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Abstract. The predictive accuracy of marine biogeochemical models is fundamentally limited by uncertainty in their 10 

parameter values. We present a parameter optimization framework using iterative Importance Sampling (iIS) to constrain the 

PISCES model by leveraging the rich, multi-variable dataset provided by Biogeochemical-Argo (BGC-Argo) floats. Using 

data from a BGC-Argo float in the North Atlantic, we assimilate a comprehensive suite of 20 biogeochemical metrics to 

constrain all 95 parameters of the PISCES model within a 1D vertical configuration. Our global sensitivity analysis (GSA) 

identifies parameters controlling zooplankton dynamics as the dominant source of model sensitivity for this specific site. We 15 

compare three strategies: (1) optimizing a subset of parameters for their strong direct influence (Main effects); (2) optimizing 

a larger subset that also includes parameters influential through non-linear interactions (Total effects); and (3) 

simultaneously optimizing all 95 parameters. All three approaches achieve a statistically indistinguishable and significant 

improvement in model skill, reducing Normalized Root Mean Square Error (NRMSE) by 54–56%. The rich, multi-variable 

dataset provides sufficient orthogonal constraints to yield posterior parameter distributions with negligible inter-correlation, 20 

shifting the long-standing challenge of correlated equifinality to uncorrelated equifinality, where a range of optimal 

parameter sets can be found independently. Parameter uncertainty is reduced by 16–41%, and the optimized ensembles 

demonstrate strong portability. While all strategies produce a similar, tightly constrained predictive spread for the 

assimilated variables, they differ significantly in computational cost and in their estimation of uncertainty for unobserved 

parts of the model. The prerequisite GSA was ~40 times more computationally expensive than the optimization, while the 25 

All-parameters strategy, by exploring the full parameter space, provides a more comprehensive and robust quantification of 

the model's uncertainty in unassimilated variables. We therefore conclude that directly optimizing all model parameters is 

the recommended strategy. This work delivers a validated, parameter set for the North Atlantic and demonstrates a scalable 

framework to advance biogeochemical modeling from using static, globally-uniform parametrization to developing a map of 

regionally-tuned parameters. 30 

https://doi.org/10.5194/egusphere-2025-4369
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

1 Introduction 

Since the beginning of industrialization, the world's oceans have absorbed approximately 26% of anthropogenic carbon 

dioxide (CO2) emissions (Friedlingstein et al., 2023), leading to profound changes in marine ecosystems. This increased CO2 

uptake is driving ocean acidification, which alters ocean chemistry (Doney et al., 2009), harms calcifying organisms (Orr et 

al., 2005), and disrupts broader biogeochemical processes (Hoegh-Guldberg et al., 2017). Concurrently, global 35 

deoxygenation, exacerbated by rising temperatures and ocean stratification (Keeling et al., 2010), is expanding oxygen 

minimum zones (Stramma et al., 2008), posing significant threats to marine life (Breitburg et al., 2018; Limburg et al., 

2020). These challenges are further compounded by more direct anthropogenic impacts, such as plastic pollution (Wilcox et 

al., 2015) and overfishing (Pauly et al., 2002) which disrupt food webs  (Dulvy et al., 2021) and degrade marine habitats 

(MacLeod et al., 2021). 40 

 

Numerical biogeochemical (BGC) models are essential tools for understanding, monitoring, predicting, and mitigating these 

human-induced changes (Fennel et al., 2022). These models simulate key three-dimensional ocean processes, such as 

nutrient and plankton dynamics and carbon cycling, for past, present, and future ocean conditions. By capturing the complex 

interactions among physical, chemical, and biological components of the marine environment, BGC models produce critical 45 

outputs that supports scientific research, inform environmental management strategies, and guides policy development to 

conserve marine ecosystems (Fennel et al., 2019).  

 

The accuracy of Ocean BGC models is fundamentally limited by the inherent uncertainty in their parameter values. This 

significantly affects their predictive skill, particularly when it comes to monitoring the ocean carbon sink (Mayot et al., 50 

2024) and for climate projections of the biological carbon pump (Löptien et al., 2021; Tagliabue et al., 2021; Henson et al., 

2022; Rohr et al., 2023; Wang and Fennel, 2024; Doléac et al., 2025). This parameter uncertainty stems from multiple 

sources. Many parameters are extrapolated from laboratory experiments using a limited selection of representative species or 

even specific laboratory strains; while this approach provides valuable insights, it falls short in simulations of diverse 

oceanic bioregions that host a vast diversity of organisms (Ward et al., 2010; Schartau et al., 2017). Furthermore, some 55 

parameters cannot be experimentally determined and are thus assigned wide plausible ranges. The resulting parametric 

uncertainty can be substantial (Schartau et al., 2017), leading to significant uncertainty in model predictions. Therefore, 

refining these model parameters is essential to improve the accuracy and reliability of BGC models. 

 

To address parameter uncertainty, the ocean biogeochemical modeling community has increasingly relied on data 60 

assimilation techniques that leverage observational data to constrain model parameters (Dowd et al., 2014; Schartau et al., 

2017; Fennel et al., 2022). This process typically begins with a sensitivity analysis to identify the most influential parameters 

(Chu et al., 2007). Parameters with minimal influence on model outcomes are fixed at reference values, while only the 
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influential control parameters are subsequently adjusted, usually around their nominal values. This common strategy, often 

based on local sensitivity analysis, is computationally efficient but fails to capture behavior across the entire parameter space 65 

or account for parameter interactions and other non-linear effects. 

 

Global sensitivity analysis (GSA) is a method that captures complex nonlinear interactions among parameters (Homma and 

Saltelli, 1996; Sobol′, 2001). Historically, the extensive computational demands of GSA restricted its practical use, but 

recent increases in computing power have greatly broadened its accessibility. Sobol' indices, a key GSA technique, quantify 70 

the influence of individual parameters and their interactions by apportioning the model output's variance among them. A key 

study by Prieur et al., (2019) applied this method to the PISCES biogeochemical model which has 74 parameters. They 

found that nearly every parameter significantly affected model behavior, largely through intricate non-linear interactions 

rather than solely through direct effects on model outputs. By contrast, a gradient-based analysis of the same model 

highlighted only two influential parameters, overlooking the critical dependencies revealed by the GSA. This finding implies 75 

that parameter-optimization efforts should include a large number of parameters to effectively reduce model-observation 

misfit. Furthermore, it underscores the limitations of traditional gradient-based optimization methods, which may fail to 

account for the broad impact of nonlinear parameter interactions. 

 

Fulfilling the need to optimize many parameters, however, requires information-rich observations. Traditional data sources, 80 

such as time-series stations and ocean-color satellite products, often lack the information content needed to constrain the 

large parameter sets of modern BGC models (Matear, 1995; Fennel et al., 2001; Friedrichs et al., 2007; Ward et al., 2010; 

Mamnun et al., 2022). Their vertical and temporal resolutions are too coarse, and the suite of measured variables too narrow, 

to fully inform the models (Fennel et al., 2022). Consequently, parameter-estimation studies based on such data frequently 

yield strong parameter correlations (Matear, 1995; Fennel et al., 2001; Mamnun et al., 2022), large posterior uncertainties 85 

(Ward et al., 2010), and optimized parameter sets that fail to reproduce independent observations (Friedrichs et al., 2007). 

Fundamentally, any one of these outcomes indicates that the assimilated data lack sufficient independent information to 

robustly constrain each parameter. 

 

BGC-Argo floats have revolutionized the acquisition of biogeochemical data by providing unprecedented data density at 90 

high vertical and temporal resolutions, while complementing the broad spatial coverage of traditional data sources (Claustre 

et al., 2020). These floats directly measure variables that correspond to key model state variables, including nitrate, 

chlorophyll-a, oxygen (Mignot et al., 2023), and particulate organic carbon (POC)—which represents the total biomass of 

phytoplankton, micro-zooplankton, and small detritus (Galí et al., 2022). Furthermore, the CANYON-B neural network 

(Bittig et al., 2018) can infer silicate, phosphate, dissolved inorganic carbon, and alkalinity from direct BGC-Argo 95 

measurements (oxygen, temperature, salinity), significantly expanding the suite of available float-derived biogeochemical 

information. These high-resolution profiles also illuminate seasonally variable phenomena such as the precise onset of the 
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North Atlantic bloom (Mignot et al., 2018). Because the profiles extend well below the euphotic zone, BGC-Argo data also 

resolve key vertical structures like the nitracline depth, deep-chlorophyll maxima (DCM), and oxygen-minimum zones 

(Mignot et al., 2014, 2023; Cornec et al., 2021; Bock et al., 2022; Liu et al., 2024). Each of these emergent properties 100 

provides a distinct constraint on different sets of model parameters. Crucially, dedicated scientific studies have quantified 

uncertainty estimates for each variable (Johnson et al., 2017; Mignot et al., 2019), supplying the error statistics required for 

robust data assimilation. Overall, this superior temporal-and-vertical coverage supplies a richer information set than other 

types of in situ datasets and should allow many more model parameters to be constrained. However, to date, parameter-

optimization studies have used BGC-Argo data primarily for chlorophyll-a and/or POC (Wang et al., 2020; Galí et al., 2022; 105 

Shu et al., 2022) no study has yet exploited the full suite of variables  

 

In this study, we develop and apply a framework to optimize the 95 parameters of the Pelagic Interaction Scheme for Carbon 

and Ecosystem Studies (PISCES) biogeochemical model (Aumont et al., 2015) by assimilating the full suite of observations 

from a BGC-Argo float in the North Atlantic. Our focus on this region is motivated by its critical role in the global carbon 110 

cycle (Takahashi et al., 2009; DeVries et al., 2014) , and by the fact that PISCES, despite its extensive use in operational 

(e.g., Copernicus Marine Service) and climate (e.g., CMIP6) applications, exhibits systematic biases there. These biases are 

particularly evident in the seasonal cycles of key biogeochemical processes such as net primary production and pCO2 

(Rodgers et al., 2023; Hieronymus et al., 2024). 

 115 

A central objective of this work is to identify the most effective and efficient parameter-selection strategy for such a high-

dimensional problem. We therefore evaluate and compare three distinct approaches: 

• Main Effects: Optimizing a parameter subset based on first-order Sobol' indices from a GSA. This strategy targets 

parameters that have a significant direct effect on model output, independent of other parameters. 

• Total Effects: Optimizing a larger subset based on total-order Sobol' indices. This strategy also includes parameters 120 

that are influential primarily through non-linear interactions with other parameters. 

• All Parameters: Optimizing all 95 model parameters simultaneously, providing a computationally simple alternative 

that bypasses the prerequisite GSA. 

 

Section 2 describes the data sets and model configurations used for the sensitivity analysis and subsequent optimization. 125 

Section 3 details the assimilation framework and the sensitivity-analysis methods. Section 4 reports the sensitivity results, 

defines the parameter subsets retained for optimization, and presents the resulting model skill. Section 5 discusses the 

implications, and Sect. 6 summarizes the main conclusions. 
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2 Data and Model Configuration 

2.1 BGC-Argo Data 130 

The primary dataset for this study comes from BGC-Argo float with World Meteorological (WMO) number #5904479. 

Operating in the North Atlantic from April 2014 to December 2017 (Fig. 1), the float collected vertical profiles of 

temperature, salinity, and four biogeochemical variables: chlorophyll-a concentration (Chl-a), particulate backscattering 

coefficient (bbp), nitrate concentration (NO3⁻), and dissolved oxygen (O2). The Chl-a data were taken from a curated, 

quality-controlled archive (https://www.seanoe.org/data/00911/102324/), in which raw fluorescence was corrected for dark 135 

counts, non-photochemical quenching, and physiological calibration. 

 

 

Figure 1. Trajectories of the BGC-Argo floats used in this study, identified by their World Meteorological Organization (WMO) 

numbers: 5904479 (blue), 6901485 (green), and 6901648 (red). Observations from float WMO 5904479, covering January 2015 to 140 
January 2016, served as the primary dataset for parameter optimization. Data from the additional floats (WMO 6901485 and 

WMO 6901648), sampling diverse regions of the North Atlantic basin and the Mediterranean Sea, were used to assess the 

portability of the optimized parameter set. 

 

Two independent BGC-Argo floats #6901485 and #6901648, are used to validate the portability of the optimized parameter 145 

sets. Both measure the same variables as the primary float (#5904479) but operate in fundamentally different environments, 

providing robust tests for generalization. 

 

The first validation float #6901485, also profiled in the North Atlantic, specifically in the western part of the Subpolar Gyre. 

While this region also features a prominent spring bloom, it is characterized by deeper winter convection and the influence 150 

of colder, fresher Arctic waters, providing a test of parameter robustness to different physical forcing within the same ocean 

basin. 
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The second float #6901648, operated in the oligotrophic Mediterranean Sea. This basin is defined by much lower nutrient 

availability, being particularly limited in phosphate relative to nitrate, yet its deep winter convection still drives a distinct, 155 

albeit less intense, spring bloom. This provides a challenging test of whether biological rate parameters tuned on a high-

nutrient system can generalize to a low-nutrient one. 

 

CTD profiles, additional BGC data and trajectory information were retrieved from the Argo CORIOLIS Global Data 

Assembly Centre (ftp://ftp.ifremer.fr/argo, accessed February 2025). These data were quality-controlled according to the 160 

standard Argo procedures (Wong et al., 2020). Biogeochemical variables (O₂, NO₃⁻, bbp) were processed with the 

established BGC-Argo procedures (Schmechtig et al., 2015, 2023; Thierry et al., 2018; Johnson et al., 2025). Particulate 

organic carbon (POC) concentration was estimated from bbp following (Mignot et al., 2023). 

 

To supplement the directly measured variables, we incorporated pseudo-observations of phosphate (PO₄³⁻), silicate (Si), total 165 

alkalinity (TA), and dissolved inorganic carbon (DIC). These were derived from the Copernicus Marine Service "Nutrient 

and Carbon Profiles Vertical Distribution" product (2025; https://doi.org/10.48670/moi-00048). This product supplies 

vertical profiles of nutrient concentrations (NO₃⁻, PO₄³⁻, and Si) and carbonate-system variables (TA, DIC) for every Argo 

float equipped with an O₂ sensor. These concentrations are estimated using the CANYON-B neural-network for nutrients 

and the CONTENT algorithm for DIC and TA (Bittig et al., 2018); both algorithms were trained on ~30 years of quality-170 

controlled profiles from the GLODAPv2 database (Olsen et al., 2016). 

