configuration. 135 
These additions to enable fluvial flooding were as follows: 

Bankfull width and depth estimation: These parameters determined the channel capacity of the rivers 

and thus indicate the moment after which inundation processes started. Calculating the bankfull 

discharge is explained in Section 2.2.3 and Appendix A1. 

Hydrograph input and global model setup: We chose an automated event-based approach to assess the 140 
model’s robustness and performance under varying conditions. Our simulations were structured event 

by event and assumed each observed flood event as a distinct and independent occurrence. The timings 

of the input hydrographs and model domain extent were derived from moderate resolution imaging 

spectroradiometer (MODIS) satellite observations, compiled into the Cloud to Street database (Section 

2.4.1). This database includes a subset of 499 riverine flood events spanning five (sub)continents and 145 
96 countries. To simulate floods on a global scale for each event, discharge data was obtained from 

global hydrological model LISFLOOD v4.0, as described in Section 2.2.2. Each event was processed 

and run separately, with all associated flooded basins (MERIT-BASINS) simulated in one model run. 

Notably, a single flood event can occur across multiple basins. We refer to these combined basins as the 

“model domain”. This setup allowed us to handle large-scale flood modelling tasks efficiently. By 150 
applying the model across many events, we validated the model across a wide range of flood magnitudes 

in different geographical (e.g. catchment sizes) and climatological settings.  

Headwater and river inflow points: Discharge source points were set up in the SFINCS model to 

simulate water coming in from rivers. These source points can be river inflow points, which simulated 

water entering the model domain from upstream rivers (e.g. rivers that cross the boundary of the model). 155 
Water can also enter the model coming from headwater rivers, which are streams that originate inside 

the model domain. The start or origin of these headwater rivers is called the headwater point. Accurate 

placement of both headwater and inflow points is essential for reliable flood modelling since the 

misalignment of these points can lead to the significant over- or underestimation of downstream 

flooding, particularly during catchment-wide events where multiple tributaries converge into a main 160 
river channel. Therefore, to ensure hydrological consistency between the hydrodynamic model and the 

hydrological input (which is at a much coarser resolution), headwater and inflow points are snapped to 

the grid cell that best matches the upstream contributing area of the hydrological model used. This 
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snapping was implemented using the HydroMT-SFINCS plugin (see Section 2.3: Data handling and 

pre-processing). Discharge input for inflow and headwater points was sourced from multiple datasets, 165 
as described in Section 2.2.2. To account for differences in resolution and small mismatches in the 

upstream area, we applied a tolerance of 5% deviation when snapping. This approach helped to ensure 

that discharge was applied at hydrologically consistent locations, which reduced the risk of errors in 

flood extent prediction due to poor spatial alignment between the hydrological and hydrodynamic 

models. 170 

 

2.2 Global Input Datasets 

2.2.1 Static Input Data  

Static input data provided essential environmental and topographical information to the SFINCS model. 

The following datasets were used for the global automated setup which include: 175 

Digital Elevation Model (DEM): The FABDEM V1-2 dataset (Hawker et al., 2022) was used to provide 

elevation data at a global scale. This dataset has a 30-metre resolution and is proven to be more accurate 

than existing global elevation datasets (Hawker et al., 2022). 

Land-Use Data: Land-use patterns were derived from the ESA Worldcover 2021 dataset on a 10-metre 

resolution (Zanaga et al., 2022). The land-use data was used to define Manning’s roughness coefficient 180 
for different land-use types. 

River Network Data: River geometries were obtained from the MERIT-SWORD dataset v0.4 

(https://zenodo.org/records/14675925), which is a dataset created by combining the SWOT River 

Database (SWORD; Altenau et al., 2021) and MERIT-BASINS (Lin et al., 2020). The MERIT-SWORD 

dataset transfers data, such as river width from SWORD rivers (30 m wide and greater), to 185 
corresponding MERIT-BASINS rivers by generating bidirectional links. Drainage areas smaller than 

25 km², including non-channelised areas along the coast or certain endorheic regions (e.g. incomplete 

basins or hillslopes), were excluded to maintain focus on larger river systems in this dataset. 

Basin Delineation: The MERIT-BASINS dataset (Lin et al., 2020) was used to define the boundaries of 

individual basins. Each individual basin in MERIT‑BASINS carried a unique basin identifier and an 190 
upstream area attribute that directly corresponded to a specific river reach in the MERIT‑SWORD 

network. 

2.2.2 Hydrological Forcing 

Discharge data required to force the SFINCS model at predefined discharge points (headwater and 

inflow points) was obtained from three sources, two hydrological models and a database with observed 195 
discharges. The primary global dataset was GloFAS (Grimaldi et al., 2022), which provided long-term 

global coverage discharge data suitable for simulating floods at a global scale. The second source was 

the GEB model (De Bruijn et al., 2022), which generates higher-resolution behaviourally informed 

discharge estimates that are particularly useful in basins where human interventions significantly 

influence flood dynamics. Finally, observed discharge records from the USGS database (USGS, 2023) 200 
were used as a benchmark to evaluate the performance of the model predictions in selected U.S. basins. 

GloFAS (LISFLOOD v4.0): The GloFAS dataset (Alfieri et al., 2013; Grimaldi et al., 2022) is generated 

using the global hydrological model LISFLOOD-OS, which is a distributed, physically based rainfall-

runoff model that uses the ERA5 reanalysis data as input to simulate global river discharge at ~5.5 km 

resolution at the equator. Because the timing of the peak discharges in GloFAS hydrographs can differ 205 
from the timing of the floods observed in the satellite-derived extent maps (Section 2.4), we captured 

GloFAS data 10 days before and 10 days after the timing of the flood event in the observed data. In this 

way, we are sure the flood event (i.e. discharge peak) was in the GloFAS dataset. The GloFAS dataset 
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was used as the default dataset for discharge in the global automated setup. The GloFAS dataset was 

selected because it offers long-term, global coverage of discharge data, which made it suitable for 210 
simulating floods on a large scale. The following mentioned datasets were used in the sensitivity 

analysis for this study (Section 2.5):  

GEB Model: The GEB model (De Bruijn et al., 2022) integrates an agent-based model (ABM) and a 

hydrological model to simulate the flood and drought management decisions of farmers and urban 

households interacting with the hydrological system. Within GEB, the ABM is dynamically linked with 215 
the spatially distributed grid-based hydrological model CWatM at ~1km resolution at the equator (Burek 

et al., 2020). The GEB model incorporates not only surface and groundwater hydrological processes 

but also the impacts of human activities like water consumption and reservoir operations. We used the 

daily discharge estimates from the GEB model as input to SFINCS during the sensitivity analysis 

(Section 2.5). The GEB model was selected because it captures socio-hydrological interactions and 220 
provides high-resolution, behaviourally informed discharge estimates, which are particularly useful in 

basins where human interventions significantly influence flood dynamics, such as the Krishna Basin in 

India, where it was applied in this study (see Section 2.5). 

USGS Discharge Observations: The USGS (2023) provides real-time streamflow data, which we used 

as a benchmark to evaluate how well the global hydrological model’s predicted discharge aligned with 225 
actual observations in a selection of U.S. basins (Section 2.5). We limited the benchmark to U.S. basins 

due to the availability of high-quality, long-term, and consistent discharge records from the USGS, 

which have been globally recognised for their reliability.  

2.2.3 Bathymetry 

Bankfull discharge represents the level at which a river fills its channel without overflowing and is a 230 
key threshold in determining the channel dimensions of a river. We followed the approach outlined by 

Sampson et al. (2015), using bankfull discharge as the primary indicator for estimating the river’s cross-

sectional shape. To calculate the bankfull discharge, we used the 2-year return period calculated from 

the GloFAS hydrological model discharge (Section 2.2.2). The 2-year return period was selected 

because it closely corresponds to the bankfull flow for many rivers, representing a typical flow regime 235 
that occurs frequently enough to shape the channel’s morphology over time (e.g. Edwards et al., 2019). 

However, recent studies have shown that this threshold can vary significantly across different 

(sub)basins (Roy and Sinha, 2016). Therefore, we included a sensitivity analysis to assess the impact 

of this assumption (Section 2.5). This allows for modelling of channel dimensions based on recurrent 

hydrological conditions. We then assumed a rectangular cross-sectional shape for the river channels, 240 
which was burned into the DEM (for more detailed information, see Appendix  A1). 

