Review Comment 1
Clarification of the ratio-based cost function (Eq. 4)
The use of a dimensionless, ratio-based cost function is an interesting innovation.
Please elaborate on:
a) How subtracting unity affects numerical stability and convergence
behavior.
b) Whether normalization issues arise when observed or simulated bightness
temperatures approach zero.
c) A brief comparison with the conventional covariance-weighted formulation.
Author Response:
We thank the reviewer for the insightful comments and interest in our ratio-based
cost function. Our detailed responses are as follows:
a) Effect of subtracting unity on numerical stability and convergence.
We sincerely thank the reviewer for the valuable comment and for pointing out this
important numerical consideration. As described in the manuscript, subtracting unity
in the cost function can “enhance the contribution of the initial analysis increment to
the cost function and reduce the number of iterations” (lines 155-156). We fully
acknowledge that, due to the finite precision of floating-point arithmetic, a potential

loss of significant digits may occur, which could affect the numerical stability of the
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computation. To address this issue, both % and are scaled to the range of

—1 to 1 by multiplying them with an amplification factor calculated from
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operator and abs() represents the absolute value operator. Moreover, all input

values are converted to double precision prior to initializing the minimization

algorithm, in order to further ensure numerical stability and robustness.

For clairity, we have added the discussion below to the manuscript: “Due to the

finite precision of floating-point arithmetic, a loss of significant digits may occur,



potentially compromising the numerical stability of the computation. To mitigate this

issue, both the observed (H(X)/y) and simulated (GV(X)/QU(XO)) variables are

normalized to the range of —1 to 1 using an amplification factor derived from
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maximum and absolute value operators, respectively. Furthermore, all input values
are converted to double precision before the initialization of the minimization
algorithm to enhance numerical stability and robustness” (Lines 161 - 166).

b) Normalization issues near zero brightness temperature.
We sincerely thank the reviewer for raising this thoughtful question. Such cases may
occasionally occur under clear-sky or non-weather conditions. However, this issue
can be effectively mitigated by increasing the number of iterations during the
minimization process, which ensures stable convergence. In addition, the
normalization treatment, introduced in the revised manuscript (lines 161-166), can
further alleviates the potential instability caused by near-zero brightness
temperatures. Moreover, the quality control module also alleviates the potential

instability by removing the observed brightness temperature whose departure

against the simulation is smaller than the noise-equivalent temperature difference.

For clairity, we have added the the discussion below to the manuscript “To avoid
normalization issues when observed and simulated brightness temperatures are very
close to each other, the quality control module automatically discards GMWR
channel observations whose brightness temperature departures from the simulated
values are smaller than the noise-equivalent temperature difference” (Lines 166 -
169).
c) Comparison with the conventional covariance-weighted formulation.

We appreciate the reviewer’s insightful comment regarding this issue. Specifically,
the ratio-based cost function minimizes the relative deviation between observed and

simulated brightness temperatures rather than their absolute difference. This



approach effectively normalizes the residuals, rendering them dimensionless and
ensuring more balanced contributions among different frequency channels.
Moreover, the ratio-based formulation is less sensitive to multiplicative calibration or
gain errors and better reflects the logarithmic response characteristics of microwave
radiative transfer. These advantages have been demonstrated in previous studies

and are now explicitly discussed in the revised manuscript.

In the revised manuscript, we have clarified the rationale and advantages of using
the ratio-based cost function compared with the conventional difference-based
formulation as follows: “It ensures balanced channel weighting, as each channel is
normalized by its own magnitude and channels with smaller brightness temperatures
are no longer underrepresented during optimization. It also achieves better physical
consistency, since the ratio-based form is closer to the logarithmic radiative
response of microwave observations, making the inversion more physically
meaningful. Finally, it offers enhanced robustness to calibration biases, being less
sensitive to multiplicative gain or calibration errors and therefore improving retrieval

performance under low signal-to-noise conditions.” (Lines 169 - 175).



Review Comment 2
Uncertainty quantification and statistical significance
The performance metrics (bias, RMSE) are presented without uncertainty
ranges. Please include standard deviations or confidence intervals, or
indicate whether improvements arestatistically significant.
Author Response:
We sincerely appreciate the reviewer’'s valuable comment regarding the
quantification of uncertainty and statistical significance. Following this suggestion,
confidence intervals have been added to Figures 5, 6, 7, and 9 to better illustrate the
variability and robustness of the results. Since the root-mean-square error (RMSE)
values already provide a comprehensive measure of the overall deviations, no

additional modifications were made to those metrics.



Review Comment 3

Author

Microphysics parameterization and coupling:

The coupling between the WSMS3 single-moment microphysics scheme and
thethermodynamic constraint is not entirely clear. Please expand on how liquid/ice
watercontents influence the state vector and cost function. A schematic or equation
would behelpful.

