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Abstract: Accurate measurement of lake surface area is essential for understanding 23 

eco-hydrological processes in arid regions, yet long-term records are often limited by 24 

cloud contamination, seasonal ice cover, and data gaps. In this study, we developed an 25 

optimized extraction framework that integrates seasonal index selection, adaptive 26 

thresholding, maximum connectivity analysis, and mutual information–based gap 27 

filling to construct a continuous monthly lake area series for Bahannao Lake from 1984 28 

to 2024. This method effectively addressed common challenges in remote sensing water 29 

extraction and provided reliable long-term lake dynamics in a data-scarce desert region. 30 

Based on the reconstructed time series, we examined the multi-factor drivers of lake 31 

evolution using an XGBoost model combined with climatic and energy-balance 32 

variables. Results reveal pronounced interannual and seasonal variability: precipitation 33 

dominates lake expansion in spring and summer, while shortwave radiation is the main 34 

driver of evaporation in autumn and winter, even under cold conditions. Long-term 35 

trends indicate a shift in controlling mechanisms—from humidity and precipitation 36 

decline (1984–1999), to increased radiation and humidity variability (2000–2014), 37 

and finally to intensified sensible heat flux and potential evapotranspiration (2015–38 

2024).Our findings highlight the nonlinear and evolving interactions between hydro-39 

climatic factors regulating arid-region lakes. The proposed framework provides a robust 40 

approach for generating long-term lake records, advancing understanding of eco-41 

hydrological responses to climate change, and offering scientific support for water 42 

resources management and adaptation in arid regions. 43 
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climate change 45 

 46 

 47 

1 Introduction 48 

Over the past century, with the intensification of global climate change and the 49 

increasing human ability to modify nature, the impact of climate change on lake 50 

systems and the surrounding water environment has become more pronounced. The 51 

formation and disappearance, expansion and contraction of lakes, as well as changes in 52 

water and ecological environments, are the result of interactions among global, regional, 53 

and local tectonic activities, climate events, and human activities. Within these systems, 54 

a series of complex interactions drive the evolution of lake systems (Ma et al., 2020). 55 

Lakes are vital natural resources that are highly sensitive to climate change 56 

(Adrian et al., 2009; Schmid et al., 2014). Globally, there are over 100 million lakes, 57 

which store 87% of the Earth's liquid surface freshwater. Climate change is one of the 58 

most severe threats to global lake ecosystems. As observed in recent decades, lake 59 

surface conditions—such as ice cover, surface temperature, evaporation, and water 60 

levels—have responded significantly to this threat (Woolway et al., 2020; Tong et al., 61 

2023). Approximately 53% of the world's lakes have experienced a decline in water 62 

storage, with a reduction of about 22 billion tons per year. Climate change and human 63 

water use have primarily driven the net decrease in water volume in approximately 100 64 

large natural lakes worldwide. Lakes in both arid and humid regions are experiencing 65 

water loss, with drying trends being more widespread than previously understood. 66 
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Despite the shrinking of most lakes globally, 24% of lakes and reservoirs have shown 67 

a significant increase in water storage. These lakes and reservoirs are mostly located in 68 

sparsely populated regions, such as the Tibetan Plateau and the northern Great Plains 69 

of North America, as well as areas with newly constructed reservoirs, including the 70 

Yangtze River, Mekong River, and Nile River basins (Pickens et al., 2020). 71 

China has a vast territory with an extensive network of rivers and lakes. There are 72 

2693 lakes with an area greater than 1 km², among which 2557 lakes (95% of the total) 73 

have an area between 1 and 100 km². Additionally, there are 10 exceptionally large 74 

lakes with an area exceeding 1000 km². The total lake area in China has shown a 75 

significant increasing trend, expanding by approximately 7858.53 km² (11.41%) over 76 

the past 30 years (Ma et al., 2010; Ma et al.,2011). However, the spatial and temporal 77 

imbalance of water resources has intensified, with notable differences in trends across 78 

various lake regions. The lake areas in the Tibetan Plateau and Xinjiang regions have 79 

increased significantly, contributing 111.55% and 28.41% of the national lake area 80 

growth, respectively. In contrast, the lake areas in the Eastern Plain, Inner Mongolia 81 

Plateau, Northeast Plain and Mountainous Region, and Yunnan-Guizhou Plateau have 82 

declined significantly, with reductions of 24.53%, 9.30%, 6.06%, and 0.54%, 83 

respectively. Among these, the Mongolian-Xinjiang Plateau experienced the largest 84 

decline in lake numbers, with a loss of 111 lakes. Some lakes in this region have shown 85 

signs of shrinkage and salinization (Yang et al., 2010). 86 

Scientists have discovered that the abrupt change timing of river and lake systems 87 

varies significantly across different latitudes and altitudes (Råman Vinnå., 2021; Zhou 88 
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et al., 2021). Mountain and polar lakes tend to experience abrupt changes earlier than 89 

temperate and tropical river-lake systems (Jeppesen et al, 2014). Additionally, under 90 

varying levels of human impact, the timing of abrupt changes in lakes also differs. 91 

Lakes in regions with low human impact generally experience abrupt changes earlier 92 

than those in areas with strong human influence (Preston et al., 2016). Analysis of the 93 

driving factors of lake abrupt changes indicates that the causes vary. Before the 1950s, 94 

climate change was the primary factor controlling abrupt changes in lake ecosystems. 95 

However, after the 1950s, both climate change and human disturbances became 96 

dominant factors. In temperate and tropical regions with strong human influence, lake 97 

changes are mainly driven by nutrient enrichment and pollution. In contrast, lakes 98 

located in high-altitude and high-latitude regions, which are less affected by human 99 

activities, are more vulnerable to climate change. Furthermore, the interaction of 100 

multiple drivers increases the likelihood of abrupt changes in lakes, with climate change 101 

being the most frequently interacting factor leading to transformations in river-lake 102 

ecosystems (Vincent et al., 2009.). Li et al. (2025) pointed out that seasonality is the 103 

dominant driver of lake-surface-extent variations globally 104 

For example, Plug et al.(2008) investigated lake area changes in the Tuktoyaktuk 105 

Peninsula in northwest Canada. They found that from 1978 to 1992, the total lake area 106 

increased, while from 1992 to 2001, the total lake area decreased. Their study identified 107 

precipitation as the main factor driving these changes. Similarly, Carroll et al. (2011) 108 

studied the lake area changes in high-latitude northern Canada and discovered that lake 109 

areas showed a significant decline, exhibiting regional clustering characteristics, with 110 
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climate factors driving these changes. Labazhuoma et al. (2017) explored the expansion 111 

of Tangra Yum Co from 1977 to 2014. Their results indicated that, under the background 112 

of climate warming, the combined effects of glacier melt, precipitation increase, and 113 

evaporation changes contributed to the lake's expansion. Likewise, Li Meng et al. (2017) 114 

examined the changes in the water surface area and water storage of Nam Co from 1976 115 

to 2015. Their findings showed that the water surface area and water storage of Nam 116 

Co continued to increase, with the fastest growth in water storage occurring between 117 

