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1 Frequency Analysis 

We performed a frequency analysis on the annual maximum flood storage values simulated by the CaMa-Flood model 

to estimate flood storage values corresponding to various return periods. Daily floodplain and river channel storage 

values were aggregated annually (1979–2019), and the annual maximum storage was extracted for each grid cell to 

construct a time series for extreme value analysis. Figure S1 presents extreme value analysis showing fitted frequency 

curves using different distributions for a single simulation grid (unit catchment).  

 

 

Figure S1: Fitted frequency curves on simulated annual maximum storages for a unit catchment 

 

We tested multiple probability distributions, including Generalized Extreme Value (GEV), Gamma (GAM), Pearson 

Type III (PE3), Gumbel (GUM) and Weibull (WEI). Each distribution was fitted to the annual maximum storage using 

the L-moment method (Hosking, 2015).  

 

To ensure robust estimation of return-period flood storage across the domain, we compared the performance of all the 

probability distributions highlighted above.To evaluate the goodness-of-fit of each distribution, we employed the 
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Kolmogorov–Smirnov (KS) test (Massey, 1951), that measures the maximum absolute difference between the 

empirical and theoretical cumulative distribution functions. The distribution yielding the lowest KS statistic, was 

selected as the best-fitting model to determine the storage for various return periods 

 

Figure S2a Summarizes the distribution of best fits across all evaluated grids. The GEV distribution emerged as the 

most dominant, being selected in over 29,000 grid cells, substantially more than any other candidate. This strong 

performance is further reinforced by Fig. S2b, which presents the distribution of KS statistics for each distribution 

using a boxplot comparison. 

 

 
Figure S2: Performance of different Frequency Distributions in Japan river basins 

 

The GEV distribution consistently yielded the lowest median KS statistic across the domain and exhibited relatively 

narrow interquartile ranges less outliers, indicating both accuracy and stability. These results collectively support the 

use of the GEV distribution as the most reliable model for frequency-based flood storage estimation  

 

The final return-period storage maps were generated using the best-fitting distribution, and the results were saved in 

binary format for downscaling and inundation mapping. 

2 Model Evaluation 

2.1 Discharges 

To evaluate the hydrological performance of the CaMa-Flood simulations over Japan, we conducted a comprehensive 

comparison against daily discharge observations from over 400 stream gauges. First, we allocated the stream gauges 

in the models’ 1-minute resolution map to obtain their XY locations by comparing the upstream map area with the 

observed areas. Once the stream gauges are allocated on CaMa-Map, the time series of simulated daily discharges for 

those virtual locations are extracted and compared with the observations.  

 

Model performance was assessed using runoff from the bias-corrected VIC (GRADES) dataset. Scatter plots 

comparing mean and peak daily discharges (Fig. S3) The model shows strong agreement, achieving correlations of R 

= 0.94 and R² = 0.89 for mean daily discharges and R = 0.80 and R² = 0.64 for peak daily discharge. RMSE values, 

represented by color in the plots, indicate generally moderate errors with some peak flows were slightly 

underestimated. 

 



 
Figure S3: scatter plots comparing Magnitudes of mean and max annual of daily Obs and Simulated discharges 

 

The performance of the simulated discharge across all gauging stations was also assessed using four statistical metrics: 

Kling–Gupta Efficiency (KGE), Nash–Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE) and Pearson’s R. 

As shown in Fig. S4. Most stations exhibited KGE values between 0.50 and 0.75, indicating good overall agreement 

between simulations and observations. NSE values were primarily distributed within the 0.25–0.50 and 0.50–0.75 

ranges, suggesting that the model captures flow dynamics reasonably well at most locations. A  limited number of 

stations showed negative NSE, indicating poorer performance for a few stations. RMSE values were concentrated in 

the 30–70 m³/s range, with higher values observed at a few stations. The majority of stations achieved Pearson’s 

correlation values between 0.45 and 0.75, with R values clustering around R ≈ 0.6. These distributions confirm that 

the model achieves satisfactory performance in simulating river discharge across Japan, with consistent accuracy in 

most basins. 