Response:

We thank the reviewer for this constructive comment. In the revised manuscript, we
have clarified the coupling between the thermodynamic constraint and the WSM3
single-moment microphysics scheme, and we have added a schematic (now Figure

4) to illustrate the iterative process.

As described in Section 3.2.2, the retrieval begins with the calculation of virtual
potential temperature from the priori (background) profiles of pressure, temperature,
and water vapor mixing ratio. The cost function minimization then adjusts these
thermodynamic variables using the observed GMWR brightness temperatures to
generate intermediate profiles. The WSM3 microphysics scheme dynamically
updates cloud water and cloud ice mixing ratios based on the intermediate
thermodynamic fields and the priori hydrometeor profiles, ensuring thermodynamic
and microphysical consistency at each iteration. The updated hydrometeor contents
(liquid and ice) subsequently influence the forward-simulated brightness
temperatures through the radiative transfer operator, thereby affecting the cost
function and its gradient. The iteration continues until the convergence criterion is
met, yielding the final analysis fields of pressure, temperature, water vapor, and
hydrometeors. The discussions above have been added to the manuscipt (Lines 185
—194) read as follows: “The coupling between the thermodynamic constraint and the
WSMBS single-moment microphysics scheme is illustrated in Figure 4. The procedure
begins with the calculation of the virtual potential temperature from the priori

thermodynamic and hydrometeor profile. These fields serve as the initial state for the



cost function minimization, where the cost function iteratively adjusts the pressure,
temperature, and water vapor mixing ratio using the GMWR brightness temperature
observations to produce intermedium profiles. The WSM3 microphysics scheme
then dynamically updates the cloud water and cloud ice mixing ratios based on the
intermediate pressure, temperature, and water vapor profiles, together with the priori
hydrometeor fields. This coupling ensures physical consistency between the
thermodynamic state and the microphysical processes during each iteration. If the
convergence criterion is satisfied, the resulting profiles of temperature, humidity, and
hydrometeors are designated as the final analysis. Otherwise, the updated fields are
fed back into the next iteration as new initial conditions until convergence is

achieved.”



Review Comment 4

Author

Limited EarthCARE validation sampleValidation is based only on July 2025 data
(around 60 collocated profiles). Please explicitly acknowledge this limitation and
discuss whether the conclusions may vary with season or location.

Response:

We appreciate the reviewer’s valuable comment. We acknowledge that the validation

dataset, consisting of approximately 60 collocated EarthCARE profiles, is limited in
sample size. This constraint indeed restricts the statistical representativeness of the

hydrometeor validation results.

However, July was deliberately selected as the test period because the prevailing
large-scale circulation over North China during this month frequently produces
various types of intense convective systems, including mesoscale convective
complexes, squall lines, and stratiform precipitation events. These conditions make
July particularly representative of the summer cloud and precipitation regimes in this
region, allowing for the evaluation of retrieval performance under diverse

hydrometeor conditions.

We also fully recognize that using only July data cannot capture the potential
seasonal variability of cloud water and ice characteristics, and thus the current
validation results may not fully reflect performance differences across different
seasons or locations. We have explicitly discussed this limitation in the revised
manuscript and plan to extend the validation to additional months and regions in

future work to further assess seasonal dependence.

The discussion from (Lines 425 — 433) read as follows: “This study demonstrates that
the TCKF1D-Var framework efficiently integrates thermodynamic constraints and
microphysical closure into a unified variational retrieval system, substantially

reducing biases, improving hydrometeor profile realism, and enhancing heavy-rain



precursor detection. These results highlight its potential for continuous GMWR
profiling and short-range nowcasting applications. However, current validation relies
on about 60 collocated EarthCARE profiles from July 2025, which limits the
statistical robustness of hydrometeor evaluation and the representativeness of
seasonal variability. July was chosen because the prevailing synoptic patterns over
North China frequently produce diverse convective systems—making it a suitable
test period. Future work will extend evaluations across seasons and regions, employ
more advanced microphysics and Bayesian uncertainty quantification, and
incorporate multi-sensor fusion and scattering-aware radiative operators to further

improve retrieval robustness and operational applicability.”



Review Comment 5
Figure readability and accessibilityThe font size in Figures 4-6 is rather small. Please
adjust the figure layout so that all symbols,units, and legends are clearly readable
and distinguishable.

Author Response:
We appreciate the reviewer’s helpful suggestion. The layouts of Figures 4-6 (now as
Figures 5 — 7) have been revised to improve readability. Font sizes for all labels, units,
and legends have been enlarged, and the overall figure clarity and color contrast
have been enhanced to ensure accessibility and visual consistency throughout the

manuscript.