To estimate the bankfull width, we primarily used values from the MERIT-SWORD database, which 

integrates observations from multiple global rivers and satellite-related datasets (see Section 2.2.1). For 

the river sections whose values were not represented in MERIT-SWORD, we applied a power-law 

relationship between bankfull discharge and channel width, as proposed by Leopold and Maddock 245 
(1953). This empirical relationship reflects how larger discharges are accommodated by wider channels, 

while smaller discharges are carried by narrower channels. This approach ensured consistency in width 

estimation where observational data was lacking and serves as a gap-filling strategy to ensure complete 

channel representation across the river network. 

The bankfull depth was then calculated using Manning’s open channel flow equation. This equation 250 
accounts for both riverbed roughness and slope. Importantly, the equation also incorporates the bankfull 

width either observed (e.g. from MERIT-SWORD) or estimated using the power-law relationship 

ensuring that depth estimates were consistent with the defined channel geometry.  

In the sensitivity analysis, we also use the GEB model outputs and the USGS discharge time series to 

estimate the 2-year return period and the related bathymetry (Section 2.5). 255 
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2.3 Determining the Model Domains 

Basin delineation was guided by observed flood events, which are identified from satellite-derived flood 

maps (Cloud to Street database; Section 2.4.1). These events helped determine which basins were 

affected and how they were grouped together (here referred as ‘basin clusters” (see Figure 2) during 260 
each flood. The following criteria were applied during this step to delineate the basins: 

• Delineating basin clusters: We delineated clusters of hydrologically connected basins for each 

event to capture the structure and connectivity of flooded areas within a catchment. First, we 

identified which HydroBASINS Level 8 basins were flooded. Flooded basins touching the 

coastal areas were excluded from the analysis; only inland basins were considered. Then, we 265 
used these flooded HydroBASINS as a guide to select MERIT-BASINS, which ensured the 

simulation areas were neither too large nor too small. As a result, the model domain regions 

were not larger than HydroBASINS Level 8, which kept the SFINCS simulations efficient. 

Next, we focused on converting the MERIT river network into a directed graph based on 

downstream flow connectivity (Figure 2B). Using the river network graph, we built a network 270 
of basins that were hydrologically connected. Next, we identified flooded basins by overlaying 

the observed flooded pixels from satellite imagery with MERIT-BASINS boundaries. Any 

basin that intersected with observed flood pixels (based on the aforementioned criteria) was 

marked as flooded. We also included a user-defined number of downstream basins (default: 1 

basin) into the simulated area. Doing so helps to reduce the 'boundary effects' problem that 275 
could happen at the edges of the simulation when water could not flow properly out of the 

model area. Including downstream areas aimed to help prevent distortions near the outflow 

edge and maintain flood flow dynamics in the hydrodynamic simulations. Subsequently, we 

analysed the resulting set of basins (flooded MERIT-BASINS + 1 downstream basin) and group 

them together in a cluster, as illustrated by the subsets shown in Figure 2 (e.g. Subsets 1–3). 280 
Each cluster represented a distinct set of hydrologically linked basins affected by the same flood 

event. Subsequently, we ran the hydrodynamic simulations (SFINCS) for each cluster 

separately using snapped (see Section 2.1) discharge points with simulated discharge as input 

into the model domain. This approach ensured that the full spatial structure of each flood event 

was respected, enabling more realistic hydrodynamic modelling across complex river networks. 285 

• Flooded pixel area (>1% model domain area): The flooded pixel area after the delineation 

should cover more than 1% of the basin cluster area. This approach ensured that basins without 

a substantial flood were excluded to omit irrelevant model runs and shorten run times. 
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 290 

Figure 2: (A) An example of a delineated basin cluster for flood event observed between 22 December 

2013 and 4 January 2014 in the United States, showing how individual basins affected by the flood 

were grouped based on hydrological connectivity. (B) An example river network graph used to represent 

downstream flow connectivity between basins, as derived from the MERIT river network. 

Data handling and preprocessing: We used the HydroMT package (Eilander et al., 2023a) to set up a 295 
separate model for each basin cluster across all events. HydroMT handled the automatic data processing 

and configuration of the SFINCS hydrodynamic model while integrating multiple data sources (e.g. 

hydrographs, DEMs, and land-use maps). This automation reduced potential errors in manual data 

processing and enabled the rapid testing of different scenarios. The modular setup of the model allows 

for further iterative enhancements to the model, ensuring it can effectively adapt and improve as new 300 
data is integrated over time. To run both HydroMT and SFINCS for all clusters and events, we further 

automated our approach using Snakemake (Mölder et al., 2020), a Python-based workflow management 

system to manage parallel simulations efficiently. Appendix Section A2 explains the use of Snakemake 

and the data handling of our study in more detail. 

 305 

2.4 Validation  

2.4.1 Satellite-Derived Flood Extent 

A validation procedure was designed to validate the simulated flood extents predicted by the SFINCS 

model. We evaluated whether these simulated flood extents aligned with satellite-derived flood events 

provided by the Cloud to Street (2022), also known as the Global Flood Database. This database was 310 
selected because it offered several key advantages for this type of analysis. Firstly, the database provided 

global coverage, which ensured that flood events from diverse regions around the world were 

represented. Secondly, it organised all satellitederived flood events into clear categories of flood drivers. 

Thirdly, the data was openly accessible and downloadable, which streamlines integration into research 
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studies. Importantly, all the flood maps were consolidated under a single dataset, which eliminated the 315 
need to combine multiple data sources. 

The database was developed using data from NASA’s MODIS satellite which captures daily flood 

extents documented by the Dartmouth Flood Observatory (DFO) with a spatial resolution of 250m. 

MODIS provides consistent global coverage with a daily revisit cycle, making it well-suited for large-

scale flood monitoring. The full dataset included 913 observed flood events from 2000 to 2018 320 
(Tellman et al., 2021), which represented the maximum observed surface water extent over the event 

duration. However, it is important to note that these maximum flood extents may be underestimated 

due to limitations such as cloud cover, vegetation, or narrow channels that may obscure floodwaters in 

the satellite imagery (Tellman et al., 2021). To prepare the dataset for validation, we selected events (n 

= 499) from the full database by applying the following filters: 325 

• Flood type in observations (heavy rain only): The global flood database lists the main flood 

drivers, which we filtered only to include floods caused by “Heavy Rain”, which excluded 

other flood drivers such as tropical storm surge, dam breaks.  

• Flood duration (<30 days): Floods lasting more than 30 days were excluded because the 

satellite-observed flood images in the analysis are composite images created from multiple 330 
days of observations. During longer flood events, the flood extent may change over time, 

potentially leading to inaccurate or mixed representations of the flood. By focusing on shorter 

floods, we ensured that the composite images more accurately reflected the flood’s maximum 

extent, avoiding the temporal variations that can occur during longer-lasting floods. This 

approach improved the reliability of the flood extent data used for model validation and 335 
analysis (Cloud to Street, 2022).  

• Permanent water-body masking: Permanent water bodies were masked from the observed 

flood dataset by removing permanent water pixels extracted from the JRC Global Surface 

Water Mapping Layer v1.1 (Pekel et al., 2016). This procedure excluded pixels that were 

always flooded (e.g. the rivers themselves and large parts of reservoirs) to ensure that only 340 
genuinely flooded areas which are not typically inundated were included in the analysis. 

These permanent water features are always present and do not reflect new inundation caused 

by flooding events. This helped in accurately assessing flood extents and refining the 

validation of hydrodynamic models based on observed flood extent (Fleischmann et al., 

2019). 345 

 

2.4.2 Validation Metrics 

We computed the maximum flood extent across all time steps to generate a single inundation map 

representing the peak of the event for every SFINCS simulation. The observation data only showed if 

a pixel was flooded or dry (without depth data), so we also changed the SFINCS output to a pixel with 350 
only two states: either flooded or dry. In a postprocessing procedure, a minimum depth of 0.05 m was 

used to classify a pixel as flooded (Wing et al., 2024).  Note that we resampled the high-resolution 

SFINCS outputs of 30 m to 250 m using mode resampling to match the resolution of observed flood 

extents. This approach meant that a 250 m SFINCS output pixel was classified as flooded if the majority 

(i.e. more than one-half) of the underlying SFINCS 30 m cells were flooded. This method ensured 355 
consistency with the binary "flooded or dry" classification of MODIS data while reflecting the majority 

condition in each area. Notably, the permanent water bodies (already 250 m), identified from band 5 of 

the satellite data, were also masked from the SFINCS simulated flood event after it has been resampled 

to 250 m. Importantly, the additional downstream basin included in the model domain to avoid boundary 

effects was not considered when applying the validation criteria. This approach ensured that the 360 
validation only assessed the basins directly affected by flooding to provide a fair comparison between 

the simulated and observed flood extents. 
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Table 1 shows the validation metrics used to compare SFINCS results with the observations. We 

validated our maps for each flood event by calculating the contingency table values (i.e. Hit, Miss, False 

Alarm, and Correct Negative) over the full extent (i.e. all basins) of the event. 365 

 

Table 1. Contingency table used to calculate the SFINCS validation metrics. 