1997 and 2009. The study concluded that the primary factor driving the increase in Nam 118 

Co’s water volume was glacier melt, followed by increased precipitation and reduced 119 

evaporation. 120 

However, the precise measurement of lake area remains a major constraint for 121 

analyzing lake changes. With advancements in science and technology, remote sensing 122 

has provided a unique and effective method for monitoring the spatiotemporal 123 

variations in surface water areas on broad geographic scales (Liu et al., 2020). 124 

Currently, water extraction methods using optical sensors have been widely 125 

applied28-30 (McFeeters 1996; Yao et al., 2015; Donchyts et al., 2016). However, 126 

existing water body area products often fail to meet ideal spatial or temporal resolution 127 

requirements31-32 (Cooley et al., 2017; Huang et al., 2018). For example, the 2016 128 

Global Climate Observing System (GCOS) Implementation Plan recommended a 129 

resolution of 20 meters and a daily monitoring frequency (Secretariat, 2009). High-130 

temporal-resolution sensors, such as the Moderate Resolution Imaging 131 

Spectroradiometer (MODIS) onboard Terra and Aqua satellites, have been used to 132 
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assess water body areas at time scales ranging from daily to 16-day intervals ( Bergé-133 

Nguyen et al., 2015; Wang et al., 2018). However, many small water bodies (e.g., 10–134 

50 km² or smaller) and irregularly shaped larger water bodies may not be accurately 135 

distinguished using coarse-resolution MODIS images (250–500 meters in the visible 136 

and near-infrared bands) (Tao et al., 2015). Compared with MODIS, Landsat images 137 

(e.g., Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus 138 

(ETM+), and Landsat 8 Operational Land Imager (OLI)) offer higher spatial resolution 139 

(30 meters) and a temporal resolution of 16 days (or better when combining multiple 140 

Landsat sensors). However, due to cloud contamination (Rossow et al., 1999), the 141 

actual temporal frequency of water body mapping based on Landsat is often much lower 142 

than the nominal resolution and may extend to a year for lakes with persistent ice cover 143 

(Yao et al., 2018). The recently launched Sentinel-2A and 2B satellites, equipped with 144 

Multispectral Instruments (MSI), provide a resolution of 10 meters in the visible and 145 

near-infrared bands, with a revisit period of 5–10 days. However, their observations 146 

currently cover only the past few years (since 2015) and are not yet suitable for long-147 

term decadal monitoring. 148 

Beyond the trade-offs between spatial and temporal resolution, several other 149 

factors challenge high-resolution monitoring of long-term global surface water area 150 

changes (Klein et al., 2017). These include the inherent spectral heterogeneity of water, 151 

atmospheric influences (clouds and aerosols), topographic shadows, aquatic vegetation, 152 

and spectral contamination from ice/snow cover. In such complex conditions, 153 

integrating multiple techniques is often necessary to achieve robust water body 154 
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extraction. 155 

Recently, Pekel et al. (Pekel et al., 2014) utilized a large training dataset, combined 156 

with expert systems and visual analysis, to identify the presence or absence of water on 157 

a monthly basis for each pixel in archival Landsat images from 1984 to 2015. This 158 

product was named the Joint Research Centre (JRC) Global Surface Water dataset 159 

(hereinafter referred to as GSW). Despite its significant achievements, GSW is based 160 

on cloud-free pixels, meaning that the mapped extent of specific water bodies is only 161 

complete when monthly composite images have minimal cloud cover. A follow-up 162 

study by Busker et al. (Buske et al., 2019) used a subset of the GSW dataset, selecting 163 

images with cloud cover below 5%, to extract the monthly area of 137 lakes/reservoirs. 164 

For nearly half of these lakes/reservoirs, the correlation between area and radar 165 

altimetry-measured water levels exceeded 0.8. However, the temporal frequency of the 166 

resulting area time series was still constrained by the availability of cloud-free images, 167 

and due to the current availability of GSW, the time series was interrupted after October 168 

2015.One potential method to increase the temporal frequency of lake mapping based 169 

on Landsat data is to estimate water surface area from contaminated images (e.g., those 170 

affected by clouds or observation gaps). Although these images are of relatively lower 171 

quality, the exposed portions of lakes within them may provide useful information for 172 

inferring the complete extent. For instance, Zhao and Gao (2018) 41 applied the 173 

monthly water mapping data from the GSW dataset to generate area time series for 174 

6,817 reservoirs worldwide from 1984 to 2015. Their method involved recovering 175 

complete reservoir extents from cloud-contaminated images by segmenting pixels 176 
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based on the water occurrence probability provided in the GSW dataset. Compared to 177 

the results of Busker et al., their generated area time series increased the number of 178 

observations by approximately 80%. However, the reliance on the existing GSW dataset 179 

restricted their reservoir area records to the 1984–2015 period, and the validation of 180 

their recovery method was limited to only nine reservoirs with significant water level 181 

variations. 182 

Bahanao Lake is located in a semi-arid region and has long lacked systematic 183 

observational data. There are no complete records of its surface area, yet its changes 184 

are crucial to the stability of the regional ecosystem. With the intensification of global 185 

climate change, the lake's surface area has significantly shrunk, experiencing multiple 186 

abrupt shifts and exhibiting a continuous declining trend. The driving mechanisms 187 

behind these changes are complex and diverse. However, its dynamic variation 188 

characteristics and driving forces remain insufficiently studied. 189 

Despite substantial progress in global lake monitoring, significant gaps remain for 190 

lakes in arid regions. First, long-term and continuous lake area records are scarce, as 191 

existing products are often interrupted by cloud contamination, seasonal ice cover, and 192 

striping artifacts. Second, the role of hydro-climatic drivers in regulating lake dynamics 193 

remains insufficiently understood, particularly regarding nonlinear interactions 194 

between precipitation, humidity, radiation, and energy fluxes in arid environments. 195 

Third, current extraction methods lack robustness across different seasons and fail to 196 

ensure accuracy in data-scarce regions. 197 

To address these challenges, this study develops an optimized lake area extraction 198 
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framework that integrates seasonal index selection, adaptive thresholding, connectivity 199 

analysis, and mutual information–based gap filling to construct a continuous monthly 200 

record of Bahannao Lake from 1984 to 2024. By coupling the reconstructed time series 201 

with multi-factor analysis using the XGBoost model, we reveal the temporal shifts and 202 

nonlinear controls of hydro-climatic drivers on lake dynamics. This framework not only 203 

improves the reliability of long-term lake monitoring under complex conditions but also 204 

advances understanding of eco-hydrological responses to climate change and provides 205 

implications for water resource management in arid regions. 206 

2 Data and Methods 207 

2.1 Dataset Selection 208 

This study utilizes remote sensing imagery from the Landsat 5 TM, Landsat 7 TM, 209 

and Landsat 8 OLI sensors, specifically using atmospherically corrected reflectance 210 

data (Tier 1 TOA Reflectance). Tier 1 data is selected due to its highest quality, making 211 

it suitable for time-series analysis and studies on global surface water extent and 212 

dynamics. The Landsat 5 TM imagery covers the period from 1984 to 2011, while 213 