 



 
Figure S4: Distribution of Pearson R for simulated daily discharge against observations 

 

Additional spatial distribution maps and sub-scatter plots (Supplementary Figures S5 to S8) show that stations with 

smaller upstream catchment areas (highland stations) have lower model performance across all metrics. These smaller 

basins are more sensitive to localized hydrological variability and land-use effects which are often not fully captured 

by large-scale input data.or the simplified routing scheme. As a result, discrepancies at these stations likely reflect 

characteristic scale mismatches. While the model performs consistently well in larger basins, results in smaller 

catchments should be interpreted with greater attention to the local context, especially when applying outputs for flood 

risk or water management applications.  

 

Daily time series comparisons were also conducted for all stream gauge stations included in this study to ensure 

comprehensive validation of model performance further. This thorough validation indicates that the model captures 

seasonal variability and baseflow trends but underestimates peak discharges at certain locations. Despite these peak 

underestimations at some stations, the model consistently reproduces the temporal flow trend across regions, 

supporting its utility for large-scale flood hazard assessments. 



 
Figure S5: Spatial distribution of Kling-Gupta Efficiency (KGE) values across Japan for daily simulated discharges 

compared to MLIT observations. Circle colour intensity represents KGE performance, with higher values indicating 

better agreement. The inset scatter plot shows the relationship between KGE and the upstream catchment area. 

 
Figure S6: Spatial distribution of Nash–Sutcliffe Efficiency (NSE) for model-simulated daily discharges. The color 

scale reflects model accuracy, with negative values indicating poor simulation skill. The inset illustrates the trend of 

NSE values concerning upstream catchment size, showing generally higher NSE in larger basins. 

 



 
Figure S7: Spatial distribution of RMSE for model-simulated daily discharges. 

 

 
Figure S8: Spatial distribution of Pearson Correlation Coefficient (R) between observed and simulated daily 

discharges . Higher R values indicate stronger agreement in flow timing. The inset plot shows correlation versus 

upstream area, reinforcing the challenge of simulating discharges in smaller basins. 

 



2.2 Water Levels 

While evaluating the model's performance against observed water levels, a direct mass comparison between simulated 

and observed heights was not possible. This limitation arises primarily from the lack of riverbed surveys in the 

topographic data used by CaMa-Flood. Additionally, nationwide station datum heights reported in the observed data 

are not standardised and vary significantly. These inconsistencies in vertical reference frames introduce significant 

bias when comparing absolute water level values. Given the above, our water level validation approach evaluated the 

temporal consistency between model outputs and observations. We assessed how well the model captured seasonal 

variability and interannual trends using the Pearson correlation coefficient (R). The analysis shows that most stations 

achieved moderate to strong agreement, with most R values falling between 0.45 and 0.75. This indicates that the 

model reliably reproduces the timing and relative magnitude of water level fluctuations, which is critical for flood risk 

applications. 

 

 
Figure S9: Distribution of Pearson R for Obs and Sim daily Water levels 

  



3 Additional Supporting Maps 

 

 

 
Figure S10: 22 km downstream of Chaikuma-Sai Confluence. Blue indicates inundations with Levee, Red backward 

layers are inundations in Natural. The black line represents levee data, and estimated inundation areas are mentioned 

in text boxes at top left 

 



 
Figure S11: 14 km downstream of Chaikuma-Sai Confluence. Blue indicates inundations with Levee, Red backward 

layers are inundations in Natural. The black line represents levee data, and estimated inundation areas are mentioned 

in text boxes at top left. 

 



 
Figure S12: Percentage reduction in Inundation area referenced from Figures S10, and S11 and Main text Figure 8  

 

 

 

 
Figure S13: : Estimated Inundation Extents in the Chikuma River reaches. 
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