 Flooded Observation Pixel Dry Observation Pixel 

Flooded Model Pixel Hit False alarm (FA) 

Dry Model Pixel Miss Correct negative (CN) 

 

Hit Rate (HR; Eq. 1):  The HR measures the proportion of the flood area observed that was successfully 

predicted by the model, balancing misses (Miss) and hits (Hit). The HR can range from 0 to 1. A higher 370 
HR indicates better model accuracy in terms of correctly predicting the flood extent. 

𝐻𝑖𝑡 𝑅𝑎𝑡𝑒  =  
𝐻𝑖𝑡𝑠

(𝐻𝑖𝑡𝑠  +  𝑀𝑖𝑠𝑠𝑒𝑠)
  (𝐸𝑞. 1)  

False Alarm Ratio (FAR; Eq. 2):  The FAR represents the proportion of predicted flood areas that did 

not flood in satellite-derived flood extents. The FAR can range from 0 to 1. A low FAR suggests that 

the model is conservative in its flood predictions. 375 

𝐹𝐴𝑅  =  
𝐹𝐴

(𝐹𝐴  +  𝐻𝑖𝑡𝑠) 
 (𝐸𝑞.  2) 

Critical Success Index (CSI; Eq. 3):  The CSI balances the HR and FAR in Equations 1 and 2 to provide 

a comprehensive metric of the overall model performance. The CSI can range from 0 to 1, with 1 

indicating a perfect model. The CSI accounts for correct predictions (i.e. Hits) and wrong predictions 

(i.e. Misses and FAs), offering a more nuanced view of model accuracy. 380 

𝐶𝑆𝐼  =  
𝐻𝑖𝑡𝑠

(𝐻𝑖𝑡𝑠  +  𝐹𝐴  +  𝑀𝑖𝑠𝑠𝑒𝑠)
 (𝐸𝑞.  3) 

Error Bias (E; Eq. 4):  E is a metric used to determine whether a model is overpredicting or 

underpredicting the occurrence of an event, such as flooding. A value of E = 1 indicates no bias, meaning 

the model's predictions are balanced between overprediction and underprediction. If E falls between 0 

and 1, the model tends to underpredict, while values greater than 1 suggest the model overpredicts the 385 
event. 

𝐸  =  
𝐹𝐴

𝑀𝑖𝑠𝑠𝑒𝑠
 (𝐸𝑞.  4)  

2.5 Sensitivity Analysis 

The sensitivity analysis focused on how variations in key parameters affected the SFINCS model’s 

flood predictions. For this study, we focused on three critical factors: river depth estimation, elevation 390 
data, and discharge data. These parameters were chosen because they directly influenced flood extent 

predictions, and variations in their accuracy can have significant implications for model performance 

in large-scale flood modelling. The rectangular cross-section used in SFINCS is a widely adopted 

representation in hydrodynamic modelling, consistent with prior studies such as Neal et al. (2021), and 

the river roughness value (0.02) derived from widely accepted Manning’s roughness values. For the 395 
sensitivity analysis, we focused on two geographical regions: the US and India. We selected the flood 

events from the Global Flood Database using the DFO’s “Severity Level 2” classification (Tellman et 

al., 2021), which identifies floods with high impacts (recurrence interval >100 years). The severity level 

https://doi.org/10.5194/egusphere-2025-4387
Preprint. Discussion started: 6 November 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

 

was a criterion for choosing representative events for the sensitivity analysis. This selection identified 

ten U.S. events and 11 events in India for our sensitivity runs. 400 

River depth estimation: To test the effect of our bathymetry estimation method, we used different return 

periods [1.5-year, 2-year (default in global setup) and 2.5-year] following Andreadis et al. (2013) to 

estimate bankfull discharge (see Appendix A1) and assess their impact on flood dynamics. We used 

GloFAS discharge to estimate bankfull discharge for rivers by applying different return periods. For 

some rivers, bankfull discharge might correspond to a higher or lower return period, so using the same 405 
return period for all rivers might not give accurate estimates of river bathymetry and flood extents (Roy 

and Sinha, 2016; Rad et al., 2024). Therefore, testing multiple return periods provided a better 

understanding of the river’s bathymetry. 

Elevation data: Different DEM resolutions (FABDEM 30 m vs 3D Elevation Product 3DEP 1 m) were 

compared to assess the impact of topographic resolution on flood modelling. Higher-resolution DEMs 410 
often provide more accurate flood predictions, particularly in areas with complex terrain (Jiang et al., 

2022).  

Discharge data: The model’s sensitivity to discharge inputs was tested by forcing the model with USGS 

observation discharge instead of simulated discharge from GloFAS. Thus, the actual event forcing and 

river channel size estimates were updated based on the observed discharge. Accurate river discharge 415 
input is crucial for hydrodynamic modelling, as it directly influences flood predictions (Zhou et al., 

2022). This comparison between modelled (GloFAS, default input) and observed (USGS) discharge 

allowed for disentangling the source of the modelling errors from either the inflow or the processes 

within SFINCS. USGS River discharge data were filtered for locations containing data for more than 

30 years to ensure that return periods and thus bathymetry was more accurately predicted.  420 

Furthermore, to ensure robustness and avoid reliance on a single hydrological model, we also forced 

SFINCS with the GEB model discharge (Section 2.2.2). This comparison was designed to test the 

sensitivity of SFINCS to hydrological input characteristics since GloFAS and the GEB model 

fundamentally differed in model resolution. The GEB model discharges were specifically tested in the 

Krishna Basin in India (11 riverine events), a large and significant river basin known for its significance 425 
due to its size being nearly 8% of the total geographical area of India and extensive agricultural and 

hydrological use. The GEB discharge outputs were used to drive the flood simulations and derive river 

channel dimensions. The resulting inundation extents were compared against the Cloud to Street 

database to assess model accuracy. This dual-model comparison between GloFAS and GEB provided 

insights into variability and reliability across different hydrological sources with different resolutions, 430 
thereby strengthening the analysis of SFINCS flood simulations. 

 

 

3. Results and Discussion 

 435 

Here, we present the outcomes of the validation by first describing the general results at the global and 

continental scales (Section 3.1). To better understand spatial differences in model performance, we also 

focus specifically on the continental United States (Section 3.1.2). Next, we explore how sensitive our 

results are to three key inputs: hydrological forcing, bathymetry, and DEM (Section 3.2). Finally, we 

compare our findings with other similar studies, discuss the model’s limitations, and identify areas for 440 
future improvement (Section 3.3). 
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3.1 Global Performance Results 

 445 

We set up the SFINCS model for 499 riverine flood events worldwide in our validation dataset (Section 

2.4.1). These simulations were created using discharge from the global hydrological model GloFAS and 

validated against satellite-derived flood extents. To calculate the global performance metrics shown in 

Table 1, we aggregated the results across all simulated events by summing the total number of pixels in 

each classification category (i.e. Hit, Miss, and FAs) across all events (Section 2.4.2). This analysis 450 
gave more weight to larger flood events (with more pixels) by summing all pixels across all events, 

which avoided biasing the results by treating small and large events equally when calculating the mean. 

  

Table 2 shows that the model achieved an HR of 0.58 for simulated discharge, meaning that 58% of the 

observed flooded pixels were correctly simulated. The CSI, which balances both Misses and FAs, had 455 
a global mean value of 0.39. E was 1.24, which indicated an overestimation of flood extent across 

events. 

  

 

Table 2. Event-based performance metrics over 499 events all over the globe, as calculated by 460 
comparing SFINCS simulations to the satellite derived flood extents.  