 

First, to ensure the validity of the 1D model assumption, the time window was selected such that the float remained within a 

single water mass exhibiting weak horizontal gradients (Mignot et al., 2018). The prevalence of these quasi-one-dimensional 

dynamics is confirmed by the near-constancy of temperature and salinity below the mixed layer during the selected periods 175 

(e.g., Figs. 2a, 2c for float #5904479). This selection is crucial, as pronounced T-S changes at depth would otherwise imply 

movement across water-mass boundaries and lateral biomass variability that our 1-D PISCES configuration cannot represent. 
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Figure 2. Comparison of observed and modelled vertical profiles of physical properties along the trajectory of BGC Argo float 180 
#5904479 (January 2015-January 2016). Panels show in situ Argo observations (left column: a, c, e) and CMEMS-PHY output 

(right column: b, d, f) for: (a, b) potential temperature (°C), (c, d) salinity (PSU), and (e, f) potential density kg m-³). The x-axis 

represents time and the y-axis depth (0-1000 m). Solid black lines in panels indicate the mixed layer depth, calculated using a 

potential density threshold criterion of Δσ θ =0.03 kg m-³. The dashed black lines indicate the depth of the productive layer.  

 185 

Second, to minimize bias from initial conditions, the precise start date within this window was chosen to correspond to the 

time of minimum Root Mean Square Error (RMSE) calculated across all available direct and pseudo-observations, between 

the float data and the Copernicus Marine Service Global Ocean Biogeochemistry Analysis and Forecast (CMEMS-BGC) 

(https://doi.org/10.48670/moi-00015). The final, optimized start dates and resulting one-year analysis periods are: 11 Jan 

2015–14 Jan 2016 for float #5904479; 26 Nov 2013–6 Dec 2014 for float #6901485; and 21 Jan 2015–15 Feb 2016 for float 190 

#6901648. 
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2.2 Ocean color data 

We estimated the observational euphotic depth (𝑍𝐸𝑢𝑝ℎ𝑜𝑡𝑖𝑐 ) from the Copernicus Marine Service GlobColour product 

(https://doi.org/10.48670/moi-00281, accessed 31 Jan 2024). This product delivers monthly 4-km maps of the diffuse-

attenuation coefficient at 490 nm, Kd(490), obtained by merging multi-mission ocean-colour sensors. Following (Morel et 195 

al., 2007), we converted Kd(490) to the photosynthetically available radiation attenuation coefficient, Kd(PAR). The euphotic 

depth, 𝑍𝐸𝑢𝑝ℎ𝑜𝑡𝑖𝑐, is defined as the depth where 1% of surface PAR persists and was calculated as: 

𝑍𝐸𝑢𝑝ℎ𝑜𝑡𝑖𝑐 = 
− log(0.01)

𝐾𝑑(𝑃𝐴𝑅)
(1) 

2.3 Model description, framework and configurations 

The ocean circulation and thermodynamics are simulated with the Nucleus for European Modelling of the Ocean (NEMO) 200 

platform, version 4.2 (Madec et al., 2023). The lower-trophic-level biogeochemistry is handled by PISCES version 2 

(Aumont et al., 2015), which is distributed with NEMO 4.2. 

 

PISCES is a mechanistic ecosystem model that resolves 24 prognostic state variables. Phytoplankton growth can be limited 

by five nutrients: nitrate, ammonium, phosphate, silicate, and iron. The plankton community is represented by four 205 

functional types defined by size: two phytoplankton groups (nanophytoplankton and diatom-dominated microphytoplankton) 

and two zooplankton groups (micro- and mesozooplankton). The model simulates phytoplankton biomass through its carbon, 

iron, and Chl-a content (and silicate for diatoms), while zooplankton biomass is simulated in carbon only. Three non-living 

organic carbon pools—semi-labile dissolved organic matter, small particles, and large particles—are distinguished by size 

and reactivity. Particles carry both carbon and iron, while large particles also include calcium carbonate and biogenic silica. 210 

PISCES additionally resolves the seawater carbonate system (DIC and TA) and dissolved oxygen. In this study, we adopt the 

default parameter set supplied with PISCES v2 as our reference configuration. 

 

To conduct our analysis, we employ two complementary configurations of the NEMO-PISCES v2 model. A computationally 

lightweight 1-D column setup is used for the large optimization ensembles, while a global 3-D configuration supplies the 215 

state variable estimates needed to calculate the representativeness error (as described in Sect. 3.7). 

2.3.1 1D configuration 

The parameter optimization method used in this study, Iterative Importance Sampling (iIS), is computationally intensive 

because it requires thousands of simulations to explore large parameter spaces, rendering its direct application to fully three-

dimensional (3-D) configurations prohibitive in terms of CPU time and storage. To reduce cost, we follow the common 220 
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practice of carrying out the optimization in a lightweight one-dimensional (1-D) set-up (Schartau and Oschlies, 2003; 

Hoshiba et al., 2018). 

 

This strategy is valid only if the assimilated BGC-Argo profiles meet a quasi-1-D assumption; we ensure this by selecting 

floats located in water masses with weak lateral gradients (Mignot et al., 2018). In the cost function we combine 225 

observational errors with a representativeness term that captures unresolved 3-D variability present in the observations but 

absent from the 1-D model. Including this error prevents the optimization from compensating for missing physics and yields 

a more reliable calibration. 

 

The 1D setup neglects both horizontal and vertical advection, retaining only vertical turbulent diffusion and surface flux 230 

boundary conditions (Reffray et al., 2015). The biogeochemical model runs offline, forced by two sets of data: (1) daily 

profiles of temperature, salinity, and vertical diffusivity extracted from the 1/12°Copernicus Marine Service global physical 

(CMEMS-PHY) analysis (https://doi.org/10.48670/moi-00016), and (2) the same surface atmospheric fluxes used to drive 

the CMEMS-PHY product. 

 235 

The 1D configuration simulates a Lagrangian water column that follows each of the three floats described in Sect. 2.1 (one 

for optimization and two for validation). For each of these simulations, the vertical grid comprises 75 levels, with 24 in the 

upper 100 meters and a surface resolution of 1 meter that progressively decreases with depth. A flat bottom at 3000 m 

represents a consistent bathymetry, matching the deep-water environments sampled. 

 240 

The model is initialized at the optimal start date for each float using a hybrid approach that combines data from three 

primary sources (Table 1). A key challenge is initializing the model's Plankton Functional Types (PFTs) using bulk 

observations from the BGC-Argo float. The PISCES model simulates distinct pools for Chl-a and Particulate Organic 

Carbon (POC) associated with different PFTs, whereas the float provides only a single, integrated measurement for each. To 

bridge this gap, we disaggregated the bulk observational data using component ratios derived from the CMEMS-BGC 245 

analysis. 

 

Specifically, the total observed Chl-a was distributed between the model's nanophytoplankton and diatom pools based on 

their relative proportions in CMEMS-BGC. A similar procedure was applied to the total observed POC, which was 

partitioned among its four constituent pools in the model: nanophytoplankton, diatoms, microzooplankton, and small 250 

detritus. This method ensures that the sum of the initialized components for both Chl-a and POC precisely matches the total 

value observed by the float. 
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Table 1. Initialization methods and data sources for state variables in the one-dimensional (1D) biogeochemical model simulation.  

Initialization Method/Source State variable 

From BGC-Argo observations NO3
-
, PO4

3-
, Si, O2, TA, DIC 

From BGC-Argo profile structure : 

inter-variable ratios constrained by 

CMEMS-BGC model 

POC = Small detrital particles 

+PHY+PHY2+ZOO 

CHL = NCHL+DCHL 

From CMEMS-BGC model output 
BFe, DFe, NFe, SFe, Fe, CaCO3, DOC, 

GOC, DSi, Gsi, NH4
+, PHYC, ZOO2 

 255 

For variables not directly measured but inferred from float data, initial values were taken from the CANYON-B/CONTENT 

neural network products (pseudo-observations). Finally, initial conditions for any remaining unobserved variables were 

prescribed from the CMEMS-BGC analysis. 

2.3.2 3D configuration 

A global NEMO-PISCES configuration is run to estimate the representativeness error associated with unresolved three-260 

dimensional processes in the 1-D setup. To ensure methodological consistency, the global system uses the same NEMO 4.2-

PISCES v2 code base as the 1-D configuration, but with the biogeochemistry running online. The grid has a 1/4° horizontal 

resolution and 75 vertical levels. The simulation spans 2010–2022 and is forced with ERA5 atmospheric reanalysis (Brodeau 

et al., 2010; Hersbach et al., 2020) plus a terrestrial heat-flux correction from (Lucazeau, 2019). We refer to this experiment 

as the '3D-Free' simulation, which is a fully free-running integration without any assimilation of physical or biogeochemical 265 

data. 

3 Method 

3.1 Metrics for sensitivity analysis and parameter optimization 

To calibrate PISCES and conduct our global sensitivity analysis, we employ twenty metrics (Mignot et al., 2023) that 

quantify both layer-averaged concentrations and emergent aspects of the vertical structure of biogeochemical variables. A 270 

concise description of all twenty metrics is provided in Table 2. Each layer-averaged metric is computed within two depth 

domains—the productive layer and the mesopelagic layer—using both BGC-Argo observations and the 1-D model output. 

The following subsections detail the four steps required to calculate and compare these metrics: (1) the definition of the 

vertical layers used for analysis; (2) the calculation of layer-mean concentrations; (3) the diagnosis of emergent vertical 

features; and (4) the spatiotemporal interpolation procedure used to ensure a consistent comparison. 275 
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Table 2. Metrics used for sensitivity analysis (SA) and data assimilation (DA), showing the correspondence between observations 

and PISCES model variables. Only metrics designated as state variables (S) were used for the SA. Key: S = State variable; E = 

Emergent property. 

Process 
Observed 

variables 
PISCES variables Metrics Units 

Obs. 

error (%) 
Assessment level Application 

Carbonate 

Chemistry 

DIC DIC 

DICProd µmol kg−1 0.46 S SA/DA 

DICMeso µmol kg−1 0.46 S SA/DA 

𝑇𝐴 TA 

TAProd µmol kg−1 0.41 S SA/DA 

TAMeso µmol kg−1 0.41 S SA/DA 

Biological 

carbon pump 

Chl-a NCHL + DCHL 

Chl-aProd mg m−3 13.4 S SA/DA 

ChlDCM mg m−3 13.4 E DA 

HChlDCM m / E DA 

PO4
3− PO4

3- 
PO4

3−
Prod

 µmol kg−1 8.45 S SA/DA 

PO4
3−

Meso
 µmol kg−1 8.45 S SA/DA 

Si Si 

SiProd µmol kg1 46.8 S SA/DA 

SiMeso µmol kg1 46.8 S SA/DA 

POC 

Small detrital 

particles 

+PHY+PHY2+ZOO 

POCProd mg m−3 40 S SA/DA 

POCMeso mg m−3 40 S SA/DA 

𝑁𝑂3
− NO3

- 

𝑁𝑂3
−

Prod
 µmol kg−1 7 S SA/DA 

𝑁𝑂3
−

Meso
 µmol kg−1 7 S SA/DA 

HNitracline m / E DA 

Oxygens 

levels 
O2 O2 

O2Prod
 µmol kg−1 3 S SA/DA 

O2Meso
 µmol kg−1 3 S SA/DA 

O2min
 µmol kg−1 3 E DA 

HO2min
 m / E DA 

3.1.1 Layer definitions and depth diagnostics 280 

For our analysis, we subdivide the water column into two biogeochemically distinct layers. The productive layer extends 

from the surface down to the deeper of either the mixed-layer depth (MLD) or  𝑍𝐸𝑢𝑝ℎ𝑜𝑡𝑖𝑐. The mesopelagic layer spans from 

the base of the productive layer down to 1,000 m. These layers are defined by the MLD and 𝑍𝐸𝑢𝑝ℎ𝑜𝑡𝑖𝑐, which are determined 

as follows for both the model and observations. 
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 285 

The MLD is diagnosed as the shallowest depth where potential density exceeds its surface value by 0.03 kg·m⁻³ (de Boyer 

Montégut et al., 2004). For the model, daily MLD is computed from the potential density profiles from the CMEMS-PHY 

analysis. For observations, MLD is calculated from BGC-Argo temperature and salinity profiles using the same density 

threshold. 

 290 

The euphotic depth, the depth where 1% of surface photosynthetically available radiation (PAR) persists, is taken directly 

from the model's internal radiation scheme. For observations, the 1% PAR depth is calculated from satellite-derived diffuse-

attenuation coefficients, as detailed in Sect. 2.2. 

3.1.2 Layer-mean metrics 

Following (Mignot et al., 2023), we calculate layer-mean concentrations for a suite of eight state variables. For seven of 295 

these—DIC, TA, O₂, NO₃⁻, PO₄³⁻, Si, and POC—we compute the mean concentration in both the productive and 

mesopelagic layers. For Chl-a, the metric is computed for the productive layer only, as this layer contains the vast majority 

of its biomass and variability. This procedure yields a total of fifteen layer-mean metrics (eight for the productive layer and 

seven for the mesopelagic). To account for their lognormal distribution, the Chl-a and POC metrics were subsequently log10-

transformed. 300 

 

It is important to note that while model state variables are initialized directly from observational profiles, the initial values of 

the layer-mean metrics can still differ between the model and the BGC-Argo data. This discrepancy arises because the layer 

boundaries are diagnosed independently for the model and the observations, which can result in slightly different layer 

depths. Consequently, integrating a tracer profile with a strong vertical gradient over these different depth ranges will 305 

produce different initial layer-averaged values 

3.1.3 Emergent vertical-structure metrics 

To constrain processes that depend on vertical structure rather than bulk averages, we include five additional metrics that 

diagnose the depth and magnitude of key biogeochemical features: 

 310 

• DCM: We record both the depth of the DCM (HDCM) and the Chl-a concentration at that depth (ChlDCM). The DCM 

is crucial for phytoplankton growth and nutrient cycling in low latitude environment. 

• Nitracline Depth (Hnitracline): This is defined as the first depth where NO₃⁻ exceeds 1 µmol·kg⁻¹, a threshold 

corresponding to the upper limit of BGC-Argo nitrate accuracy (Johnson et al., 2017; Mignot et al., 2019, 2023). 

This metric captures surface nitrate limitation, a key factor controlling primary production (Cermeño et al., 2008; 315 

Bendtsen et al., 2023) 
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• Oxygen Minimum: We identify both the depth of the minimum oxygen concentration (HO₂min) and the 

corresponding oxygen value (O₂min). These quantities serve as proxies for mesopelagic remineralization intensity 

and ventilation (Stramma et al., 2008; Schmidtko et al., 2017). 

3.1.4 Interpolation procedure 320 

Before computing any metrics, both the simulated data and the float observations are processed and interpolated onto a 

common spatio-temporal grid. This procedure involves two steps. First, all vertical profiles are linearly interpolated onto a 

uniform 1-meter vertical grid from the surface to 1000 m. Second, we address the irregular sampling of the float by linearly 

interpolating the observations to create a regular 5-day time series. Although the model provides daily outputs, we 

interpolate its time series onto this same 5-day grid to ensure a direct, point-for-point comparison with the regularized 325 

observations. Time series for each of the twenty metrics are then calculated from these temporally aligned datasets. Finally, 

to reduce short-term variability and better highlight seasonal dynamics, a 6-point moving average is applied to smooth each 

metric's time series. 

