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Abstract. Aerosol-cloud interactions remain a large source of uncertainty in global climate models (GCMs) due to complex,

nonlinear processes that alter aerosol properties and the inability to represent the full compositional complexity of aerosol pop-

ulations within large-scale modeling frameworks. The spatial resolution of GCMs is often coarser than the scale of the spatially

varying emissions in the modeled geographic region. This results in diffuse, uniform concentration fields of primary aerosol

and gas-phase species instead of spatially heterogeneous concentrations. Aerosol processes such as gas-particle partitioning5

and coagulation are concentration-dependent in a non-linear manner, and thus the representation of spatially heterogeneous

emissions impacts aerosol aging and properties. This includes climate-relevant quantities key to aerosol-cloud interactions in-

cluding particle hygroscopicity and cloud condensation nuclei (CCN) activity. We investigate the impact of emissions spatial

heterogeneity on aerosol properties including CCN activity via a series of first-of-a-kind particle-resolved large-eddy simula-

tions with the modeling framework WRF-PartMC-MOSAIC-LES. CCN concentrations within the planetary boundary layer10

(PBL) are compared across numerous scenarios ranging in emissions spatial heterogeneity. CCN concentrations at low super-

saturations (Senv = 0.1–0.3%) increase in the upper PBL by up to 25% for emissions scenarios with high spatial heterogeneity

when compared to a uniform emissions base case. Process level analysis indicates that this increase is due to enhanced nitrate

formation among scenarios with high emissions spatial heterogeneity.

1 Introduction15

Aerosols exert a net negative radiative forcing, but significant uncertainty remains in how aerosol-cloud interactions are rep-

resented in climate models (Forster et al., 2021). Two major factors contribute to this uncertainty: (1) the spatial resolution

of models and (2) the treatment of aerosol representation, which refers to how aerosol properties such as size distribution,

chemical composition, and mixing state are modeled.

Advances in computational power have allowed modelers to investigate how spatial resolution affects radiative forcing due20

to aerosol-cloud interactions (Ma et al., 2015). At the same time, increasing computational capabilities have enabled more

sophisticated aerosol representations (Zaveri et al., 2021; Tilmes et al., 2023). While both spatial resolution and aerosol repre-

sentation have advanced, they have largely been studied in isolation. The combined effect of sub-grid scale spatial heterogeneity
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and detailed aerosol representation on relevant properties, such as cloud condensation nuclei (CCN) activity, remains largely

unexplored. The goal of this paper is to investigate their combined impact on key microphysical properties, with a focus on25

cloud condensation nuclei (CCN) activity.

Aerosol-aware climate models typically include a sub-model that governs aerosol representation and associated processes.

Due to computational constraints, these aerosol treatments often simplify compositional diversity. For instance, the Energy

Exascale Earth System Model (E3SM) uses the MAM4 scheme, which represents aerosols using four internally mixed, log-

normally distributed modes (Golaz et al., 2022). This approach inherently constrains the diversity of aerosol populations, as all30

particles within a given mode share identical composition. In reality, however, aerosols age independently, leading to complex,

highly heterogeneous mixtures. Particle-resolved aerosol models address this limitation by explicitly tracking the composition

and evolution of individual particles. The Particle Monte Carlo model (PartMC) (Riemer et al., 2009) has been extensively

used to study the sensitivity of CCN activity to aerosol composition (Fierce et al., 2013), aging timescales due to condensation

and coagulation for carbonaceous CCN (Fierce et al., 2015), and the impact of mixing state on CCN estimates (Ching et al.,35

2017). Furthermore, PartMC has been leveraged to quantify errors in CCN predictions from modal and sectional models by

comparing CCN concentrations against those derived from fully resolved aerosol compositions (Zaveri et al., 2010; Ching

et al., 2017). Comparisons between PartMC and MAM4 have revealed substantial discrepancies in CCN activity, particularly

in polluted regions where coagulation and gas-particle partitioning amplify model differences (Fierce et al., 2024).

Despite these advancements in aerosol representation, a critical gap remains: the combined effects of high-resolution aerosol40

treatment and fine-scale spatial heterogeneity have yet to be systematically explored. Understanding this interaction is essential,

as the variability in surface properties, emissions, and resulting aerosol plumes influences particle aging and CCN activity. The

goal of this study is to bridge this gap by conducting the first particle-resolved large-eddy simulations (LES) to analyze how

sub-grid scale spatial heterogeneity affects aerosol composition, aging, and CCN activation.