Landsat 8 imagery spans from 2013 to 2023. Since imagery for 2012 is missing in both 214 

datasets, Landsat 7 TM is used as a supplement. However, Landsat 7 TM imagery 215 

exhibits significant striping artifacts, which were avoided as much as possible during 216 

data selection. 217 

For meteorological data, this study employs the fifth-generation atmospheric 218 

reanalysis dataset from ECMWF (European Centre for Medium-Range Weather 219 

Forecasts), covering global climate data from January 1950 to the present. The dataset 220 
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has a temporal resolution of daily and a spatial resolution of 0.1°×0.1°. 221 

2.2 Methods 222 

(1) Optimized Lake Area Extraction Method 223 

This study employs 30-meter full-atmosphere imagery from the Landsat 5 224 

Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and 225 

Landsat 8 Operational Land Imager (OLI) satellites to derive monthly lake area 226 

estimates for the study region from January 1984 to December 2024. 227 

Different lake remote sensing indices were selected for non-freezing and freezing 228 

periods, respectively. For non-freezing periods, remote sensing indices were processed 229 

to remove cloud and snow interference. Images were filtered based on cloud cover 230 

percentage (C), and monthly composite images were generated. The Otsu thresholding 231 

method was then applied to automatically determine segmentation thresholds. To 232 

distinguish between lakes and mountainous areas, a digital elevation model (DEM) was 233 

used, setting the slope (𝜃) and aspect (𝜙) thresholds to 0. 234 

Considering that most lakes exhibit connectivity, this study adopts the maximum 235 

connected component analysis algorithm from the OpenCV computer vision library to 236 

delineate lake boundaries. Images were categorized based on cloud cover information 237 

(‘CLOUD_COVER’): those with cloud cover ≤30% were classified as cloud-free 238 

images, while the remaining images were considered cloudy. For cloudy images, the 239 

MI (Mutual Information) algorithm was used to match them with the most similar 240 

cloud-free images. The most similar image was then merged with the original cloudy 241 

image to generate a filled version. 242 
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For images with striping artifacts, the same filling method was applied as for 243 

cloudy images. Clear lake boundaries from historical cloud-free images were used, and 244 

the MI algorithm was employed to find the most similar historical cloud-free images 245 

for filling missing water pixels in striped areas, ultimately obtaining the final lake water 246 

extent. The specific process is shown in Figure 1. 247 

 248 

Figure 1. Flowchart of Lake Area Extraction Process. 249 

(2) XGBoost Model 250 

The objective function of the XGBoost model is: 251 

1 1

( ) ( , ( )) ( )
n n

i i k

i i

L l y f x f
= =

= +  
 252 
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Where ( )L    represents the objective function, which measures the model's 253 

performance in prediction and consists of two parts: ( , ( ))i il y f x  is the loss function, 254 

indicating the difference between the true value 
iy  and the predicted value ( )if x , 255 

while ( )kf  is the regularization term used to control the model complexity. 256 

The input factors  1 2, ,...,i nx x x x=
include various environmental variables such 257 

as temperature, precipitation, humidity, and radiation. 258 

1

1
( ) ( , )

T

j j

t

FI x I t x
T =

= 
 259 

Here, ( )jFI x   represents the feature importance of factor 
jx  , while ( , )jI t x  260 

denotes the contribution of factor 
jx  when used as a splitting point in tree t, with T 261 

being the total number of trees. The generated feature importance ranking chart 262 

illustrates the contribution of various input factors (such as temperature, precipitation, 263 

and humidity) to lake area changes. This ranking chart provides an intuitive way to 264 

identify the most influential factors. 265 

To improve model performance, hyperparameters can be optimized using Grid 266 

Search or Random Search. Common hyperparameters include Learning rate, Max depth 267 

of trees and Number of trees. Adjusting these parameters affects the model’s fitting 268 

ability and generalization performance. 269 

Data Splitting: Divide the dataset into a training set and a test set (e.g., 80% for 270 

training, 20% for testing).   271 

Train the XGBoost model on the training set. XGBoost uses the Gradient Boosting 272 

Algorithm, which iteratively improves the model by building multiple weak learners to 273 

reduce prediction errors. Each iteration refines the model by fitting the residuals (i.e., 274 

https://doi.org/10.5194/egusphere-2025-4356
Preprint. Discussion started: 23 September 2025
c© Author(s) 2025. CC BY 4.0 License.



 

14 

 

prediction errors).   275 

Model Validation: Evaluate model performance using metrics such as Mean 276 

Squared Error (MSE) and Coefficient of Determination (R²) to assess accuracy and 277 

stability.   278 

The formula for Mean Squared Error (MSE) is:   279 

2

1

1
( ( ))

n

i i

i

MSE y f x
n =

= −
 280 

The formula for the coefficient of determination R2 is: 281 

2

2 1

2

1

( ( ))

1

( )

n

i i

i

n

i

i

y f x

R

y y

=

=

−

= −

−





 282 

Where y  represents the mean of the samples.  283 

The lake area model is based on model training, the predicted lake area ŷ can be 284 

expressed as a nonlinear combination of input factors ix : 285 

1

ˆ ( ) ( )
K

i k k i

k

y f x h x
=

= =
 286 

Where: k is the weight of the k tree, and ( )k ih x  is the prediction function of the 287 

tree, represented as a set of decision rules. 288 

3. Lake Area Time Series Construction 289 

3.1 Remote Sensing Interpretation and Monthly Lake Image Synthesis 290 

(1) Selection of Remote Sensing Indices 291 

The study area is located in a high-altitude region, where lake surfaces freeze 292 

between November and March. Since the NDWI index is less effective for frozen lakes, 293 

different indices are used for different seasons. During the non-freezing period (May–294 

https://doi.org/10.5194/egusphere-2025-4356
Preprint. Discussion started: 23 September 2025
c© Author(s) 2025. CC BY 4.0 License.



 

15 

 

November), the NDWI index is applied for conventional water body extraction. During 295 

the freezing period (December–April), the Modified Normalized Difference Snow 296 

Index (MNDSI) is used to evaluate water surface area. 297 

The NDWI index utilizes the strong absorption of water bodies in the near-infrared 298 

band and their high reflectance in the green band to enhance the distinction between 299 

water and other land cover types. However, this index may misidentify bright white 300 

buildings, clouds, snow, and mountain shadows as water bodies. Therefore, additional 301 

data quality bands and methods are integrated to remove these interferences and 302 

improve the accuracy of water body extraction. 303 

( )

( )

Green NIR
NDWI

Green NIR

−
=

+

 304 

Where: Green band typically refers to the green portion of the visible spectrum, 305 

generally ranging from 500–570 nm. NIR band refers to the near-infrared spectrum, 306 

generally ranging from 800–900 nm. 307 

 308 

Figure 2 Original lake image during the non-freezing period (a) and NDWI-309 

identified image (b). Source: Landsat imagery courtesy of the U.S. Geological Survey 310 