3.2 Parameter optimization method: Iterative Importance Sampling 

To quantify posterior parameter correlations, uncertainties, and the predictive spread for both assimilated and unconstrained 330 

variables, we adopt iIS, an optimization scheme built on a particle‐filter assimilation framework. Particle filters, widely used 

in biogeochemical modelling for state and parameter estimation (Mattern et al., 2013), are gradient-free ensemble methods 

that assimilate observations into a population of particles—each a unique, evolving model state—thereby generating full 

probability distributions for states and parameters. This approach is well suited to the strong non-linearities and non-

Gaussian errors characteristic of marine biogeochemistry (Ristic et al., 2004).  335 

 

Iterative Importance Sampling is a technique for estimating a probability density function (PDF) using a weighted 

combination of samples drawn from a different, known PDF (Raices Cruz et al., 2022). In this work, this concept is applied 

within the framework of Bayesian inference to estimate model parameters. More formally, the goal is to approximate the 

posterior PDF of the model state variables and parameters, conditioned on observational data. 340 

 

The Bayesian framework provides an approach for calculating the posterior PDF using prior knowledge and observational 

evidence. According to Bayes’ theorem, the posterior distribution can be expressed as a function of the prior distribution and 

the observational likelihood (Wikle et al., 2013): 

𝑝(𝐱|𝒚) =  
𝑝(𝒚|𝐱)𝑝(𝐱)

∫ 𝑝(𝒚|𝐱)𝑝(𝐱)𝑑𝐱
 (2) 345 
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where 𝐱 = (𝒔, 𝜽)  is a random vector containing model state variables (𝒔) and model parameters (𝜽), 𝒚 is the observation 

vector, 𝑝(𝒚|𝐱) is the likelihood of the observations given the model outcome and 𝑝(𝐱) is the probability of the model state. 

Here, following van Leeuwen et al. (2019) the prior probability is represented by an ensemble of 𝑁 particles as: 

𝑝(𝐱) = ∑
1

𝑁
 𝛿(𝐱 − 𝐱𝑗)

𝑁

𝑗=1

(3) 

where 𝐱𝑗 represents the jth member of the ensemble, and  𝛿(𝐱 − 𝐱𝑗), is the Dirac delta function that evaluates to 1 if 𝐱 = 𝐱𝑗 350 

and 0 otherwise. Equation (3) means that the probability density function is a weighted sum of the delta functions centered at 

each member of the ensemble, where each member has an equal weight of 𝑁−1. 

 

The algorithm described in this article makes use of a self-normalized importance sampling techniques to estimate the 

posterior 𝑝(𝐱|𝒚) using weighted samples of 𝑝(𝐱). Importance sampling generally involves the use of an auxiliary PDF, 355 

called proposal density function, which has as the main objective restraint the sampling to regions of the state space of high 

probability (Owen and Zhou, 2000). In our setting, we used the prior 𝑝(𝐱)  as the proposal density since there is no 

reasonable estimate of the posterior distribution of the parameters. In this case the weights of each particle 𝑗 is simply 

calculated using the observation likelihood (van Leeuwen et al., 2019) :  

𝝎𝑗 =
𝑝(𝒚|𝐱j)

∑ 𝑝(𝒚|𝐱𝑗)
𝑁
𝑗=1

    (4) 360 

 The posterior is then written as a weighted combination of the prior states: 

𝑝(𝐱|𝒚) = ∑𝝎𝑗 𝛿(𝐱 − 𝐱𝑗)

𝑁

𝑗=1

  (5) 

Estimating model parameters from observations of the state is challenging because we often lack reliable prior information 

about the parameter distributions, and the relationship between the state and the parameters is typically highly non-linear. 

Moreover, models generally exhibit biases, partly due to uncertainty in the parameters and partly because of structural 365 

deficiencies, which include necessary simplifications, incomplete knowledge of key processes, and uncertainties in their 

mathematical representation. In the context of importance sampling, the small magnitude of observational noise significantly 

reduces the probability of obtaining model trajectories with high likelihood, thereby amplifying the impact of model 

imperfections. 

 370 

Consequently, plain Monte Carlo sampling would produce many samples with negligible weights, making the estimation 

inefficient. To address this, the proposed algorithm evaluates equations (4) and (5) iteratively, modifying the likelihood 

𝑝(𝒚|𝐱) to 𝑝(𝒚|𝐱)𝛼 , where α is an inflation parameter. This parameter is dynamically adjusted based on the effective sample 

size (ESS) defined as (Martino et al., 2017) : 
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𝐸𝑆𝑆 =
1

∑ 𝝎𝑗
2𝑁

𝑗=1

(6) 375 

At each iteration, both the prior and the likelihood function are updated. The goal of each step is to construct a more 

informative prior, which allows for a gradual reduction of the inflation parameter 𝛼. Importantly, 𝛼 plays a critical role in 

preserving parameter diversity throughout the iterations. It can also be interpreted as an inflation factor accounting for 

unresolved dynamics, analogous to error inflation techniques commonly used in the data assimilation community (see, e.g., 

Minamide and Zhang, 2017; Ohishi et al., 2022). 380 

 

The sampling procedure is designed to efficiently explore the high-dimensional parameter space while keeping 

computational costs manageable. Model parameter samples are first drawn using Sobol’s sequence, a low-discrepancy 

Quasi-Monte Carlo method (Sobol’ et al., 2011), implemented through the scipy.stats.qmc.Sobol function in the SciPy 

library (Virtanen et al., 2020). Low-discrepancy sampling ensures more uniform coverage of the parameter space and 385 

reduces the risk of missing key regions of variability (Renardy et al., 2021). This method requires the sample size (N) to be a 

power of two. 

 

To balance computational expense with sampling density, a dynamic ensemble size is used. For the first iteration, which 

must sample the entire broad prior parameter space, a larger ensemble of N = 8,192 is used. In subsequent iterations, where 390 

the sampling is focused on a narrower region of interest, the ensemble size is reduced to N = 2,048 to lower the 

computational cost. 

 

The model is then integrated with these parameter sets to generate an ensemble of trajectories. Self-normalized importance 

weights are computed using the adaptive inflation factor (α), which is adjusted to maintain an effective sample size (ESS) of 395 

at least 25% of the current ensemble size. In the final iteration of the iIS algorithm, the resampling process retains the top-

ranked particles corresponding to the ESS, which resulted in a final optimized ensemble of 512 members. 

 

For emergent metrics related to depth (HO₂min, Hnitracline, and HDCM), we apply a uniform error distribution around the 

observational values. In practice, if a model realization produces a value outside the specified error range for any of these 400 

metrics, it is assigned a weight of zero. Additionally, some observed variations in these depth metrics are not captured by 

any simulation in the ensemble. This is particularly true for variations in the depth of the oxygen minimum, which appear to 

be driven more by physical than biogeochemical processes. To account for this, an additional condition is introduced: If 

more than 25% of the simulations fall outside the error range for a given observation, that observation is excluded from the 

analysis. This approach assumes that such observations are influenced by physical processes not well represented in the 405 

model. Finally, DCM are not present in all vertical profiles, resulting in discontinuities in the corresponding time series. By 

https://doi.org/10.5194/egusphere-2025-4369
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

applying this method, simulations that produce an unobserved DCM, as well as those that fail to reproduce an observed one, 

are filtered out. 

 

To ensure biologically realistic growth rates of mesozooplankton in the model ensemble, an additional constraint based on 410 

temperature-dependent physiological dynamics has been implemented. Specifically, building on the work of (Gillooly et al., 

2002) and using the temperature measured by float #5904479, the maximum generation time of mesozooplankton should not 

exceed 30 days. Accordingly, the minimum plausible accumulation rate was set to 0.01 day⁻¹. To prevent the regeneration of 

ensemble members yielding unrealistically low mesozooplankton accumulation rates, any member with a maximum 

accumulation rate below 0.01 day⁻¹ was assigned a weight of zero and therefore excluded from subsequent resampling. 415 

 

To approximate the posterior distribution 𝑝(𝐱|𝒚), a kernel density function (KDF) is fitted using the KernelDensity class 

from the sklearn.neighbors module of the scikit-learn library (Pedregosa et al., 2011). The top-ranked particles 

corresponding to the ESS are retained, while the remaining particles are resampled from the fitted KDF. All weights are reset 

to 𝑁−1 for the next iteration, and the PISCES model is re-run for the newly resampled particles (Fig. 3). 420 

 

 

Figure 3. Schematic overview of the different datasets used during the parameter optimization process, referred to as iterative 

Importance Sampling (iIS). 

 425 

This procedure is repeated iteratively until the inflation factor 𝛼 converges or a predefined maximum number of iterations is 

reached. The proposed algorithm can also be interpreted as an adaptative IS method, following the classification of (Elvira 

and Martino, 2021), due to the use of a new proposal distribution, here, the prior 𝑝(𝐱), at each iteration.  
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3.3 Sobol Indices 

3.3.1 Theoretical framework 430 

Sensitivity analysis plays a key role in the calibration of marine biogeochemical models such as PISCES, as it identifies the 

parameters that most strongly influence model outputs. For the purpose of this study, 'influential parameters' are defined as 

those whose variation accounts for a significant portion of the model output variance. By highlighting these parameters, SA 

enables a targeted reduction of the parameter space, thereby decreasing the computational cost of optimization. Given the 

inherent complexity and nonlinearity of modelled biogeochemical processes, the choice of an appropriate SA method is 435 

particularly important. In this study, we use a global method based on first-order and total-order Sobol' indices (Sobol′, 

2001). This section outlines the theoretical background, implementation, and criteria used for parameter selection. 

 

Global Sensitivity Analysis using Sobol' indices offers a robust framework for quantifying the contribution of individual 

input parameters and their interactions to the variance in model outputs. Unlike local sensitivity methods, Sobol' indices 440 

account for nonlinear effects and interactions across the entire parameter space. This makes them particularly well-suited for 

complex models like PISCES, which involves 95 parameters with potentially intricate dependencies (Prieur el al., 2019; 

Issan et al., 2023).  

 

Sobol' indices are derived from a functional Analysis Of Variance (ANOVA) decomposition of a scalar Quantity of Interest 445 

(QoI) of the model output, denoted by 𝑌, as follows: 

𝑌 =  𝑓𝑜 + ∑𝑓𝑖(𝜃𝑖) + ∑𝑓𝑖𝑗(𝜃𝑖, 𝜃𝑗) + ⋯+ 𝑓1,2,…,𝑑(𝜃1, 𝜃2, … , 𝜃𝑑)

𝑖<𝑗

 

𝑖

, (7) 

where 𝑓𝑜 is the mean output, and each term 𝑓𝑖 or 𝑓𝑖𝑗 represents contributions of individual parameters or their interactions. 

𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑑) is the parameter vector, and 𝑑 is the number of parameters. 

 450 

Sobol' indices distinguish between direct parameter effects and higher-order interactions. The first-order Sobol' index 

quantifies the proportion of output variance attributable to a single parameter while accounting for variations in all other 

inputs (Sobol′, 2001). In contrast, the total-order index captures both the direct contribution of a parameter and all its 

interactions with other parameters, including second-order and higher-order dependencies, offering a comprehensive 

measure of its influence. For the sake of simplicity, first-order Sobol indices will be referred to as “Main effects”, and total-455 

order Sobol indices as “Total effects” throughout this paper. 

 

The first-order index is calculated as  

𝑺𝑖 = 
𝕍𝑎𝑟𝐗𝑖

[𝔼𝐗~𝑖
(𝑓(𝜽)|(𝜽𝑖))]

𝕍𝑎𝑟[𝑓(𝜽)]
, 𝑖 = 1,… , 𝑑 (8) 
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and the total-order index, capturing both direct and interaction effects, is calculated as: 460 

𝑻𝑖 = 1 − 
𝕍𝑎𝑟𝐗𝑖

[𝔼𝐗𝑖
(𝑓(𝜽)|(𝜽~𝑖))]

𝕍𝑎𝑟[𝑓(𝜽)]
=  

𝔼𝐗~𝑖
[𝕍𝑎𝑟𝐗𝑖

(𝑓(𝜽)|(𝜽𝑖))]

𝕍𝑎𝑟[𝑓(𝜽)]
(9) 

A key step in implementing Sobol' analysis is the construction of input sampling matrices, which are used to generate 

different model simulations. Monte Carlo methods or quasi-random sampling techniques, such as Sobol' sequences, are 

commonly used to estimate these indices, requiring multiple model evaluations (Campolongo et al., 2000). Following the 

approach described by (Issan et al., 2023), the process involves: 465 

 

1. Generating a baseline matrix (𝐀): A matrix where each row represents a parameter set sampled from its respective 

probability distribution. This matrix has dimension 𝑁 × 𝑑, where 𝑁 represents the number of samples per parameter 

and 𝑑 the number of parameters studied. 

2. Generating a perturbed matrix (𝐁): A second independent sample matrix of the same size as 𝐀. 470 

3. Constructing hybrid matrices (𝐂): Matrix 𝐂 is generated by replicating matrix (𝐀) 𝑑 times. In the ith copy, the ith 

line of 𝐁 is replaced with the corresponding line from matrix 𝐀, denote as 𝐀(: , 𝑖). This procedure ensures that each 

parameter is individually perturbed while keeping all others unchanged.  

𝐂(𝑖)  =  

[
 
 
 
 

−

𝐁(: ,1)
⋮

𝐀(: , 𝑖)
⋮

𝐁(: , 𝑑)

−

]
 
 
 
 

 ∈  ℝ𝑁×𝑑, 𝑖 = 1, … , 𝑑 

 475 

In this study, both the first-order and total-order Sobol sensitivity indices are estimated for 95 PISCES model’s parameters. 

Using Sobol’s method, the total-order sensitivity can be estimated with 𝑁 × (𝑑 + 2) model evaluations. To ensure a robust 

estimation of the sensitivity indices, the parameter space must be sampled with a sufficiently large number of points (N). The 

sample size was chosen to be consistent with established practice for such high-dimensional models (Prieur et al., 2019; 

Issan et al., 2023). Therefore, N was set to 214, as the Sobol' sequence sampling method is most efficient when the number of 480 

samples is a power of two. Additionally, the same parameter ranges as those defined during the initialization of the iIS (see 

Sect. 3.f) are imposed. 

 

To perform sensitivity analysis efficiently, the Python Sensitivity Analysis Library (SALib) enables both parameter space 

sampling and the computation of first-order and total-order Sobol indices (Iwanaga et al., 2022). The sampling is conducted 485 

using the Sobol sequence, a quasi-random method with low discrepancy  (Sobol′, 2001). 
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3.3.2 Definition of the Quantity of Interest (QoI) 

For each metric defined in Table 2, except for those describing emergent properties, two QoIs are computed. The first is the 

RMSE, which quantifies the discrepancy in amplitude between the modeled and observed metrics. The second is the 

temporal correlation between the modeled and observed metrics, intended to assess the sensitivity of the system's temporal 490 

dynamics to variations in the model parameters. 

