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Abstract 24 

Accurate representation of mineral dust remains a challenge for global air quality or climate 25 

models due to inadequate parametrization of the emission scheme, removal mechanisms, and 26 

size distribution. While various studies have constrained aspects of dust emission fluxes and/or 27 

dust optical depth, annual mean surface dust concentrations still vary by factors of 5-10 among 28 

models. In this study, we focus on improving the annual simulation of fine dust in the GEOS-Chem 29 

chemical transport model, leveraging recent mechanistic understanding of dust source and 30 

removal, and reconciling the size differences between models and ground-based measurements. 31 

Specifically, we conduct sensitivity simulations using GEOS-Chem in its high performance 32 

configuration (GCHP) version 14.4.1 to investigate the effects of mechanism or parameter updates 33 

on annual mean concentrations. The results are evaluated by comparisons versus Deep Blue 34 

satellite-based aerosol optical depth (AOD) and AErosol RObotic NETwork (AERONET) ground-35 

based AOD for total column abundance, and versus the Surface Particulate Matter Network 36 

(SPARTAN) for novel measurements of surface PM2.5 dust concentrations. Reconciling modelled 37 

geometric diameter versus measured aerodynamic diameter is important for consistent 38 

comparison. The two-fold overestimation of surface fine dust in the standard model is alleviated by 39 

39% without degradation of total column abundance by implementing a new physics-based dust 40 

emission scheme with better spatial distribution. Further reduction by 20% of the overestimation of 41 

surface PM2.5 dust is achieved through reducing the mass fraction of emitted fine dust based on the 42 

brittle fragmentation theory, and explicit tracking of three additional fine mineral dust size bins with 43 

updated parametrization for below-cloud scavenging. Overall, these developments reduce the 44 

normalized mean difference against surface fine dust measurements from SPARTAN from 94% to 45 

35%, while retaining comparable skill of total column abundance against satellite and ground-46 

based AOD. 47 

1 Introduction 48 

Mineral dust exerts significant impacts on air quality as the most abundant aerosol component by 49 

mass globally (Kok et al., 2021b), on ecosystem health through nutrient transport and deposition 50 

such as phosphorous (Bayon et al., 2024; Swap et al., 1992) and iron (Jickells et al., 2005), and on 51 

climate through its direct scattering and absorbing of radiation and indirect modifications of cloud 52 

properties (Kok et al., 2017; Liao and Seinfeld, 1998; Mahowald et al., 2014). Despite its 53 
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importance, accurate representation of long-term concentrations of mineral dust remains a 60 

challenge for global air quality or climate models due to inadequate parametrization of the 61 

emission scheme (Darmenova et al., 2009; Kok, 2011; Leung et al., 2023), removal mechanisms 62 

(Jones et al., 2022; Petroff and Zhang, 2010; Ryu and Min, 2022; Wang et al., 2014b; Zhang and 63 

Shao, 2014; Zhang et al., 2001), and size distribution (Kok et al., 2017; Mahowald et al., 2014). 64 

Observational constraints from satellite have been applied to reduce the large uncertainty of 65 

simulated mineral dust and its emissions (Mytilinaios et al., 2023; Ridley et al., 2016). However, 66 

intercomparison projects with various models still suggest large variability within a factor of 2 for 67 

the annual mean total column abundance of mineral dust, with even larger variability in surface 68 

concentrations and deposition by factors of 5-10 (Huneeus et al., 2011; Uno et al., 2006; Wu et al., 69 

2020).  70 

In addition to total column observations, ground-level measurements of mineral dust offer another 71 

promising opportunity to understand mechanisms affecting the accuracy of the surface 72 

concentration simulation and the variable performance from the surface to the total column in 73 

intercomparison projects. The Surface PARTiculate mAtter Network (SPARTAN, 74 

https://www.spartan-network.org/, last access: 4 February 2025) is a globally distributed 75 

monitoring network that measures the chemical components of fine particulate matter (PM2.5), 76 

including in arid environments (Liu et al., 2024; Snider et al., 2015). These ground-based 77 

measurements of mineral dust in PM2.5 offer new data to evaluate, understand, and improve fine 78 

dust simulation in global models. 79 

Dust emissions play a central role in controlling the surface and total column abundance of 80 

mineral dust (Kok et al., 2014; Leung et al., 2023; Tian et al., 2021). The predicted spatial 81 

distribution of dust emissions particularly affects the downwind dust concentrations through long-82 

range transport and deposition (Prospero, 1999). A new physics-based dust emission scheme 83 

(Leung et al., 2023) includes recent developments in the parametrization of the threshold of friction 84 

velocity for dust mobilization (Martin and Kok, 2018), combined drag partitioning effects due to 85 

rocks (Marticorena and Bergametti, 1995) and vegetation (Pierre et al., 2014a) for a better 86 

representation of exerted surface friction velocity (Leung et al., 2023), and intermittent dust 87 

mobilization due to high-frequency turbulence (Comola et al., 2019). This dust emission scheme 88 

has achieved better spatial correlations of dust column abundance against ground-based and 89 

satellite-derived dust optical depth in the Community Earth System Model version 2 (CESM2) 90 
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(Leung et al., 2023, 2024). However, the effects of these new developments of dust emission 93 

scheme on the bias against ground-based measurements of surface fine dust concentrations are 94 

less well known and require further investigation. 95 

The source and removal of dust in the size bins used in dust parametrizations can vary by orders of 96 

magnitude across the broad size range of mineral dust (Kok, 2011; Wang et al., 2014b; Zhang et al., 97 

2001). Accounting for this size heterogeneity among dust bins could enable better representation 98 

of the global dust cycle. Prior studies have found an underestimation of coarse dust emissions and 99 

an overestimation of fine dust (Cakmur et al., 2006; Kok, 2011; Kok et al., 2017). While various 100 

studies have focused on developing the representation of coarse or super coarse dust (Kok et al., 101 

2017; Meng et al., 2022), investigation of the effects of different emission size distributions on 102 

ambient fine dust are needed through comparison with in situ fine dust measurements. In addition, 103 

the developments and improvements of parallel computing in air quality or climate models 104 

(Eastham et al., 2018; Harris et al., 2020; Hu et al., 2018; Martin et al., 2022) offer computational 105 

capabilities to extend dust size bins with explicit treatments that could enable better 106 

representation of dust, especially with rapid variation in processes across different sizes. While the 107 

parametrization of dry deposition has been revisited and evaluated against observations (Emerson 108 

et al., 2020), below-cloud or washout scavenging has been generally limited to lumped treatments 109 

for fine and coarse aerosols in the bulk models (Jones et al., 2022; Wang et al., 2011, 2014a). 110 

Developments of the size-resolved parametrization for below-cloud (washout) scavenging (Wang et 111 

al., 2014b) are promising to improve the wet deposition of fine dust, which is especially important 112 

in distant downwind regions due to long-range transport. 113 

Many studies have examined daily dust variability for the purpose of short-term prediction (Amato 114 

et al., 2013; Tindan et al., 2023; Yu et al., 2021). Our study focuses on a different objective of 115 

accuracy of annual mean concentrations. 116 

In this study, we implement recent developments of a new dust emission scheme with further 117 

refinements including the clay content and wetness in the topsoil layer; reducing the dust 118 

emissions over wet, snow and vegetation covered land surfaces; while constraining the global and 119 

regional source with satellite aerosol optical depth (AOD). We revisit the size distribution of emitted 120 

dust, explicitly track mineral dust with geometric diameter less than 2 μm in four size bins, and 121 

update the parametrization for size-resolved washout scavenging. We conduct sensitivity 122 

Deleted:  (Kok, 2011; Kok et al., 2017)123 

Deleted: over size ranges 124 

Deleted: top soil125 



 

 5 

simulations using the GEOS-Chem chemical transport model in its high performance configuration 126 

(GCHP) to investigate the effects of these developments. We focus on improving the annual fine 127 

dust representation in GCHP from the surface to the column, by comparisons against ground-level 128 

fine dust measurements, and against the ground-based and satellite-retrieved AOD over dusty 129 

regions of the Sahara, the Middle East and Asia. 130 

2 Data sources and model description 131 

2.1 Data sources 132 

Ground-based AOD measurements are obtained from the Aerosol Robotic Network (AERONET) 133 

Version 3 Level 2 database with improved cloud screening (Giles et al., 2019). The median number 134 

of days with AERONET measurements is 168 days for each site. We average daily AERONET AOD to 135 

an annual mean in the year of 2018. We use satellite retrievals of AOD from the Deep Blue 136 

algorithm (Hsu et al., 2019) based on Collection 6.1 of the Moderate Resolution Imaging 137 

Spectroradiometer (MODIS) instrument aboard the satellite platforms of Terra with local overpass 138 

around 10:30 and of Aqua around 13:30, and the Version 2.0 Deep Blue aerosol global product of 139 

the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments aboard the joint NASA/NOAA 140 

Suomi National Polar-orbiting Partnership (Suomi NPP) and NOAA-20 satellites with local overpass 141 

around 13:30 (Cao et al., 2014). We choose the Deep Blue aerosol product due to its optimization 142 

for the retrieval of aerosol properties over bright surfaces, which is typical over arid regions. We 143 

average daily Deep Blue aerosol data for the year 2018. Simulated AOD is coincidently sampled 144 

with available daily Deep Blue AOD. We compare simulated AOD over mainly dusty regions 145 

(defined as AOD!"#$ AOD⁄ > 0.5 from simulations) against satellite and AERONET AOD to reduce 146 

the effects of errors in other AOD components and focus on the performance of mineral dust.  147 

We use the Version 4.2 Level 3 gridded cloud-free tropospheric aerosol extinction profile product 148 

during daytime and nighttime of the last 15 years (2007–2021) retrieved from the Cloud–Aerosol 149 

Lidar with Orthogonal Polarization (CALIOP) on board the Cloud–Aerosol Lidar Infrared Pathfinder 150 

Satellite Observations (CALIPSO) satellite for climatological aerosol profiles (Young et al., 2018). 151 

We use global ground-based data from the Surface Particulate Matter Network (SPARTAN; 152 

https://www.spartan-network.org/, last access: 4 February 2025) with filter-based PM2.5 chemical 153 

composition data (Liu et al., 2024; Snider et al., 2015). Particles with aerodynamic diameter less 154 
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than 2.5 μm are collected on Teflon filters using AirPhoton SS5 sampling stations with a sharp-cut 173 

cyclone (SCC) 1.829 that operates at a target flow rate of 5 liter per minute (Lpm). The sampling 174 

station follows either a standard sampling protocol or the National Aeronautics and Space 175 

Administration (NASA) − Italian Space Agency (ASI) Multi-Angle Imager for Aerosols (MAIA) 176 

sampling protocol. Under the standard sampling protocol, PM2.5 is collected at staggered 3-hour 177 

intervals over a 9-day period, generating a 24-hour PM2.5 sample covering a full diel cycle. Under the 178 