(USGS), processed and interpreted by the authors. 311 

The Modified Normalized Difference Snow Index (MNDSI) is an index calculated 312 
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using the reflectance of the near-infrared (NIR) and short-wave infrared (SWIR) bands. 313 

It is an effective method for distinguishing ice surfaces from water bodies. This index 314 

is particularly suitable for regions with frozen water surfaces, such as lakes and rivers, 315 

where seasonal changes are significant. Ice surfaces and water bodies have different 316 

reflectance characteristics in various bands. Ice has higher reflectance in the SWIR band, 317 

while water has lower reflectance. By calculating the difference between the NIR and 318 

SWIR bands, MNDSI can effectively distinguish between ice surfaces and water bodies, 319 

thus improving the accuracy of ice extraction. By combining these two bands, MNDSI 320 

highlights the differences between water bodies and ice surfaces, making it easier to 321 

differentiate between them. Similar to NDWI, MNDSI enhances the contrast between 322 

ice and water by utilizing reflectance values from different bands. 323 

MNDSI (Modified Normalized Difference Snow Index) is calculated by 324 

combining the reflectance of the near-infrared (NIR) and short-wave infrared (SWIR) 325 

bands. The typical formula for MNDSI is as follows: 326 

NIR SWIR
MNDSI

NIR SWIR

−
=

+

 327 

Where NIR is the reflectance in the near-infrared band (typically 800–900 nm), 328 

SWIR is the reflectance in the short-wave infrared band (typically 1500–1700 nm). 329 

 330 
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Figure 3 Original image of the lake during the freezing period (a) and MNDSI 331 

recognition image (b). Source: Landsat imagery courtesy of the U.S. Geological Survey 332 

(USGS), processed and interpreted by the authors. 333 

(3) Cloud and Snow Interference Removal 334 

The cloud and snow interference removal is only applied to the NDWI of the non-335 

freezing period from May to November. The Landsat series satellites provide their own 336 

pixel-scale data quality band (QA_PIXEL), which can be used to eliminate noise pixels 337 

in the image. 338 

The QA_PIXEL band in the Landsat dataset provides information on various 339 

quality types, where different bits (Bit) correspond to different types of quality 340 

information. For example, Bit 3 corresponds to clouds, Bit 5 corresponds to snow, and 341 

Bit 7 corresponds to water bodies. Within the same bit, values of 0 and 1 represent 342 

different data qualities. For example, a 0 in Bit 7 indicates that the pixel has poor water 343 

body information, being land or covered by clouds, while a 1 indicates that the pixel 344 

represents water. 345 

Using this pixel quality information, we selected Bit 3 (cloud), Bit 5 (snow), and 346 

Bit 7 (water body). By performing bitwise AND and OR operations, we generated a 347 

water body mask file with good data quality after cloud and snow removal. This mask 348 

file is then overlaid with the actual image to remove pixels affected by cloud or snow 349 

interference. The effect of cloud and snow removal is shown in the image below: 350 
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 351 

Figure 4: True color original image (a), true color image after cloud and snow 352 

removal (b), NDWI water body index calculation result of the true color original image 353 

(c), NDWI water body index calculation result of the true color image after cloud and 354 

snow removal (d). Source: Landsat imagery courtesy of the U.S. Geological Survey 355 

(USGS), processed and interpreted by the authors. 356 

(4) Monthly Image Download 357 

The NDWI, MNDSI index calculation, and cloud/snow interference removal are 358 

performed directly on the GEE platform, followed by monthly composite image 359 

downloads. Based on the cloud cover information ('CLOUD_COVER'), which 360 

represents the cloud amount (range from 0 to 100, with larger values indicating more 361 

cloud coverage), the data is classified into three levels: 0-30, 30-60, and 60-100. If data 362 

is available in Level 1, Level 2 is not executed, and if Level 2 contains data, Level 3 is 363 

processed. All images from each year and month within the cloud cover level are 364 

selected, and the median pixel value is calculated to generate the composite monthly 365 
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NDWI (for 5-11 months) and MNDSI (for December to the following April) grayscale 366 

images. 367 

Data is filtered based on the cloud cover proportion C, where C ∈ [0,100]. 368 

COVER=Med(S(C)C ),  whee re Ci =Ci LOg Ut Dompos e ma  369 

( )             if 0 C 30

( ) ( )      else if 30 60

( )       else 60 100

I C

S C I C

I C C

 


=  
  

 

 C

 

 370 

Where I(C) is a set of image data filtered by cloud cover. 371 

(5) Threshold Segmentation 372 

This step applies the Otsu threshold algorithm to the downloaded NDWI and 373 

MNDSI monthly composite grayscale images, automatically generating a segmentation 374 

threshold. Pixels below the threshold are classified as water, and those above the 375 

threshold are classified as other areas. 376 

The core of the Otsu thresholding method is to divide the image into two classes 377 

(foreground and background) by maximizing the between-class variance, thereby 378 

achieving the optimal threshold segmentation. Specifically, it involves iterating through 379 

all possible thresholds, and the optimal threshold is determined when the between-class 380 

variance is maximized while the variance within both the foreground and background 381 

is minimized. Compared to other methods, this algorithm maximizes the inclusion of 382 

the target feature while excluding other interfering factors. 383 

The Otsu thresholding method is used to automatically generate the segmentation 384 

threshold, dividing the image into water and other regions: 385 

2arg max max( ( ))BT


 =
 386 
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Where, 
2 ( )B   is the between-class variance, defined as: 387 

2 2

1 2 1 2( ) ( ) ( )( ( ) ( ))B         = −
 388 

Where 1( )   and 2 ( )   are the weights of the foreground and background at 389 

the threshold 𝜏, and 1( )   and 2 ( )   are the mean gray values of the foreground 390 

and background, respectively. 391 

The portion smaller than the threshold T is classified as water, symbolized as water 392 

pixels, while the portion greater than the threshold is classified as other categories. 393 

 394 

Figure 5 NDWI water index recognition result (a), and the effect of Otsu threshold 395 

method automatically separating water (yellow area) and background (purple area) 396 

based on NDWI recognition result (b). Source: Landsat imagery courtesy of the U.S. 397 

Geological Survey (USGS), processed and interpreted by the authors. 398 

(6) Mountain Shadow Removal 399 

Since the lake surface typically exhibits a flat state without significant slope and 400 

aspect features, digital elevation models (DEM) can be used to distinguish lakes from 401 

mountainous regions by utilizing slope and aspect information. By setting threshold 402 

values of 0 for slope and aspect, the distinction between lakes and mountainous areas 403 

can be made. However, the current frequency of elevation data updates does not align 404 
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with real-time imagery, leading to an inability to accurately reflect seasonal changes in 405 

lake water levels within the elevation data. This limitation affects the precision of water 406 

body area extraction using the data. Given that most lakes are interconnected, this study 407 

employs the maximum connected component analysis algorithm from the Open-CV 408 

vision field to define the boundaries of lakes and extract their areas. 409 

By setting the thresholds for slope θ and aspect φ to 0 in the digital elevation model 410 