 

More precisely, the RMSE for a metric 𝑀 and for a sample j is computed as: 

𝒀𝑗
𝑅𝑀𝑆𝐸,𝑀  = √

1

𝑇
∑(𝒔𝑗,𝑡

𝑀 − 𝒚𝑡
𝑀)

2

𝑡∈𝓣

    (10) 

Where 𝓣 is the set of observation time indices and 𝑇 = |𝓣| is the number of available observations. Here, 𝒔𝑗,𝑡
𝑀  and 𝒚𝑡

𝑀 denote 495 

the restrictions of the model state vector and the observation vector, respectively, to metric 𝑀 at time index 𝑡. 

 

The Correlation Coefficient (ρ) for each metric and sample is computed as follow:  

𝒀𝑗
𝜌,𝑀 

 =
∑ (𝒔𝑗,𝑡

𝑀 − 𝒔𝑗
𝑀)𝑡∈𝓣 (𝑦𝑗,𝑡

𝑀 − 𝒚𝑡
𝑀)

√∑ (𝒔𝑗,𝑡
𝑀 − 𝒔𝑗

𝑀)
2
∑ (𝒚𝑗,𝑡

𝑀 − 𝒚𝑡
𝑀)

2

𝑡∈𝓣𝑡∈𝓣

    (11) 

Where the 𝐬j
M̅̅̅̅  and 𝐲M̅̅ ̅̅  denote the time average of the model and observation metrics. 500 

3.3.3 Parameter selection for optimization 

The aim is to include in the iIS procedure only those parameters that have an impact on the assimilated metrics, and therefore 

only those parameters that can be significantly constrained by the metrics defined in Table 2. Parameters that do not 

significantly influence these metrics, either in terms of phenology or amplitude, are not perturbed. For such non-influential 

parameters, we assume that their reference values should be retained, as there is insufficient information to constrain their 505 

uncertainties. 

 

To identify influential parameters, we select all parameters with a Sobol’ sensitivity index (first-order or total-order; see 

Sect. 3.3 for details) greater than 0.02 for at least one quantity of interest (QoI), following the approach of (Prieur et al., 

2019). This filtering step yields a reduced parameter set, thereby lowering the dimensionality of the parameter uncertainty 510 

space. 
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3.4 Parameter perturbation 

We have shown in Sect. 3.2 and 3.3 that both iIS and Sobol' sensitivity analysis require a prior estimate of the parameters' 

probability density functions. In practice, however, limited information about these parameters is available in the literature; 

most often, only plausible value ranges are reported (Denman, 2003). 515 

 

Given this lack of detailed prior knowledge, we assume uniform distributions. This choice reflects a non-informative prior 

assumption, treating all values within the specified interval as equally likely. It provides a conservative starting point for 

inference, minimizing subjective bias. 

 520 

To account for the possibility that fitting the ensemble of assimilated metrics may require the model to reach a substantially 

different equilibrium state, we define broad perturbation intervals, ranging from one-hundredth to twice the reference values. 

To ensure physical consistency, certain parameters are subject to additional constraints to prevent unrealistic phenomena 

such as the artificial generation or loss of matter for example (Table S1 in the Supplement). 

3.5 Observation errors 525 

In the Sect. 3.2 each particle is weighted using the observation likelihood. As noted by (van Leeuwen et al., 2019), the 

likelihood function 𝑝(𝒚|𝐱) quantifies the probability of obtaining the observation 𝒚 assuming that 𝐱 represents the true state. 

Given that observations are modeled as 𝒚 = 𝐻(𝐱) + 𝝐, with 𝐻 a possibly non-linear observation operator mapping from the 

model state to the observation space and 𝝐 a random noise following a known distribution, the likelihood becomes a function 

of the discrepancy between the observed and model-predicted values, shifted by the noise distribution pϵ : 530 

𝑝(𝒚|𝐱) =  𝑝𝜺(𝒚 − 𝐻(𝐱))   (12) 

Therefore, accurately estimating observational errors is crucial, as these errors directly influence the weighting of particles in 

the importance sampling procedure. We consider two main sources of observational error: measurement error and 

representativity error. Measurement error accounts for uncertainties in mapping from the model state to the observation 

space. This includes uncertainties associated with the observation operator (H) itself, the instrumental precision of direct 535 

sensor measurements, and the inferred uncertainty of variables derived from neural networks (e.g., CANYON-B). 

Representativity error, in contrast, arises from discrepancies between what the 1D model can simulate and the finer-scale or 

unresolved 3D features present in the observations. 

 

The observation error 𝝐 is assumed to follow a Gaussian distribution for most metrics. However, for metrics related to the 540 

depth of the nitracline, the DCM, and the depth of the oxygen minimum, a uniform distribution is used. Within the iIS 

procedure, this choice effectively excludes particles that produce unrealistic values for these depth-related variables. 
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3.6 Measurement errors 

We used four distinct methods to compute the measurement errors, with each method tailored to a specific group of metrics. 

The resulting observation errors, expressed in percentages, are shown for each metric in Table 2. 545 

3.6.1 Direct observations (Chl-a, O2, NO3
-) 

For variables directly measured by BGC-Argo (Chl-a, O₂, NO₃⁻), we defined the measurement error based on the mean 

RMSE values reported in (Mignot et al., 2019). That study calculated the RMSE between float observations and co-located, 

ship-based measurements. To convert these absolute RMSE values into the relative percentage errors required for our study, 

we normalized them by the average of the same ship-based reference dataset used in (Mignot et al., 2019). For this 550 

normalization, we used a robust mean, calculated after excluding the top and bottom 5% of the reference data to reduce the 

influence of outliers. 

3.6.2 Particulate Organic Carbon 

For the POC concentrations derived from particulate backscatter, we adopt a fixed relative measurement error of 40%. This 

choice is based on the error model of (Johnson et al., 2017), which recommends using the greater of an absolute error of 35 555 

mg C·m⁻³ or a relative error of 20%. For our study region, the mean observed POC concentration in the productive layer is 

approximately 79 mg C·m⁻³. At this concentration, the absolute error threshold of 35 mg C·m⁻³ is equivalent to a relative 

error of ~44% (i.e., 35/79). Since this is greater than the 20% relative error threshold, it becomes the dominant error source. 

We therefore adopt a rounded, conservative value of 40% for the POC measurement error. 

3.6.3 Error representation for log-transformed metrics 560 

The metrics for Chl-a and POC concentration are log₁₀-transformed to account for their lognormal distribution. 

Consequently, their respective relative percentage errors are converted into a fixed, additive error in log-space. This error is 

calculated using a first-order error propagation formula; (error% / 100) / ln(10). 

3.6.4 Uncertainty of Neural Network-Derived Variables 

The measurement error for variables derived from the CANYON-B and CONTENT neural networks (i.e., PO₄³⁻, Si, TA, and 565 

DIC) was estimated by quantifying and combining two main sources of uncertainty: the propagated uncertainty from input 

oxygen measurements, and the intrinsic uncertainty of the network algorithms themselves. 

 

This analysis was performed on a computationally feasible subset of the data (1,313 points, selected by taking one of every 

20 points from the full profiles). For each of these data points, we first calculated a total measurement error. The propagated 570 

uncertainty was quantified via a Monte Carlo experiment in which 300 perturbed oxygen values (assuming a 3% input error) 
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were passed through the networks to find the standard deviation of the outputs. This was combined in quadrature with the 

intrinsic uncertainty, which is a direct output of the neural networks. 

 

This process yielded a set of 1,313 total error estimates. To derive a single, robust value for each variable, we then calculated 575 

the mean of these 1,313 estimates after excluding the top and bottom 5% as outliers. Finally, this mean total error was 

normalized by the mean of the corresponding 1,313 variable observations to yield the final percentage error reported in 

Table 2. 

3.6.5 Uncertainty in depth-based metrics 

For depth-based metrics (HDCM, Hnitracline, HO₂min), we used a gradient-based approach. For each individual profile, we first 580 

estimated a depth uncertainty by dividing the known concentration error of the relevant variable (e.g., Chl-a error for HDCM) 

by the local vertical concentration gradient at that feature's depth. This procedure yielded a time series of individual depth 

error estimates for each metric. 

 

To derive a single, robust error value for the entire time series, we used the interquartile range (IQR). After calculating all 585 

the individual depth errors, the final representative uncertainty (in meters) was defined as the width of the interquartile range 

(i.e., the 75th percentile minus the 25th percentile) of these estimates. This method was chosen over a simple mean or 

median because the distribution of depth errors was highly skewed, and the IQR provided a more stable and representative 

measure of the typical uncertainty, avoiding inflation from extreme outliers. 

 590 

BGC-Argo floats typically do not sample the top few meters of the water column, creating an "unseen" surface layer. If a 

feature, was detected at the shallowest point of a profile, it is impossible to know if the true maximum was at that depth or 

shallower, within the unsampled layer. To account for this ambiguity, we introduced an additional uncertainty term in these 

specific cases. This term was set equal to the depth of the shallowest observation itself, effectively representing the 

possibility that the true feature depth could be anywhere between the surface and the first measurement. This additional term 595 

was combined in quadrature with the gradient-based depth error. 

3.7 Representativity errors 

Using a 1D model to represent a 3D ocean introduces a 'representativity error' due to neglected 3D physical processes. To 

account for this, the cost function used in our assimilation combines observational errors with this representativeness term. 

Including this error is crucial, as it prevents the optimization from compensating for missing physics and yields a more 600 

reliable calibration. The magnitude of this error was quantified at each time step as the absolute difference between the value 

from the full ‘3D-Free’ simulation (sampled along the float's trajectory) and the value from the corresponding 1D simulation 

(‘1D-Free’, initialized and forced with the same 3D fields). 
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This time-dependent representativity error is then added in quadrature to the measurement error at each corresponding time 605 

step, creating the total observational error used in the likelihood calculation. This approach allows for greater uncertainty 

during periods when the 1D assumption is weakest, prevents overconfidence in observational constraints, and avoids forcing 

the parameter optimization to compensate for missing physics with unrealistic parameter values. 

3.8 Assessment of Neglected Error Sources 

In addition to measurement and representativity errors, we also evaluated two other potential sources of uncertainty: (i) error 610 

covariances among the observed and derived variables, and (ii) grid discretization errors. 

 

First, to assess the impact of error covariances, we estimated the full error covariance matrix for the observation vector. We 

propagated a 3% perturbation in the input oxygen observations through the CANYON-B and CONTENT algorithms to 

quantify the covariance terms both among the network-derived variables (e.g., DIC, TA) and between those variables and the 615 

uncertain input (O₂). A comparative analysis demonstrated that including these off-diagonal covariance terms in the 

likelihood calculation had a negligible effect on the final results; the RMSE between the optimized solution and the 

observations changed by less than 2%. 

 

Second, we assessed the impact of grid discretization error. This error arises because the 1D model is forced by a single grid 620 

point from the 1/4° physical model, while the true float position varies within that grid cell. To test the sensitivity to this 

choice, we ran an ensemble of 1D simulations where each member was forced by a different, randomly selected 1/12° sub-

grid point from within the same 1/4° grid cell. By comparing simulations with identical parameters but different physical 

forcing, we could quantify the influence of this sub-grid variability. The analysis indicated that the resulting grid-induced 

differences were minor compared to measurement and representativity errors; including this physical uncertainty in the 625 

optimization process changed the final RMSE between the optimized solution and the observations by less than 2%. 

 

Given the significant computational cost required to quantify these two error sources and their minor impact on the results, 

both were excluded from our final error budget. 

3.9 Framework for Performance Evaluation 630 

We evaluate the effectiveness of the three optimization strategies using statistical criteria that assess three key aspects of 

performance: 

 

• Model Skill: The improvement in skill against the assimilated data is quantified using the Normalized Root Mean 

Square Error (NRMSE). 635 
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• Portability and Robustness: The solution's performance against independent data is tested using the reduced centred 

random variable metric (RCRV). 

• Parameter Constraints: The impact on the model parameters is assessed by measuring the reduction in their 

posterior uncertainty via the Highest Density Interval (HDI) and by calculating the correlations among them to test 

for independence. 640 

 

 

The Normalized Root Mean Square Error (NRMSE) is our primary metric for quantifying the misfit between simulated and 

observed metrics. It is the standard RMSE normalized by the total error associated with the metrics, which is the quadratic 

sum of the measurement and representativity errors. An NRMSE value of ~1 indicates that the model-data misfit is, on 645 

average, as large as the expected observation error, while values less than 1 indicate a good fit. 

 

We calculate two versions of the NRMSE for each metric M: one for the single best ensemble member 𝒔𝐵𝑒𝑠𝑡
𝑀  and one for the 

full weighted-mean ensemble 𝒔𝑡
𝑀̅̅̅̅ 𝜔

. The NRMSE for the best member is: 

𝑵𝑹𝑴𝑺𝑬𝐵𝑒𝑠𝑡
 𝑀  = √

1

𝑇
∑(

𝒚𝑡
𝑀 − 𝒔𝐵𝑒𝑠𝑡,𝑡

𝑀

𝜺𝑡
𝑀 )

2

𝑡∈𝓣

(13) 650 

For computing the NRMSE for the weighted-mean of the new subset of 512 members we first define 𝒑𝑗 :  

𝒑𝑗  =
𝝎𝑗

∑ 𝝎𝑗𝑗∈𝓝

 (14) 

Where 𝒑𝑗 is the normalized weight of each simulation for the jth ensemble member. With 𝓝, the set of simulation member 

indices and 𝑁 = |𝓝| is the number of available simulations. 

 655 

We also define the weighted average 𝒔𝑡
𝑀̅̅̅̅ 𝜔

 :  

𝒔𝑡
𝑀̅̅̅̅ 𝜔

 = ∑ 𝒔𝑗,𝑡
𝑀 ∗  𝒑𝑗

𝑗∈𝓝
(15) 

Where 𝒔𝑗,𝑡
𝑀  is the value of metric M for the jth ensemble member at time t. 

 

The NRMSE for the weighted-mean ensemble is given by: 660 

𝑵𝑹𝑴𝑺𝑬𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒
  𝑀  = √

1

𝑇
∑(

𝒚𝑡
𝑀 − 𝒔𝑡

𝑀̅̅̅̅ 𝜔

𝜺𝑡
𝑀 )

2

𝑡∈𝓣

 (16) 
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Where 𝒔𝑗,𝑡
𝑀  is the value of metric M for the jth ensemble member at time t, 𝒚𝑡

𝑀 is the corresponding observation, 𝜺𝑡
𝑀 is the 

total observational and representativity error, 𝒑𝑗 is the normalized weight of the jth member, and T is the number of time 

points. For the depth-based metrics (HDCM, Hnitracline, and HO2min), the error 𝜺𝑡
𝑀 used is the average of the asymmetric errors 

above and below the observed value. The performance of the optimized simulations is then evaluated by comparing their 665 

NRMSE values to that of the reference simulation (run with default parameters). 