 Hit Rate 

(HR) 

False-Alarm 

Ratio 

(FAR) 

Critical 

Success Index 

(CSI) 

Error Bias (E) 

Global Mean 

simulated discharge    

(All Basins, 499 

Events)   

0.58 0.49 0.39 1.24 

 

 

 

3.1.1 Effect of Upstream Basin Area on Performance 465 

Table 3 shows considerable variety in the performance metrics across basins with different upstream 

area sizes. We classified basins into six different upstream area size classes and compared them using 

the same model runs, hydrological inputs, and observational data as in the above-described global 

analysis. Most flood events that we simulated in this exercise involved multiple MERIT-BASINS (i.e. 

sub-basins) that were hydrologically connected. For this analysis, we split the simulated flood event 470 
into individual MERIT-BASINS and assigned an upstream area to each basin by determining the 

contributing drainage area at the subbasin outlet, as defined by Lin et al. (2020). Notably, the total 

number of basins varied significantly across the upstream area classes. Basins with a large upstream 

area (≥1,000 km²) were the most represented group (n = 8,834) as compared to basins with a medium-

sized upstream area (500 to 1,000 km²; n = 1,533). 475 

 

Table 3. Performance of the SFINCS flood simulations, classified by basin upstream area (Clipped from 

the same model runs)   

Basin Upstream Area  Hit Rate 

(HR) 

False-Alarm 

Ratio 

(FA) 

Critical Success 

Index (CSI) 

Error Bias (E) 
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  ≥1,000 km2 (n = 8,834) 0.62 0.41 0.42 1.22 

500–1,000 km2 (n = 1,533) 0.49 0.44 0.33 0.84 

100–500 km2 (n = 6,034) 0.46 0.51 0.31 0.91 

50–100 km2 (n = 4,887) 0.44 0.51 0.30 0.83 

  <50 km2 (n = 5,304) 0.42 0.46 0.29 0.61 

 

The analysis showed a clear trend of increasing model performance with increasing upstream basin 480 
area. Specifically, the average CSI rose from 0.29 in the basins with a small upstream area (<50 km²) 

to 0.42 in the basins with a large upstream area (≥1,000 km²). This result aligned with prior studies that 

have either excluded basins with a small upstream area altogether or reported lower accuracy for them 

(e.g. Wing et al., 2017; Bernhofen et al., 2018). Three main reasons exist for this scale-dependent 

behaviour. 485 

1) Firstly, smaller upstream basins often suffer from poorly defined or incomplete river networks 

(Figure 3a) that result in missing discharge forcing at these locations and can introduce substantial 

structural errors in the flood extent simulations. For instance, global hydrography datasets like MERIT-

SWORD used in this study typically include only river channels with drainage areas larger than 25 km². 

As a result, key hydrological pathways may be missing or truncated in basins with very small upstream 490 
areas, which leads to a significant underestimation of the inundated area. However, even upstream areas 

exceeding this 25 km² threshold can still contain errors or missing tributaries, which affect the accuracy 

of the simulated flood extents. This limitation is illustrated in Figure 3a, where a small upstream 

catchment shows a river stretch with an upstream area of 40.5 km2. However, a smaller contributing 

river upstream is absent from the dataset, which resulted in missed flooding (red pixels) despite clear 495 
observational evidence.  

2) Secondly, larger upstream basins benefit from the spatial averaging of hydrological processes. As 

seen in Figures 3b and 3c, mid-sized to large-sized upstream basins integrate runoff contributions from 

diverse upstream areas and multiple tributaries, which dampens localised anomalies and smooths the 

overall hydrological signal (Bernhofen et al., 2018; Salinas et al., 2013). These outcomes lead to more 500 
predictable and consistent flood responses, especially in models forced by coarsely resolved (~5.5km 

resolution) inputs like GloFAS (Harrigan et al., 2020).  

3) Thirdly, hydrological forcing becomes more uncertain in small basins, where local rainfall-runoff 

processes dominate and are poorly captured by global-scale models (Smith et al., 2014). Coarse 

meteorological input data and simplified rainfall-runoff representations are less effective at resolving 505 
the fine-scale variability that drives flooding in these areas (Harrigan et al., 2020). Consequently, 

smaller upstream basins tend to show lower HRs compared to larger ones. Table 3 supports this 

interpretation. The model performed best in large basins (≥1,000 km²), where it achieved the highest 

HR (0.62) and lowest FAR (0.41). In contrast, basins under 50 km² showed an HR of 0.42, a FAR of 

0.46, and a CSI of just 0.29. Interestingly, these smallest basins also exhibited the lowest error bias (E 510 
= 0.61), which suggests that underprediction was more common than overprediction. This 

underprediction can potentially be reduced by also including a pluvial setup which accounts for direct 

rainfall-driven flooding within these smaller basins. 
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 515 

Figure 3. Some example flood events illustrating that with increasing basin sizes, the number of hits 

increases as well: (a) small upstream basin (40.5 km²) with a river channel (black) that does not connect 

to a potential flood zone in the north, which results in misses (red area); (b) mid-sized basin 500–

1,000km²; (c) large-sized basin of >1,000 km². Flow direction is shown with a blue arrow. 

These results highlight the effect of upstream basin area in global flood modelling and the need to better 520 
understand the processes in small upstream catchments in large-scale studies. Analysing them 

separately rather than excluding them, as done in some previous efforts (e.g. Wing et al., 2017), can 

offer valuable insights into improving model performance in these challenging regions. 

 3.1.2 Model Performance Across Continental U.S. Basins 

Figure 4 shows the spatial distribution of CSI values across all basins within the U.S., where 52 flood 525 
events recorded in the Cloud to Street database were analysed. Note that in Figure 4, each MERIT-

BASIN was validated individually, as explained in Section 3.1.1. When calculating the mean CSI over 

the continental US, we considered all pixels of the 52 events modelled using GloFAS discharge. The 

results showed that the average model performance was slightly higher in the US (CSI = 0.41, including 

the small basins <50 km2) as compared to the global average (CSI = 0.39). The colour gradient signifies 530 
the range of CSI values, with red representing lower scores (CSI ≤ 0.2), orange representing the mid-

range (0.2 ≤ CSI ≤ 0.4), and light green (0.4 ≤ CSI ≤ 0.6) and dark green indicating higher scores (CSI 

≥ 0.6). Distinct spatial patterns emerged with clusters of bad-performing basins (CSI ≤ 0.2) in two parts 

of the US (Figures 4a and 4b).  

Firstly, we see that in Figure 4a the region of Florida performed consistently low, with many individual 535 
basins showing CSI values below 0.2. Florida is a low-lying, flat region, which makes flood simulations 

particularly challenging (Hawker et al., 2022). Furthermore, we observed that all 45 individual MERIT-

BASINS with poor performance corresponded to a single flood event (i.e. DFO_3544), which yielded 

an average CSI of 0.28 across the affected basins. Potential uncertainty also existed in the DFO_3544 

flood type validation (notably, dfo_validation_type = 0, which indicated this event’s primary 540 
confirmation source as undefined or missing). This means that the event, while classified under “Heavy 

Rain,” could also have been influenced by other flood drivers. The low scores partly resulted from both 

regional and event-specific limitations, such as DEM errors or challenges in detecting floods with 

optical remote sensing in flat, low-relief terrain (Tellman et al., 2021). 

Secondly, model performance was also generally poor in the Northern Continental U.S. near the Great 545 
Lakes (Figure 4b), with multiple basins exhibiting CSI values below 0.3. Notably, only two events (i.e. 

DFO_2606 and DFO_2412) contributed to the majority of low CSI values in this region. For the 

dominant event in this region (i.e. DFO_2606), the HR was 0.73, while E = 1.36 and FAR = 0.62 

indicated that the low CSI values were driven primarily by overprediction of the flood extent. Further 
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investigation into DFO_2606 revealed that it corresponded to a severe winter storm that affected the 550 
Northeastern US between 5 and 6 January 2005. According to the National Weather Service (2005a), 

the storm brought heavy snow and freezing rain, followed by power outages and ice damage. 

Subsequent river flooding was reported in the vicinity of the Great Lakes. However, MODIS satellite 

data used in the Cloud to Street dataset only captured a brief cloud-free window on 9 January 2005, 

several days after the event’s peak. The MODIS imagery, published by NASA (National Weather 555 
Service 2005b), shows swollen rivers like the Ohio, Wabash, and White rivers. However, flooding is 

difficult to detect in snow-affected, cloudy, or densely vegetated areas (Tellman et al., 2021). Moreover, 

since MODIS flood extents reflect surface water conditions only during cloud-free acquisitions, the full 

flood footprint could have been underestimated or misaligned with actual peak inundation.  

The third cluster represented good performance (Figure 4c), near the Mississippi River. These basins 560 
had an average CSI of 0.43. Notably, the cluster was largely associated with a single event (i.e. 

DFO_4337), which could suggest this event had good agreement between the observations and 

simulations. Many of these basins also had large upstream contributing areas, which, as discussed in 

Section 3.1.1, tend to improve simulation accuracy due to more defined river networks and better-

integrated hydrological processes stemming from the hydrological model.  565 

  

Figure 4. Spatial map with CSI performance numbers for the US. The red colours indicate clusters of 

low-performing basins; the light and dark green colours represent better-performing basins. The 

panels zoom in to the following regions: (a) Florida, (b) the Great Lakes, and (c) Mississippi. Base 

map © OpenStreetMap contributors, rendered with Carto, licensed under ODbL. 570 

  

 

 

3.1.3 Other Factors Influencing Performance 
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We identified several other factors that considerably affected model performance related to 1) 575 
resampling, 2) snapping and channel width in headwater catchments, 3) observed water bodies, and 4) 

coarse resolution and inflow points.  