MAIA sampling protocol, PM2.5 is collected continuously for 24 hours from 9 am to 9 am at a 179 

mission-defined frequency, which has been typically every 3 days during the sampling periods used 180 

here. The starting dates for MAIA sites are listed in Table A1. SPARTAN samples are analyzed for 181 

fine mineral dust concentrations using X-ray Fluorescence (XRF) and a global mineral dust 182 

equation (Equation (A1); Liu et al., 2022) including correction of attenuation effects due to mass 183 

loading. The 5-year averaged surface fine dust concentrations from SPARTAN sites are listed in 184 

Table A1. We use data from sites with at least 10 samples for the 5-year (2019–2023) period after 185 

the network began using XRF with samples. A sensitivity analysis requiring at least 50 samples per 186 

site is also conducted. This study used 2,296 filters from 25 SPARTAN sites for a total of 10,072 187 

observational days.  188 

Ground-based observations of PM2.5 dust over North America are constructed with a global dust 189 

equation (Equation (A1); Liu et al., 2022) and the elemental measurements  from the Air Quality 190 

System (AQS) database for speciated PM2.5 observations in the United States 191 

(https://aqs.epa.gov/aqsweb/airdata/download_files.html#Daily, last access: 8 April 2025) and 192 

from the National Air Pollution Surveillance Program in Canada (https://data-193 

donnees.az.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-naps-program/Data-194 

Donnees/2018/?lang=en, last access: 8 April 2025). The AQS database includes measurements 195 

from both the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical 196 

Speciation Network (CSN) networks. 197 

2.2 GEOS-Chem chemical transport model 198 

We use the GEOS-Chem chemical transport model (http://www.geos-chem.org, last access: 4 199 

February 2025) in its high-performance configuration (Eastham et al., 2018) version 14.4.1 (The 200 

International GEOS-Chem User Community, 2024) with improved performance and usability 201 

(Martin et al., 2022). The model is driven by meteorological inputs from GEOS Forward Processing 202 

(GEOS-FP; https://gmao.gsfc.nasa.gov/, last access: 4 February 2025) with a fine resolution 203 
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0.25° × 0.3125° (~25 km) and 72 hybrid sigma-pressure vertical levels up to 0.01 hPa. GEOS-FP 215 

uses dynamic near-real-time assimilation algorithms compared to consistent static assimilation 216 

algorithms used in Modern-Era Retrospective analysis for Research and Applications Version 2 217 

(MERRA-2; https://gmao.gsfc.nasa.gov/GMAO_products/, last access: 19 April 2025). We choose 218 

GEOS-FP over MERRA-2 for this study since GEOS-FP offers finer resolution for dust emission 219 

calculations. 220 

GEOS-Chem simulates detailed oxidant-aerosol chemistry in the troposphere and stratosphere, 221 

with gas-phase mechanism of HOx-NOx-BrOx-VOC-O3 chemistry (Bey et al., 2001; Wang et al., 222 

2021), coupled to aerosol chemistry for sulfate-nitrate-ammonium (SNA) aerosol (Park et al., 223 

2004), black carbon (BC) (Wang et al., 2014a), and primary and secondary organic aerosol (Pai et 224 

al., 2020), sea salt (Jaeglé et al., 2011), and natural and anthropogenic dust (Fairlie et al., 2007; 225 

Meng et al., 2021; Philip et al., 2017; Zhang et al., 2013). The gas-aerosol partitioning for SNA is 226 

computed by the HETP v1.0 thermodynamic module (Miller et al., 2024). We use the simple, 227 

irreversible, direct yield scheme for secondary organic aerosol production (Pai et al., 2020). The 228 

effects of aerosol on photolysis rates are computed with relative humidity dependent aerosol size 229 

distributions and optical properties for hydrophilic aerosols with improved parametrization for the 230 

effective radii of inorganic and organic aerosols (Latimer and Martin, 2019; Ridley et al., 2012; Zhu 231 

et al., 2023) and updated optical properties for aspherical hydrophobic mineral dust 232 

(http://geoschemdata.wustl.edu/ExtData/CHEM_INPUTS/CLOUD_J/v2025-01/FJX_scat-aer.dat, 233 

last access: 7 April 2025) for different dust size bins as calculated by Singh et al. (2024) using the T-234 

matrix method for an equiprobable mixture of prolate and oblate spheroids with varying aspect 235 

ratios using complex refractive indices from Sinyuk et al. (2003). 236 

The standard dry deposition scheme in GEOS-Chem accounts for gravitational settling, 237 

aerodynamic resistance with respect to turbulent transport within the surface layer, and surface 238 

resistance to particle-surface contact due to Brownian diffusion, impaction, and interception with 239 

an observation constrained parametrization (Emerson et al., 2020; Zhang et al., 2001). Wet 240 

deposition includes separate algorithms for scavenging in convective updrafts, and in-cloud and 241 

below-cloud scavenging from precipitation (Liu et al., 2001; Wang et al., 2011, 2014a). 242 

Emissions for GEOS-Chem are configured using the Harmonized Emissions Component (HEMCO) 243 

module v3.9.1 (Lin et al., 2021). Global anthropogenic emissions are from the Community 244 
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Emissions Data System (CEDS) v2 at 0.5° × 0.5° resolution (Feng et al., 2020). Offline emissions of 249 

lightning NOx (Murray et al., 2012), biogenic VOCs, soil NOx, sea salt (Weng et al., 2020) and mineral 250 

dust (Sections 2.3 and 4.2) at 0.25° × 0.3125° resolution are included to represent emission 251 

processes at the finest available resolution and to enable consistent emission fluxes across model 252 

resolutions. Open fire emissions are from the daily Global Fire Emissions Database (GFED) v4.1s 253 

(Giglio et al., 2013) at 0.25° × 0.25° resolution. Other default emission inventories in GCHP v14.4.1 254 

include volcanic SO2 emissions (Fisher et al., 2011), marine emissions of dimethylsulfide (DMS) 255 

(Breider et al., 2017) at 1° × 1° resolution, and ammonia at 0.25° × 0.25° resolution (Bouwman et 256 

al., 1997; Croft et al., 2016). We conduct GCHP simulations at C48 (~200 km) resolution for the full 257 

year of 2018 following a one-month spin-up. 258 

2.3 Default dust emission scheme 259 

The default dust emission scheme in GEOS-Chem (hereafter GC Dust) originally implemented by 260 

Fairlie et al. (2007) is based on the semi-empirical Mineral Dust Entrainment and Deposition 261 

(DEAD) emission scheme (Zender et al., 2003) and the GOCART topographical source function 262 

(Ginoux et al., 2001) updated to a fine resolution of 0.25° × 0.25° (Meng et al., 2021). The total dust 263 

emission flux in kg m-2 s-1 is calculated based on Zender et al. (2003) and Fairlie et al. (2007): 264 

𝐹& = 𝐶'𝐶()𝑓*+,-𝑆𝜑𝑄. (1) 265 

where 𝐶' is a global scaling factor and 𝐶() is a regional scaling factor in North America for total 266 

annual emissions of ~2000 Tg yr-1 as optimized by Meng et al. (2021); 𝑓*+,-  is the bare ground 267 

fraction as specified in Zender et al. (2003) to reduce dust emissions over wet, snow and vegetation 268 

covered surfaces: 269 

𝑓*+,- = (1 −	𝐴/ − 𝐴0/)(1 − 𝐴.120) 91 −
LAI
LAI$34<

(2) 270 

where 𝐴/, 𝐴0/, and 𝐴.120  is the fraction of land covered by lakes, wetlands, and snow, respectively. 271 

LAI is the leaf area index, and LAI$34 is the threshold LAI to reduce the bare soil fraction due to 272 

vegetation cover, which is set to 0.3 m2 m-2 by default. 273 

𝑆 is a topographical source function (Ginoux et al., 2001) updated at fine resolution of 0.25° × 0.25° 274 

and multiplied by the fraction of bare surface within each grid cell (Meng et al., 2021); 𝜑 is the 275 
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sandblasting efficiency to convert horizontal saltation flux to vertical dust flux (Marticorena and 279 

Bergametti, 1995): 280 

𝜑 = 1056.89()*+:8 (3) 281 

where 𝑓;/+<  is the clay content in the topsoil layer and is set to a global constant value of 0.2 to 282 

reduce excessive sensitivity of dust emission fluxes to 𝑓;/+<  (Zender et al., 2003). 𝑄. is the 283 

horizontal saltation flux as described in Section A2. 284 

2.4 Size distribution of emitted dust 285 

The default size distribution of emitted dust in GEOS-Chem implemented by Zhang et al. (2013) is 286 

based on the Brittle Fragmentation Theory (Kok, 2011) with fitted parameter values for better 287 

agreement of dust observations from the Interagency Monitoring of Protected Visual Environments 288 

(IMPROVE) ground-based monitoring network in the United States: 289 

𝑑𝑉&
𝑑 ln𝐷&

=
𝐷&
𝑐= C

1 + erf H
ln(𝐷& 𝐷.III⁄ )

√2 ln 𝜎. LM exp C−9
𝐷&
𝜆 <

6

M (4) 290 

where 𝑉&  is the normalized volume for emitted dust aerosols in diameter of 𝐷&  in µm; 𝑐=  is the 291 

normalization constant to make the integration total of 𝑉&  of 1; 𝐷.III = 3.4	µm is the median diameter 292 

of soil particles; 𝜎. = 3.0 is the geometric standard deviation of soil particles; 𝜆 is the side crack 293 

propagation length, whose value is 8	µm in the default particle size distribution (PSD) used in the 294 

GEOS-Chem (GC PSD), and is 12	µm in the Kok PSD (Kok, 2011).  295 

Table 1. The binning of mineral dust in 4-bin and 7-bin simulations using GEOS-Chem. The 296 

geometric diameter range is listed in the bracket adjacent to each size bin in unit of µm. 297 

4-bin simulation 7-bin simulation 

DST1 (0.2–2.0) 

DSTbin1 (0.2–0.36) 
DSTbin2 (0.36–0.6) 

DSTbin3 (0.6–1.2) 

DSTbin4 (1.2–2.0) 

DST2 (2.0–3.6) DSTbin5 (2.0–3.6) 

DST3 (3.6–6.0) DSTbin6 (3.6–6.0) 

DST4 (6.0–12.0) DSTbin7 (6.0–12.0) 
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 301 

Dust aerosols are conventionally separated into several dust bins to compromise between 302 

accuracy and computational expense (Ginoux et al., 2001; Zender et al., 2003). Table 1 303 

summarizes the binning of mineral dust in 4-bin and 7-bin simulations. In the GEOS-Chem 304 

standard bulk configuration used here, 4 dust size bins are used including DST1 to DST4 covering 305 

geometric diameter of 0.2–12.0 μm (Fairlie et al., 2007). For DST1, 4 sub-bins of 0.2–0.36 μm, 0.36–306 

0.6 μm, 0.6–1.2 μm, and 1.2–2.0 μm are further separated for heterogeneous chemistry and AOD 307 

calculations, with shared emission, transport and deposition altogether as DST1 (Fairlie et al., 308 

2007). To improve submicron dust representation, we implement full separation of the 7 dust bins 309 

for coupled physical and chemical processes in GEOS-Chem, as discussed in Section 4.3.2. 310 

2.5 Reconciling geometric and aerodynamic diameter 311 

A recent study has emphasized the importance of reconciling the geometric diameter used in 312 

models and the aerodynamic diameter used in ground-based measurements, especially for 313 

mineral dust with higher particle density of ~2500 kg m-3 than the standard density of 1000 kg m-3 314 

and with aspherical shapes observed in the atmosphere (Huang et al., 2021). We harmonize the 315 

differences between geometric diameter and aerodynamic diameter based on Reid et al. (2003): 316 

𝐷+-, = 𝐷'-2U
𝜌&
𝜒𝜌>

(5) 317 

where 𝐷+-,  is the aerodynamic diameter; 𝐷'-2  is the geometric diameter; 𝜌& = 2500 kg m-3 is the 318 

dust density; 𝜌> = 1000 kg m-3 is the standard spherical particle density; 𝜒 is the dynamic shape 319 

factor calculated by 𝜒 = 5
? 9𝐹.