 

To assess the performance of the optimized ensembles against independent validation data, we use a diagnostic based on the 

Reduced Centered Random Variable (RCRV). This metric standardizes the model-data misfit at each time point by 

accounting for both observational and model uncertainty, allowing us to test for both systematic bias and the robustness of 670 

the ensemble spread. 

 

For computing the RCRV with the weighted standard deviation we first define 𝝈𝑡
𝑀,𝜔

 :  

𝝈𝑡
𝑀,𝜔  = √ ∑ ( 𝒔𝑗,𝑡

𝑀  −   𝒔𝑡
𝑀̅̅̅̅ 𝜔

)
2

𝑗∈𝓝

∗ 𝒑𝑗     (17) 

Where 𝒔𝑡
𝑀̅̅̅̅ 𝜔

 is the weighted ensemble mean simulation, 𝒑𝑗 is the normalized weight of the jth member. With 𝓝, the set of 675 

simulation member indices and 𝑁 = |𝓝| is the number of available simulations. 

 

For each metric M at each time point t, the RCRV is calculated as: 

𝑹𝑪𝑹𝑽𝑡
𝑀  =

𝒚𝑡
𝑀  −  𝒔𝑡

𝑀̅̅̅̅ 𝜔
 

√𝜺𝑡
𝑀2

 +  𝝈𝑡
𝑀,𝜔2

  (18)
 

Where 𝒚𝑡
𝑀  is the observation, 𝒔𝑡

𝑀̅̅ ̅̅ 𝜔
 is the weighted ensemble mean simulation, 𝜺𝑡

𝑀  is the total observational error 680 

(measurement + representativity), and 𝝈𝑡
𝑀,𝜔

 is the weighted ensemble standard deviation at that time. For the depth-based 

metrics (HDCM, Hnitracline, and HO2min), the error 𝜺𝑡
𝑀 used is the average of the asymmetric errors above and below the observed 

value. 

 

We then summarize the full RCRV time series using two key statistics: 685 

 

• Bias: Calculated as the mean of the RCRV time series. A value near zero indicates an unbiased ensemble. 

𝑹𝑪𝑹𝑽𝐵𝑖𝑎𝑠
𝑀  =  

1

𝑇
∑𝑹𝑪𝑹𝑽𝑡

𝑀

𝑡∈𝓣

    (19) 

• Dispersion: Calculated as the standard deviation of the RCRV time series. A value near one indicates a well-

calibrated ensemble, where the model's predictive spread is consistent with the actual model-data errors. Values 690 
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significantly below one suggest overconfidence (spread is too small), while values above one suggest 

underconfidence (spread is too large). 

𝑹𝑪𝑹𝑽𝑠𝑡𝑑
𝑀  =  √

1

𝑇
∑(𝑹𝑪𝑹𝑽𝑡

𝑀  − 𝑹𝑪𝑹𝑽𝐵𝑖𝑎𝑠
𝑀 )2

𝑡∈𝓣

(20) 

We quantify the reduction in parameter uncertainty by computing the percentage change in the width of the 67% HDI. The 

HDI represents the narrowest credible interval containing 67% of the probability mass, analogous to a one-standard-695 

deviation range. The percentage reduction (∆𝐻𝐷𝐼67%) is calculated as: 

∆𝐻𝐷𝐼67% = (1 − 
  𝐻𝐷𝐼67%

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝐻𝐷𝐼67%
𝑝𝑟𝑖𝑜𝑟

) ∗ −1 ∗ 100 (21) 

Here, 𝐻𝐷𝐼67%
𝑝𝑟𝑖𝑜𝑟

 and 𝐻𝐷𝐼67%
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

 are the widths of the 67% HDI for the initial and optimised distributions, respectively. A 

negative value indicates a reduction (a tightening) of parameter uncertainty. 

 700 

Finally, we calculate the pairwise correlation coefficients between all optimized parameters using the 512 best-weighted 

ensemble members from each strategy. This analysis tests whether the assimilation framework successfully found an 

independent solution for each parameter, a key indicator of a well-constrained system. 

4 Results 

4.1 Global Sensitivity Analysis 705 

The GSA revealed that the parameter controlling organic matter recycling (e.g., the half-saturation constant for DOC 

remineralization, 𝐾𝐷𝑂𝐶 ) exerted the strongest first-order influence, primarily through its impact on mesopelagic 

concentrations of DIC, nitrate, phosphate, and dissolved oxygen (Fig. 4a). This parameter, however affected only a limited 

subset of metrics. In contrast, the phytoplankton light response (e.g., the P-I slope for nanophytoplankton, 𝛼𝑁𝑎𝑛𝑜) showed 

significant effects on almost all state variables, including those in the mesopelagic layer. Zooplankton parameters also 710 

emerged as important drivers, particularly those related to grazing and prey preference (e.g., the microzooplankton 

preference for nanophytoplankton, 𝑃𝑁𝑎𝑛𝑜
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜, and the half-saturation constant for microzooplankton grazing,  𝐾𝐺

𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜).  

 

The total-order analysis demonstrated that many of the most influential parameters, especially for zooplankton, acted 

primarily through interactions rather than direct effects (Fig. 4b). For instance, the non-assimilated fractions of 715 

nanophytoplankton consumed by microzooplankton (𝜎𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜) and mesozooplankton (𝜎𝑀𝑒𝑠𝑜𝑍𝑜𝑜) were ranked as the first 

and second most sensitive parameters overall, despite having only weak first-order effects (Fig. 4a). In contrast, 𝐾𝐷𝑂𝐶  

displayed similar sensitivity in both the first-order and total-order analyses, suggesting its influence is largely independent of 

parameter interactions (Fig. 4a). When accounting for interactions, seven parameters had significant impacts on all model 
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metrics (𝛼𝑁𝑎𝑛𝑜, 𝑃𝑁𝑎𝑛𝑜
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜, 𝐾𝐺

𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 ,  𝐾𝐺
𝑀𝑒𝑠𝑜𝑍𝑜𝑜 ,   𝜃𝑀𝑎𝑥

𝐹𝑒 𝑁𝑎𝑛𝑜,   𝐺𝑚
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 ,  𝐺𝑚

𝑀𝑒𝑠𝑜𝑍𝑜𝑜). These correspond to parameters of 720 

microzooplankton, mesozooplankton and nanophytoplankton, highlighting their central role in biogeochemical dynamics 

(Fig. 4b).  

 

By contrast, nine parameters related to processes irrelevant to the float's open-ocean location—such as the half-saturation 

constant for anoxia, coastal iron release, and iron concentration in sea ice—showed no measurable influence.  725 
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Figure 4. First-order and Total-order Sobol sensitivity indices of the parameters across the assimilated metrics. Sensitivity is 

defined as the maximum between the index estimated via RMSE and that estimated via correlation. Only parameters with a 730 
sensitivity index greater than 0.02 for at least one metric are shown. Panel (a) displays the first-order Sobol indices, while panel (b) 

shows the total-order Sobol indices. Grey cells indicate a sensitivity index below 0.02, which is considered non-significant in this 

study. Parameters are ranked in descending order based on their maximum Sobol indices. They are grouped according to the 

same categories defined in the PISCES model. Metrics defined as emerging properties are not used in this study.  

 735 
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4.2 Productive Layer Skill 

All three parameter optimization strategies significantly improved the simulation of the productive-layer seasonal cycle, 

correcting major biases present in the reference model. A visual comparison reveals that the optimized ensembles for the 

All-parameters (Fig. 5), Total effects (Fig. S2, in the Supplement), and Main effects (Fig. S5, in the Supplement) strategies 

produce nearly identical corrections. In all cases, the ensembles successfully capture the magnitude and timing of the spring 740 

phytoplankton bloom, as indicated by Chl-a concentrations (Fig. 5a). This improvement is consistently reflected across 

related variables: the model now reproduces the observed seasonal drawdown of (NO₃⁻, PO₄³⁻) and DIC, while the 

concentration of Chl-a and POC aligns closely with float data (Fig. 5a-d, f).  
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Figure 5. Seasonal cycle of assimilated metrics in the productive layer. Panels show : (a)   745 
𝐥𝐨𝐠𝟏𝟎(𝐂𝐡𝐥-𝐚𝐏𝐫𝐨𝐝), (b)  𝐥𝐨𝐠𝟏𝟎(𝐏𝐎𝐂𝐏𝐫𝐨𝐝), (c) 𝐍𝐎𝟑

−
𝐏𝐫𝐨𝐝

, (d) 𝑷𝑶𝟒
𝟑−

𝐏𝐫𝐨𝐝
, (e) 𝐒𝐢𝐏𝐫𝐨𝐝, (f) 𝐃𝐈𝐂𝐏𝐫𝐨𝐝, (g) 𝐓𝐀𝐏𝐫𝐨𝐝, and (h) 𝐎𝟐𝐏𝐫𝐨𝐝. The blue 

curve represents observations from BGC-Argo float #5904479, with the blue shading indicating the combined observations and 

representativity errors. The red curve corresponds to the reference simulation from PISCES-1D, with the red shading 

representing representativity errors. Green line indicate the weighted means of the ensemble optimized using All parameters of 

the PISCES model. The black curves represent the ensemble of selected members obtained by optimizing all parameters of the 750 
PISCES model. A six-point moving average was applied to all time series to smooth short-term fluctuations. 
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Figure 6. Seasonal cycle of assimilated metrics in the mesopelagic layer. Panels show : (a)  

𝐥𝐨𝐠𝟏𝟎(𝐏𝐎𝐂𝐌𝐞𝐬𝐨)  (b) 𝐍𝐎𝟑
−

𝐌𝐞𝐬𝐨
, (c) 𝑷𝑶𝟒

𝟑−
𝐌𝐞𝐬𝐨

, (d) 𝐒𝐢𝐌𝐞𝐬𝐨 , (e) 𝐃𝐈𝐂𝐌𝐞𝐬𝐨 , (f) 𝐓𝐀𝐌𝐞𝐬𝐨 , and (g) 𝐎𝟐𝐌𝐞𝐬𝐨 . The blue curve represents 755 

observations from BGC-Argo float #5904479, with the blue shading indicating the combined observations and representativity 

errors. The red curve corresponds to the reference simulation from PISCES-1D, with the red shading representing 

representativity errors. Green line indicate the weighted means of the ensemble optimized using All parameters of the PISCES 

model. The black curves represent the ensemble of selected members obtained by optimizing all parameters of the PISCES model. 

A six-point moving average was applied to all time series to smooth short-term fluctuations. 760 
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Figure 7. Seasonal cycle of assimilated emerging metrics. Panels show : (a)  
𝐎𝟐𝐦𝐢𝐧, (b) 𝐇𝐍𝐢𝐭𝐫𝐚𝐜𝐥𝐢𝐧𝐞, (c) 𝐇𝐎𝟐𝐦𝐢𝐧. 𝐂𝐡𝐥𝐃𝐂𝐌 and 𝐇𝐃𝐂𝐌 are not shown, as there were not enough DCM observations to reconstruct 

these metrics. The blue curve represents observations from BGC-Argo float #5904479, with the blue shading indicating the 

combined observations and representativity errors. The red curve corresponds to the reference simulation from PISCES-1D, with 765 
the red shading representing representativity errors. Green line indicate the weighted means of the ensemble optimized using All 

parameters of the PISCES model. The black curves represent the ensemble of selected members obtained by optimizing all 

parameters of the PISCES model. A six-point moving average was applied to all time series to smooth short-term fluctuations. 

 

These visual improvements are confirmed by a large and statistically robust reduction in the model-data misfit (Table 3a). 770 

For the assimilated float, the three strategies achieved a comparable median NRMSE reduction across the eight productive-

layer metrics: -55.6% (±36.1%) for Main effects, -54.2% (±24.2%) for Total effects, and -53.6% (±29.9%) for All-

parameters. In all cases, the median improvement is substantially larger than the associated interquartile uncertainty, 

indicating a significant enhancement of model skill. Given the small sample size (n=8 metrics), we used a non-parametric 

Kruskal-Wallis H-test to formally compare the distributions of NRMSE reductions. For the weighted-mean ensembles, the 775 

test confirmed that there is no statistically significant difference among the three strategies (p = 0.99). This remarkable 

similarity in performance demonstrates that while a small subset of highly sensitive parameters drives most of the 

improvement, perturbing all 95 parameters achieves the same high level of skill. 

 

Table 3. Normalized Root Mean Square Error (NRMSE) across the metrics, with IQR/2 shown in parentheses. RMSE values are 780 
normalized by the combined observational and representativity errors. Percentage improvements are calculated as the relative 
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difference between the NRMSE of the optimized simulations and the reference simulation. Negative values indicate improved 

performance. Results are presented for the assimilated float (#5904479). Columns compare the reference simulation against three 

parameter selection strategies. ‘Main effects’ and ‘Total effects’ refer to parameter selections based on first-order and total-order 

Sobol indices, respectively, while ‘All Parameters’ corresponds to optimization using the full parameter set. For each method, 785 
‘Best’ denotes the simulation with the highest weight, and ‘Ensemble’ represents the weighted mean across all ensemble members. 

Values represent the median percentage improvement in metrics related to the productive layer (a), and for all remaining metrics 

(b). Note that metrics related to the DCM were excluded due to the lack of long-term observational data for this metrics. 

Uncertainty on the median improvement is estimated using half the interquartile range of the percentage improvements across the 

metrics. 790 

(a) 

 
Main effects 

Best 

Total effects 

Best 

All Parameters 

Best 

Main effects 

Ensemble 

Total effects 

Ensemble 

All Parameters 

Ensemble 

5904479 

Improvement (%) 

-53.7 

(±38.6) 

-54.5 

(±29.3) 

-50.4 

(±27.1) 

-55.6 

(±36.1) 

-54.2 

(±24.2) 

-53.6 

(±29.9) 

 
Table 3. Continued 

(b) 

 
Main effects 

Best 

Total effects 

Best 

All Parameters 

Best 

Main effects 

Ensemble 

Total effects 

Ensemble 

All Parameters 

Ensemble 

5904479 

Improvement (%) 

-0.25 

(±1.6) 

0.0 

(±2.2) 

-0.35 

(±0.7) 

-0.31 

(±1.3) 

-0.38 

(±1.2) 

-0.36 

(±1.4) 

 
 

The median NRMSE of the weighted-mean ensemble for each strategy was comparable to that of its single best-performing 795 

member (Table 3a). However, the ensemble weighted mean (solid lines, Fig. 5) consistently provided a smoother and more 

physically plausible representation of the seasonal cycle than any individual "best" member simulation (dashed lines), which 

is a known advantage of the ensemble approach (Germineaud et al., 2019). Regarding the parameters themselves, while the 

overall posterior distributions were largely similar across the three strategies, the specific values for the single best-

performing member of each strategy show notable differences. These parameter sets are provided in Table 4 as a concrete 800 

and reusable outcome for future studies. 