  

Resampling: Figure 5a shows that in regions with a good agreement between the SFINCS simulation 

and the satellite observations (Event DFO_4075; CSI = 0.55), the resampling of a higher-resolution 580 
SFINCS output (30 m) to match the observations (250 m) introduced rough edges where the simulation 

could not match the boundaries of the observed inundation extent. These rough edges produced misses 

(red areas in Figure 5a) around the boundaries, even when the true flood extent lay just inside the 250 

m cell.  

  585 
Snapping and channel width in headwater catchments: Figure 5b (Event DFO_1996; CSI = 0.48) 

showed inconsistencies (i.e. FAs) occurring in the headwater rivers. These inconsistencies could have 

arisen from several factors, such as the snapping procedure (Section 2.1). For example, in headwater 

locations, the coarse GloFAS grid (~5 km) often misaligned with the finer SFINCS grid, so even with 

a 5–10 % snapping tolerance (see Section 2.1), small discharge mismatches were introduced into 590 
headwater tributaries, which in these narrow channels could produce localised FAs (yellow pixels in 

Figure 5b) in areas that did not flood. Furthermore, we did not have width observations, so headwater 

river widths were estimated from the power-law equation (Section 2.2). This approach can sometimes 

under- or overestimate channel widths in smaller headwater rivers. If the equation gives too-narrow 

widths, conveyance capacity is underrepresented, which forces excess water onto adjacent floodplains 595 
(causing false alarms) (Dey et al., 2022). Conversely, if the equation gives too-wide widths, the 

simulated flood may be unrealistically confined to the channel and lead to misses. 

  

Observed water bodies: Figure 5c depicts a region (Event DFO_4140; CSI = 0.178) where permanent 

water was not well represented in the underlying observation layer of the Cloud to Street dataset (i.e. 600 
band 5). Although both the model and the satellite-derived flood extent relied on the JRC Global Surface 

Water dataset as a permanent water mask, the Cloud to Street product provided a 250 m resampled 

version (Tellman et al., 2021). When rivers meander or curve and are narrower than a MODIS pixel, 

the resampling process causes permanent open‑water bodies to disappear. As a result, channels that are 

correctly simulated as inundated by SFINCS are not flagged as water in the observation layer and are 605 
instead counted as FAs during validation. This effect was particularly visible in low‑order rivers where 

the channel was below 250 m wide. In these cases, the issue was not that the model overpredicted 

flooding but that the validation mask failed to represent permanent water bodies. 

  

Coarse resolution and inflow points: In Figure 5d, the region’s (Event DFO_4451; CSI=0.177) lower 610 
performance was due to only one discharge point (i.e. inflow point) carrying water into the model 

domain. The other discharge points (i.e. headwater points) remained dry (see Appendix A, Fig. A1), 

which was likely caused by the coarse resolution (~5.5km2) of the GloFAS input discharge data. Thus, 

the model failed to capture peak flows in smaller upstream tributaries (Alfieri et al., 2013; Grimaldi et 

al., 2024), which created a significant gap in the simulated flood where the satellite observations clearly 615 
showed inundation.  
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Figure 5. Model simulations across diverse regions illustrating the effect of (a) resampling with some 

misses on the rough edges of the simulated flood, (b) snapping and channel width, (c) missing observed 

water bodies, and (d) the influence of coarse resolution of discharge data on missing discharge into 620 
inflow points (Appendix A, Fig. A1). 

 

3.2 Sensitivity Analysis 

 

3.2.1 The influence of Hydrological Forcing 625 
 

We conducted a two-part sensitivity analysis in two global regions (i.e. India and the US) to evaluate 

the role of hydrological forcing in our global flood modelling framework. We investigated (a) the 

differences in model performance when using two different global hydrological models (i.e. GloFAS 

and GEB) for 11 Events in India and (b) the influence of modelled GloFAS discharges compared to 630 
observed discharges for ten basins in the US. 

  

(a) Comparing the influence of GloFAS discharge with GEB discharge 
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To compare the influence of using two different global hydrological models (GLOFAS and GEB) as 

input to SFINCS, we focused on the Krishna Basin in India. Here, we simulated floods for 11 discrete 635 
events with both models. Bathymetric calculations were done separately, using both GloFAS and GEB 

long-term discharges (>40 years) to compare all aspects of the two models. Using the GloFAS model 

discharge as forcing for SFINCS resulted in an average CSI of 0.34, while forcing with the GEB model 

led to an average CSI of 0.38. 

One critical distinction between the two models lies in their spatial resolution. The GloFAS operates at 640 
a coarser grid resolution (~5.5 km), while the GEB provides discharge data at a finer grid resolution 

(30″; ~1 km). An example basin cluster within the Krishna basin is shown in Figure 6 (Event 3551). 

The hydrographs on the right (Figure 6) show the discharge forcings from both hydrological models at 

six main discharge points of the SFINCS simulation. 

Notably, the GEB hydrographs exhibited a more complete flood hydrograph shape, especially toward 645 
the later stages of the event (Figure 6). In contrast, the GloFAS hydrographs of some of the inflow 

points did not capture a high peak flow, suggesting that peak flows could be underrepresented. This 

issue directly affected the resulting flood maps (Figures 6a and 6b, left panels), where simulations using 

the GEB input captured more hits than those driven by the GloFAS. 

The improved performance of the GEB-SFINCS chain may be attributed to its higher spatial resolution, 650 
which allowed for a more accurate representation of smaller headwater rivers and their channel 

dimensions. In contrast, GloFAS lacks the ability to resolve these smaller streams directly, so 

bathymetric calculations relied on the nearest available grid point, which might not have aligned with 

the true upstream location. With the GEB, however, the finer resolution enabled matching bathymetry 

calculations to the correct upstream grid pixel, which resulted in more accurate low flows and a better 655 
representation of channel dimensions in smaller rivers. By resolving finer spatial scales, higher-

resolution models like the GEB reduce uncertainties associated with inflow dynamics and provide more 

reliable input for hydrodynamic models like SFINCS. Moreover, the improved representation of human 

behaviour and reservoir management in the GEB can lead to more realistic streamflow estimates, which 

in turn enhances the accuracy of the flood simulations. This outcome underscores the importance of 660 
investing in higher-resolution global datasets to improve flood modelling accuracy in river systems. 
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Figure 6. The sensitivity of SFINCS performance to different hydrological forcings by (a) the GEB 

model and (b) the GloFAS model is shown for a zoomed-in region in the Krishna Basin. 

(b) Comparing GloFAS discharge with observed discharge in the US 665 

This section describes our assessment of the performance of our modelling setup by comparing 

modelled discharge from GloFAS with observed discharge data from the USGS (2024). The analysis 

evaluated model performance using event-based hydrographs from the GloFAS and USGS. Because 

this analysis could only be applied in regions with long-term discharge records (e.g. for bathymetry 

estimation), only ten distinct basin clusters remained suitable.  670 

The results revealed that the model using observed USGS discharge data considerably outperformed 

the one using GloFAS discharge data by achieving an average CSI of 0.67 compared to the average 

global mean of 0.39 (Table 2). This significant difference shows the importance of accurate discharge 

data for enhancing model accuracy while highlighting the limitations of global hydrological models. 

Figures 7a and 7b provide insights into one such high-performing basin forced with USGS observations 675 
(CSI = 0.78), while the same basin forced with GloFAS discharge yielded a lower CSI of 0.56. 

Nonetheless, a considerable number of misses occurred, even when observed discharge data were used. 

These misses can be explained by the resampling causing the rough edges. Furthermore, in the 

northeastern part of the basin (Figure 7b), a side stream showed underprediction (i.e. misses), which 

was likely due to the absence of a river gauge in that tributary. Thus, to better represent this basin, an 680 
additional discharge input should be provided to reflect the flood extent accurately. A disadvantage of 

working with observational river gauges is the potential for gaps in spatial coverage, such as the side 

stream shown in Figure 7b, which can limit model performance. 
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Figure 7a shows the hydrograph during the flood event for both modelled (i.e. GloFAS) and observed 

(i.e. USGS) discharge data. The GloFAS hydrograph failed to capture the peak discharge during a flood 685 
event, which contributed to its lower performance (CSI = 0.56) compared to the USGS-based forcing. 