5 6⁄ + 5
A,
- .⁄ < and 𝐹. is Stokes form factor (Bagheri and Bonadonna, 320 

2016; Huang et al., 2020) which can be calculated by HWR( 5
BC
)5.6 where AR = 1.70 ± 0.03 is the 321 

particle length to width ratio, and HWR = 0.40 ± 0.07 is the particle height to width ratio (Huang et 322 

al., 2021). With this conversion, the aerodynamic diameter of 2.5 μm corresponds to the geometric 323 

diameter of 1.7 μm. The mass fraction of each simulated dust size bin to the total fine dust mass 324 

concentrations can be calculated by the integration of the dust size distribution of Equation (4) with 325 

the 𝜆 value of 8 μm of the default PSD used in the GEOS-Chem (GC PSD), which is 68% of DST1 326 

with diameter of 0.2–2.0 μm.  327 

Deleted: Table 1328 

Deleted: 12329 



 

 11 

In addition to harmonizing different size types used in models and measurements, prior studies 330 

also suggested that the sharpness of size cut-off of different inlets used to collect PM2.5 samples 331 

can affect the measured concentrations (Kenny et al., 2000; Peters et al., 2001). To evaluate the 332 

effects, we obtain the dust size distributions of different inlets by multiplying their penetration 333 

efficiencies (Peters et al., 2001) and GC PSD (Equation (4)). 334 

Figure 1 shows the effects of the sharpness of size cut on the size distribution of collected dust 335 

PM2.5 samples. All four inlets have a penetration efficiency of near unity for dust with geometric 336 

diameter less than 1.0 μm, which diminishes to 0.5 at a geometric diameter of 1.7 μm and further 337 

diminishes with increasing diameter. The Well Impactor Ninety-Six (WINS) referenced by the 338 

Federal Reference Method (FRM) exhibits the sharpest size cut. The corresponding dust PSD is 339 

sharply attenuated for geometric diameters greater than 1.7 μm. The resultant effects on the mass 340 

fractions of the dust size bin to be included in dust PM2.5 are small, with the mass fraction of DST1 341 

ranging from 65–70%. The mass fraction based on SCC 1.829 as used by SPARTAN differs by only 342 

−0.4% from that based on the original GC PSD without inlet penetration correction. In our Base 343 

simulation using the standard version of GEOS-Chem, we calculate surface PM2.5 dust as 67.6% of 344 

DST1 to account for both aerodynamic diameter and inlet collection efficiency. Neglect of these 345 

effects would have increased simulated PM2.5 dust concentrations by a factor of 2. 346 

 347 

Figure 1. Normalized particle size distribution (PSD) used by default in GEOS-Chem (GC PSD) in 348 

solid black with left axis; penetration efficiencies for different types of PM2.5 inlets shown in dashed 349 

colored lines with right axis, including the Well Impactor Ninety-Six (WINS), and three types of 350 

Sharp-Cut Cyclone (SCC) inlets; Solid colored lines show the adjusted GC PSD collected by 351 
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different inlets. Grey dash-dotted line indicates the corresponding geometric diameter of 1.7 μm 353 

for the aerodynamic diameter of 2.5 μm. Filled rectangles indicate size ranges of 4 dust size bins. 354 

Percentages adjacent to GC PSD and different inlets are mass fractions of DST1 for the calculation 355 

of PM2.5 dust concentrations. 356 

3 Strong overestimation of surface fine dust 357 

Figure 2 shows the spatial distributions of the annual total column AOD and surface PM2.5 dust 358 

from AERONET, SPARTAN, and the Base simulation using the standard version of GEOS-Chem in 359 

the year of 2018. Mineral dust largely determines the AOD in AERONET and GEOS-Chem over and 360 

downwind of the main dust source regions including the Sahara, Middle East, and the Taklamakan 361 

and Gobi deserts in Asia. The simulated AOD over dusty regions (simulated AOD!"#$ AOD⁄ > 0.5) 362 

exhibits a high degree of consistency versus the ground-based observations of AERONET AOD with 363 

the regression slope near unity and R2 of 0.7. However, the simulated surface PM2.5 dust exhibits a 364 

pronounced overestimation by a factor of 2.4 compared to the ground-based measurements of 365 

SPARTAN. Simulated PM2.5 dust is overestimated at the dusty sites of Abu Dhabi in the United Arab 366 

Emirates by 163%, Ilorin in Nigeria by 108%, and Kanpur in India by 96%. 367 

Figure 3 shows the vertical profile of the aerosol extinction normalized by AOD over the main dust 368 

source regions and associated downwind regions, to understand the significant performance 369 

difference between the surface and the column, with the absolute extinction profile shown in 370 

Figure A1. The simulated vertical profile exhibits overall agreement against the 15-year (2007 to 371 

2021) climatological mean extinction vertical profile from the CALIOP, with no evidence of a model 372 

overestimate in the lower mixed layer versus aloft, indicating the vertical distribution of mineral 373 

dust is not the main driver of the performance discrepancy between the surface and the column. 374 

However, further evaluations of the vertical profile near the surface are needed as CALIOP 375 

retrievals are challenging at lower altitudes especially below 100 m. 376 
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 385 

Figure 2. Annual simulated aerosol optical depth (AOD) and comparison against ground-based 386 

observations from AERONET over dusty regions (simulated AOD!"#$ AOD⁄ > 0.5) (top) in the year of 387 

2018; Annual simulated surface PM2.5 dust and comparison against ground-based measurements 388 

from SPARTAN (bottom) from the Base simulation in the year of 2018. Filled circles on the maps 389 

represent ground-based observations from SPARTAN and AERONET. Inset values at the bottom 390 

right of the maps are arithmetical mean with 5th and 95th percentiles in the square brackets. 391 

Regression statistics including reduced-major-axis linear regression equation, coefficient of 392 

variation (R2), total number of points (N), normalized mean difference (NMD), and normalized root-393 

mean-square difference (NRMSD) are listed at the bottom right of the scatter plots. Major source 394 

regions over land are outlined in red including: 1) the Sahara – SA, 2) Middle East – ME,  and 3) Asia – 395 

AS. Major dust outflow regions over ocean are outlined in green including: 4) the Caribbean Sea – 396 

CRB, 5) the tropical Atlantic Ocean – TAT, 6) the Mediterranean Sea – MED, 7) the Arabian Sea – 397 

ARB, 8) the tropical Indian Ocean and the Bay of Bengal – IND, and 9) the northwestern Pacific 398 

Ocean – NWP. 399 
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 406 

Figure 3. Comparisons of the annual extinction vertical profile normalized by total column aerosol 407 

optical depth from the Base simulation in the year of 2018 against the 15-year (2007 to 2021) 408 

climatological mean extinction vertical profile from the CALIOP over different regions including the 409 

major dust source regions over land of the Sahara – SA, Middle East – ME, and Asia – AS, and the 410 

major dust outflow regions over ocean of the Caribbean Sea – CRB, the tropical Atlantic Ocean – 411 

TAT, the Mediterranean Sea – MED, the Arabian Sea – ARB, the tropical Indian Ocean and the Bay of 412 

Bengal – IND, and the northwestern Pacific Ocean – NWP. 413 
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4 Model revisions to reduce the overestimation of surface fine mineral dust 414 

To reduce the overestimation of surface PM2.5 dust, we 1) implement a new dust emission scheme 415 

with further refinements for soil properties including the clay content and soil wetness in the top 416 

soil layer and the threshold of leaf area index, 2) revisit the size distribution of emitted dust, 3) 417 

explicitly track dust with geometric diameter less than 2 μm in four size bins, and 4) update the 418 

parametrization for size-resolved below-cloud scavenging. 419 

4.1 Sensitivity simulation setup 420 

Figure 4 summarizes the setup of sensitivity simulations to evaluate the effects of algorithmic 421 

modifications and their performance versus satellite-retrieved AOD and surface dust 422 

measurements. The default dust simulation (Base) in GEOS-Chem as implemented by Fairlie et al. 423 

(2007) uses the DEAD emission scheme (Zender et al., 2003) with a topographical source function 424 

(Ginoux et al., 2001; Meng et al., 2021) for natural dust (GC Dust) with 4 dust size bins for emission, 425 

transport and removal with 7 dust size bins for dust optical depth calculation and heterogeneous 426 

chemistry. To improve the spatial distributions of dust total column abundance, we implement a 427 

new dust emission scheme developed by Leung et al. (2023) (DustL23; Emis). Additional 428 

modifications on top of the original DustL23 emission scheme include 1) reducing the sensitivity of 429 

soil clay content by eliminating the multiplication of the factor of the capped soil clay content 𝑓;/+<D  430 

(EmisClay); 2) halving the topmost soil wetness in the layer of 0-5 cm to approximate the soil 431 

wetness in the top 1-2 cm layer which is most pertinent to dust emissions (Darmenova et al., 2009; 432 

Wu et al., 2022) (EmisClayWet); and 3) reducing the threshold of LAI$34 from 1.0 m2 m-2 to 0.5 m2 m-433 
2 (EmisClayWetLAIthr or Emis*). To further improve the surface fine dust simulation, we update the 434 

GEOS-Chem particle size distribution (PSD) with the PSD developed by Kok et al. (2011) 435 

(Emis*PSD) with a larger value for the side crack propagation length of 𝜆 (12 μm versus 8 μm) which 436 

reduced the mass fraction of emitted fine dust. The Kok PSD was shown to have excellent 437 

agreement versus various soil size measurements (Kok, 2011), especially for fine dust distributions 438 

(González-Flórez et al., 2023). Lastly, we allow for the four dust bins with geometric diameter less 439 

than 2 µm to have separate emission, transport, and dry and wet deposition while halving 440 

anthropogenic dust emissions from AFCID (Emis*PSD7Bins0.5AD), and with updated below-cloud 441 

or washout scavenging parametrization (Emis*PSD7Bins0.5ADWetDep). Each of these changes is 442 

examined below. 443 
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The total global annual source strength for each sensitivity simulation is scaled to achieve unity 444 

slope versus Deep Blue AOD (Figure A2) over major dust source regions. The surface PM2.5 dust 445 

concentrations are calculated by accounting for aerodynamic diameter and inlet penetration 446 

efficiency (Section 2.5) as 0.676 DST1 for 4-bin simulations, and DSTbin1 + DSTbin2 + DSTbin3 + 447 