Reviewer Technical corrections:
1. Correct minor grammatical errors (e.g., “profiles shows” — “profiles show”; “biase”
— “biases”).
2. Maintain consistent notation for virtual potential temperature (6v) in equations and
figure captions.
3. Define all acronyms (ERA5, RTTOV-gb, CLWC, WSM3) upon first mention in both
abstract and text.
4. Add final acknowledgements before publication.

Author Response:
1. The grammatical errors “profiles shows” at Line 214 and “biase” at Line 411 has
been corrected.
2. We confirm that the notation for virtual potential temperature is consistant in the
revised manuscript.
3. Missing acronyms at Lines 21, 25, 77, and 290 have been added.

4. Acknowledgements have been added.



Summary statement:

This manuscript comes up with a new method, TCKF1D-Var, to retrieve atmospheric profiles
from GMWR. This method differs from conventional 1D-Var that employs a ratio-based cost
function independent of prescribed background and observation error covariances, and
integrate a diagnostic microphysics closure to represent liquid and ice water.

Clear results are shown that lower errors are achieved in cloudy circumstances. However,
there are several issues need to be answered before acceptance. | recommend major
revision.
Reply:
We sincerely thank the reviewer for the thoughtful and constructive evaluation of our
manuscript. We deeply appreciatethe reviewer’s recognition of the novelty of the
proposed TCKF1D-Var method, particularly its ratio-based cost function and the
integration of a diagnostic microphysics closure to represent cloud liquid and ice
water. We are also grateful for the positive acknowledgement of the improved
retrieval performance in cloudy conditions.

We fully agree with the reviewer that several important issues require clarification
and further analysis before the manuscript can be considered for acceptance. In the
revised version, we have carefully addressed all concerns raised in the detailed
comments.

We deeply appreciatethe reviewer’s recommendation for major revision and have
substantially improved the manuscript accordingly. We hope that the revised version
satisfactorily addresses all concerns and meets the standards required for
publication.

Major Comments:
1. Line 211: In the figure, it is not clear that “the differences among the three products are
mainly confined to the boundary layer.” The authors may clarify whether this statement is
supported by the figure or revise it accordingly. Lines 217-219: In Fig. 5f, the random errors
of the TCKF1D-Var temperature profiles remain significantly smaller than those of 1D-Var
above 2000 m, which seems inconsistent with the statement “increase substantially” in the
text.
Reply:
We sincerely apologize for the confusion caused by our original wording. We agree
that the previous statement may have led to a misinterpretation and did not
accurately reflect what is shown in the figure. The sentence has been revised to:
“For temperature mean bias, the differences between the TCKF1D-Var and the ERA5
are mainly confined to the boundary layer.” (Line 242-243)

We thank the reviewer for pointing out the inconsistency between the text and the
results in Fig. 5f. We apologize for the misinterpretation created by the earlier
description. The corresponding statement has been corrected to: “However, at night
(Figure 6f), the random errors of the TCKF1D-Var temperature profiles increase
substantially above 8500 m, shifting from being equivalent to ERA5 during daytime
to comparable levels.” (Line 248-250)

2. In Section 4.1.4, the potential cause of the water vapor RMSE deficit is analyzed. As a
reviewer not specialized in this field, | would deeply appreciateif the authors could clarify why
a similar phenomenon does not occur in the temperature vertical profile?
Reply:
We deeply appreciate the reviewer for this insightful question. We deeply
appreciatethat, for readers not specialized in microwave radiative transfer or retrieval
physics, the asymmetric behavior between humidity RMSE and temperature RMSE
may not be immediately intuitive.



To clarify this, we have added an explicit explanation in Section 4.1.4. The key
reason a similar RMSE degradation does not occur in the temperature vertical profile
is that the temperature retrieval is fundamentally less susceptible to cross-variable
leakage for the following reasons: 1. Temperature channels dominate the information
content and have stronger, better-separated weighting functions. The oxygen
absorption lines provide well-defined temperature weighting functions that peak at
multiple altitudes. These functions overlap less with water-vapor-sensitive channels
than vice-versa, which reduces the propagation of humidity-related uncertainties into
the temperature retrieval. 2. Humidity channels have only weak indirect sensitivity to
temperature. Although humidity weighting functions are affected by temperature
through absorption line broadening, this dependency is substantially weaker
compared with the strong temperature sensitivity of oxygen channels. As a result,
humidity uncertainties do not significantly contaminate the temperature solution. 3.
Temperature retrieval is more strongly constrained by measurements. The oxygen
channels used for temperature have higher signal-to-noise ratios and stronger
Jacobians. Their cumulative information content allows the inversion to remain well-
conditioned, preventing RMSE amplification in the mid-troposphere. 4. Humidity
retrieval suffers more from vertical-resolution mismatch. The mismatch between
humidity and temperature weighting functions (1.5-4.5 km) induces leakage primarily
from temperature into humidity, not the other way around. This asymmetry is
consistent with prior microwave retrieval theory (Hewison, 2007; Léhnert & Maier,
2012).