The inability to capture discharge peaks decreased the precision of the simulated flood extents during 

high-flow conditions. Harrigan et al. (2020) showed that river discharge is negatively biased in 64% of 

the basins globally in the GloFAS archive. Moreover, they reported that GloFAS-ERA5 discharge skill, 

measured by the Kling–Gupta efficiency (KGE), is strongly catchment-size-dependent: median KGE is 690 
only 0.21 for basins < 10,000 km² (e.g. Figure 7b basin has a catchment size of ~500 km²), which rises 

to 0.56 for basins > 50,000 km². This failure to capture discharge peaks in smaller basins has a more 

immediate and direct impact on flood extent simulations and can reduce the performance of the flood 

simulations. 
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Figure 7: (a) Hydrograph analysis during the flood event. The dotted line represents the discharge from 

the GloFAS model, and the solid line represents the observations obtained from USGS. (b) Results from 

a high-performing U.S. basin (CSI = 0.78) forced with observed discharge input from the USGS. 

Forcing points 1 and 2 correspond to the hydrograph shown in panel (a). 

 700 

3.2.2 Bathymetry  

  

A fixed 2-year return period for bathymetric calculations is commonly used as a proxy for bankfull 

discharge, but this approach may not be universally applicable (Andreadis et al., 2013). Adjusting this 

parameter based on the characteristics of specific river systems could improve the accuracy of 705 
bathymetric estimates and better reflect actual flood behaviour (Roy and Sinha, 2016). Thus, this section 

presents our evaluation of how model performance was affected when different return periods were 

used to derive bankfull discharge in the SFINCS fluvial setup. We compared GloFAS-derived discharge 

with observed USGS river gauge data for ten U.S. basins to assess the accuracy of bathymetry estimates. 

  710 
  

The bankfull discharge was calculated via long-term yearly maxima peaks extracted from the GloFAS 

hydrological model and was evaluated against observed data from USGS river gauges. The results 

showed that the modelled bankfull discharge (Qbf) was consistently underestimated across all tested 

return periods.  715 
  

Figure 8 shows the simulated Qbf (2-year RP) against USGS-derived Qbf on a logarithmic scale. All 

points lay below the 1:1 line, which indicated that the GloFAS-based RP were systematically lower, 

particularly in the lower quartile of values, where smaller bankfull discharges were more strongly 

biased. This pattern indicates that GloFAS underrepresents the frequency and magnitude of the low-720 
flow discharges that influence bankfull conditions. As a result, bathymetry derived from GloFAS tends 

to yield narrower and shallower channels, which reduces modelled conveyance capacity and potentially 

produces overestimated flood extents (i.e. higher FAs). These results imply that (i) using the 2-year 

default alone may not capture observed bankfull behaviour in the current fluvial setup and (ii) 

alternative approaches (e.g. gauge-based bankfull estimates, where available) can improve bathymetric 725 
realism (Zarrabi et al, 2025; Rad et al, 2024). Appendix Figures A3 and A4 present results for the 1.5-

year and 2.5-year return periods, respectively. 
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 730 

Figure 8. Observed vs modelled 2-year Qbf, for river gauges in ten U.S basins. All points fall below 

the 1:1 line, which indicates a consistent low bias in the bathymetry.  

3.2.3 The influence of the DEM input 

 

This section explores how different DEMs were found to influence the performance of the SFINCS 735 
model in simulating flood extents. We focused on two open-source DEMs with different spatial 

resolutions: FABDEM (30 m; Hawker et al., 2022) and 3D Elevation Program (3DEP; 1 m; USGS, 

2015). The resolution of the SFINCS model was kept the same between the two different inputs, 

although we increased the level of detail (i.e. hypsometry levels, n = 20, default 10) stored in the subgrid 

tables when using the 3DEP DEM. The same ten sub-basins in the United States were selected for this 740 
analysis based on the availability of 3DEP. However, vertical inconsistencies were observed in the 

original 3DEP dataset, where merging adjacent tiles sometimes introduced elevation differences of up 

to 3 metres. As a result, only six sub-basins were used in the final performance comparison. When using 

FABDEM, the average CSI was 0.37 across the six sub-basins. The mean CSI increased to 0.57 when 

using 3DEP DEM, which highlights the positive effect of higher-resolution elevation data on model 745 
accuracy. This improvement likely resulted from the finer spatial resolution of 3DEP and higher vertical 

accuracy. Moreover, 3DEP’s 1m LiDAR-derived DEM achieved a root mean square error of 0.53 m 

(USGS, 2022) compared to FABDEM’s mean absolute vertical error reductions from 1.61 m to 1.12 m 

in built-up areas and from 5.15 m to 2.88 m in forests (Hawker et al., 2022). 

Figure 9 illustrates the model’s performance with these two DEMs in one of the six basins. Figure 9b 750 
shows the FABDEM dataset results, where the CSI was 0.46 for this particular basin. In this case, the 

lower-resolution DEM resulted in poorly defined river channels, especially in side streams, which 

prevented water from flowing accurately to downstream areas of the basin. In the upstream part of this 
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basin, FAs were seen where water accumulated but could not reach the downstream areas. In contrast, 

when the 3DEP DEM was used (Figure 9a), the model’s performance improved significantly. A CSI of 755 
0.59 showed a much better flow representation (i.e. fewer FAs in the upstream part), as the higher-

resolution DEM allowed water to reach the downstream parts of the catchment. The increased detail in 

the terrain allowed for a more accurate representation of floodplains and channels (Jiang et al., 2022), 

which improved the HR while reducing the number of misses (red pixels) and FAs (yellow pixels). 

 760 

 

Figure 9. Influence of two DEMs on SFINCS performance: (a) 3DEP DEM of 1 m resolution and (b) 

FABDEM of 30 m resolution. 

 

3.3 Cross-comparison and limitations 765 

The global mean CSI of 0.39 of this study falls within the broad range reported by other large‑scale 

flood modelling studies, but a clearer picture emerges when we distinguish between those studies using 

only modelled discharge and those incorporating observed streamflow. Studies driven exclusively by 

modelled discharges have tended to report lower skill. For example, in a global model intercomparison, 

Bernhofen et al. (2018) compared six global flood models against three historic African flood events 770 
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and found mean CSI values of ~0.4–0.7 for a 25‑year flood. Likewise, Mester et al. (2021) used ten 

different global hydrological models to force the hydrodynamic model CAMAFlood and reported CSI 

values between 0.3 and 0.5 across eight historic flood events. Similarly, Dottori et al. (2022) used 

ERA5‑driven discharges in LISFLOOD for ten flood events in Europe and obtained CSI values of 0.11–

0.28 for high probability small events (<30 yr) and 0.45–0.56 for large extreme events (>500 yr). The 775 
SFINCS simulations using GloFAS discharge performed in this study (average CSI = 0.39) align closely 

with these findings. In contrast, studies that make use of observed discharge data consistently achieved 

much higher performance. Wing et al. (2017) evaluated LISFLOOD against high water marks in 35 

discrete U.S. events using gauge records and reported a CSI of 0.87. Similarly, Hawker et al. (2023) 

combined field-measured discharges with remote‑sensing extents in three Vietnamese case studies and 780 
obtained CSI values between 0.37 and 0.62. In this study, when SFINCS was forced with observed 

USGS discharges, the average CSI was 0.67 (HR = 0.86; FAR = 0.21), which shows the benefit of using 

accurate discharge inputs in hydrodynamic modelling. While such accuracy is currently best achieved 

with stream gauge observations, hydrological models capable of producing similarly accurate discharge 

estimates can deliver comparable results, especially given the sparse spatial coverage of gauges in many 785 
regions. Beyond discharge forcing, differences in DEM and bathymetric inputs also play an important 

role. The sensitivity analyses undertaken in this study show that using higher‑resolution elevation data 

(e.g. 3DEP vs FABDEM) and changing the bankfull return period to local conditions using observed 

streamflow data can significantly enhance model accuracy.  

However, some differences and similarities exist in the setup and findings of our study compared to 790 
other large-scale modelling studies. 

Number of events: Our study is unique in the high number (n = 499) of events covered, which is much 

higher than in existing studies covering approximately three to 35 events. Moreover, our study includes 

small upstream basins (<50 km2) to address the critical need to understand local upstream floods better. 

Hence, our model’s performance has been assessed across a more diverse hydrological and geographical 795 
setting. Notably, we simulated multiple events with different timings and intensities in the same basin, 

which can be quite challenging to explain performance (Wing et al., 2021).  