0.546 DSTbin4 for 7-bin simulations. We focus our evaluation on the skill in representing in situ 448 

PM2.5 dust concentrations measured by SPARTAN, and in representing the spatial variation in 449 

annual mean AOD. Regression equations are calculated using reduced-major-axis linear 450 

regression (Smith, 2009) to account for uncertainties in both simulations and measurements. 451 

 452 

Figure 4. Sensitivity simulation setup. The grey box indicates default settings with the default dust 453 

emission scheme used in GEOS-Chem (GC Dust) with 4 dust size bins (Base). The orange box 454 

indicates the implementation of a modified dust scheme based on DustL23 (Emis*). Modifications 455 

based on the original DustL23 scheme with the soil texture dataset from the Global Soil Dataset for 456 

use in Earth System Models (GSDE) (Emis) include the soil clay content (EmisClay), soil wetness 457 

(EmisClayWet), and threshold leaf area index (EmisClayWetLAIthr). The simulation setup for 458 

EmisClayWetLAIthr is the same as that for Emis*. The blue box indicates the modification of size 459 

distribution of emitted dust (Emis*PSD). The green boxes indicate the improvements for fine dust 460 

including explicit tracking of dust with diameter less than 2 μm with a total of 7 dust size bins with 461 

halved anthropogenic fugitive, combustion, and industrial dust (AFCID) emissions 462 

(Emis*PSD7Bins0.5AD), and updating below-cloud (washout) scavenging coefficients 463 

(Emis*PSD7Bins0.5ADWetDep). 464 

4.2 Improving the spatial distribution of mineral dust with updated emission scheme 465 

We implement into GEOS-Chem a new physics-based dust emission scheme developed by Leung 466 

et al. (2023) (DustL23) to replace the default dust emission scheme (Section 2.3) used in GEOS-467 

Chem (GC Dust). The spatial distributions of DustL23 in the Community Earth System Model 468 

version 2 (CESM2) exhibited better correlation against dust optical depth datasets and AERONET 469 
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AOD than the DEAD scheme (Leung et al., 2024). We modify DustL23 for implementation into 471 

GEOS-Chem by 1) reducing dust emissions over wet, snow, and vegetation covered surfaces of 472 

semi-arid regions using Equation (7) below, 2) eliminating the multiplication of the capped clay 473 

content of the topsoil in Equation (8) below, 3) halving the soil wetness in the layer of 0-5 cm to 474 

represent the soil wetness in the top 1-2 cm layer which is most pertinent to dust emissions 475 

(Darmenova et al., 2009; Wu et al., 2022), 4) applying a regional scaling factor of 0.6 over the 476 

Sahara to reduce its emissions (Equation (8)), and 5) scaling the global total emission flux to 477 

achieve unity regression slope of simulated AOD versus Deep Blue AOD over dusty regions. 478 

We begin with the formulation for total dust emission flux 𝐹&  in kg m-2 s-1 following Leung et al. 479 

(2024): 480 

𝐹& = 𝜂𝐶EF1-𝐶&𝑓*+,-𝑓;/+<D 𝜌+_𝑢∗.
? − 𝑢∗HE? a
𝑢∗.E 9

𝑢∗.
𝑢∗HE<

I
for	𝑢∗. > 𝑢∗HE (6) 481 

where 𝜂 is an intermittency factor, 𝐶EF1-  is a global tuning factor for the emission strength, 𝐶&  is the 482 

time-varying soil erodibility coefficient, 𝑓*+,-  is the bare ground fraction, 𝑓;/+<D  is the clay content in 483 

the topmost soil layer of 𝑓;/+<  capped at 0.2, 𝜌+  is the surface air density in kg m-3, 𝑢∗. is the soil 484 

surface friction velocity in m s-1 corrected from the surface friction velocity of 𝑢∗ by the drag 485 

partitioning effects of 𝐹-99, 𝑢∗HE  is the dynamic or impact threshold friction velocity in m s-1, 𝑢∗.E  is 486 

the standardized wet fluid threshold friction velocity in m s-1, and 𝜅 is the fragmentation exponent. 487 

We use 𝑢∗.E  in the denominator of Equation (6) following Kok et al. (2014) instead of 𝑢∗HE  following 488 

Leung et al. (2023) for tuning purpose. The parametrization details for these factors following Leung 489 

et al. (2023) can be found in Appendix Section A3. 490 

We modify the DustL23 scheme (Leung et al., 2023) by adopting the equation for the bare ground 491 

fraction in Zender et al. (2003) to reduce dust emissions over wet, snow and vegetation covered 492 

surfaces with the dry erodible land fraction taken from satellite-based land cover: 493 

𝑓*+,- = 𝐴-,2&(1 − 𝐴.120) 91 −
LAI
LAI$34<

(7) 494 

where 𝐴-,2&  is the area fraction of erodible surfaces including barren and sparsely vegetated land 495 

cover taken from the MODIS Land Cover Climate Modeling Grid (CMG) (MCD12C1) Version 6.1 data 496 

product; 𝐴.120  is the area fraction of snow cover, LAI is the leaf area index (Yuan et al., 2011), and 497 
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LAI$34 is the threshold LAI to reduce the bare soil fraction due to vegetation cover. We set an 500 

intermediate value of LAI$34 = 0.5 m2 m-2 instead of 1.0 m2 m-2 in Leung et al. (2023) to represent 501 

the reduction in dust emissions from sparse vegetation over semi-arid regions, which is more 502 

similar to the value of 0.3 used in prior work (Mahowald et al., 1999; Zender et al., 2003). 503 

The enhancement factor 𝑓J ≥ 1 for the wet fluid threshold friction velocity due to soil wetness is 504 

calculated using Equations (A8) and (A9), but with spatially varying clay content 𝑓;/+<  in the topsoil 505 

layer. The gridded 𝑓;/+<  dataset is taken from the Global Soil Dataset for use in Earth System 506 

Models (GSDE) with various inputs from global and regional soil database (Shangguan et al., 2014), 507 

rather than the machine-learning trained Soil Grids v2.0 dataset with very few observations over 508 

arid regions (Poggio et al., 2021) used in Leung et al. (2023). In addition, we reduce the effects of 509 

clay content on dust emissions by eliminating the multiplication of the capped clay content 𝑓;/+<D . 510 

Soil wetness is taken from the parent meteorological inputs of GEOS-FP (Koster et al., 2020) which 511 

targets the top 5 cm layer that desiccates more slowly following precipitation than the soil wetness 512 

in the top 1-2 cm layer (Swenson and Lawrence, 2014) that is most pertinent to dust emissions; we 513 

halve the soil wetness in an attempt to represent this process (Darmenova et al., 2009; Wu et al., 514 

2022). 515 

The global scaling factor 𝐶EF1-  is determined by the reduced-major-axis linear regression slope of 516 

simulated AOD versus satellite-retrieved AOD over dusty regions (BK!4567
BK!

> 0.5) in this study to 517 

constrain the intensity of dust emissions, whose values corresponding to different emission 518 

schemes are listed in Table A2. Additionally, a regional scaling factor of 0.6 over the Sahara (𝐶.+L) 519 

and unity elsewhere is applied to reduce regionally excessive dust emissions that may be 520 

influenced by the tendency for global models to overrepresent emissions from large source regions 521 

compared with smaller sources (Kok et al., 2021a; Zhao et al., 2022). 522 

The final formulation for dust emission flux is: 523 

𝐹& = 𝜂𝐶.+L𝐶EF1-𝐶&𝑓*+,-
𝜌+_𝑢∗.

? − 𝑢∗HE? a
𝑢∗.E 9

𝑢∗.
𝑢∗HE<

I
for	𝑢∗. > 𝑢∗HE (8) 524 

The calculated offline hourly dust emissions at 0.25° × 0.3125° resolution using Equation (8) are 525 

then used to drive GCHP simulations at C48 resolution. The spatial distributions predicted from 526 

different emission schemes are evaluated against satellite-based Deep Blue AOD, ground-based 527 
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AERONET AOD, and SPARTAN surface PM2.5 dust measurements. 538 

Figure 5 shows the spatial distributions of annual dust emission fluxes and dust optical depth 539 

predicted from different emission schemes, with Figure 6 showing the comparisons against Deep 540 

Blue satellite AOD globally and over major dust source regions. Comparison of the Base and Emis 541 

schemes reveals that the latter captures more secondary dust emission spots, especially over the 542 

Sahara, and inland dust sources in Saudi Arabia. However, the comparison against Deep Blue AOD 543 

over the Sahara is degraded versus the default scheme (Figure 6). As suggested by prior studies, 544 

soil clay content is an important factor affecting the threshold friction velocity (Fécan et al., 1999; 545 

Tian et al., 2021; Zender et al., 2003) and sandblasting efficiency (Zender et al., 2003), and is often 546 

tuned for the optimization of dust emissions (Leung et al., 2024; Tian et al., 2021). Eliminating the 547 

multiplication of the capped clay content of 𝑓;/+<D  reduces the effects of the clay content, 548 

increasing emissions from the Bodélé Depression in Chad and El Djouf across the border of 549 

Mauritania and Mali over the Sahara, from the Rub' al Khali desert in the inland Saudi Arabi, and 550 

Taklamakan desert in the northwest China (Figure 5, EmisClay). Correspondingly, the R2 from the 551 

linear regression against Deep Blue AOD is improved from 0.60 to 0.70 over the Sahara, from 0.68 552 

to 0.77 over the Middle East, and from 0.35 to 0.56 over Asia (Figure 6). The other two modifications 553 

of halving soil wetness (EmisClayWet) and setting LAIthr to 0.5 m2 m-2 (EmisClayWetLAIthr) slightly 554 

improve the spatial distribution of dust emissions by reducing the underestimation in Asia while 555 

retaining the agreements in the Sahara and Middle East (Figure 6). Using the same dusty region of 556 

the Base (Figure A3) or EmisClayWetLAIthr (Figure A4) scheme for the comparisons of all dust 557 

emission schemes versus Deep Blue AOD confirms similarly slight improvements of regional dust 558 

emissions. Together these refinements exhibit comparable global performance as the Base 559 

simulation versus Deep Blue AOD with improvements to the relative regional magnitude of dust 560 

across the Sahara, Middle East and Asia as indicated by more comparable regression slopes 561 

(Figure 6). 562 

Figure 7 shows the evaluation of the Emis* (or EmisClayWetLAIthr) simulation with ground-based 563 

observations from AERONET and SPARTAN. The overestimation of surface PM2.5 dust against the 564 

ground-based measurements of SPARTAN is reduced from 94% (Figure 2) to 55% (Figure 7), 565 

reflecting regional improvements of the spatial distributions especially over the Middle East (Figure 566 

6). The skill in representing AOD in the Emis* simulation remains comparable to that in the Base 567 

simulation shown in Figure 2. 568 
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 581 