To address the reviewer's concern, we have added the following explanation to
Section 4.1.4 in the revised manuscript: “A similar RMSE degradation does not occur
in the temperature profiles because the oxygen absorption channels provide
stronger and more vertically distinct weighting functions, which dominate the
temperature information content and are only weakly affected by humidity-related
uncertainties. In contrast, water-vapor-sensitive channels exhibit weaker constraints
and overlapping sensitivity with temperature weighting functions in the 1.5 - 4.5 km
layer, making humidity retrievals more vulnerable to temperature - humidity cross-
talk.” (Line 300-306)

3.In the overall comparison among TCKF1D-Var, 1D-Var, and ERAS5, it appears that
temperature differences between TCKF1D-Var and ERA5 are generally small, whereas 1D-
Var exhibits large errors in the upper atmosphere, and below 500 m errors remain high.
These issues seem unresolved and warrant further discussion. For the first two points, could
they be attributed to the dependence on the R and B matrices? If so, it may be slightly unfair
to generalize, as in other cases (with different R and B) 1D-Var might perform better.
Moreover, since the new cost function depends explicity on GMWR observations, it is
unsurprising that TCKF1D-Var outperforms 1D-Var when the distance between radiosonde
and GMWR is minimal. Clarifying these points would be helpful.
Reply:
We deeply appreciate the reviewer for this thoughtful comment and fully agree that
the performance of 1D-Var is closely linked to the specification of the background (B)
and observation (R) error covariance matrices. We acknowledge that the
temperature differences shown in the manuscript—particularly the larger upper-level
deviations in 1D-Var and the persistent errors below 500 m—may partially reflect the
characteristics of the chosen B and R matrices. Our intention is not to suggest that
1D-Var is inherently inferior; indeed, from the standpoint of computational efficiency
and operational robustness, 1D-Var offers clear advantages over the proposed
TCKF1D-Var method. The central objective of this study is instead to introduce an
alternative retrieval approach that satisfies dynamical constraints and incorporates
microphysical parameterizations, providing the community with a complementary
option beyond 1D-Var. The comparisons included in this work aim to demonstrate



that the performance of TCKF1D-Var can reach or exceed that of 1D-Var under the
tested conditions.

We also recognize the reviewer's concern regarding regional representativeness. The
evaluation sites in northern China do have localized meteorological characteristics,
and we do not exclude the possibility that 1D-Var may outperform TCKF1D-Var in
other regions — particularly those with weaker water vapor variability or less
baroclinicity. While alternative atmospheric profile references exist, radiosonde
observations remain the widely accepted standard for directly probing upper-air
thermodynamic structure. Thus, using radiosondes as verification data is essential.
To mitigate the limitation of sparse co-located radiosonde stations, we additionally
compared both retrieval methods against ERAS reanalysis. The combined results
indicate that TCKF1D-Var can effectively exploit GMWR observations to improve the
thermodynamic structure relative to ERA5, especially in the lower and middle
troposphere.

A synthesized clarification addressing these points has been added to the
“Summary and Concluding Remarks” section of the revised manuscript (Line 431-
443) to ensure that the discussion is transparent and balanced, reading as: “We also
acknowledge that the performance of the classical 1D-Var approach is inherently
shaped by the prescribed background (B) and observation (R) error covariance
matrices, and the differences highlighted in this study should not be interpreted as a
universal limitation. Rather than positioning TCKF1D-Var as a replacement for 1D-
Var, our intention is to provide a complementary retrieval framework that
incorporates moist-thermodynamic constraints and a microphysical closure, features
that are not explicitly represented in the classical formulation. The evaluation sites in
North China exhibit regional characteristics, and it is fully plausible that in regimes
with weaker humidity gradients or reduced baroclinicity, 1D-Var may perform
similarly or even more favourably. Radiosonde observations remain an essential
benchmark for upper-air thermodynamic verification, and to address the limited
availability of co-located soundings, additional comparisons with ERA5 were
included. Overall, the combined evaluation suggests that TCKF1D-Var can extract
additional thermodynamic information from GMWR measurements and thus serves
as a useful complement to existing 1D-Var techniques under the conditions
examined. These considerations have been incorporated to ensure that the inter-
method comparison is presented within a balanced and context-appropriate
framework.”

4. Only seven sites are equipped with radiosonde observations. Therefore, in composite
analysis, large differences may arise between mean bias and RMSE for the same variable.
For instance, in Figs. 4c and 4d, the mean bias of water vapor at ~1700 m appears larger
than the RMSE, which is mathematically implausible. A similar issue occurs between Figs. 5g
and 5h. Please check these results.
Reply:
We deeply appreciate the reviewer for pointing out this issue. To address the
concern, we have added confidence intervals to Figure 4 (now Figure 5) and Figure 5
(now Figure 6) to better illustrate the variability of the statistics. However, we
acknowledge that this addition alone does not fully resolve the specific concern
regarding the apparent discrepancy between mean bias and RMSE at certain
altitudes.