(DEM), lakes are distinguished from mountainous areas: 411 

( , ) 0,   ( , ) 0x y x y = =  412 

Where ( , )x y   and ( , )x y   represent the slope and aspect values at a given 413 

point ( , )x y  , respectively. By setting ( , ) 0x y =   and ( , ) 0x y =   as threshold 414 

conditions for the lake area, the lake region is defined as the area where both the slope 415 

and aspect are equal to 0. 416 

( ,

max( ( , ))
i

i
x y C

L I x y


=   417 

Where L represents the total number of pixels in the largest lake area, iC  418 

represents the i-th connected component in the image, the function ∑ denotes the 419 

summation of pixel points, and max
i

indicates the selection of the largest connected 420 

component as the lake area. 421 

（7）Buildings Removal  422 

The construction of the building index currently mainly relies on the fact that the 423 

surface temperature of buildings is usually higher than that of surrounding land cover, 424 

and the mid-infrared band can effectively reflect surface temperature differences. 425 
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However, in previous land cover classification studies, the extraction results using this 426 

algorithm were not ideal. Considering that most buildings in the study area are not 427 

distributed along lakes, the maximum connected component algorithm can effectively 428 

exclude parts where buildings are misidentified as water bodies. 429 

Based on the NDWI (Normalized Difference Water Index), a threshold T is used 430 

to binarize the image, separating water bodies from non-water bodies. 431 

1,   ( , )
( , )

0,   ( , )

if NDVI x y T
I x y

if NDVI x y T


= 



 432 

Connected Component Calculation: In the binarized image, the Connected 433 

Components Labeling (CCL) algorithm is used to identify all connected regions. A 434 

connected component is determined by scanning the neighboring pixels in the image 435 

(up, down, left, right, or diagonally). The formula is expressed as: 436 

( , )

( , )i

x y R

C I x y


= 
 437 

Where R represents the connected regions in the image, and iC  denotes the 438 

connected components. 439 

To eliminate interference from buildings, a threshold condition 𝜏 is set, retaining 440 

only connected components with an area greater than 𝜏. Since buildings typically have 441 

smaller areas, while lakes exhibit larger connected components, the lake regions can be 442 

filtered using the following condition: 443 

iC   444 

The lake boundary is extracted using a boundary detection algorithm (e.g., the 445 

Canny edge detection algorithm) applied to the selected largest connected region. 446 
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( )iB Canny C=  447 

As shown in the figure 6, the white areas in the original image include both lakes 448 

and buildings. When using threshold segmentation to extract water bodies, buildings 449 

may also be mistakenly identified as water. By applying the maximum connected 450 

component method, buildings can be effectively separated. 451 

 452 

Figure 6: The white areas in the original image include both lakes and buildings 453 

(a), water bodies extracted using threshold segmentation (b), and buildings separated 454 

using the maximum connected component method (c). Source: Landsat imagery 455 

courtesy of the U.S. Geological Survey (USGS), processed and interpreted by the 456 

authors. 457 

(8) Cloudy Image Filling Processing 458 

The processing steps (5)–(7) are applied to cloud-free images. For cloudy images, 459 

cloud-free images are used for filling before executing steps (5)–(7). 460 

The filling approach is as follows: Based on the cloud coverage information 461 

(CLOUD_COVER), images with cloud cover less than or equal to 30% 462 

(CLOUD_COVER ≤ 30%) are classified as cloud-free images, while others are 463 

considered cloudy images. The formula is as follows: 464 
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 

 

Cloudy Image Image | 30%

Cloud-Free Image Image | 30%

COVER

COVER

CLOUD

CLOUD

= 

= 

 465 

Then, the Mutual Information (MI) algorithm is used to perform the most similar 466 

matching between the cloudy image and all cloud-free images. Next, the most similar 467 

image is combined with the original cloudy image through a union operation to obtain 468 

the filled cloudy image. Finally, steps (5)-(7) from the cloud-free image processing are 469 

executed, resulting in the final water body area. The specific steps are as follows: 470 

Candidate Cloud-Free Image Set: In the time periods before and after the cloudy 471 

image, select images with low cloud coverage (CLOUD_COVER ≤ 30%) as the 472 

candidate image set. 473 

Mutual Information Algorithm: Use the MI algorithm to calculate the similarity 474 

between the cloudy image and the candidate cloud-free images. The formula is as 475 

follows: 476 

,

( , )
( , ) ( , ) log

( , ( )

cloudy clear

cloudy clear cloudy clear

i j cloudy clear

p I i I j
I I I p I i I j

p I i p I j

 = =
= = =   = = 


）

 477 

Where 
cloudyI  represents the cloudy image, clearI

represents the candidate cloud-478 

free image, and p is the joint probability distribution of the pixel grayscale values. III 479 

denotes mutual information, which measures the correlation between the cloudy image 480 

and the cloud-free image. 481 

Selecting the Most Similar Image: Based on the mutual information value, the 482 

cloud-free image most similar to the cloudy image is selected. 483 
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 484 

Figure 7: Image a and b show the cloud-free images found to be most similar to 485 

the cloudy images images c and d are the cloudy images, and images e and f show the 486 

result after cloud-filled processing of the cloudy images. Source: Landsat imagery 487 

courtesy of the U.S. Geological Survey (USGS), processed and interpreted by the 488 

authors. 489 

(9) Striped Image Filling 490 

The previously mentioned dataset indicates that Landsat 7 TM images have 491 

significant striping interference. Additionally, Landsat 5 TM and Landsat 8 OLI images 492 

also experience striping interference in certain months, such as Landsat 5 TM from 493 

2001 to 2003 and Landsat 8 in 2008. To more accurately obtain the temporal changes 494 

in lake area, it is necessary to fill the missing portions of striped images. The method is 495 

the same as for cloud-filled images. By utilizing the clear contours of historical cloud-496 

free images and applying the MI algorithm, the most similar historical cloud-free 497 

images are searched to fill the water pixels in the striped regions. The method for filling 498 

striped images is the same as that for cloud-filled images. Afterward, steps (5)-(7) are 499 
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executed to obtain the final water area extent. 500 

 501 

Figure 8: The image found from the cloud-free images that is most similar to the 502 

striped interference image (a); The striped interference image(b); The effect after filling 503 

the striped interference(c). Source: Landsat imagery courtesy of the U.S. Geological 504 

Survey (USGS), processed and interpreted by the authors. 505 

(10) Water Area Extraction 506 

After applying the maximum connectivity component processing to the image, the 507 

number of water pixels is counted. Then, based on the spatial resolution of the pixels 508 

(30m * 30m), the actual area is calculated. 509 

(11) Interpolation Processing 510 

Collect all known lake area data for specific time points, where it dots represent 511 

time points with available data. For each missing data point 
missingt , use the known data 512 

points 
missing 1t −

 and 
missing 1t +

, and apply the selected interpolation method to calculate 513 

the lake area 
missing( )A t  at time. 514 

3.2 Lake Area Time Series Construction 515 

The interannual variation of Bahannao is quite drastic, but the overall trend is 516 

declining, though not significantly. Before 1999, the changes were relatively stable. In 517 