Figure 5. Annual dust emission flux (left) and simulated dust optical depth (AOD!"#$; right) in the 582 

year of 2018 zoomed in over dusty regions of the Sahara, Middle East, and Asia from different 583 

emission schemes as described in Figure 4. Inset values are the regional arithmetical mean with 584 

5th and 95th percentiles in the square brackets. 585 
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 590 

Figure 6. Comparisons of annual simulated aerosol optical depth (AOD) versus the Deep Blue 591 

satellite AOD globally (GL) and over main dust source regions of the Sahara – SA, Middle East – ME, 592 

and Asia (AS) with different emission schemes. Regression statistics including reduced-major-axis 593 

linear regression equation, coefficient of variation (R2), total number of points (N), normalized 594 

mean difference (NMD), and normalized root-mean-square difference (NRMSD) are in the top left. 595 

Note the total number of points varies across different schemes. 596 
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 597 

Figure 7. Annual simulated aerosol optical depth (AOD) and comparison against ground-based 598 

observations from the AERONET over dusty regions (AOD!"#$ AOD⁄ > 0.5) (top); Annual simulated 599 

surface PM2.5 dust and comparison against ground-based measurements from the SPARTAN from 600 

the Emis* simulation in the year of 2018 (bottom). Filled circles on the maps represent ground-601 

based observations from SPARTAN and AERONET. Inset values at the bottom right of the maps are 602 

arithmetical mean with 5th and 95th percentiles in the square brackets. Regression statistics 603 

including the reduced-major-axis linear regression equation, coefficient of variation (R2), total 604 

number of points (N), normalized mean difference (NMD), and normalized root-mean-square 605 

difference (NRMSD) are listed at the bottom right of the scatter plots. 606 

4.3 Improving the representation of fine mineral dust 607 

As the size distribution of mineral dust is particularly important for the performance discrepancy 608 

between simulated AOD over dusty regions and surface PM2.5 dust, we focus on improving its size-609 
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resolved source and sink. 613 

4.3.1 Revisiting the size distribution of emitted mineral dust 614 

Figure 8a shows different PSDs including the default PSD used in the GEOS-Chem (GC PSD) based 615 

on the brittle fragmentation theory with the side crack propagation length 𝜆 of 8 μm (Zhang et al., 616 

2013), the Kok PSD with 𝜆 of 12 μm (Kok, 2011), and the Meng PSD focusing on the optimization for 617 

coarse to super coarse dust (Meng et al., 2022), in comparison with the observed PSD from the 618 

2011 Fennec campaign (Ryder et al., 2013). While all modelled PSDs are within the wide range of 619 

PSD from the Fennec campaign, the fraction of emitted DST1 from the Kok PSD exhibits greater 620 

consistency with the Fennec observations than the other two PSDs. The larger discrepancy for the 621 

size distribution with diameter less than ~0.4 μm between the observed PSD from Fennec and 622 

parametrized PSDs is possibly due to anthropogenic aerosol influence (González-Flórez et al., 623 

2023). In addition, a recent field study in the Moroccan Sahara (González-Flórez et al., 2023) 624 

indicated overall agreement of emitted dust size distributions against the Kok PSD especially at the 625 

fine diameter range. Therefore, we adopt the Kok PSD with 𝜆 of 12 µm for the size distribution of 626 

emitted mineral dust in GEOS-Chem. Figure 8b shows the spatial distribution from the Emis*PSD 627 

simulation which remains similar to that from the Emis* simulation in Figure 7. Reduced emissions 628 

from DST1 by using the Kok PSD reduces the overestimation of surface PM2.5 dust from 55% to 33% 629 

compared to the ground-based measurements from SPARTAN (Figure 8c).  630 
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 637 

Figure 8. a) Normalized particle size distribution (PSD) of emitted dust based on default PSD used 638 

in GEOS-Chem (GC PSD) (Zhang et al., 2013), the Kok PSD (Kok, 2011), the Meng PSD (Meng et al., 639 

2022), and the Fennec PSD (Ryder et al., 2013). All PSDs are normalized for a total volumetric 640 

integration of 1 within the diameter range of 0.2 μm to 12 μm used in GEOS-Chem. The grey shades 641 

show the minimum and maximum PSD curves from the Fennec 2011 campaign. The grey dash-642 

dotted line indicates the corresponding geometric diameter of 1.7 μm for the aerodynamic 643 

diameter of 2.5 μm. Filled rectangles indicate size ranges of 4 dust size bins. Percentages adjacent 644 

to each PSD are mass fractions of emitted DST1 over total dust emission flux within diameter range 645 

of 0.2 μm to 12 μm. b) Simulated annual surface PM2.5 dust from the Emis*PSD simulation in the 646 

year of 2018. Filled circles on the map represent ground-based observations from SPARTAN and 647 

AERONET. Inset values at the bottom right of the maps are arithmetical mean with 5th and 95th 648 

percentiles in the square brackets. c) Comparison of simulated PM2.5 dust versus observed fine 649 

dust from SPARTAN. Regression statistics including the reduced-major-axis linear regression 650 

equation, coefficient of variation (R2), total number of points (N), normalized mean difference 651 

(NMD), and normalized root-mean-square difference (NRMSD) are listed at the bottom right. 652 
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4.3.2 Improving the size-resolved dry and wet deposition of mineral dust 657 

The default below-cloud (washout) scavenging of dust by rain and snow in GEOS-Chem is 658 

separated for fine (DST1) and coarse dust (DST2 to DST4) (Wang et al., 2011). However, washout 659 

scavenging coefficients strongly depend on aerosol size (Wang et al., 2014b). To improve the size-660 

dependent washout treatment of dust, we update washout rates by rain and snow for 7 dust size 661 

bins by (Wang et al., 2014b): 662 

𝛬 = 𝐴(𝐷&)(
𝑃&
𝑓,
)M(O9) (9) 663 

where 𝛬 is the washout scavenging coefficient in s-1 by either rain or snow; 𝑃&  is the precipitation 664 

rate in mm h-1 falling form upper layers; 𝑓,  is the area fraction of precipitation within each grid box; 665 

A and B are empirical constants dependent on dust size 𝐷&. Using the same semi-empirical 666 

equations for A and B as Wang et al. (2014b), the updated values for different dust size bins with 667 

different effective spherical radii are summarized in Table 2. 668 

Table 2. Values of A and B for washout parametrizations by rain and snow for different dust size 669 

bins. 670 

Diameter (μm) 
Rain (T ≥ 268 K) Snow (248 K ≤ T < 268 K) 

A B A B 

Bin1 (0.2–0.36) 4.0 × 10:Q 0.71 7.3 × 10:R 0.57 

Bin2 (0.36–0.6) 4.1 × 10:Q 0.71 1.3 × 10:S 0.56 

Bin3 (0.6–1.2) 4.8 × 10:Q 0.72 2.7 × 10:S 0.56 

Bin4 (1.2–2.0) 8.4 × 10:Q 0.73 6.0 × 10:S 0.55 

Bin5 (2.0–3.6) 4.8 × 10:S 0.88 4.2 × 10:8 0.61 

Bin6 (3.6–6.0) 2.2 × 10:8 0.87 1.3 × 10:6 0.67 

Bin7 (6.0–12.0) 3.4 × 10:8 0.84 2.4 × 10:6 0.73 

 671 

Figure 9 shows the size-dependent variations of mineral dust dry and wet deposition. We adopt the 672 

effective radii for 7 dust size bins for dry and wet deposition. The dry deposition velocity can vary by 673 

a factor of 4.9 among Bin1 to Bin4 with the minimum near the geometric diameter of 0.5 μm. The 674 

washout scavenging coefficient can vary by a factor of 2.6 among Bin1 to Bin4 with the minimum 675 
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near the geometric diameter of 0.4 μm. Given the steep increasing strength of emitted dust from 679 

Bin1 to Bin4 (Figure 8), there is need to explicitly track dust within DST1. We evaluate these 680 

developments by examining their effects on the fractional contributions of fine dust to total dust.  681 

Figure 10 shows the fractional contributions of fine dust with geometric diameter less than 2 µm to 682 

total dust (AODTUVW!"#$ AOD!"#$⁄ ) from the simulations with a total of 7 dust bins for dry deposition 683 

with updated washout scavenging parametrization and their differences. Due to the dominance of 684 

dry deposition over arid dusty regions, the explicit tracking of fine dust dry deposition slightly 685 

reduces AODTUVW!"#$ AOD!"#$⁄  over major dust source regions. However, the anthropogenic 686 

contributions to fine dust are correspondingly enhanced over urban and industrial regions, leading 687 

to degraded comparison against SPARTAN measurements (Figure A5). We thus halve the AFCID 688 

emissions to reduce the excessive contributions from this uncertain source 689 

(Emis*PSD7Bins0.5AD). In addition, accounting for the steep washout scavenging efficiency across 690 

DSTbin5 to DSTbin7 (Figure 9) with updated washout parametrization would induce enhanced 691 

fractional contributions especially for DSTbin5 (Figure A6) and thus relatively reduce fractional 692 

contributions from fine dust with geometric diameter less than 2 µm to total dust 693 

(AODTUVW!"#$ AOD!"#$⁄ ). Figure 11 shows the overall performance with all revisions from the 694 

simulation of Emis*PSD7Bins0.5ADWetDep. The reduced-major-axis linear regression slope is 695 

further reduced from 1.68 (Figure 8) to 1.59 with comparable values of NMD against SPARTAN 696 

measurements. 697 

Comparisons against other surface dust datasets also show improved or comparable performance 698 

compared to the Base simulation. Figure A7 shows the comparison against ground observations 699 

over North America. Using the refined new dust emission scheme with the replacement of the size 700 

distribution from the Kok PSD, explicitly tracking submicron bins for dry deposition, and updating 701 

the washout scavenging parametrization contribute to a comparable extent to reduce the 702 

overestimation over North America from 43% of the Base simulation to 15% of the 703 

Emis*PSD7Bins0.5ADWetDep simulation. Comparisons against surface concentrations and total 704 

deposition of PM10 dust (Li et al., 2022b) for the Emis*PSD7Bins0.5ADWetDep simulation are also 705 

comparable with the Base simulation (Figures A8 and A9). Consistent with prior studies about the 706 

spatial sensitivity of dust emissions (Leung et al., 2023; Meng et al., 2021), fine-resolution 707 

meteorological fields are needed to capture dust emission hotspots. If the dust emissions were 708 

calculated with C48 meteorological fields, the global dust distribution would become more 709 
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concentrated in the major global source regions with the elimination of marginal dust sources, and 732 

the R2 versus SPARTAN surface PM2.5 dust would diminish to 0.83 (Figure A10). Overall 733 

comparisons for the seasonal mean between the Base and the Emis*PSD7Bins0.5ADWetDep 734 

simulations confirm largely reduced overestimation for the surface fine dust against SPARTAN, 735 

while retaining comparable skill for the total column AOD against AERONET (Figures A11 to A14). 736 

The reduction of surface overestimation is especially prominent over dusty seasons in Spring (from 737 