Hydrological forcing: The accuracy of hydrodynamic flood models (e.g. SFINCS) depends on the 

quality and characteristics of the hydrological drivers used as input. Previous studies have shown that 

the choice of hydrological forcing can strongly influence simulated flood extents. For example, a study 800 
by Mester et al. (2021) assessed the sensitivity of hydrodynamic models to hydrological forcings using 

ten different global hydrological models and eight case study areas with observed flood extent values. 

These basins were selected based on their relatively large size, as it was assumed that the relatively 

coarse hydrological models would not perform well for smaller sub-basins. Mester et al. found that the 

agreement between simulated and observed flood extents varied significantly across models and climate 805 
forcings. Moreover, Wing et al. (2021) found a CSI of 0.87 but used only observed hydrological forcing 

for their hydrodynamic model. It is well-known that global hydrological models perform poorly in 

smaller upstream basins due to their coarse resolution (e.g. Salinas et al., 2013; Mester et al., 2021), 

which could partly explain the poorer performance of the SFINCS model in these areas. We saw higher 

performance with SFINCS when it was supplied with observed discharges (CSI = 0.57). The inability 810 
of the GloFAS hydrological model to capture the discharge peaks during a flood can significantly impact 

performance (Figures 5d and 7a). This uncertainty in event discharge significantly impacts flood extent 

and likely explains much of the reduced CSI (0.39 globally; 0.57 when using USGS observations). 

In our current setup, we saw that the bathymetry and river channel dimensions were underestimated 

(Section 3.2.2), which resulted in higher FAs because channel conveyance capacity was not represented 815 
correctly. The SWOT satellite mission provides high-accuracy measurements of water surface 

elevation, river width, and slope for rivers greater than 100 m in width (Neal et al., 2021; Larnier et al., 

2020). Incorporating this dataset may improve flood modelling accuracy, particularly for river systems 

that have no data. In addition, using the “gradually varying solver” method to estimate river channel 
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capacity, can replace the traditional Manning’s equation. This method can also significantly improve 820 
bathymetry and flood inundation simulations (Wing et al., 2024). Neal et al. (2021) demonstrated the 

benefits of this approach in localised studies, and its application at the global scale may yield more 

accurate flood predictions.  

Buffer: Another difference in our approach is the exclusion of permanent water bodies from the 

observed and simulated flood extent (250 m resolution), with no additional buffer applied around the 825 
rivers. This approach contrasts with methods used in other large-scale validation studies, such as Wing 

et al. (2017) and Dottori et al. (2022), which applied spatial buffers around the rivers to better capture 

floodplains and address benchmark data limitations. For example, Wing et al. (2017) applied a fixed 

buffer (i.e. ~1 km around the rivers) to include areas potentially missed by benchmark data, particularly 

in small tributaries. Dottori et al. (2022) employed variable buffer zones (i.e. ~5 km and ~10 km) 830 
tailored to account for diverse floodplain morphologies and the variable extent and density of the 

mapped river network. In our validation, we excluded permanent water using satellite-derived flood 

extent, so correctly simulated inundation in meandering and narrow channels (<250 m wide) was 

instead counted as an FA, even though these areas should be masked as permanent water. This 

misclassification inflated the FA ratio while decreasing the HR, which contributed to a lower average 835 
global CSI. 

Uncertainties in validation data: As Tellman et al. (2021) noted, MODIS often fails to capture floods 

in rapid flash‐flood events or under dense canopy cover, which leads to underestimation of true flood 

extents and contributes to lower CSI values. Additionally, cloud and snow cover can further obscure 

floodwaters, which adds to observational uncertainty. Some northern latitudes can have errors greater 840 
than 65% in the flood detection algorithm due to the low sun angle on dark soil, which causes low 

reflectance that mimics water.  

The comprehensive validation dataset relies on 250 m MODIS pixels, which limits the detection of 

narrow or small‐scale inundation features and can misclassify flood zone delineation (Landwehr et al., 

2024). Moreover, most binary pattern matching metrics are sensitive to the proportion of flooded area, 845 
meaning that large-scale floods are favoured while smaller-scale floods are less accurately reflected in 

the validation scores (Landwehr et al., 2024). Binary flood extent masks and class-based metrics (e.g. 

the CSI) do not account for important factors such as flood depth and its influence on impacts and model 

accuracy (Stephens et al., 2014). As a result, some of the poorer performance in smaller basins likely 

reflects limitations in the reference dataset and validation framework rather than shortcomings in the 850 
hydrodynamic model. 

Flood protection: Although studies on global flood protection standards exist (e.g. Scussolini et al., 

2016), incorporating more accurate data on flood protection standards into future global flood models 

should be considered. Previous research, including studies by Mester et al. (2021), has shown that flood 

protection can influence model performance by increasing variability, though it does not necessarily 855 
change the maximum performance scores. Further exploration into this area may provide valuable 

insights into how flood protection measures impact flood risk across regions. 

 

 

 4. Conclusions and Recommendations 860 

Our study evaluated the performance of the SFINCS model in simulating 499 riverine floods globally. 

Our findings show that the model can simulate riverine flood extents globally, with a mean CSI of 0.39 

using GloFAS modelled discharges as input forcing. However, performance improved considerably 

when using observed discharge inputs. It reached a CSI of 0.67 across ten U.S. events, which highlights 

the considerable value of in-situ hydrological observations for model accuracy. Furthermore, using a 865 
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higher-resolution DEM (3DEP, ~1 m) improved the mean CSI from 0.37 (FABDEM, ~30 m) to 0.57. 

Conversely, a lower-resolution DEM resulted in poorly defined river channels, especially in side 

streams, which prevented water from flowing accurately to downstream areas. 

The model accuracy substantially improved for larger upstream basin sizes. Specifically, simulations in 

basins with very large upstream areas (≥1,000 km²) achieved an average CSI of 0.42, whereas those 870 
with small upstream areas (<50 km²) had an average CSI of 0.29. Sensitivity analyses further showed 

that model accuracy was sensitive to the quality of input data. For example, the GEB hydrological 

model outperformed GloFAS in selected regions, likely due to its finer spatial resolution (~1 km²) and 

more realistic hydrographs.  

Bathymetric calculations revealed a systematic low bias in the default return period estimates used in 875 
the global analysis, which are critical for defining realistic channel geometry. This underestimation 

propagated into narrower and shallower channel representations that reduced conveyance capacity 

while likely inflating flood extents during high-flow conditions.  

These findings suggest that the SFINCS model is highly suitable for modelling river floods. 

Nevertheless, model accuracy can be improved through targeted enhancements in both hydrological 880 
and topographic inputs. Future research can explore methods to regionalise or dynamically calibrate 

bankfull return periods using observed discharge records where available (e.g. USGS or GRDC) rather 

than applying a fixed global default. A combined approach that uses long-term gauge data with 

emerging global remote sensing products (e.g. the SWOT dataset) can allow for more accurate 

bathymetric representation while reducing systematic biases in large-scale flood simulations. 885 

Our cross-study comparison also confirmed that methodological choices (e.g. DEM resolution), 

bathymetric assumptions, and masking permanent water affect accuracy and comparability. For 

example, our decision not to apply spatial buffers or include permanent water bodies may have 

contributed to more conservative performance metrics, but the choice reflected a stricter and more 

objective comparison with satellite-derived flood extents. Future research may build on this decision 890 
by standardising validation approaches and testing the effect of different masking strategies, such as 

permanent water removal from reservoirs and the bankfull width of the rivers. The dataset used for 

validation, 250 m resolution MODIS-based flood maps, cannot detect narrow or meandering channels, 

particularly in smaller basins. Future large-scale research can prioritise integrating higher-resolution 

observational datasets such as Sentinel‑1 Synthetic Aperture Radar (~10 m), which can capture finer 895 
floodplain dynamics and provide real-time images multiple times during the day. 

While the CSI provides good insight into the model’s performance, it does not capture the vertical 

accuracy of flood simulations. As Wing et al. (2021) emphasised, incorporating flood depth can offer a 

more comprehensive evaluation, particularly for identifying errors in floodplain dynamics and 

understanding biases in inundation extent. Additionally, the upscaling of SFINCS results from 30 m to 900 
250 m resolution (to match our observed data) caused a loss of details that further impacted model 

performance. The findings of this study echo research that calls for better open-source observed flood 

validation datasets, such as the Global Flood Monitoring System offered by Copernicus (Bates, 2023). 