 

Table 4. Parameter optimization results. (a) Model parameters for microzooplankton. (b) Model parameters for mesozooplankton. 

(c) Model parameters for phytoplankton growth. (d) Model parameters for nutrient limitations. (e) Model parameters biological. 

(f) Model parameters for organic particles. (g) Model parameters for phytoplankton sinks. (h) Model parameters for 805 
remineralization. (i) Model parameters for iron chemistry. (j) Model parameters for calcite chemistry. (k) Model parameters for 

input deposition. (l) Model parameters for sediment mobilization. The ‘Ref’ column indicates the reference values used in the 

standard configuration of the PISCES model. The ‘Best’ column reports the parameter value implemented in the member with the 

lowest cost function during the optimization procedure. A dash in any column indicates that the corresponding parameter was not 

modified as part of the optimization of the parameters selected for this sensitivity test. An estimate of the uncertainty associated 810 
with the “Best” values obtained when optimizing all parameters simultaneously is provided by the lower and upper bounds of the 

67% HDI. 
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(a) 

Symbol 
Description 

(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 

Best All parameters 

(HDI) 

𝑃𝐷𝑖𝑎𝑡
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 MicroZoo. preference for Diatoms 0.8 

0.13 

(8e-3 – 8.58e-2) 

8.44e-2 

(8e-3 – 9.57e-2) 

0.29 

(8e-3 – 0.12) 

𝑃𝑁𝑎𝑛𝑜
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 

MicroZoo. Preference for 

NanoPython 
1 

0.32 

(0.17 – 0.41) 

0.97 

(0.16 – 0.64) 

0.6 

(0.17 – 0.58) 

𝐾𝐺
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 

H-Sat. constant for MicroZoo. grazing 

(µmol C L-1) 
2e-5 

3.49e-5 

(2.78e-5 – 3.98e-5) 

2.26e-5 

(1.45e-5 – 3.16e-5) 

2.65e-5 

(2.21e-5 – 3.74e-5) 

𝑒𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜  Efficiency of MicroZoo. growth 0.4 
0.5 

(0.15 – 0.46) 

0.23 

(8.76e-2 – 0.46) 

0.37 

(0.23 – 0.59) 

 𝑒𝑀𝑖𝑛
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 Min efficiency of MicroZoo. growth 0.4 

0.5 

(0.15 – 0.46) 

0.23 

(8.76e-2 – 0.46) 

0.37 

(0.23 – 0.59) 

𝐺𝑚
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 

Max. MicroZoo. grazing rate 

(d-1) 
2 

2.19 

(1.69– 2.81) 

1.96 

(1.7 – 3.25) 

1.81 

(1.69 – 3.06) 

𝛾𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 
Fraction of MicroZoo excretion as 

DOM 
0.6 - 

0.27 

(6e-3 – 0.56) 

0.4 

(6e-3 – 0.47) 

𝜐𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 
Part of calcite not dissolved in 

MicroZoo  
0.75 

0.12 

(7.5e-3 – 0.48) 

0.4 

(7.5e-3 – 0.51) 

0.5 

(7.5e-3 – 0.55) 

𝑚𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 
MicroZoo. mortality rate 

((mol L-1) -1 d-1) 
0.005 - 

8.61e-3 

(4.4e-3 – 8.93e-3) 

9.4e-3 

(4.42e-3 – 9.46e-3) 

𝑃𝑃𝑂𝑀
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 MicroZoo. preference for POM 0.15 

6.44e-2 

(1.5e-3 – 8.51e-2) 

0.19 

(1.5e-3 – 0.11) 

0.12 

(1.5e-3 – 0.11) 

𝜙𝑆𝑐𝑎𝑙𝑙𝑖𝑛𝑔
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 

Predation window size scalling 

MicroZoo 
1 - - 

0.54 

(1e-2 – 0.94) 

𝐹𝑇𝑟𝑒𝑠ℎ
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 

Food threshold for feeding (µmol C L-

1) 
3e-7 - - 

2.01e-7 

(8.12e-8 – 3.8e-7) 

𝜙𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 Predation window size MicroZoo 0.5 - 
0.23 

(5e-3 – 0.63) 

0.76 

(0.21 – 0.86) 

𝜎𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜  
Non assimilated fraction of 

NanoPhyto. by MicroZoo 
0.3 

6.31e-3 

(3e-3 – 0.29) 

7.6e-2 

(0.14 – 0.41) 

0.25 

(0.13 – 0.47) 

𝑟𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜  
Linear mortality rate of MicroZoo 

(d-1) 
0.02 - 

3.29e-2 

(1.89e-2 – 3.41e-2) 

2.95e-2 

(1.69e-2 – 3.36e-2) 
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(b) 

Symbol 
Description 

(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 
Best All parameters 
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𝑃𝑃𝑂𝐶
𝑀𝑒𝑠𝑜𝑍𝑜𝑜 MesoZoo. preference for POC 0.3 - 

5.5e-2 

(3e-3 – 8.83e-2) 

0.32 

(3e-3 – 0.1) 

𝑃𝑁𝑎𝑛𝑜
𝑀𝑒𝑠𝑜𝑍𝑜𝑜 MesZoo. preference for NanoPhyto 0.3 - 

4.24e-2 

(3e-3 – 9.5e-2) 

3.96e-2 

(3e-3 – 6.03e-2) 

𝑒𝑀𝑒𝑠𝑜𝑍𝑜𝑜 Efficiency of MesoZoo growth 0.4 - 
0.55 

(0.38 – 0.63) 

0.48 

(0.36 – 0.67) 

𝑒𝑀𝑖𝑛
𝑀𝑒𝑠𝑜𝑍𝑜𝑜  Min Efficiency of MesoZoo growth 0.4 - 

0.55 

(0.38 – 0.63) 

0.48 

(0.36 – 0.67) 

𝐺𝑚
𝑀𝑒𝑠𝑜𝑍𝑜𝑜 

Max. MesoZoo. grazing rate 

(d-1) 
0.5 

0.4 

(0.57– 0.95) 

0.83 

(0.49– 0.89) 

0.53 

(0.54– 0.9) 

𝜎𝑀𝑒𝑠𝑜𝑍𝑜𝑜 
Non assimilated fraction of 

NanoPhyto. by MesoZoo. 
0.3 - 

0.24 

(0.13– 0.35) 

0.32 

(7.83e-2– 0.32) 

𝐾𝐺
𝑀𝑒𝑠𝑜𝑍𝑜𝑜 

H-Sat. constant for MesoZoo. 

grazing 

(µmol C L-1) 

2e-5 
8.91e-6 

(1.46e-5 – 2.73e-5) 

3.13e-5 

(5.18e-6 – 2.26e-5) 

1.38e-5 

(5.89e-6 – 2.32e-5) 

𝑃𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜
𝑀𝑒𝑠𝑜𝑍𝑜𝑜  MesoZoo. preference for MicroZoo 1 - 

0.13 

(0.43 – 0.88) 

0.52 

(0.64 – 1.) 

𝑃𝐷𝑖𝑎𝑡
𝑀𝑒𝑠𝑜𝑍𝑜𝑜 MesoZoo. Preference for diatoms 1 - 

0.41 

(0.22 – 0.77) 

0.88 

(0.33 – 0.95) 

𝑔𝐹𝐹
𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜. 

Flux-feeding rate 

((mmol L-1)-1) 
3e3 - 

5.04e3 

(1.57e3 – 5.37e3) 

3.46e3 

(1.58e3 – 4.63e3) 

𝜙𝑆𝑐𝑎𝑙𝑙𝑖𝑛𝑔
𝑀𝑒𝑠𝑜𝑍𝑜𝑜  

Predation window size scalling 

MesoZoo 
1 - - 

1.83 

(0.62 – 1.85) 

𝐹𝑇𝑟𝑒𝑠ℎ
𝑀𝑒𝑠𝑜𝑜𝑍𝑜𝑜 

Food threshold for grazing (µmol C 

L-1) 
3e-7 - - 

4.89e-8 

(3.e-9 – 2.93e-7) 

𝜐𝑀𝑒𝑠𝑜𝑍𝑜𝑜 
Part of calcite not dissolved in 

MesoZoo 
0.75 - 

0.41 

(7.5e-3 – 0.55) 

0.71 

(0.31 – 0.95) 

𝑚𝑀𝑒𝑠𝑜𝑍𝑜𝑜 
MesoZoo. mortality rate 

((mol L-1) -1 d-1) 
0.01 - 

1.61e-2 

(6.13e-3 – 1.89e-2) 

6.84e-3 

(2.17e-3 – 1.23e-2) 

𝜙𝑀𝑒𝑠𝑜𝑜𝑍𝑜𝑜  Predation window size MesoZoo 0.5 - - 
0.9 

(5e-3 – 0.56) 

𝛾𝑀𝑒𝑠𝑜𝑍𝑜𝑜 
Fraction of MesoZoo excretion as 

DOM 
0.6 - - 

0.93 

(6.e-3 – 0.49) 

𝑟𝑀𝑒𝑠𝑜𝑍𝑜𝑜 
Exsudation rate of MesoZoo 

(d-1) 
0.005 - 

1.85e-3 

(5.67e-4 – 6.78e-2) 

8.02e-3 

(3.2e-3 – 9.4e-3) 
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𝜃𝑀𝑎𝑥
𝐶ℎ𝑙  𝑁𝑎𝑛𝑜 

Max. Chl-a/C in NanoPhyto 

(mg Chl-a (mg C)-1) 
0.033 

1.1e-2 

(7.23e-3 – 1.26e-2) 

6.15e-3 

(5.52e-3 – 1.42e-2) 

1.11e-2 

(6.77e-3 – 1.42e-2) 

𝛼𝑁𝑎𝑛𝑜 
P-I slope NanoPhyto 

((W m-2)-1 d-1) 
2 

1.2 

(0.86 – 1.39) 

1.87 

(0.92 – 1.68) 

1.34 

(1.07 – 1.88) 

𝜃𝑀𝑎𝑥
𝐶ℎ𝑙  𝐷𝑖𝑎𝑡 

Max. Chl-a /C in Diatoms 

(mg Chl-a (mg C)-1) 
0.05 

3.65e-2 

(2.66e-2 – 6.4e-2) 

2.88e-2 

(1.55e-2 – 5.14e-2) 

9.13e-2 

(1.61e-2 – 5.8e-2) 

𝜃𝑀𝑖𝑛
𝐶ℎ𝑙  𝑃ℎ𝑦𝑡𝑜

 
Min. Chl-a /C in Phyto 

(mg Chl-a (mg C)-1) 
0.003 - - 

3.53e-3 

(3.15e-3 – 5.8e-3) 

𝜃𝑀𝑎𝑥
𝐹𝑒  𝐷𝑖𝑎𝑡 

Max. Fe/C in Diatoms 

(µmol Fe mol C-1) 
6e-5 

5.16e-5 

(2.88e-5– 8.28e-5) 

1.09e-4 

(1.29e-5– 7.99e-5) 

4.16e-5 

(2.59e-5– 9.03e-5) 

𝜃𝑀𝑎𝑥
𝐹𝑒  𝑁𝑎𝑛𝑜 

Max. Fe/C in NanoPhyto 

(µmol Fe mol C-1) 
6e-5 

3.14e-5 

(1.31e-5– 6.9e-5) 

6.02e-5 

(4.92e-5– 1.07e-4) 

4.27e-5 

(4.31e-5– 1.07e-4) 

𝛾𝐷𝑖𝑎𝑡𝑜𝑚𝑠 Excretion ration of Diatoms 0.05 - - 
3.38e-2 

(1.63e-2 – 7.22e-2) 

𝛼𝐷𝑖𝑎𝑡 
P-I slope for Diatoms 

((W m-2)-1 d-1) 
2 - 

1.69 

(1.69 – 3.78) 

3.3 

(1.27– 3.71) 

𝐾𝑆𝑖 
Mean Si/C ratio 

(µmol Si mol C-1) 
0.13 

0.25 

(0.14 – 0.25) 

3.25e-2 

(5.51e-2 – 0.22) 

0.21 

(7.67e-2 – 0.25) 

𝛾𝑁𝑎𝑛𝑜 Excretion ration of NanoPhyto 0.05 - - 
9.96e-2 

(3.76e-2 – 9.47e-2) 

𝑏𝑟𝑒𝑠𝑝 Basal respiration rate (d-1) 0.033 - - 
5.41e-2 

(2.2e-2 – 5.9e-2) 
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(d) 

Symbol 
Description 

(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 
Best All parameters 

𝜃𝑂𝑝𝑡
𝐹𝑒  𝑁𝑎𝑛𝑜 

Optimal quota of NanoPhyto. 

(µmol Fe (mol C)-1) 
10e-6 

2.63e-6 

(1e-7 – 1.65e-6) 

2.12e-6 

(1.e-7 – 4.22e-6) 

6.39e-7 

(1e-7 – 6.23e-6) 

𝐾𝐷𝑂𝐶 

H-Sat. constant of DOC 

remineralization 

(µmol C L-1) 

417e-6 
7.77e-4 

(4.54e-4 – 7.87e-4) 

6.32e-4 

(4.89e-4 – 7.62e-4) 

5.39e-4 

(5.46e-4 – 7.89e-4) 

𝑅𝐶𝑎𝐶𝑂3
 Mean rain ratio 0.2 

5.34e-2 

(2e-3 – 9.84e-2) 

0.12 

(2e-3 – 0.21) 

5.54e-2 

(2e-3 – 0.19) 

𝐾𝐹𝑒
𝑁𝑎𝑛𝑜 

Iron H-Sat. for NanoPhyto  

(nmol Fe L-1) 
1.7e-9 - 

3.27e-9 

(1.68e-11 – 1.94e-9) 

2.01e-9 

(7.14e-10 – 2.33e-9) 

𝐾𝑆𝑖
𝑈𝑝𝑡𝑎𝑘𝑒

 
H-Sat. constant for Si uptake 

(µmol Si L-1) 
8e-6 - 

5.96e-6 

(2.77e-6 – 1.2e-5) 

6.43e-6 

(8e-8 – 9.82e-6) 

𝜃𝑂𝑝𝑡
𝐹𝑒  𝐷𝑖𝑎𝑡 

Optimal quota of Diatoms 

(µmol Fe (mol C)-1) 
10e-6 - 

1.19e-5 

(1.e-7 – 9.36e-6) 

1.01e-5 

(6.07e-6 – 1.88e-5) 
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𝑆𝑀𝑖𝑛
𝐷𝑖𝑎𝑡 

Min. size criteria for Diatoms 

(m) 
1e-6 - 

1.73e-6 

(1.11e-7 – 1.35e-6) 

9.e-7 

(7.47e-7 – 1.89e-6) 

𝐾𝐹𝑒
𝐵𝑎𝑐𝑡 

Iron H-Sat. for for DOC remin 

(nmol Fe L-1) 
3e-11 - - 

5.91e-11 

(1.6e-11 – 5.22e-11) 

𝐾𝑆𝑖 
H-Sat. constant for Si/C 

(µmol Si L-1) 
20e-6 - 

9.92e-6 

(6.37e-6 – 3.11e-5) 

4.39e-6 

(2e-7 – 2.6e-5) 

𝑆𝑟𝑎𝑡
𝑁𝑎𝑛𝑜 Size ratio for NanoPhyto 3 - 

5.58 

(1.6 – 5.04) 

3.91 

(2.52 – 5.68) 

𝑆𝑀𝑖𝑛
𝑁𝑎𝑛𝑜 

Min. size criteria for 

NanoPhyto 

(m) 

1e-6 - - 
6.45.e-7 

(1.65e-7 – 1.37e-6) 

𝑂2
𝑚𝑖𝑛 

H-Sat. constant for anoxia 

(µmol O2 L
-1) 

1e-6 - - 
7.72.e-7 

(1e-8 – 1.24e-6) 

𝐾𝐹𝑒
𝐷𝑖𝑎𝑡𝑜𝑚𝑠 

Iron H-Sat. for Diatoms (nmol 

Fe L-1) 
5e-9 - 

8.91e-9 

(2.09e-9 – 7.39e-9) 

4.17e-10 

(2.38e-9 – 7.9e-9) 

𝑆𝑟𝑎𝑡.
𝐷𝑖𝑎𝑡. Size ratio for Diatoms 4 - 

7.84 

(3.58 – 8.) 