2000, the lake area shrank severely, decreasing by 82.98% compared to 1999, leaving 518 

only 3.12 km². Since then, the lake has exhibited a cyclical fluctuation pattern with a 519 
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period of approximately 5–6 years. In 2021, the lake area reached its minimum value 520 

of just 0.71 km², followed by a rapid increase, reaching its maximum of 23.38 km² in 521 

2023. 522 

 523 

Figure 9 Interannual Variation of Lake Area 524 

Due to its location in the Mu Us Desert and the lack of long-term observational 525 

data, this study references the lake area interpreted via remote sensing in the 526 

Comprehensive Lake Water Ecological Management Plan of Uxin Banner. This report 527 

provides remote sensing imagery data for 24 years from 1988 to 2018 (with six years 528 

lacking clear images suitable for analysis).   529 

A comparison of the data (Figure 10) shows that the lake area interpreted in this 530 

study aligns with the trend reported in the management plan. Over the 23 years of 531 

overlapping interpretation, the error remains within 15% for 12 years. However, in 532 

years when the lake area was smaller, the error was relatively larger, such as in 2000, 533 

2001, 2009, 2010, 2011, and 2015. According to records, Bahannao Lake shrank 534 

significantly during these years but did not completely dry up until 2021, which is 535 

consistent with the results of this study.   536 

The interpreted lake area in this study also indicates (Figure 11) that the annual 537 
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average area of Bahannao Lake in 2021 was only 0.71 km². The lake area was at its 538 

smallest in August, September, and October, reaching only 0.2 km², while the largest 539 

area was recorded in March at 3.5 km². 540 

 541 

Figure 10 Comparison of the lake area interpreted in this study with the reference 542 

data 543 

 544 
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Figure 11 Monthly and seasonal variation of lake area in 2021545 

 546 

Figure 12 Seasonal Variation of Lake Area 547 
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 548 

Figure 13 Monthly Variation of Lake Area 549 

From the perspective of seasonal and monthly variation characteristics, Bahannao 550 

exhibits significant seasonal differences. The lake area in summer, autumn, and winter 551 

is noticeably larger than in spring, with autumn having the largest lake area, averaging 552 

16.21 square kilometers and reaching a peak of 16.24 square kilometers in September. 553 

In contrast, spring has the smallest lake area, averaging only 13.57 square kilometers, 554 

with the lowest value of 12.48 square kilometers occurring in April. 555 

3.3 Impact of Climate Change 556 

(1) Temperature Variation 557 

1) Temperature 558 

The rise in air temperature directly affects the evaporation rate of the lake. The 559 

warming rate is 0.0429°C per year, leading to an increase in the lake surface 560 

temperature and, consequently, higher evaporation. High temperatures intensify water 561 
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evaporation, reducing the lake’s water volume and causing a gradual decrease in lake 562 

area over the years. 563 

The increase in air temperature enhances heat input into the water body, 564 

accelerating evaporation. As more heat is absorbed, surface water transforms more 565 

easily into water vapor, leading to a decline in lake water levels. Although the influence 566 

of temperature on lake area varies across different time periods, its continuous upward 567 

trend has a long-term impact on the reduction of lake area. 568 

 569 

Figure 14 Regional Air Temperature Variation 570 

2) 2m Dew Point Temperature 571 

The 2m dew point temperature increases at a rate of 0.0095°C/a, indicating 572 

changes in atmospheric humidity. A rising dew point temperature suggests an increase 573 

in water vapor content in the air, typically associated with higher humidity. However, 574 

humidity changes do not always directly impact lake area; instead, they influence lake 575 

water volume indirectly by affecting evaporation and precipitation. While an increase 576 

in dew point temperature usually indicates higher humidity, if precipitation is 577 

insufficient or evaporation rates are too high, this increase in humidity may not 578 

effectively replenish lake water. Instead, it could contribute to lake shrinkage. The 579 

varying influence of the 2m dew point temperature over different periods suggests a 580 
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complex relationship with lake area changes, requiring a comprehensive analysis 581 

alongside other climatic factors. 582 

 583 

Figure 15 Regional 2m Dew Point Temperature Changes 584 

(2) Changes in Precipitation 585 

The total precipitation is decreasing at a rate of 1.7355 mm per year. Precipitation 586 

is one of the primary sources of lake water. A reduction in precipitation leads to 587 

insufficient water replenishment for the lake, resulting in a decline in water levels and 588 

a reduction in lake area. 589 

 590 

Figure 16 Regional Precipitation Changes 591 

(3) Radiation and Energy Exchange 592 

1）Net Longwave Radiation at the Surface 593 

Net longwave radiation at the surface decreases by 0.0843 W/m² per year. The 594 

reduction in longwave radiation means that the lake receives less radiative heat, which 595 

theoretically could reduce evaporation. However, this effect is overshadowed by other 596 
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factors such as reduced precipitation and rising temperatures. While the decrease in 597 

longwave radiation could reduce heat loss from the lake, in conditions of drought and 598 

high evaporation, the impact of this reduction is likely limited. 599 

2) Net Shortwave Radiation at the Surface 600 

Net shortwave radiation at the surface increases by 0.0653 W/m² per year. The 601 

increase in shortwave radiation enhances the evaporation process, thereby reducing the 602 

lake's surface area. The rise in shortwave radiation leads to an increase in surface 603 

temperature, which accelerates evaporation. The intensified evaporation exacerbates 604 

the loss of water from the lake. The effect of increased shortwave radiation on the lake's 605 

area is significant during all periods, especially under drought and high-temperature 606 

conditions, where its impact is particularly pronounced. 607 

 608 

Figure 17 Regional Mean Surface Net Radiation 609 

3)Mean Surface Latent Heat Flux 610 
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he latent heat flux decreases at a rate of 0.1343 W/m² per year. The decrease in 611 

latent heat flux indicates a reduction in the moisture carried by the air, possibly as a 612 

result of decreased humidity, which further intensifies evaporation from the water. 613 

4)Mean Surface Sensible Heat Flux 614 

The sensible heat flux increases by 0.0693 W/m² per year, meaning that the heat 615 

exchange between the surface and the atmosphere is enhanced. This leads to more 616 

evaporation, particularly during the summer when temperatures are higher. 617 

 618 

Figure 18 Regional Mean Surface Heat Flux 619 

(4) Humidity and Evapotranspiration 620 

1）Relative Humidity 621 

The relative humidity decreases at a rate of 0.0987 per year. A decrease in humidity 622 

typically accelerates evaporation from the lake, leading to a reduction in lake area. The 623 

decrease in humidity means that the air becomes drier, and the evaporation rate 624 

increases. This accelerates the evaporation of lake water, resulting in a decline in both 625 
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lake water levels and area, intensifying the process of lake desiccation. 626 