73% to 48%) and Summer (from 138% to 50%), while further improvements are needed for surface 738 

overestimation in Fall (from 140% to 95%). 739 

Table 3 summarizes the effects of different modifications on the model performance of total 740 

column AOD and surface fine mineral dust in this study. Strong overestimation of surface PM2.5 741 

dust concentrations exist in the Base simulation by a factor of 2.4 versus SPARTAN measured dust. 742 

Updating the dust emission scheme with further refinements in the soil properties reduces the 743 

overestimation of surface PM2.5 dust by 39%. The surface overestimation by 55% is reduced to 35% 744 

by updating the size distribution of emitted dust, explicitly tracking dust with diameter less than 2 745 

μm in 4 bins, and updating the parametrization of below-cloud scavenging. The comparisons of 746 

simulated AOD versus AERONET and Deep Blue AOD are comparable for all simulations with the 747 

correlation coefficient of 0.8-0.9, and NMDs from −9% to 31%. The emissions between the Base 748 

and Emis* simulations are comparable with the global annual dust emission of ~2000 Tg yr-1, which 749 

is within the range of 1000-5000 Tg yr-1 from intercomparison projects (Huneeus et al., 2011; Wu et 750 

al., 2020). As the Kok PSD reduces the mass fraction of fine dust, the total emitted mass is 751 

enhanced to ~3000 Tg yr-1 with larger contributions from coarse dust. The reduction of surface PM2.5 752 

dust overestimation with these revisions is confirmed if SPARTAN sites are restricted to those with 753 

at least 50 samples as well (Table A3). 754 
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 762 

Figure 9. Size-resolved dry deposition velocity over desert (left y-axis) and washout scavenging 763 

coefficient by rain (right y-axis). Dry deposition velocity is calculated with the friction velocity of 0.4 764 

m	s:5 and the particle density of 2500 kg	m:6 with the default dry deposition scheme used in the 765 

GEOS-Chem. Washout scavenging coefficient is calculated with the precipitation rate of 0.1 766 

mm	h:5 with the updated washout parametrization. Solid lines indicate theoretical 767 

parametrization. Dashed lines indicate the default discrete treatment. Dotted lines indicate the 768 

updated discrete treatment. Grey dash-dotted line indicates the corresponding geometric 769 

diameter of 1.7 μm for the aerodynamic diameter of 2.5 μm.  770 
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 781 

Figure 10. Fractional contributions of fine dust with geometric diameter less than 2 µm to total dust 782 

column abundance (AODTUVW!"#$ AOD!"#$⁄ ) from the a) Emis*PSD7Bins0.5ADWetDep, b) 783 

Emis*PSD7Bins0.5AD, c) Emis*PSD and their absolute differences. Inset values at the bottom right 784 

are arithmetical mean with 5th and 95th percentiles in the square brackets.  785 
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 789 

Figure 11. Annual simulated aerosol optical depth (AOD) and comparison against ground-based 790 

observations from AERONET over dusty regions (AOD!"#$ AOD⁄ > 0.5) (top); Annual simulated 791 

surface PM2.5 dust and comparison against ground-based measurements from SPARTAN from the 792 

Emis*PSD7Bins0.5ADWetDep simulation in the year of 2018 (bottom). Filled circles on the maps 793 

represent ground-based observations from SPARTAN and AERONET. Inset values at the bottom 794 

right of the maps are arithmetical mean with 5th and 95th percentiles in the square brackets. 795 

Regression statistics including the reduced-major-axis linear regression equation, R2, total number 796 

of points (N), normalized mean difference (NMD), and normalized root-mean-square difference 797 

(NRMSD) are listed at the bottom right of the scatter plots. 798 
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5 Conclusions 845 

In summary, we evaluate and improve the annual mineral dust simulation in the GEOS-Chem 846 

model by building upon recent ground-based measurements from SPARTAN of mineral dust in 847 

PM2.5 over land, together with total column AOD from AERONET measurements and from the 848 

MODIS and VIIRS Deep Blue satellite products. We devote attention to the representation of 849 

aerodynamic diameter when comparing with ground-based PM2.5 measurements, since 850 

representation as geometric diameter in models would introduce a two-fold bias. We nonetheless 851 

find that the standard GEOS-Chem chemical transport model much better represents columnar 852 

AOD with a slope near unity than surface PM2.5 dust concentrations which are overestimated by a 853 

factor of two. Comparison of simulated extinction profiles versus the 15-year climatological 854 

CALIOP extinction profiles yields overall consistency in the vertical shape (Figure 3), indicating the 855 

importance of other dominant factors. 856 

We develop the mineral dust representation in GEOS-Chem with attention to its sources, size 857 

distribution, and sinks. We implement a new dust emission scheme based on Leung et al. (2023) 858 

with further refinements to the clay content and wetness in the topsoil layer, threshold leaf area 859 

index, and reducing dust emissions over snow and vegetation covered land surfaces. The NMD 860 

versus surface measurements is reduced by 39% while the simulated AOD better represents the 861 

spatial distribution of Deep Blue AOD over dusty regions. To further improve the fine dust 862 

representation in GEOS-Chem, we revisit the size distribution of emitted dust and find that the Kok 863 

particle size distribution (PSD; Kok, 2011) better represents the mass fraction of fine dust 864 

measured during the Fennec field campaign over Northern Africa than does the default PSD 865 

despite the uncertainties from the Fennec observations. The implementation of the Kok PSD into 866 

GEOS-Chem reduces the surface overestimation of PM2.5 dust by 22%. We also enable explicit 867 

tracking of mineral dust with geometric diameter less than 2 μm in 4 size bins for emission, 868 

transport, and deposition with updated parametrization for below-cloud scavenging, which further 869 

reduces the overestimation of surface PM2.5 dust concentrations to within 35%.  870 

Despite these advances, challenges remain in mineral dust development and evaluation. The 871 

performance of AOD against satellite and AERONET observations over dusty regions may still be 872 

affected by other aerosol components which may benefit from further evaluations and 873 

developments. Although the simulations are only for a single year, we average the multi-year 874 
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observational data from the CALIOP extinction profile and SPARTAN measured surface dust 883 

concentrations for long-term representativeness. This approach benefits from the weak 884 

interannual variability of annual mean mineral dust concentrations (Li et al., 2017; Song et al., 885 

2021). Nonetheless, additional observational data will enable further evaluation of the 886 

performance of mineral dust simulations. In addition, knowledge gaps remain for mechanistic 887 

representation of mineral dust emissions. We call for further developments on the parametrization 888 

of dust emissions, particularly for the uncertainties in global and regional dust emission strength 889 

and further constraints on the effects of soil wetness on the threshold friction velocity. Future 890 

examination of daily variability would also be valuable for short-term predictability. 891 

These investigations indicate the importance of size type reconciliation in models versus 892 

measurements, the spatial distribution of dust emissions, the size distribution of emitted dust, and 893 

the explicit tracking of fine dust bins for more accurate simulation of fine dust abundance from the 894 

surface to the column. 895 

Appendix A: Additional details about dust emission parametrizations, SPARTAN dust, 896 

and complementary figures 897 

A1. A global dust equation 898 

We follow a global dust equation for the calculation of surface PM2.5 dust concentrations from 899 

SPARTAN (Liu et al., 2022): 900 

Dust = [1.89Al × (1 + MAL) + 2.14Si + 1.40Ca + 1.36Fe + 1.67Ti] × CF (A1) 901 

where 1.89, 2.14, 1.40, 1.36, and 1.67 are the mass conversion ratios for corresponding mineral 902 

oxides; MAL is the mineral-to-aluminum mass ratio of (K2O + MgO + Na2O)/Al2O3; CF is a correction 903 

factor (CF) to account for other missing compounds.  904 

A2. Horizontal saltation flux in standard version of GEOS-Chem 905 

The default horizontal saltation flux 𝑄. in GEOS-Chem is based on the parametrization of White 906 

(1979): 907 

𝑄. = 𝐶X
𝜌+
𝑔
𝑢∗.6 91 −

𝑢∗9E
𝑢∗. < 9

1 +
𝑢∗9E
𝑢∗. <

?
for	𝑢∗. > 𝑢∗9E (A2) 908 
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where 𝐶X = 2.61 is the saltation constant; 𝜌+  is the air density in kg m-3; 𝑔 = 9.81	m	s:? is the 909 

gravitational acceleration; the drag partitioning effects are ignored by default and thus 𝑢∗. = 𝑢∗, 910 

where 𝑢∗ is calculated from the wind speed at 10 m 𝑢5>J based on the logarithmic wind profile 911 

within the boundary layer under adiabatic conditions (Marticorena and Bergametti, 1995): 912 

𝑢∗ =
𝑘𝑢5>J

ln(𝑧> 𝑧>+⁄ ) (A3) 913 

where 𝑘 = 0.4 is the von Kármán constant; 𝑢5>J is the wind speed at 10 m; 𝑧> = 10	m is the 914 

reference height; 𝑧>+ = 10:8	m is the surface roughness height. The wet fluid threshold friction 915 

velocity of 𝑢∗9E  is the minimum surface friction velocity required to initiate the saltation from the 916 

bare soil (Fécan et al., 1999): 917 

𝑢∗9E = 𝑢∗9E> ∙ 𝑓J (A4) 918 

where 𝑢∗9E> is the dry fluid threshold friction velocity following Iversen and White (1982): 919 

𝑢∗9E> = }

0.129𝐾

√1.928𝑅𝑒>.>Y? − 1
, 0.03 < 𝑅𝑒 < 10

0.12𝐾[1 − 0.0858𝑒:>.>R5Q(Z-:5>)], 𝑅𝑒 ≥ 10
(A5) 920 

where: 921 

𝐾 =
U
𝜌[𝑔𝐷[
𝜌+ H1 +

0.006
𝜌[𝑔𝐷[?.SL

(A6) 922 

𝑅𝑒 = 1331𝐷[5.SR + 0.38 (A7) 923 

Where 𝐷[ = 75	µm is the diameter of soil particle which corresponds to the minimum dry fluid 924 

threshold velocity of 𝑢∗9E> (Iversen and White, 1982). 925 

The enhancement factor 𝑓J ≥ 1 is a function of soil wetness (Fécan et al., 1999): 926 

𝑓J = �
1, 𝑤 ≤ 𝑤E

�1 + 1.21[100(𝑤 − 𝑤E)]>.R\, 𝑤 > 𝑤E
(A8) 927 

where 𝑤 is the gravimetric soil moisture (kg kg-1) in the shallowest soil layer; 𝑤E  is the threshold 928 
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gravimetric water content above which 𝑢∗9E  increases with soil wetness (Fécan et al., 1999): 929 

𝑤E = 0.01𝑎	_17𝑓;/+< + 14𝑓;/+<
?

a (A9) 930 

where 𝑎 is a tuning factor which is taken as 1 𝑓;/+<⁄ = 5 by default. 931 

A3. Additional details about the new dust emission scheme 932 

The variables used in the calculation for the total dust emission flux 𝐹&  (Equation (6)) can be 933 

categorized into meteorological fields including 𝜂, 𝜌+, and 𝑢∗, land surface properties including 934 