1.37 

(3.39 – 7.48) 

𝐾𝑁𝑂3

𝑁𝑎𝑛𝑜 
NO3

- HS of NanoPhyto 

(mol N L-1) 
1e-6 - 

1.75e-6 

(8.42e-7 – 1.83e-6) 

4.79e-7 

(8.86e-7 – 2e-6) 

𝐾𝑁𝐻4

𝑁𝑎𝑛𝑜 
NH4 HS of NanoPhyto 

(mol N L-1) 
1e-6 - 

1.75e-6 

(8.42e-7 – 1.83e-6) 

4.79e-7 

(8.86e-7 – 2e-6) 

𝐾𝑁𝑂3

𝐵𝑎𝑐𝑡 
NO3

- HS for DOC remin (mol 

N L-1) 
3e-7 - 

5.73e-7 

(3.39e-7 – 5.68e-7) 

4.52e-7 

(3.8e-7 – 5.6e-7) 

𝐾𝑁𝐻4

𝐵𝑎𝑐𝑡 
NH4 HS for DOC remin (mol 

N L-1) 
3e-7 - 

5.73e-7 

(3.39e-7 – 5.68e-7) 

4.52e-7 

(3.8e-7 – 5.6e-7) 

𝐾𝑁𝐻4

𝐷𝑖𝑎𝑡𝑜𝑚𝑠 
NH4 HS of Diatoms 

(mol N L-1) 
3e-6 - 

3.54e-6 

(2.97e-6 – 5.68e-6) 

1.88e-6 

(2.92e-6 – 5.99e-6) 

𝐾𝑁𝑂3

𝐷𝑖𝑎𝑡𝑜𝑚𝑠 
NO3

- HS of Diatoms 

(mol N L-1) 
3e-6 - 

3.54e-6 

(2.97e-6 – 5.68e-6) 

1.88e-6 

(2.92e-6 – 5.99e-6) 

 

Table 4. Continued 

(e) 

Symbol 
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(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 
Best All parameters 

𝜃𝐹𝑒 𝑀𝑒𝑠𝑜𝑍𝑜𝑜 
Fe/C in MesoZoo 

(µmol Fe (mol C)-1) 
15e-6 - 

2.22e-5 

(1.5e-8 – 1.25e-5) 

6.16e-6 

(1.5e-8 – 1.27e-5) 

𝐾𝑚 
H-Sat. constant for mortality 

(µmol C L-1) 
1e-7 - 

1.04e-7 

(3.32e-8 – 1.36e-7) 

1.09e-7 

(9.22e-8 – 2e-7) 

𝑊𝑃𝑂𝐶 
POC seeking speed 

(m d-1) 
2 

0.28 

(0.02 – 1.19) 

0.61 

(0.02 – 1.87) 

0.3 

(0.02 – 1.33) 

𝜃𝐹𝑒 𝑀𝑖𝑐𝑟𝑜𝑍𝑜𝑜 Fe/C in MicroZoo 10e-6 - 1.39e-5 1.48e-5 
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(µmol Fe mol C-1) (9.54e-6 – 1.9e-5) (8.17e-6 – 1.99e-5) 

𝑊𝐺𝑂𝐶 
Big particles sinking speed 

(m d-1) 
50 

87.88 

(5.57 – 67.72) 

84.03 

(11.25 – 68.22) 

18.86 

(0.5 – 61.45) 

𝑊𝐺𝑂𝐶 𝑀𝑎𝑥 
Max big particles sinking speed 

(m d-1) 
50 

87.88 

(5.57 – 67.72) 

84.03 

(11.25 – 68.22) 

18.86 

(0.5 – 61.45) 

𝑊𝐺𝑂𝐶
𝑙𝑒𝑛𝑔𝑡ℎ 

Big particles length scale of sinking 

(m) 
5e3 - - 

6.77e3 

(2.11e3 – 8.31e3) 

 

Table 4. Continued 

(f) 

Symbol 
Description 

(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 
Best All parameters 

𝛾𝑠ℎ𝑎𝑝𝑒 Shape of the gamma function 1 
0.55 

(0.22 – 0.85) 

0.84 

(0.29 – 1.37) 

0.82 

(0.53 – 1.7) 

𝜆𝑃𝑂𝐶 
Remineralisation rate of POC 

(d-1) 
0.035 

5.52e-2 

(1.13e-2 – 4.89e-2) 

2.16e-2 

(1.14e-2 – 4.79e-2) 

3.78e-2 

(1.51e-2 – 5.1e-2) 

 825 
Table 4. Continued 

(g) 

Symbol 
Description 

(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 
Best All parameters 

𝑚𝑁𝑎𝑛𝑜 
NanoPhyto mortality rate 

(d-1) 
0.01 - 

1.4e-2 

(7.19e-3 – 1.89e-2) 

1.44e-2 

(1.01e-2 – 1.91e-2) 

𝑊𝑁𝑎𝑛𝑜 
Quadratic mortality of NanoPhyto 

((µmol C L-1)-1 L-1) 
0.01 - 

1.9e-2 

(1.e-4 – 1.21e-2) 

1.05e-2 

(1.e-4 – 9.3e-3) 

𝑊𝑀𝑎𝑥
𝐷𝑖𝑎𝑡𝑜𝑚𝑠 

Maximum quadratic mortality of 

Diatoms 

((µmol C L-1)-1 L-1) 

0.03 - 
2.11e-2 

(1.92e-2 – 4.74e-2) 

2.01e-2 

(2.22e-2 – 5.13e-2) 

𝑚𝐷𝑖𝑎𝑡 
Diatoms mortality rate 

(d-1) 
0.01 - 

7.32e-3 

(7.63e-3 – 1.89e-2) 

1.39e-2 

(5.18e-3 – 1.78e-2) 

 

Table 4. Continued 

(h) 

Symbol 
Description 

(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 
Best All parameters 

𝜆𝑁𝐻4
 

NH4 nitrification rate 

(d-1) 
0.05 

4.78e-2 

(5e-4 – 5.06e-2) 

6.5e-3 

(5e-4 – 5.89e-2) 

2.11e-2 

(5e-4 – 5.11e-2) 

𝜆𝑆𝑖 
Remineralization rate of Si 

(d-1) 
0.003 

3.17e-3 

(3e-5 – 3.13e-3) 

5.05e-3 

(3e-5 – 2.81e-3) 

1.59e-3 

(3e-5 – 3.14e-3) 
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𝜃𝐹𝑒,𝐵𝑎𝑐𝑡 
Fe/C quota in Bacteria 

(µmol Fe mol C-1) 
60e-6 - - 

9.25e-6 

(6e-7 – 6.7e-5) 

𝜆𝑆𝑖
𝑓𝑎𝑠𝑡

 
Fast remineralization rate of Si 

(d-1) 
0.03 

9.77e-3 

(3e-4 – 3.16e-2) 

1.86e-2 

(9.62e-3 – 4.67e-2) 

1.04e-2 

(6.63e-3 – 3.94e-2) 

𝐾𝐹𝑒
𝐵𝑎𝑐𝑡 

H-Sat. constant for bacteria Fe/C 

(µmol Fe mol C-1) 
4e-10 - - 

3.42e-10 

(7.81e-11 – 5.07e-10) 

𝜒𝑙𝑎𝑏
𝑂  Fraction of labile biogenic silica 0.5 

0.98 

(5e-3 – 0.67) 

0.25 

(0.35 – 0.89) 

0.85 

(0.37 – 0.9) 

 

 830 
Table 4. Continued 

(i) 

Symbol 
Description 

(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 
Best All parameters 

𝜆𝐹𝑒
𝑑𝑢𝑠𝑡 

Savenging rate of iron by dust 

(d-1 mg-1 L) 
150 - - 

2.14e2 

(64.2 – 2.21e2) 

𝜆𝐹𝑒
𝑃𝑂𝐹𝑒 

Fraction of scavenged Fe that goes 

to POFe 
1 - - 

0.34 

(0.16 – 0.79) 

𝜆𝐹𝑒 

Scavenging rate of iron by biogenic 

particles 

(d-1) 

0.02 - - 
2.83e-3 

(2e-4– 2.27e-2) 

𝜆𝑁𝑎𝑛𝑜𝑝𝑎𝑟𝑡 

Nanoparticle formation rate 

constant 

(s-1) 

0.01 - - 
4.31e-3 

(1e-4–1.21e-2) 

 

Table 4. Continued 

(j) 

Symbol 
Description 

(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 
Best All parameters 

𝜆𝐶𝑎𝐶𝑂3
 

Calcite dissolution rate 

constant 

(d-1) 

100 - - 
1.46e2 

(1. – 1.32e2) 

 

 835 
Table 4. Continued 

(k) 

Symbol 
Description 

(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 
Best All parameters 

𝑊𝑑𝑢𝑠𝑡 Dust sinking speed (m s-1) 2 - - 
2.27 

(2e-2 – 2.39) 
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𝜐𝑑𝑢𝑠𝑡
𝐹𝑒  Fe mineral fraction of dust 0.035 - - 

6.32e-2 

(1.16e-2 – 5.17e-2) 

𝜐3𝐻𝑒

𝐹𝑒  
Fe to 3He ratio assumed for vent 

iron supply (mol Fe mol 3He-1) 
1e7 - - 

9.92e6 

(7.99e6 – 1.89e7) 

𝐹𝑒𝐹𝑒,𝑚𝑖𝑛
𝑠𝑒𝑑  

Coastal release of Iron (mol Fe 

m-2 s-1) 
2e-9 - - 

7.73e-10 

(2e-11 – 2.32e-9) 

𝐹𝑒𝑖𝑐𝑒 
Iron concentration in sea ice (mol 

Fe L-1) 
15e-9 - - 

4.78e-9 

(9.53e-9 – 2.89e-8) 

 

Table 4. Continued 

(l) 

Symbol 
Description 

(Units) 
Ref 

Best 

Main effects 

Best 

Total effects 
Best All parameters 

𝑁𝑓𝑖𝑥 
Nitrogen fixation rate 

(µmol N L-1 d-1) 
2e-7 - - 

1.75e-7 

(2e-9 – 2.74e-7) 

𝐾𝐹𝑒
𝐷𝑖𝑎𝑧𝑜𝑡𝑟𝑜𝑝ℎ𝑠

 
Diazotrophs H-Sat constant for iron 

(nmol Fe L-1) 
1e-10 - - 

4.6e-11 

(1.53e-11 – 1.26e-10) 

𝑏𝑙𝑖𝑔ℎ𝑡
𝐷𝑖𝑎𝑧𝑜𝑡𝑟𝑜𝑝ℎ𝑠

 
Diazotrophs sensitivity to light 

(W m-2) 
30 - - 

36.1 

(0.3 – 37.6) 

 

4.3 Deeper properties skill 840 

In contrast to the productive layer, the parameter optimization had a limited impact on the biogeochemistry of the 

mesopelagic layer and on emergent vertical properties (Figs. 6, 7 and S3, S4, S6, S7, in the Supplement). For most deeper 

metrics, such as nutrients, oxygen and carbonate chemistry, the optimized ensembles remain nearly indistinguishable from 

the reference simulation. This outcome can be attributed to several factors: the reference model already simulated these 

variables with reasonable skill, leaving little mean bias for the optimization to correct  (e.g., Fig. 7a, c); mesopelagic 845 

properties have long adjustment timescales, making a one-year assimilation period insufficient to induce substantial changes; 

and the 1D model configuration neglects the deep advective processes that drive much of the variability in the ocean interior. 

 

A key exception is mesopelagic POC. Because its dynamics are directly and rapidly forced by particle export from the 

surface, its response timescale is much shorter. For this variable, the optimization successfully mitigated a bias present in the 850 

reference run, significantly improving the simulation skill (Fig. 6a). 

 

The primary role of the optimization for these deeper properties was therefore not to correct large mean-state biases, but 

rather to act as a constraint that prevented the model from drifting away from the observations. For instance, the assimilation 
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effectively penalized any parameter set that produced an unrealistic nitracline depth or oxygen minimum, ensuring the 855 

optimized ensembles remained consistent with the float data throughout the simulation period. 

 

This limited overall impact is confirmed by the error statistics. For the seven non-productive-layer metrics, the median 

NRMSE improvements for the weighted-mean ensembles were negligible: -0.31% (±1.3%) for Main effects, -0.38% 

(±1.2%) for Total effects, and -0.36% (±1.4%) for All-parameters (Table 3b). The associated uncertainty (IQR) for each 860 

strategy is several times larger than the median improvement, and a Kruskal-Wallis H-test confirmed that the differences 

among the strategies are not statistically significant (p = 0.99). These results suggest that while the framework can 

successfully constrain specific, well-observed features at any depth, the one-year assimilation period is insufficient to correct 

for potential systemic biases in slower, deeper biogeochemical processes. 

 865 

As with the productive layer, the median NRMSE for the weighted-mean ensemble of each strategy was statistically 

indistinguishable from that of its corresponding single "best" member (Table 3b). For these deeper properties, where model-

data misfits are often smaller and less dynamic, the visual difference between the smoother ensemble mean and the more 

variable best-member simulation is less pronounced than in the surface layer, but the principle remains that the ensemble 

mean provides a more robust estimate. 870 

4.4 Uncertainty in Unobserved Variables 

While all three optimization strategies showed comparable skill against assimilated data, their performance diverged 

significantly when estimating the predictive uncertainty for unobserved variables (Fig. 8). The Main effects ensemble, which 

perturbed only 29 parameters, produced the smallest uncertainty spread, with a median standard deviation of 0.17 (±0.16) 

relative to the seasonal cycle of the unobserved metrics. In contrast, the Total effects (66 parameters) and All-parameters (95 875 

parameters) ensembles produced substantially larger spreads, with median values of 0.29 (±0.21) and 0.27 (±0.26), 

respectively. 
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Figure 8. Standard deviation (unitless) of the ensemble optimized using different parameter selection strategies, normalized by the 

variability of the seasonal cycle in the reference simulation. The X-axis indicates non-assimilated state variables as well as two 880 
derived outputs : carbon export at 100 m depth and integrated net primary production (INTPP). Results are shown for the three 

parameter selection strategies : ‘Main effects (N=29)’,  ‘Total effects (N=66)’ and ‘All parameters’. Each point corresponds to a 

specific metric, with dashed lines indicating the median value.  