We recommend the development of standardised, large‑scale validation frameworks including agreed 

masking protocols, and using both simulated and observed discharges so that future studies can be 905 
directly compared. 
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Appendices 

 

A1 Bathymetry 1140 

Bathymetry, the measurement of the depth and width of rivers, is one of the most challenging variables 

to estimate on a global scale due to the lack of comprehensive, high-resolution data, particularly in 

remote or unsurveyed regions (Dey et al., 2019). Accurate representation of river bathymetry is critical 

for hydrodynamic modelling, as it directly influences the conveyance capacity of rivers and channels,  

which affects flood inundation predictions (Wing et al., 2024). We simulated bathymetry with the 1145 
following steps. 

Step 1. Matching River Centerline and Discharge Data  

The process began by clipping the river centerline vector dataset (MERIT-SWORD) to the model 

domain (flooded MERIT-BASINS + additional downstream basin) with a small buffer. Then, we 

matched the individual river segments to the global hydrological model GloFAS using upstream area 1150 
data. The matching used the origin points of each river segment, which were snapped to a particular 

upstream area pixel in the GloFAS dataset using the HydroMT package. When snapping points to the 

discharge grid, this package considers a 5% relative error tolerance and a 50 km² absolute error cap. 

The upstream area was a key indicator of river flow and helped to identify the centerline segments 

corresponding to different river sections. This step ensured that discharge calculations were correctly 1155 
linked to the appropriate locations on the river. Once the river segments were matched, we extracted 

discharge values focused on the yearly discharge maxima from 1979 to 2024. These maxima formed 

the basis for our return‑period analysis via the block‑maxima method, which selected the single largest 

discharge value each year (45 years). 

Step 2. Utilising PyExtremes for Distribution Analysis of Discharge Data 1160 

Next, we used the PyExtremes Python package (https://georgebv.github.io/pyextremes/) to fit the yearly 

discharge maxima to an appropriate distribution. PyExtremes helped to determine the best fit for the 

maximum discharge values, which might follow different distributions for extreme value analysis. The 

distribution selection was based on the characteristics of the discharge data (from GloFAS) to ensure 

that we accurately captured the probability of various discharge levels. Using these fitted distributions, 1165 
we calculated discharge values for different return periods. We used a 2-year return period discharge, a 

typical proxy for bankfull discharge (e.g. Wilkerson, 2008). Bankfull discharge refers to the flow level 

at which the river is filled to the top of its banks without overflowing, a key indicator for estimating the 

river’s cross-sectional shape. To compute return periods, the package ranks extreme values, calculates 

exceedance probabilities, and derives return periods as multiples of a specified return period size 1170 
(typically one year). This systematic approach allowed it to assign empirical return periods to the 

extreme values extracted from our discharge data. 

Step 3. Estimating Bankfull Width and Depth 
  

Only global river segments 30 m wide and greater are represented in the SWORD database (Altenau et 1175 
al., 2021). Thus, the river centerline vector dataset MERIT-SWORD is missing river-width values for 

river segments smaller than 30 m (https://zenodo.org/records/14675925). To estimate the bankfull width 

of the rivers (<30m), we applied a power-law relationship that linked discharge to channel width, based 

on empirical studies (Leopold and Maddock, 1953). The power-law formula allowed us to predict the 

width based on the bankfull discharge calculated earlier. 1180 

𝑊  =  𝑎 ⋅ 𝑄𝑏  
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Where: 

• W is the bankfull width, 

• Q is the bankfull discharge (from the 2-year return period), 

• a & b are empirically derived constants 1185 

Once the width was estimated, we proceeded to calculate the bankfull depth for all the river segments 

in the model domain. Depth was estimated by applying Manning’s equation for open channel flow, 

which relates the river’s flow velocity, roughness, and channel geometry (including slope and depth) to 

its discharge. Manning’s equation is expressed as follows: 

 1190 
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2
)

 

 

Where: 

• Q is the discharge, 

• n is the Manning's roughness coefficient, 1195 

• A is the cross-sectional area, 

• R is the hydraulic radius (cross-sectional area divided by wetted perimeter), 

• S is the slope of the river. 

 

A2: Hydro-MT and Snakemake 1200 
  

A2.1 Hydro-MT (Eilander et al., 2023a) 

  

HydroMT is an open-source Python package designed to streamline the process of building and 

configuring water system models (e.g. SFINCS). The framework handles various spatial data types, 1205 
including gridded raster data like DEMs and vector data like shapefiles. It automates essential steps in 

the preprocessing, setup, and postprocessing of hydrodynamic models, so it is a versatile tool for 

hydrological modelling. 

The HydroMT-SFINCS sub-package, specifically tailored for the SFINCS model, extends the core 

HydroMT functionalities to address the specific needs of SFINCS users. One key function of HydroMT-1210 
SFINCS is the configuration of boundary conditions, which includes integrating inflow and outflow 

boundary conditions for rivers, setting up forcing conditions (e.g. hydrographs and precipitation), and 

defining external water level boundaries. The sub-package also generates a mask for active and inactive 

cells based on the basin boundary. Thus, we ensured that our calculations were carried out only in 

relevant flood-prone areas while excluding regions unaffected by flooding. 1215 

HydroMT-SFINCS is also adept at handling and converting input data from various formats (e.g. 

NetCDF, GeoTIFF, and shapefiles) into the structure required by the model, which includes preparing 

static input layers (e.g. DEMs, land-use maps, and basin boundaries) in a unified format. The tool 

ensures spatial consistency across different datasets through automated reprojection, resampling, and 

cropping to minimise potential errors that can arise from manual data processing. 1220 

Regarding postprocessing, HydroMT-SFINCS automated the interpolation of SFINCS output, which 

was stored as NetCDF files containing water levels for each subgrid cell. For each time step, these water 
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levels were interpolated onto the DEM data to produce water depths, which were then used to generate 

the maximum flood extent. By automating the pre- and postprocessing steps, HydroMT-SFINCS 

minimised the risk of errors and significantly accelerated the model setup and output generation process. 1225 
This approach enabled the rapid testing of various model configurations and ensured reproducibility, 

which is especially important for large-scale and scenario-based modelling studies. 

  

A2.2 Snakemake (Mölder et al., 2020) 

Snakemake is a workflow management system designed to handle complex data analysis pipelines in a 1230 
reproducible and scalable manner. It is particularly useful in scientific computing, where numerous 

tasks and steps must be executed in a specific order to ensure the efficient processing of large datasets. 

Snakemake uses a simple syntax to define rules for data processing, where each rule specifies input 

files, output files, and the command to execute. 

In our workflow, Snakemake was used to automate and streamline the processing of all flood modelling 1235 
tasks, from preprocessing to validation. By organising each task into separate rules, Snakemake enabled 

the reproducibility of the entire process. The flexibility of Snakemake allowed us to easily parallelise 

tasks, for example, by running multiple model domains (i.e. clusters) for the same event simultaneously 

on different computing nodes. This ability expedited the analysis while making it easier to handle large-

scale simulations. Hence, the results were generated in a timely manner. By integrating Snakemake into 1240 
our modelling pipeline, we ensured that each step of the analysis, from data preprocessing to final flood 

map and validation, was reproducible and easily adjustable for future adjustments or expansions of the 

study. 

 

Additional Figures: 1245 

 

 

Figure A1: Section 3.1.1 figure 5d supporting argument figure 
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 1250 

Figure A2: Example return period calculations “PyExtremes”, which were conducted for every river 

segment in the MERIT-BASINS dataset 
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Figure A3. Observed vs modeled 1.5-year Qbf, for river gauges in ten U.S basins.  1255 

 

Figure A4. Observed vs modeled 2.5-year Qbf, for river gauges in ten U.S basins.  
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Data Availability statement: 1260 

The version 2.2.0 of the SFINCS model used in this study can be found on docker 

(https://hub.docker.com/r/deltares/sfincs-cpu/tags, last access: July 25 2025). The framework, list of 

modelled events and python scripts, are accessible through Zenodo 

(https://doi.org/10.5281/zenodo.16759099). 

 1265 

1. USGS Discharge:  

https://waterdata.usgs.gov/nwis  

2. FABDEM: V1-2  

https://data.bris.ac.uk/data/dataset/s5hqmjcdj8yo2ibzi9b4ew3sn 

3. ESA Landcover 1270 
 https://worldcover2021.esa.int/ 

4. MERIT-BASINS Dataset:  

https://www.reachhydro.org/home/params/merit-basins  

5. HydroBasins:  

HydroBASINS (hydrosheds.org) 1275 
6. GloFAS: v4.0  

https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?tab=doc 

7. GloFAS upstream area: v4.0  

https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.ff1aef77?tab=overview 
8. MERIT-SWORD River Vector Dataset:  1280 

https://zenodo.org/records/14675925 

9. GEB Model: 

https://github.com/GEB-model 
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