We also recognize that the evaluation was conducted using radiosonde observations
from seven sites on 7 July 2025, with two launches per day, yielding a total of 434
measurements. While this satisfies the traditional statistical definition of a large
sample, it remains insufficient to fully address variations under certain conditions, for
example around ~1700 m above ground level, where the retrieval results exhibit
relatively large fluctuations. In future work, we plan to increase the sample size for



radiosonde verification to improve statistical robustness under such specific
conditions.

From another perspective, although the TCKF1D-Var results show fluctuations in
retrieval accuracy around ~1700 m, the classical 1D-Var maintains relatively stable
performance in this layer. This observation is consistent with the reviewer’s
suggestion that additional attention is required in this altitude range and supports
the value of carefully interpreting the variability seen in limited-site composites.

5. What criterion is used for the histogram bins in Fig. 9?7 Are the results sensitive to the
division of water vapor ranges?
Reply:
We deeply appreciate the reviewer for raising the important question regarding the
binning criterion used in Fig. 9. To enhance transparency and ensure that the

histogram-based comparison of cloud liquid water content (CLWC) reflects
physically meaningful statistical distributions, we followed the studies (Zhang et al.,
2021; Mroz et al., 2023) whic have used histogram and probability—density analyses

for LWC and related microphysical parameters. Accordingly, for Fig.9 (now as Figure

10) we grouped the CLWC retrievals and reference observations into a set of bins
whose boundaries were chosen to (1) capture the main modes of the LWC/CLWC
distribution and (2) align with typical value ranges reported in cloud microphysics
literature, ensuring that each bin contains a sufficiently large sample for meaningful
comparison. We have added a statement in the revised manuscript to clarify this, for
example in the Methods section: “Histogram bins in Figure 10 are defined to ensure
sufficient sample counts in each interval for robust frequency comparisons, following
established practice in cloud-microphysics statistical analyses (Zhang et al., 2021;
Mroz et al., 2023).” (Line 333-334)

To the question “Are the results sensitive to the division of water vapor ranges?” Our
current study does not explicitly investigate the sensitivity of the results to the
division of water-vapor ranges. Based on the limited physical understanding relevant
to our present framework, cloud liquid water content is generally positively
correlated with the ambient water-vapor abundance, suggesting that some
dependence on humidity partitioning may indeed exist. However, a rigorous
quantification of this sensitivity lies beyond the scope of the present analysis. We
fully agree that this is an interesting and meaningful direction, and we will explore the
relationship between environmental water vapor stratification and cloud-water
retrieval performance in our future work.

Reference:

Mroz, K., Treserras, B. P., Battaglia, A., Kollias, P., Tatarevic, A., and Tridon,

F.: Cloud and precipitation microphysical retrievals from the EarthCARE

Cloud Profiling Radar: the C-CLD product, Atmos. Meas. Tech., 16, 2865 -

2888, https://doi.org/10.5194/amt-16-2865-2023, 2023.

Zhang, Y., Chen, S., Tan, W., Chen, S., Chen, H., Guo, P., Sun, Z., Hu, R.,

Xu, Q., Zhang, M., Hao, W., and Bu, Z.: Retrieval of Water Cloud Optical and

Microphysical Properties from Combined Multiwavelength Lidar and Radar

Data, Remote Sens., 13(21), 4396. https://doi.org/10.3390/rs13214396, 2021.

Minor comments:

1. Lines 75 and 78: The abbreviations should be unified—either GMWR or MWR.
Reply:
We thank the reviewer for pointing this out. We have corrected the inconsistency:
the abbreviation has been unified to “GMWR” throughout the manuscript (including
the instances at Line 75-78). The change is reflected in the revised manuscript and
in the tracked-changes file.

2. In Figure 1, there are 44 stations, which does not match “43” in Line 75.



Reply:
We thank the reviewer for noting this. The mistyping has been corrected, and the
abbreviation has now been consistently unified throughout the manuscript.

3. In Section 2.3, it is recommended to include the accuracy information of CPR_CLD_2A.
Reply:
We have added the accuracy information of the EarthCARE CPR_CLD_2A product in
Section 2.3. The revised manuscript now states (Lines 104-105): “The active radar
observations from EarthCARE provide vertically resolved cloud liquid and ice water
content with high sensitivity to optically thick clouds, with a target radar reflectivity
accuracy better than 2.7 dB.”