 627 

Figure 19 Regional Relative Humidity 628 

2）Potential Evapotranspiration 629 

Potential evapotranspiration increases at a rate of 1.9369 mm per year. The 630 

increase in evapotranspiration directly leads to the loss of water from the lake, making 631 

it an important factor contributing to the reduction in lake area. The rise in potential 632 

evapotranspiration indicates that both evaporation and plant transpiration in the lake 633 

area are increasing, further reducing the water volume of the lake. The increase in 634 

potential evapotranspiration has a significant impact on the lake area in all time periods, 635 

especially under drought and high-temperature conditions, where its effect is even more 636 

pronounced. 637 

 638 

Figure 20 Regional Potential Evapotranspiration 639 

(5) Drought   640 

The drought index decreases at a rate of 0.0019 per year, indicating that the 641 
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drought conditions in the region are intensifying, further contributing to the shrinkage 642 

of the lake. 643 

 644 

Figure 21 Regional Drought Index 645 

A sliding T-test on the lake area reveals two turning points in the lake's area change, 646 

specifically in 2000 and 2015. Therefore, we divide the study period into three time 647 

segments: the first period from January 1984 to December 1999, the second period from 648 

January 2000 to December 2014, and the third period from January 2015 to July 2024, 649 

to investigate the causes of the changes in lake area. 650 

 651 

Figure 22 Sliding T-test 652 
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 653 

Figure 23 Factor Weight Diagram (Three Time Periods) 654 

This paper conducts a factor analysis for three time periods, as shown in the figure 655 

23. To better understand the causes of the change in the Bahai Nao lake area, we can 656 

explore several aspects in detail, including the direct and indirect effects of climate 657 

change, the roles of precipitation and evaporation, the effects of radiation and energy 658 

exchanges, and the combined effects of humidity and drought. 659 

From 1984 to 1999, the change in Bahai Nao lake area was mainly driven by a 660 

decrease in precipitation and a decline in humidity. During this period, the main factors 661 

affecting lake area were humidity and precipitation. The weight of humidity reached 662 

0.33, and that of precipitation was 0.16. This suggests that during this period, the 663 

decline in humidity significantly increased evaporation, leading to a reduction in lake 664 

area. Precipitation also decreased at a rate of 1.7355 mm per year, further exacerbating 665 

the loss of lake water. Although temperature rose (at a rate of 0.0429°C per year), its 666 

impact on lake area was relatively small (weight of 0.04). 667 

From January 2000 to December 2014, the main influencing factors were humidity 668 
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(weight of 0.22) and surface net longwave radiation (weight of 0.18). The decline in 669 

humidity intensified evaporation, and the increase in surface net shortwave radiation 670 

(at a rate of 0.0653 W/m² per year) also significantly influenced evaporation (weight of 671 

0.08). The continuous decrease in precipitation (weight of 0.07) and changes in latent 672 

heat flux (weight of 0.09) gradually reduced their impact on lake area. 673 

From January 2015 to July 2024, the impact of sensible heat flux significantly 674 

increased (weight of 0.24), reflecting an increased effect of surface heat exchange on 675 

water evaporation. Meanwhile, the increase in potential evapotranspiration (weight of 676 

0.13, with a rate of 1.9369 mm per year) indicated a sustained rise in water loss in the 677 

region. Although temperature continued to rise (at a rate of 0.0429°C per year), its direct 678 

impact on lake area was relatively limited (weight of 0.03). Additionally, the ongoing 679 

decrease in precipitation (at a rate of 1.7355 mm per year) continued to contribute to 680 

the shrinking of the lake area, and the decline in humidity (at a rate of 0.0987) further 681 

exacerbated evaporation (weight of 0.07). 682 

The driving factors of the Bahai Nao lake area changes show significant 683 

differences in different time periods. From 1984 to 1999, humidity and precipitation 684 

were the primary factors determining lake area change. Over time, from 2000 to 2014, 685 

the impact of declining humidity and increasing shortwave radiation gradually 686 

strengthened, while the effects of reduced precipitation and changes in latent heat flux 687 

weakened. From 2015 to 2024, the rise in temperature, increase in sensible heat flux, 688 

and the increase in potential evapotranspiration became the major drivers, making the 689 

trend of lake area shrinkage more significant. 690 
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Overall, the reduction in the Bahai Nao lake area is primarily driven by the 691 

combined effects of climate warming, enhanced evaporation, and reduced precipitation. 692 

Particularly under the changes in humidity and evapotranspiration, the evaporation rate 693 

of the lake has notably accelerated. 694 

 695 

Figure 24 Weight of Influencing Factors by Season 696 

Subsequently, a seasonal analysis of the influencing factors on the lake area of 697 

Bahai Nao Lake in spring, summer, autumn, and winter was conducted, as shown in 698 

Figure 24. 699 

From the previous analysis, the climate conditions in spring were: temperature 700 

10.16°C, 2-meter dew point temperature 6.28°C, rainfall 76.14 mm, average net long-701 

wave radiation 103.13 W/m², potential evapotranspiration 456.37 mm, and humidity 702 

36.62%. 703 

Spring is the main replenishment period for rainfall, with a weight of 0.26, 704 

significantly higher than the other seasons. Therefore, although the 76.14 mm of rainfall 705 

is not as abundant as in summer, it still plays an important role in replenishing the lake's 706 
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water volume. At the same time, radiation energy (103.13 W/m²) and relatively low 707 

humidity lead to significant evaporation. The high potential evapotranspiration of 708 

456.37 mm also indicates that the evaporation potential in spring is high, which could 709 

partly offset the water replenishment brought by the rainfall. This is why the increase 710 

in lake water volume is slow in spring. 711 

In summer, the climate conditions were: temperature 21.58°C, 2-meter dew point 712 

temperature 11.06°C, rainfall 229.87 mm, average net long-wave radiation 89.14 W/m², 713 

potential evapotranspiration 620.36 mm, and humidity 53.58%. 714 

Summer is the season with the most abundant rainfall (229.87 mm), which is a key 715 

replenishment period for the lake's water volume. However, the high weight of the 2-716 

meter dew point temperature (0.49) indicates that humidity controls the evaporation of 717 

the water body. Due to the high humidity (53.58%), the evaporation rate of the lake is 718 

relatively low. Despite the very high potential evapotranspiration (620.36 mm), the 719 

impact of humidity significantly slows down the evaporation of moisture, allowing the 720 

lake area to maintain relatively well during the summer. 721 

In autumn, the climate conditions were: temperature 7.86°C, 2-meter dew point 722 

temperature 0.78°C, rainfall 96.58 mm, average net long-wave radiation 83.52 W/m², 723 

average net short-wave radiation 124.12 W/m², potential evapotranspiration 314.29 mm, 724 

and humidity 55.91%. 725 

The variation in lake water volume in autumn is mainly driven by solar short-wave 726 

radiation, with a weight of 0.84. This indicates that although the rainfall in autumn is 727 

moderate (96.58 mm), the higher short-wave radiation (124.12 W/m²) leads to intense 728 
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evaporation. The potential evapotranspiration is 314.29 mm, showing that the lake 729 

evaporation is large, and although the relative humidity is relatively high (55.91%), it 730 

is insufficient to prevent the reduction of the lake water volume. The low temperature 731 

in autumn (7.86°C) further indicates that although the temperature impact is minimal, 732 

the radiation intensity still determines the seasonal reduction in lake area. 733 

in winter, the climate conditions were: temperature 2.79°C, 2-meter dew point 734 

temperature 14.66°C, rainfall 26.54 mm, average net long-wave radiation 88.52 W/m², 735 

average net short-wave radiation 114.66 W/m², potential evapotranspiration 200.32 mm, 736 

and humidity 44.03%. 737 

Winter sees a significant decrease in temperature (2.79°C), and evaporation is 738 

suppressed. However, the surface short-wave radiation remains the main influencing 739 

factor in winter, with a weight of 0.57. This suggests that, despite the lower rainfall 740 