𝑓*+,-, 𝑓;/+<D , 𝐹-99, and 𝑢∗HE, intrinsic soil erodibility properties including 𝑢∗.E, 𝐶&, and 𝜅, and a global 935 

tuning factor of 𝐶EF1-. 936 

Intermittency effects due to the fluctuation of instantaneous soil friction velocity 𝑢�. are reflected in 937 

the intermittency factor of 𝜂, which is denoted by the temporal fraction of active dust emission 938 

ranging from 0 to 1 within a transport time step. The parametrization of 𝜂 is based on Comola et al. 939 

(2019): 940 

𝜂 = 1 − 𝑃9E + 𝛼_𝑃9E − 𝑃HEa (A10) 941 

where 𝑃9E  and 𝑃HE  are the cumulative probability of instantaneous friction velocity larger than a wet 942 

fluid threshold, and an impact threshold, respectively; 𝛼 is the fraction of 𝑢�. crossing a wet fluid 943 

threshold over the total fraction crossing a wet fluid threshold and an impact threshold.  944 

The calculation of 𝜂 is based on velocity at the saltation height of 𝑧.+/ = 0.1	m. Thus the surface 945 

friction velocity of 𝑢∗., and threshold velocities of 𝑢∗9E  and 𝑢∗HE  are first calculated at the saltation 946 

height based on (Marticorena and Bergametti, 1995): 947 

𝑢](𝑠𝑎𝑙) =
𝑢∗]
𝑘
ln 9

𝑧.+/
𝑧>+ <

(A11) 948 

where the subscript X can be ft, it or s, 𝑧>+ = 10:8	m, and 𝑘 = 0.386 is the von Kármán constant. 949 

Assuming a normal distribution of instantaneous soil friction velocity 𝑢�.	~Ν(𝑢., 𝜎F̂,
? ), a standard 950 

deviation of instantaneous friction velocity 𝜎F̂,  is a central parameter to calculate the fraction of 951 

active dust emissions within a time step for transportation. 𝜎F̂,  is calculated based on the similarity 952 



 

 36 

theory (Panofsky et al., 1977): 953 

𝜎F̂, = 𝑢∗. �12 − 0.5
𝑧H
𝐿�

5 6⁄
(A12) 954 

where 𝑧H  is the planetary boundary layer height, and L is the Monin-bukhov length calculated by 955 

(Panofsky et al., 1977): 956 

𝐿 = −
𝜌+𝑐[𝑇𝑢∗6

𝑘𝑔𝐻 (A13) 957 

where 𝑐[ = 1005	J	kg:5K:5 is the specific hear capacity of air under constant pressure; T is surface 958 

air temperature; 𝑢∗ in m s-1 is the original surface friction velocity without the drag partitioning 959 

correction; g = 9.81	m	s:? is the gravitational acceleration; H is the sensible heat flux from 960 

turbulence in W m-2. 961 

Given that a normal distribution is assumed, cumulative probabilities of 𝑃9E  and 𝑃HE  can be 962 

calculated by 𝑃9E = 0.5[1 + erf	(F<=:F,
√?`>?,

)], and 𝑃HE = 0.5[1 + erf	(F@=:F,
√?`>?,

)]. 𝛼 is the number of crossing 963 

rate of 𝑢�. across the wet fluid threshold 𝐶9E  over the total number of crossing rate of  𝑢�. across the 964 

wet fluid threshold 𝐶9E  and the impact threshold 𝐶HE  (Comola et al., 2019): 965 

𝛼 =
𝐶9E

𝐶9E + 𝐶HE
(A14) 966 

The crossing fraction of 𝛼 is approximated by 𝛼 ≈ [exp 9
F<=
A :F@=

A :?F,aF<=:F@=b
?`>?,

A < + 1]
:5 as suggested by 967 

Comola et al. (2019). 968 

The soil surface friction velocity of 𝑢∗. is calculated by (Leung et al., 2023; Marticorena and 969 

Bergametti, 1995; Webb et al., 2020): 970 

𝑢∗. = 𝑢∗𝐹-99 (A15) 971 

where 𝑢∗ is the surface friction velocity taken directly from the parent meteorological fields; 𝐹-99  is 972 

the drag partitioning effects due to the presence of non-erodible elements including rocks and 973 

vegetation. 974 
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Drag partitioning effects are calculated following Leung et al. (2023): 975 

𝐹-99 = _𝐴,𝑓-99,,
6 + 𝐴d𝑓-99,d6

a
5 6⁄

(A16) 976 

where 𝐴,  is the fraction of barren and sparsely vegetated land cover approximated by 𝐴-,2&; 𝐴d  is 977 

the fraction of short vegetation land cover taken from the MCD12C1 Version 6.1 land cover 978 

product; 𝑓-99,,  is the drag partitioning effects due to rocks (Marticorena and Bergametti, 1995): 979 

𝑓-99,, = 1 −
ln �

𝑧>+
𝑧>.�

ln C𝑏5 �
𝑋
𝑧>.�

*A

M

(A17) 980 

where 𝑧>+  is the aeolian roughness length which the surface roughness of overlaying nonerodable 981 

elements and was taken as the minimum of monthly mean gridded aeolian roughness length 982 

(Prigent et al., 2005); 𝑧>. =
OB
5S

 is the smooth roughness length which quantifies the roughness of a 983 

bed of fine soil particles in the absence of roughness elements (Pierre et al., 2014b); 𝑏5 = 0.7, 𝑏? =984 

0.8, and 𝑋 = 10	m are empirical constants (Leung et al., 2023). 𝑓-99,d  is the drag partitioning effects 985 

due to vegetation (Pierre et al., 2014a): 986 

𝑓-99,d =
𝐾 +	𝑓>𝑐
𝐾 + 𝑐 (A18) 987 

where 𝑓> = 0.32 and 𝑐 = 4.8 are empirical constants (Okin, 2008); 𝐾 is calculated by e
?
( 5
fBg fBg7CD⁄

−988 

1) (Leung et al., 2023; Okin, 2008). 989 

The wet fluid threshold velocity 𝑢∗9E  is calculated using Equation (A4), except the dry fluid threshold 990 

velocity 𝑢∗9E> is calculated by (Shao and Lu, 2000): 991 

𝑢∗9E> = �𝐴_𝜌[𝑔𝐷[ + 𝛾 𝐷[⁄ a 𝜌+⁄ (A19) 992 

where A = 0.0123 and 𝛾 = 1.65 × 10:8	kg	s:? are empirical constants (Darmenova et al., 2009; 993 

Leung et al., 2023); 𝐷[ = 127 ± 47	µm is the median diameter of soil particle as evaluated from 994 

various field measurements in Leung et al. (2023).  995 

Once the saltation is initialized, the threshold velocity required to maintain the saltation 996 
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diminishes, which is defined as the dynamic or impact threshold friction velocity 𝑢∗HE  in m s-1 997 

(Martin and Kok, 2018): 998 

𝑢∗HE = 𝐵HE𝑢∗9E> (A20) 999 

where 𝐵HE = 0.82. A prior study suggested that the impact threshold primarily governed the 1000 

saltation flux (Martin and Kok, 2018) and thus 𝑢∗HE  is adopted as the governing threshold in Equation 1001 

(14). 1002 

The standardized wet fluid threshold friction velocity 𝑢∗.E  was proposed and argued as a central 1003 

factor to characterize soil aridity by a prior study (Kok et al., 2014): 1004 

𝑢∗.E = 𝑢∗9E�𝜌+ 𝜌+>⁄ (A21) 1005 

where 𝜌+> = 1.225	kg	m:6 is the standard surface air density. 1006 

The fragmentation exponent of 𝜅 quantifies the sensitivity of 𝐹&  to 𝑢∗. and is capped at 3 to prevent 1007 

excessive sensitivity of the model to wind speeds according to (Kok et al., 2014; Leung et al., 2024): 1008 

𝜅 = 𝐶I
(𝑢∗.E − 𝑢∗.E>)

𝑢∗.E>
(A22) 1009 

where  𝐶I = 2.7 ± 1.0 and 𝑢∗.E> = 0.16	m	s:5 are constants.  1010 

The time-varying soil erodibility coefficient is a function of 𝑢∗.E  only (Kok et al., 2014): 1011 

𝐶& = 𝐶&>	exp 9−𝐶-
𝑢∗.E − 𝑢∗.E>

𝑢∗.E> < (A23) 1012 

where 𝐶&> = (4.4 ± 0.5) × 10:S and 𝐶- = 2.0 ± 0.3 are empirical constants. 1013 

  1014 
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Table A1. The mean and standard deviation (𝜎) of surface PM2.5 dust measured from 25 SPARTAN 1015 

sites with at least 10 samples in 5 years from 2019 to 2023 globally. Sites are sorted by the mean 1016 

surface PM2.5 dust concentrations. 1017 

Site 
# of 

sample
s 

Samplin
g daysa Sampling seasons Start date for 

MAIA sites 
Mean 

(μg m-3) 𝜎 (μg m-3) 

Abu Dhabi 113 1012 MAM, JJA, SON, 
DJF 

- 13.4 6.7 
Ilorin 47 411 MAM, JJA, SON, 

DJF 
- 11.2 15.6 

Kanpur 15 135 MAM, JJA, SON, 
DJF 

- 8.2 7.3 

Dhaka 49 170 MAM, JJA, SON - 6.8 3.5 

Addis Ababa 117 234 MAM, JJA, SON, 
DJF 

12/7/2022 4.9 1.6 

Beijing 83 424 MAM, JJA, SON, 
DJF 

8/30/2022 4.2 2.0 

Rehovot 181 571 MAM, JJA, SON, 
DJF 

11/5/2021 4.2 4.0 

Haifa 142 284 MAM, JJA, SON, 
DJF 

2/16/2022 3.3 3.4 

Seoul 83 744 MAM, JJA, SON, 
DJF 

- 2.5 1.5 

Fajardo 52 453 MAM, JJA, SON, 
DJF 

- 2.3 2.3 

Bujumbura 19 171 MAM, JJA, SON, 
DJF 

- 2.0 1.2 

Kaohsiung 122 244 MAM, JJA, SON, 
DJF 

8/20/2022 1.9 0.8 

Ulsan 77 682 MAM, JJA, SON, 
DJF 

- 1.9 1.3 

Pretoria 223 450 JJA, SON 4/15/2021 1.7 0.6 

Bandung 28 249 MAM, JJA, SON, 
DJF 

- 1.7 0.5 

Singapore 13 117 JJA, SON, DJF - 1.3 0.4 
Johannesbur
g 

166 331 MAM, JJA, SON, 
DJF 

4/7/2022 1.3 0.3 

Mexico City 49 425 MAM, JJA, SON, 
DJF 

- 1.3 0.5 

Taipei 211 421 MAM, JJA, SON, 
DJF 

1/27/2022 1.1 0.9 

Pasadena 242 484 MAM, JJA, SON, 
DJF 

11/9/2021 0.8 0.3 

Lethbridge 13 121 MAM, JJA, SON, 
DJF 

- 0.7 0.3 

Melbourne 34 307 MAM, JJA - 0.6 0.8 

Downsview 18 144 MAM, JJA, SON, 
DJF 

- 0.5 0.2 

Sherbrooke 83 687 MAM, JJA, DJF - 0.4 0.2 

Halifax 116 801 MAM, JJA, SON, 
DJF 

- 0.3 0.1 
aThe number of days when SPARTAN sampling occurred for a part of the day according to either the 1018 

standard 9-day protocol or the MAIA protocol. 1019 
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Table A2. The values of a global tuning factor Ctune used for different simulations. 1325 

Simulation Ctune 

Emis*  

    Emis 2.358 × 10:? 