4. What is the underlying reason for the larger differences between TCKF1D-Var and ERA5
during daytime?

Reply:
We thank the reviewer for this insightful question. The manuscript has been revised
to clarify the underlying mechanism. In brief, the larger daytime differences between
TCKF1D-Var and ERA5 primarily arise from enhanced boundary-layer instability and
stronger diurnal variability, which amplify temperature—-humidity coupling in passive
microwave retrievals. During daytime, solar heating intensifies turbulent mixing and
increases the vertical heterogeneity of temperature and water vapor. As a result,
TCKF1D-Var — being driven directly by GMWR observations and thermodynamic
constraints —responds more strongly to these rapidly evolving features, whereas
ERA5 tends to represent smoother background structures due to model diffusion
and data-assimilation temporal averaging. This contrast naturally leads to larger
daytime departures between the two. Similar daytime-nighttime contrast in vertical
thermodynamic heterogeneity and radiometer information content has also been
documented in boundary-layer physics and microwave-retrieval studies (Léhnert et
al., 2012). Hence, enhanced daytime instability provides a physically consistent
explanation for the larger differences between TCKF1D-Var and ERA5 observed in
our results.

Reference:

Léhnert, U. and Maier, O.: Operational profiling of temperature using

ground-based microwave radiometry at Payerne: prospects and challenges,

Atmos. Meas. Tech., 5, 1121-1134, https://doi.org/10.5194/amt-5-1121-

2012, 2012.

5. Lines 237-239: It seems that Figs. 6i and 6m (rather than 6n) are being analyzed.
Moreover, the statement “TCKF1D-Var also exhibits reduced temperature errors below 5 km
compared to ERA5 and 1D-Var, while above 5 km its performance is comparable to 1D-Var”
corresponds to Fig. 6i, and “ERA5 shows similar errors to 1D-Var below 3 km but becomes
less accurate above this level” corresponds to Fig. 6m. Please separate these analyses to
avoid confusion.

Reply:

We fully agree with your comment regarding the mismatch in figure references and

the mixing of two separate analyses. Following your suggestion, we have revised the

text accordingly and separated the two discussions to avoid ambiguity. The

corrections have been implemented in the revised manuscript at Line 269.

6. Please ensure that the title and content of Table 1 appear on the same page.
Reply:
We have adjusted the layout, and the table title and the table now appear on the
same page in the revised manuscript (Line 320).

7. Correct the repeated “Figure 8” in the title of Fig. 8.
Reply:



We deeply appreciate the reviewer for pointing this out. The duplicated Figure 8 has
been deleted (Line 329).
8. Although Taylor et al. (2007) and Garcia-Carreras et al. (2010) are cited to justify using the
temporal moving anomaly of virtual potential temperature as an early-warning indicator, it is
recommended to briefly clarify the underlying mechanism.
Reply:
We deeply appreciate the suggestion. We have clarified the underlying mechanism
for using the temporal moving anomaly of virtual potential temperature as an early-
warning indicator. In the revised manuscript (Lines 355-357), the text now reads:
“Following the approach proposed by Taylor et al. (2007) and Garcia-Carreras et al.
(2010), we adopt the temporal moving anomaly of virtual potential temperature as an
early-warning indicator, which removes slowly varying background signals
associated with large-scale processes and diurnal variations.”

9. The results in Figs. 10 and 11 are somewhat repetitive. It is recommended to either
combine these figures and the corresponding analysis, or present the results without Fig. 11
for conciseness.
Reply:
We deeply appreciate the suggestion regarding the potential redundancy between
Figures 10 and 11. In response, Figure 11 has been moved to Appendix A
( “ Sensitivity of Virtual Potential Temperature Anomaly to Temporal Averaging

Window") and is now labeled as Figure A1.

Correspondingly, the related discussion (lines 348 - 356) has been rewritten for
clarity and conciseness. The revised text now reads: “Using the same methodology,
we recalculated the time - height evolution of the virtual potential temperature
anomaly with a reduced temporal averaging window (Figure A1 in Appendix A), and
the gradients of the anomaly variations become weaker compared to those in Figure
11, owing to the shorter averaging window. Nevertheless, both ERA5 and TCKF1D-
Var profiles still exhibit the characteristic transition of the anomaly from positive to
negative about 7 - 8 h prior to rainfall onset. Although the warm anomaly tongue
intrusion remains detectable in both products, its intensity is reduced. When
adopting — 0.75 K as the early-warning threshold, the signal becomes indistinct
under the 4.5-hour averaging window, whereas it is enhanced and temporally
stabilized within about 2 hours of the precipitation onset when using 6.0-hour and
7.5-hour windows. Consistent with the previous findings, the 1D-Var (Figure A1 c, f,
and i) profiles fail to extract effective early-warning signals for heavy rainfall.”