(26.54 mm) in winter, radiation still plays a role in moisture evaporation. The potential 741 

evapotranspiration is 200.32 mm, which is lower compared to other seasons, but still 742 

enough to affect the lake's water volume. The temperature has a small contribution to 743 

the lake water volume change (0.10), indicating that in winter, the main evaporation 744 

driving force is solar radiation. 745 

In summary, the seasonal variation of Bahai Nao Lake's water volume is mainly 746 

affected by rainfall, radiation, humidity, and evapotranspiration. In spring, the change 747 

in lake area is primarily determined by rainfall replenishment, but higher radiation and 748 

potential evapotranspiration weaken the accumulation of water. In summer, humidity 749 

and dew point temperature are the dominant factors affecting the lake area. Despite 750 
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abundant rainfall, high humidity slows down evaporation, maintaining the lake's water 751 

volume. In autumn, due to intense solar short-wave radiation, the lake water volume 752 

decreases significantly, with evaporation being the dominant factor. In winter, despite 753 

the low temperature, radiation remains the main driving factor for evaporation, leading 754 

to a continued reduction in the lake's water volume. 755 

This seasonal hydrological change in the lake suggests that different seasonal 756 

factors influencing the lake area focus on the interaction between rainfall and radiation, 757 

as well as the regulatory effect of humidity on evaporation. 758 

4. Discussion 759 

This study established a continuous monthly record of Bahannao Lake from 1984 760 

to 2024 using an optimized extraction framework that integrates seasonal index 761 

selection, maximum connectivity analysis, and mutual information–based gap filling. 762 

Unlike previous long-term products such as the JRC Global Surface Water dataset, 763 

which are often constrained by cloud contamination and temporal discontinuity, our 764 

framework ensures both higher temporal continuity and robustness under complex 765 

environmental conditions. 766 

The methodological improvements provide several advantages. First, the seasonal 767 

use of NDWI and MNDSI effectively distinguishes water bodies under freezing and 768 

non-freezing conditions, outperforming traditional single-index approaches (McFeeters, 769 

1996; Yao et al., 2015). Second, the combination of Otsu thresholding with DEM 770 

constraints reduces misclassification from shadows and topography, a common issue in 771 

arid-region lakes with irregular terrain. Third, the MI-based filling strategy reconstructs 772 
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cloud- and stripe-contaminated images, extending the applicability of Landsat data and 773 

providing a longer, more reliable time series compared with interpolation-only methods 774 

(Zhao and Gao, 2018). Together, these innovations establish a transferable framework 775 

for dynamic lake monitoring, particularly suited for arid and data-scarce regions where 776 

conventional products often fail. Importantly, these improvements systematically 777 

address the common challenges highlighted in earlier studies, including cloud 778 

contamination, seasonal variations, topographic interference, and spectral complexity 779 

in inland waters (Mouw et al., 2015; Palmer et al., 2015; Shen et al., 2017; Cao et al., 780 

2019). 781 

Beyond methodological advances, the long-term record reveals important insights 782 

into the hydro-climatic controls of arid-region lakes. Precipitation was identified as the 783 

dominant driver of lake expansion in spring and summer, while shortwave radiation 784 

governed evaporation in autumn and winter. This seasonal contrast aligns with findings 785 

from other arid and high-altitude regions, such as Nam Co on the Tibetan Plateau (Li et 786 

al., 2017) and lakes on the Mongolian Plateau (Tao et al., 2015), where radiation and 787 

humidity strongly modulate evaporation under limited precipitation inputs. However, 788 

our results also highlight a pronounced nonlinear shift in dominant drivers over time: 789 

humidity and precipitation before 2000, radiation and humidity variability during 790 

2000–2014, and energy flux intensification after 2015. This temporal evolution differs 791 

from some humid-region lakes, where nutrient enrichment or human disturbance 792 

dominate changes (Jeppesen et al., 2014), suggesting that climatic forcing plays a more 793 

persistent role in arid environments. 794 
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These findings carry broader implications for ecohydrological research and water 795 

resource management. By quantifying the nonlinear interactions of multiple climatic 796 

factors, our study demonstrates that lake dynamics in arid regions cannot be attributed 797 

to a single driver but emerge from the shifting balance of precipitation, radiation, and 798 

evapotranspiration. This highlights the vulnerability of arid-region lakes to climate 799 

change, where even moderate increases in radiation or evapotranspiration can outweigh 800 

precipitation recovery. Such insights are crucial for improving hydrological models, 801 

projecting future lake dynamics, and informing adaptive management strategies under 802 

intensified drought risk. 803 

Several limitations should be acknowledged. First, while remote sensing provides 804 

a robust record of surface area, subsurface processes such as groundwater inflow and 805 

outflow were not explicitly considered, which may contribute to lake water balance. 806 

Second, the spatial resolution of Landsat (30 m) limits the detection of small-scale 807 

shoreline changes, and higher-resolution sensors (e.g., Sentinel-2) could improve 808 

accuracy in future studies. Third, although XGBoost effectively captured nonlinear 809 

relationships, its “black-box” nature limits interpretability compared with process-810 

based hydrological models. Future research could combine machine learning with 811 

ecohydrological modeling and socioeconomic datasets to better quantify the combined 812 

impacts of climate variability and human activities on arid-region lakes. 813 

5. Conclusion 814 

This study developed an optimized lake area extraction framework and applied it 815 

to construct a continuous monthly record of Bahannao Lake from 1984 to 2024. The 816 
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method integrates seasonal index selection, adaptive thresholding, maximum 817 

connectivity analysis, and mutual information – based gap filling, effectively 818 

addressing cloud contamination, seasonal freezing, and data gaps in remote sensing 819 

images. 820 

The long-term record reveals both significant interannual variability and clear 821 

seasonal differences in lake dynamics. Precipitation was the dominant driver of lake 822 

expansion in spring and summer, whereas shortwave radiation controlled evaporation 823 

in autumn and winter. Factor weights further demonstrate a temporal shift in dominant 824 

mechanisms: humidity decline and precipitation reduction before 2000; enhanced 825 

radiation and humidity variability during 2000–2014; and intensified sensible heat 826 

flux and potential evapotranspiration after 2015. 827 

These findings highlight the nonlinear and evolving interactions of hydro-climatic 828 

drivers regulating arid-region lakes. The proposed framework not only improves the 829 

reliability of long-term lake monitoring but also provides actionable insights for 830 

ecohydrological research, water resource management, and climate change adaptation 831 

in arid environments. 832 
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