    EmisClay 2.569 × 10:6	

     EmisClayWet 2.146 × 10:6 

    EmisClayWetLAIthr 2.170 × 10:6 

Emis*PSD 2.945 × 10:6 

Emis*PSD7Bins0.5AD 2.892 × 10:6 

Emis*PSD7Bins0.5ADWetDep 2.832 × 10:6 

 1326 

Table A3. Effects of different modifications on the model performance of simulated annual surface 1327 

PM2.5 dust versus SPARTAN over sites with >50 samples in terms of the correlation coefficient (r), 1328 

the reduced-major-axis linear regression slope, and the normalized mean difference (NMD). 1329 

Simulation 
Simulated surface PM2.5 dust versus SPARTAN 

r slope NMD (%) 

Base 0.96 2.71 115.8 
Emis*    

    Emis 0.97 2.24 87.1 

    EmisClay 0.97 2.01 45.7 

    EmisClayWet 0.97 2.30 89.8 

    EmisClayWetLAIthr 0.97 2.23 78.7 

Emis*PSD 0.97 1.90 53.1 

Emis*PSD7Bins0.5AD 0.96 1.85 64.6 

Emis*PSD7Bins0.5ADWetDep 0.97 1.80 58.2 

 1330 
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Table A4. Computational demand of 4-bin and 7-bin dust simulations 1333 

Type Number of physical cores (CPUs)a Throughput (d d-1) 
4 dust bins 108 78.9 
7 dust bins 74.2 

aCalculated on Intel® Xeon® Gold 6154 with the clock speed of 3.00 GHz. 1334 

 1335 

Figure A1. Same as Figure 3 but for the absolute extinction vertical profile. 1336 
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 1337 

Figure A2. Annual aerosol optical depth (AOD) from the Deep Blue satellite retrieval and 1338 

comparison against ground-based observations from AERONET in the year of 2018. Filled circles 1339 

on the map represent ground-based observations from AERONET. Inset values at the bottom right 1340 

of the map are arithmetical mean with 5th and 95th percentiles in the square brackets. Regression 1341 

statistics including the reduced-major-axis linear regression equation, coefficient of variation (R2), 1342 

total number of points (N), normalized mean difference (NMD), and normalized root-mean-square 1343 

difference (NRMSD) are listed at the top left of the scatter plot. 1344 
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 1347 

Figure A3. Same as Figure 6 but over the same dust source regions for the Base scheme for all dust 1348 

emission scheme comparisons versus Deep Blue AOD. 1349 
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 1352 

Figure A4. Same as Figure 6 but over the same dust source regions for the EmisClayWetLAIthr 1353 

scheme for all dust emission scheme comparisons versus Deep Blue AOD. 1354 

  1355 
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 1356 

Figure A5. Differences of the fractional contributions of fine dust with geometric diameter less than 1357 

2 µm to total dust column abundance (AODTUVW!"#$ AOD!"#$⁄ ) between the Emis*PSD7Bins and 1358 

Emis*PSD simulations (left); Comparison between simulated PM2.5 dust against SPARTAN 1359 

measurements from the Emis*PSD7Bins simulation with color coded by the differences of 1360 

AODTUVW!"#$ AOD!"#$⁄  between the Emis*PSD7Bins and Emis*PSD simulations over SPARTAN 1361 

sites. Open circles in the map indicate SPARTAN sites. Inset values at the bottom right of the map 1362 

are arithmetical mean with 5th and 95th percentiles in the square brackets. Regression statistics 1363 

including the reduced-major-axis linear regression equation, coefficient of variation (R2), total 1364 

number of points (N), normalized mean difference (NMD), and normalized root-mean-square 1365 

difference (NRMSD) are listed at the bottom right of the scatter plot. 1366 
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 1370 

Figure A6. Fractional contributions of DSTbin5 to total dust column abundance 1371 

(AOD!hijUVS AOD!"#$⁄ ) from the a) Emis*PSD7Bins0.5ADWetDep, b) Emis*PSD7Bins0.5AD, c) 1372 

Emis*PSD and their absolute differences. Inset values at the bottom right are arithmetical mean 1373 

with 5th and 95th percentiles in the square brackets. 1374 
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 1378 

Figure A7. Comparisons of simulated annual surface PM2.5 dust against ground-based observations 1379 

in the year of 2018 over North America from the Base (top), Emis*PSD (second), 1380 

Emis*PSD7Bins0.5AD (third), and Emis*PSD7Bins0.5ADWetDep (bottom) simulations. Filled 1381 

circles represent ground-based observations of surface PM2.5 dust concentrations. Inset values at 1382 

the bottom left are arithmetical mean with 5th and 95th percentiles in the square brackets. 1383 

Regression statistics including the reduced-major axis linear regression equation, coefficient of 1384 

variation (R2), total number of points (N), normalized mean difference (NMD), and normalized root-1385 

mean-square difference (NRMSD) are listed at the top left of right panels. 1386 
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 1390 

Figure A8. Annual simulated surface PM10 dust concentrations in the year of 2018 from the 1391 

simulations of a) Base, b) Emis*, c) Emis*PSD, and d) Emis*PSD7Bins0.5ADWetDep. Filled circles 1392 

represent ground-based observations of surface PM10 dust concentrations. Inset values at the 1393 

bottom right are arithmetical mean with 5th and 95th percentiles in the square brackets. Dash lines 1394 

in the scatter plots indicate variations within a factor of 5. Regression statistics including the 1395 

reduced-major-axis linear regression equation, coefficient of variation (R2), total number of points 1396 

(N), normalized mean difference (NMD), and normalized root-mean-square difference (NRMSD) are 1397 

listed at the top left of right panels. 1398 
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 1402 

Figure A9. Annual simulated total deposition of PM10 dust within the troposphere in the year of 2018 1403 

from the simulations of a) Base, b) Emis*, c) Emis*PSD, and d) Emis*PSD7Bins0.5ADWetDep. 1404 

Filled circles represent ground-based observations of surface PM10 dust deposition. Inset values at 1405 

the bottom right are arithmetical mean with 5th and 95th percentiles in the square brackets. Dash 1406 

lines in the scatter plots indicate variations within a factor of 5. Regression statistics including the 1407 

reduced-major-axis linear regression equation, coefficient of variation (R2), total number of points 1408 

(N), normalized mean difference (NMD), and normalized root-mean-square difference (NRMSD) are 1409 

listed at the top left of right panels. 1410 
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 1414 

Figure A10. Annual simulated aerosol optical depth (AOD) and comparison against ground-based 1415 

observations from AERONET over dusty regions (AOD!"#$ AOD⁄ > 0.5) (top); Annual simulated 1416 

surface PM2.5 dust and comparison against ground-based measurements from SPARTAN from the 1417 

Emis*PSD7Bins0.5ADWetDep simulation with the dust emissions calculated at C48 resolution in 1418 

the year of 2018 (bottom). Filled circles on the maps represent ground-based observations from 1419 

SPARTAN and AERONET. Inset values at the bottom right of the maps are arithmetical mean with 1420 

5th and 95th percentiles in the square brackets. Regression statistics including the reduced-major-1421 

axis linear regression equation, coefficient of variation (R2), total number of points (N), normalized 1422 

mean difference (NMD), and normalized root-mean-square difference (NRMSD) are listed at the 1423 

top left of the scatter plots. 1424 
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 1428 

Figure A11. Simulated seasonal mean (March, April, and May or MAM) aerosol optical depth (AOD; 1429 

a and c) and surface PM2.5 dust (b and d) from the Base and Emis*PSD7Bins0.5ADWetDep 1430 

simulations. Filled circles on the maps represent ground-based observations from SPARTAN and 1431 

AERONET. Inset values at the bottom right of the maps are arithmetical mean with 5th and 95th 1432 

percentiles in the square brackets. Comparisons of simulated AOD versus AERONET AOD over 1433 

dusty sites (AOD!"#$ AOD⁄ > 0.5), and simulated surface PM2.5 dust versus SPARTAN observations 1434 

are shown in the right panels. Regression statistics including the reduced-major-axis linear 1435 

regression equation, coefficient of variation (R2), total number of points (N), normalized mean 1436 

difference (NMD), and normalized root-mean-square difference (NRMSD) are listed at the bottom 1437 

right of the scatter plots. 1438 
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 1442 

Figure A12. Same as Figure A11 but for the seasonal mean of June, July, and August (JJA). 1443 
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 1447 

Figure A13. Same as Figure A11 but for the seasonal mean of September, October, and November 1448 

(SON). 1449 
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 1452 

Figure A14. Same as Figure A11 but for the seasonal mean of December, January, and February 1453 

(DJF).  1454 
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Code availability. The standard GEOS-Chem in its high-performance configuration version 14.4.1 1458 

can be downloaded at https://doi.org/10.5281/zenodo.12584305 (The International GEOS-Chem 1459 

User Community, 2024). The model source code, an example run directory, and the calculation 1460 

scripts for the hourly dust emission fluxes for the revised simulation can be downloaded at 1461 

https://doi.org/10.5281/zenodo.14510793 (Zhang, 2024).  1462 

Data availability. The surface PM2.5 dust measurements with the attenuation correction from 1463 

SPARTAN used in this study are publicly available at https://www.spartan-network.org/data (last 1464 

access: 18 March 2025). The PM10 dust and total deposition of dust are available at 1465 

https://doi.org/10.5281/zenodo.6989502 (Li et al., 2022a). The processed meteorological fields 1466 

from GEOS-FP are available at 1467 

http://geoschemdata.wustl.edu/ExtData/GEOS_0.25x0.3125/GEOS_FP/ (last access: 4 February 1468 

2025) with the soil porosity downloaded from the constant land-surface parameter of MERRA2 1469 

M2C0NXLND collection (https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, last access: 4 1470 

February 2025). The land cover dataset can be downloaded at 1471 

https://lpdaac.usgs.gov/products/mcd12c1v061/ (last access: 4 February 2025). The monthly 1472 

mean leaf area index at 0.5 degree can be downloaded at 1473 

http://globalchange.bnu.edu.cn/research/laiv6 (last access: 4 February 2025). The satellite-1474 

derived aeolian roughness data are available upon contacting Catherine Prigent. The GSDE soil 1475 

dataset can be downloaded at http://globalchange.bnu.edu.cn/research/soilw (last access: 4 1476 

February 2025).  1477 
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