Major Comments:

1.

| am wondering whether the interpretation of Fig. 5 is fully consistent with the
statement in the manuscript. Specifically, Fig. 5a appears to suggest that the
differences between the TCKF1D-Var and ERA5 mainly occur above 600 m,
whereas only minor differences are evident within the boundary layer. Similarly, Fig.
5e shows nearly no differences between the TCKF1D-Var and ERA5. These results
do not seem to be consistent with the statement that “for temperature mean bias,
the differences between the TCKF1D-Var and the ERA5 are mainly confined to the
boundary layer.” Clarification or further explanation would be helpful.
Re:
Thank you very much for this insightful comment. We agree that the original wording
in the manuscript was not sufficiently clear and may have caused confusion when
interpreted together with Fig. 5 (now Fig. 6). Our original intention was to emphasize
that, in plain language, for temperature mean bias, the differences between
TCKF1D-Var and ERA5 are pretty much limited within (mostly confined to) the
boundary layer. To address this issue and improve clarity, we have revised the
corresponding sentence in the manuscript. It now reads: “For temperature mean
bias, the differences between the TCKF1D-Var and ERA5 are predominantly limited
within the boundary layer, while detectable improvements are found above 3000 m

above ground level.” (Line 243 — 245)

In the response, the figure reference may need to be corrected to “Figure 5f”
instead of “Figure 6f”. Furthermore, the term “comparable levels” is somewhat
unclear, and it might be helpful to replace it with a more explicit description (e.g.,
“slightly higher”).

Re:

We thank the reviewer for the careful check and helpful suggestion. Concerning the

figure reference, we would like to explain that the figure numbering was updated

during the revision process in response to the comments from Reviewer #1.



Specifically, an additional figure entitled “Figure 4. Schematic of the coupling
between the thermodynamic constraint and the WSM3 single-moment microphysics
scheme” was inserted after the original Figure 3, which led to the renumbering of
subsequent figures. As a result, the correct reference in the revised manuscript is

Figure 6f.

We also appreciate the suggestion regarding the wording. The term “comparable
levels” was indeed not sufficiently clear, and we have revised the sentence
accordingly to provide a more explicit description. The revised sentence now reads:

“However, at night (Figure 6f), the random errors of the TCKF1D-Var temperature
profiles increase substantially above 8500 m, changing from being comparable to

ERAS5 during daytime to slightly higher than those of ERA5.” (Line 250 - 251)

Thank you for your detailed reply. However, perhaps due to my previous imprecise
wording, | would like to clarify that the relatively large errors below 500 m are not
confined to the 1D-Var results. Elevated errors are also evident in ERA5 and
TCKF1D-Var, as shown in Figs. 4b-4d, 5a-5d, 5f, and 5h. In some cases (e.g., Fig.
5e), the error increases upward from near zero, whereas in the other cases listed
above, the error decreases from relatively large values near the surface. This
contrast represents another interesting feature that merits further explanation. In
addition, my primary concern previously was that the low errors of TCKF1D-Var
relative to observations may partly arise from an inherently unfair comparison.
Given that TCKF1D-Var does not explicitly incorporate background (B) or
observation (R) error covariance matrices and relies strongly on the observations
themselves, it is expected that low errors would be obtained if the GMWR
observations are sufficiently accurate (e.g., comparable to radiosonde
measurements). However, | now realize that this characteristic may instead

highlight an important advantage of TCKF1D-Var, namely its potential as an



effective alternative in regions where GMWR observations are available but
radiosonde data are sparse or absent.
Re:
We deeply appreciate the further clarification and for highlighting this interesting
feature. We agree that the relatively large errors below 500 m are not confined to the
1D-Var results, but are also evident in ERA5 and TCKF1D-Var, as shown in the
figures you referenced. This behavior reflects a common characteristic of near-

surface temperature retrievals rather than a limitation of a specific method.

From the perspective of the GMWR measurement principle, elevated errors in the
lowest atmospheric layers are expected. GMWR observations represent vertically
integrated brightness temperatures, and the weighting functions of the oxygen and
water vapor absorption channels exhibit strong overlap near the surface. As a result,
the vertical resolution and information content below several hundred meters are
inherently ill-defined. In addition, the diurnal cycle of surface emission, reflection
effects, and rapidly varying thermodynamic conditions within the surface layer under
different weather conditions further contribute to increased uncertainties. These

factors affect all retrieval-based products, not only 1D-Var but also the TCKF1D-Var.

Regarding the contrasting vertical error structures, the decreasing error with height
can be attributed to the diminishing surface influence, in cases such as Fig. 5e,
where errors increase upward from near-zero values, this behavior likely reflects
reduced surface emission and reflection effects at nighttime (12:00 UTC,
approximately 20:00 local time). The coexistence of these two patterns therefore
results from the combined effects of surface influence, atmospheric stability, and the

height-dependent information content of MWR observations.