 

Formally, a Kruskal-Wallis H-test on these distributions of uncertainty spreads does not indicate a statistically significant 885 

difference between the three strategies at the α=0.05 level (p = 0.26). However, the clear difference in the median values is  

not spurious; it is a direct and necessary consequence of the experimental design. A fundamental principle of uncertainty 

quantification is that a credible estimate of predictive uncertainty must account for all known, significant sources of error. 

The GSA itself demonstrated that many parameters exert influence primarily through interactions, yet the Main effects 

strategy deliberately holds these and dozens of other parameters fixed at their default values. This approach, therefore, 890 

knowingly omits many sources of parametric uncertainty from the analysis. The resulting narrow spread is an artifact of this 

omission and must be considered an underestimate of the true model uncertainty. 

 

Conversely, the Total effects and All-parameters strategies honor the principle of comprehensive error accounting by 

allowing a much larger set of influential parameters to vary. The wider predictive spreads they produce are not a sign of a 895 

worse model, but rather a more honest and scientifically robust reflection of the model's true confidence limits. Therefore, 

we conclude that while any of the strategies can produce a skillful "best-guess" simulation, approaches that perturb more 
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parameters provide a more trustworthy quantification of predictive uncertainty, which is essential for the reliable use of the 

model in forecasting or climate projection. 

4.5 Portability of the Optimized Ensembles to Other Bioregions 900 

To test the portability of the optimized parameter sets, the three ensembles were used to simulate conditions along the 

trajectories of two independent BGC-Argo floats from different bioregions: one in the North Atlantic Subpolar Gyre 

(#6901485) and one in the oligotrophic Mediterranean Sea (#6901648) (Fig. 1). A visual comparison of the model 

performance for these validation floats is provided in the Supplement (Figs. S8-S25). We then assessed the performance 

using the RCRV bias and dispersion metrics, which evaluate the accuracy and robustness of the ensembles against these out-905 

of-sample observations (Fig. 9). 
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Figure 9. RCRV values across all assimilated metrics. Each column corresponds at one of the two test floats (#6901648 and 

#6901485). The bias is estimated as the mean RCRV, while the dispersion is quantified using the standard deviation of the RCRV 910 
values. The scatter plot shows results obtained using three different parameter selection strategies : ‘Main effects’ and ‘Total 

effects’ correspond to selections based on first-order and total-order Sobol indices, respectively, while ‘All Parameters’ refers to 

optimization using the full set of available parameter. The median value across metrics is indicated by the dashed lines. DCM 

observations did not allow for the reconstruction of the corresponding observational metrics. As a result, RCRV values could not 

be computed for the DCM depth and DCM intensity metrics. 915 

 

The RCRV bias analysis confirmed that all three optimization strategies produced robust ensembles that were not over-fitted 

to the original assimilated data. For both validation floats, the median ensemble bias was low across most metrics, indicating 
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that the optimized simulations accurately represent the independent observations (Fig. 9a, b). A Kruskal-Wallis H-test 

confirmed that the bias distributions were statistically indistinguishable among the three strategies (p = 0.99). All ensembles 920 

did, however, produce the same two large, predictable biases when applied to the Mediterranean float. The first was in the 

nitracline depth. In the North Atlantic, the assimilated float observed a consistently shallow nitracline. The optimization 

algorithm successfully tuned the model's biological rate parameters to maintain this structure. However, the Mediterranean is 

an oligotrophic environment with a much deeper nitracline. These North Atlantic-tuned parameters caused the model to 

incorrectly simulate a shallow nitracline when applied there. The second large bias appeared in the productive-layer nitrate 925 

concentration. This is a statistical artifact of the RCRV metric, which normalizes the model-data difference by the 

observational error. In the oligotrophic Mediterranean, observed nitrate concentrations and their associated errors are 

extremely small, causing the RCRV calculation to mathematically amplify a physically negligible model-data mismatch into 

a large bias score. These results do not indicate a failure of the optimization, but rather highlight the regional-specificity of 

certain ecosystem parameters. 930 

 

Finally, the analysis of the RCRV dispersion metric assesses the realism of the quantified uncertainty. In this framework, a 

dispersion of 1.0 indicates a perfectly calibrated ensemble, where the predicted uncertainty matches the actual model-data 

error. Values significantly less than 1.0 indicate that the ensemble is over-dispersive (i.e., the predicted spread is larger than 

the observed error), while values greater than 1.0 indicate an under-dispersive (overconfident) ensemble. 935 

 

For both validation floats, the median dispersion scores were consistent across all three strategies, approximately 0.3 for the 

North Atlantic and 0.4 for the Mediterranean (Fig. 9c, d). A Kruskal-Wallis test confirmed no significant difference among 

the strategies (p = 0.99). These values, being well below 1.0, indicate that the optimized ensembles are somewhat over-

dispersive, meaning they represent a conservative (under-confident) estimate of the model's true uncertainty 940 

 

Although not perfectly calibrated, the assimilation has constrained the model (dispersion is significantly greater than zero, 

thus avoiding ensemble collapse). Furthermore, a conservative estimate of uncertainty is often preferable to an overconfident 

one in forecasting applications. This balance confirms that the framework yields a portable parameter set with low bias and a 

reliable, albeit cautious, uncertainty envelope. 945 

4.6 Parameter Uncertainty and Correlation 

The optimization framework successfully leveraged the BGC-Argo data to significantly reduce parameter uncertainty, a 

process we quantified by the percentage reduction in the 67% HDI of the parameter distributions (Table 5). The results 

demonstrate the framework's ability to intelligently target and robustly constrain parameter uncertainty. This targeted nature 

is most evident in the All-parameters experiment. In this run, the median HDI reduction showed a clear cascade based on 950 

parameter sensitivity: the reduction was greatest for the Main effects subset (-27.4%), smaller for the broader Total effects 
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subset (-20.4%), and smallest when averaged over all 95 parameters (-16.3%). Using a significance level of α = 0.10, a 

Kruskal-Wallis test confirms that this observed cascade is statistically significant (p = 0.08). This demonstrates that the 

algorithm intelligently allocates its constraining power to the parameters that most influence the assimilated observations. 

The strongest overall constraint was achieved, as expected, in the most focused experiment: when only the 29 Main effects 955 

parameters were optimized, their median HDI shrank by a remarkable 41.3%. 

 

Table 5. Comparison of parameter distributions across optimization strategies. The three strategies are represented in the 

columns. The percentage reduction of the 67% HDI is calculated as the median percentage decrease of the HDI across the 

indicated parameters. For each parameter, the HDI reduction is computed as the relative difference between the 67% HDI of the 960 
posterior distribution obtained after optimization and the 67% HDI of the initial parameter distribution. The maximum 

correlation is estimated among the parameter values obtained from the optimized ensemble. The median correlation is the median 

of the correlations between the parameter values obtained at the end of the optimization. 

 
Optimization Main effects 

parameters (N=29) 

Optimization of Total effects 

parameters (N=66) 

Optimization of All 

parameters 

HDI reduction on Main effects parameters (%) (± IQR) 
-41.3 

(± 14.88) 

-24.47 

(± 11.35) 

-27.36 

(± 13.07) 

HDI reduction on Total effects parameters (%) 

(± IQR) 
- 

-20.5 

(± 9.18) 

-20.4 

(± 11.35) 

HDI reduction on All parameters (%) 

(± IQR) 
- - 

-16.3 

(± 11.02) 

Maximum correlation between optimized parameters 0.34 0.29 0.3 

Median correlation between optimized parameters (± IQR) 
0.04 

(± 0.028) 

0.033 

(± 0.02) 

0.032 

(± 0.02) 

 

Furthermore, the optimization produced posterior parameter ensembles that were effectively decorrelated (Table 5). This is a 965 

notable finding, as strong posterior correlations are a common challenge in data assimilation, often indicating that the 

available data are insufficient to constrain parameters independently. In contrast, our analysis reveals an absence of 

significant linear dependencies. Across all three optimization strategies, the maximum correlation coefficient observed 

between any two parameters was low (peaking at 0.34), while the median correlation was statistically indistinguishable from 

zero (0.032–0.04). These consistently low correlations indicate that the rich, multi-variable BGC-Argo dataset provided 970 

sufficient orthogonal constraints to allow the framework to find a solution where parameters were constrained independently 

of each other. 

 

Table 6. Comparison of the number of 1D simulations and the computational cost required for the parameter screening and 

optimization steps. The screening step for identifying Main Effects and Total Effects parameters requires the same number of 1D 975 
simulations, and therefore the same computational cost. The same parameter optimisation process is applied across all parameter 

sets. As a result, for the parameter optimisation step the number of simulations and the associated computational cost are identical 

for each method. The computational cost is expressed in terms of CPU hours required to generate the full ensemble of 1D 

simulations on a single CPU of an HPC system. Naturally, this value depends on the number of nodes and the specific 
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configuration of the HPC used. The computational cost of other steps, such as metric evaluation, is negligible compared to that of 980 
generating the 1D simulation ensemble. 

 Selection of parameters by Sobol indices Parameters optimization 

Number of 1D simulations 1 490 944 26 624 

CPU-Hours (Hours) 932,4 24 

5 Discussion 

Our study demonstrates that a comprehensive suite of BGC-Argo observations can be used to robustly constrain all 95 

parameters of the PISCES biogeochemical model. The iterative Importance Sampling (iIS) framework successfully reduced 

the productive-layer model-data misfit by over 50%, yielded portable parameter sets with significantly reduced uncertainty, 985 

and, crucially, produced posterior parameter distributions with negligible inter-correlation. A key finding of this study is that 

directly optimizing all 95 model parameters is just as effective as targeting smaller, GSA-informed subsets, with both 

approaches yielding statistically indistinguishable improvements in model skill. Furthermore, all strategies produced portable 

parameter sets with low bias and reliable, albeit cautious, uncertainty envelopes. Given that the 'All-parameters' strategy 

achieves these successful outcomes while avoiding the immense computational cost of the prerequisite GSA and providing a 990 

more robust quantification of uncertainty in unassimilated variables, we conclude that it offers the most practical and 

effective balance between model skill, computational cost, and uncertainty quantification for this type of calibration problem 

(Table 6). 

 

A central achievement of this framework is the advance it represents in addressing parameter equifinality, a longstanding 995 

challenge in biogeochemical data assimilation. Historically, studies using sparse datasets have often found strong posterior 

correlations between parameters, indicating that the available data were insufficient to constrain them independently ( 

Matear, 1995; Fennel et al., 2001; Mamnun et al., 2022). Our results, however, suggest that this issue was not an inescapable 

property of the models, but rather a symptom of being under-constrained. The rich, multi-variable BGC-Argo dataset 

provides a diverse and powerful set of orthogonal constraints. Simple trade-offs that cause parameter correlations in data-1000 

poor scenarios are no longer possible when twenty distinct metrics are assimilated simultaneously. For example, while 

increasing the P-I slope or decreasing phytoplankton mortality might both fit Chl-a data, these changes leave different 

imprints on nitrate drawdown, oxygen concentrations, etc.. By leveraging the distinct sensitivities of these multiple tracers, 

the framework can untangle parameter effects. As a result, our analysis revealed posterior parameter distributions with 

negligible inter-correlation (median r < 0.04; Table 5). This does not mean that equifinality has been eliminated; rather, it has 1005 

changed in character. We still find that a distribution of parameter sets performs well, but crucially, the parameters within 

this posterior ensemble are not structurally dependent on each other. The framework has thus advanced the state of the 

problem from one of correlated equifinality to one of uncorrelated equifinality, a critical step towards robust parameter 

estimation in complex ecosystem models. 
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 1010 

Despite its successes, this study's primary limitation is its reliance on a 1D vertical model that neglects horizontal advection. 

The framework produced a validated, regionally tuned parameter set that significantly improves 1D NEMO-PISCES 

simulations in the North Atlantic. However, the critical next step is to evaluate whether these skill improvements translate to 

a three-dimensional context. Implementing the optimized parameter set in a fully regional 3D NEMO-PISCES simulation 

will be essential to test its performance in a more complex and realistic environment. 1015 

 

The portability tests confirmed that the optimized parameters were robust and not over-fitted, but also revealed their 

limitations. While the North Atlantic-tuned set performed well when transferred to a different site within the same basin, it 

failed to reproduce the deep nitracline of the oligotrophic Mediterranean Sea. This finding highlights the regional specificity 

of certain parameters, a concept supported by studies showing significant parameter variation across different oceanic 1020 

biomes (Singh et al., 2025). This work therefore paves the way for moving beyond a single global parameterization towards 

a mosaic of regionally-optimized parameter sets. Systematically applying this framework to the growing global fleet of 

BGC-Argo floats could enable the creation of maps of PISCES parameters, revealing how parameters vary across the world's 

oceans. While this would introduce new challenges, such as defining emergent 'parameter bioregions', it represents a 

significant step towards developing more accurate and regionally-calibrated global biogeochemical models. 1025 

6 Conclusion 

We developed and applied a parameter optimization framework that leveraged comprehensive BGC-Argo data from a North 

Atlantic float in order to constrain the 95 parameters of the PISCES biogeochemical model. This framework was highly 

effective, reducing the productive-layer model-data misfit by over 50% and yielding decorrelated posterior parameter 

distributions. This significant advance shifts the long-standing challenge of correlated equifinality to uncorrelated 1030 

equifinality, where a range of optimal parameter sets can be found independently. 

 

A central finding is that directly optimizing all parameters is the recommended strategy. This approach achieves statistically 

indistinguishable skill improvements compared to targeting smaller, GSA-informed subsets, without incurring the immense 

computational cost of a prerequisite GSA. By exploring the full parameter space, this approach provides a more robust 1035 

quantification of uncertainty in unassimilated variables than optimizing smaller, GSA-informed subsets. 

 

Finally, our portability tests show that optimized parameter sets in the North Atlantic are not universally applicable, 

highlighting the regional specificity of BGC parameters. This work provides a scalable pathway to move beyond a single, 

compromised global set of parameters. Applying this framework to the international BGC-Argo fleet will enable the creation 1040 
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of a map of regionally tuned parameter sets. This is a crucial step toward a new generation of more accurate, regionally 

calibrated global biogeochemical models. 
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