We agree that, because TCKF1D-Var relies primarily on information from ground-

based microwave radiometer observations and does not explicitly prescribe



background (B) or observation (R) error covariance matrices, relatively low errors
with respect to independent observations may be obtained when the GMWR
measurements are of high quality. At the same time, this aspect may raise concerns
regarding the interpretation of the comparison results under certain conditions.
Moreover, we acknowledge the point that this characteristic also suggests a
potential role for TCKF1D-Var in situations where radiosonde observations are
limited or unavailable. In this sense, TCKF1D-Var may serve as a complementary

approach rather than a replacement, particularly in observation-sparse regions.

What | pointed out is that in the manuscript the mean bias of water vapor at~1700
m appears larger than the RMSE, which is mathematically implausible given the

standard definitions: for errors lEmodel - observation, the root mean square error

(RMSE) and mean bias (MB) satisfy RMSE = 2\/5, MB = , and therefore RMSE > |

MB (because @_2 — e?= Var(@) = 0). If the plotted MB exceeds the RMSE, that
suggests an inconsistency. Please check and clarify the corresponding analysis.
Re:
Thank you very much for pointing out this important issue and for carefully
examining the statistical consistency of the results. We agree that, by definition, the
root mean square error (RMSE) should always be greater than or equal to the
absolute value of the mean bias ((MBJ|), and we appreciate your attention to this

detail.

After carefully re-examining the results, we confirm that the situation you noted
around approximately 1700 m does indeed occur. However, this feature is present in
the ERA5 reanalysis and the conventional 1D-Var retrievals, rather than in the
TCKF1D-Var profiles. The TCKF1D-Var results consistently satisfy the expected

statistical relationship between RMSE and MB.



Further analysis of Figure 7 indicates that the cases in which this behavior appears
are primarily associated with clear and cloudy conditions for both ERA5 and the 1D-
Var retrievals. For ERA5, this behavior can be attributed to limitations related to its
relatively coarse horizontal resolution, which affects the representation of non-
precipitating clouds and associated water vapor structures in the lower to middle
troposphere (e.g., Prange et al., 2023; Virman et al., 2021; McDonald et al., 2025).
These limitations can introduce systematic biases that dominate the error statistics

at certain altitudes.

For the 1D-Var method, the background error covariance matrix is constructed
based on the statistical differences between ERA5 reanalysis and radiosonde
observations. Consequently, the aforementioned deficiencies of ERA5 are implicitly
propagated into the 1D-Var retrievals through the background constraint, leading to

similar bias characteristics around 1700 m.

In contrast, no such inconsistency is observed in the TCKF1D-Var profiles. This
indicates that the use of a thermodynamic constraint based on virtual potential
temperature conservation, together with the coupling to a cloud microphysical
parameterization scheme, provides a robust framework for water vapor retrievals
under both clear and cloudy conditions.
Reference:
Prange, M., Buehler, S. A., and Brath, M.: How adequately are elevated
moist layers represented in reanalysis and satellite observations?
Atmospheric Chemistry and Physics, 23, 725-741,

https://doi.org/10.5194/acp-23-725-2023, 2023.

Virman, M., Bister, M., Réiisidnen, J., Sinclair, V. A., & Jarvinen, H.:
Radiosonde comparison of ERA5 and ERA-Interim reanalysis datasets over
tropical oceans. Tellus A: Dynamic Meteorology and Oceanography, 73(1),

1929754, https://doi.org/10.1080/16000870.2021.1929752, 2021.
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Minor Comments:

1.

The accuracy information for CPR_CLD_2A | recommend is the retrieved
hydrometeor profile errors compared to the ground observations such as
radiosonde.

Re:

Thank you for this valuable suggestion. We fully agree that independent ground-

based observations would be highly desirable for evaluating the accuracy of the

retrieved hydrometeor profiles in CPR_CLD_2A.

We initially attempted to validate the retrievals using routine ground-based
observations. However, conventional radiosonde measurements do not provide
observations of cloud liquid water content or cloud ice water content, which
prevents a direct quantitative comparison with the retrieved hydrometeor mass
concentration profiles. Although Ka-band millimeter-wave cloud radars are deployed
at some sites, these instruments in our study region currently provide primarily basic
reflectivity measurements and do not routinely produce quantitative cloud liquid or
ice water content products. This limitation makes a robust and consistent validation

against ground-based observations challenging.

Therefore, we acknowledge that the specific validation requested cannot be fully
addressed within the scope of the present study. We have clarified this limitation in

the revised manuscript. In future work, we plan to mitigate this shortcoming by


https://doi.org/10.1029/2024JD041754

extending the temporal coverage of the dataset and incorporating observations from
a larger number of sites, as well as by exploring additional synergistic ground-based

measurements where available.