Existing regional and global-scale aerosol-aware models lack the resolution to fully capture fine-scale spatial heterogeneities,45

leading to artificially uniform concentrations within grid cells. This oversimplification distorts the representation of non-linear

aerosol processes such as coagulation and gas-particle partitioning. Studies have demonstrated that climate-relevant aerosol

properties, including aerosol optical properties (Gustafson Jr. et al., 2011) and CCN activity (Weigum et al., 2016), are highly

sensitive to model resolution. Much of the sub-grid scale variability arises from spatially heterogeneous emissions (Qian et al.,

2010), yet many climate models fail to resolve this variability adequately.50

Prior research on sub-grid variability of aerosol properties has typically compared coarse-resolution global climate models

(50–100 km) against higher-resolution simulations (1–10 km) (Qian et al., 2010; Gustafson Jr. et al., 2011; Weigum et al.,

2016; Crippa et al., 2017; Lin et al., 2017). While increasing model resolution improves the representation of emissions het-

erogeneities, unresolved spatial variability persists at sub-kilometer scales. Additionally, climate models rely on Reynolds-

averaged Navier-Stokes parameterizations to represent boundary-layer turbulence, which fail to capture the full complexity of55

turbulent transport and its influence on aerosol processes.

Another approach to investigating sub-grid heterogeneity has been to use LES, which explicitly captures fine-scale turbulent

mixing and chemical segregation. Brasseur et al. (2023) review LES applications investigating turbulence-chemistry interac-
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tions in spatially heterogeneous environments. Many LES studies have focused on gas-phase chemistry, particularly the oxi-

dation of reactive volatile organic compounds (VOCs) such as isoprene, demonstrating that spatially heterogeneous emissions60

contribute to chemical segregation between reactive species in the boundary layer (Ouwersloot et al., 2011; Kaser et al., 2015).

Given the coupling between gas and aerosol phases through gas-particle partitioning, it is likely that chemical segregation

due to spatially heterogeneous emissions also influences aerosol properties. While some LES-based studies have incorporated

aerosols, they have largely relied on simplified treatments. Recent efforts have coupled turbulence-resolving frameworks with

aerosol models, such as the Sectional Aerosol Model for Large Scale Applications (SALSA) (Kokkola et al., 2008) with65

UCLALES (Tonttila et al., 2017) as well as the Parallelized Large-Eddy Simulation Model (PALM) (Kurppa et al., 2019).

Additional efforts coupling LES with prognostic aerosol treatments include the modal aerosol model M7 (Vignati et al., 2004)

with the Dutch Atmospheric Large-Eddy Simulation model (DALES) (de Bruine et al., 2019). However, despite their high-

resolution transport schemes, these models rely on relatively coarse aerosol representations. For example, UCLALES-SALSA

employs a 10-bin sectional scheme, while DALES modifies the seven-mode M7 model to incorporate additional hydrometeor70

modes. To our knowledge, no turbulence-resolving model has yet incorporated a particle-resolved aerosol treatment, which

would enable a fully detailed representation of aerosol composition, properties, and aging alongside LES-resolved turbulent

transport.

This study aims to analyze the coupled effects of spatial heterogeneity in surface emissions (including both gas-phase species

and primary aerosols), aerosol aging processes, and their impact on CCN activity. To achieve this, we conduct the first particle-75

resolved LES simulations, establishing a high-resolution aerosol-transport modeling framework that explicitly represents both

turbulent transport and aerosol composition.

This paper is organized in the following manner. Section 2 presents the modeling framework, WRF-PartMC-MOSAIC-LES,

along with a description of emissions scenarios with varying spatial heterogeneity. Section 3 discusses the results of simulation

runs, including changes in aerosol size distribution, composition, hygroscopicity, and CCN activity. We conclude with remarks80

on the implications of this study, limitations stemming from its idealized nature, and potential directions for future work.

2 Methods

2.1 WRF-PartMC-MOSAIC-LES

The aerosol-transport model WRF-PartMC-MOSAIC-LES integrates multiple sub-models responsible for transport, aerosol

representation, and multiphase chemistry. It is extends the aerosol-transport column model WRF-PartMC, originally developed85

by Curtis et al. (2017) and later extended to include advection (Curtis et al., 2024). WRF-PartMC couples the Weather Research

and Forecasting model (WRF) (Skamarock et al., 2008) with the particle-resolved aerosol model PartMC (Riemer et al., 2009).

PartMC represents a population of aerosol particles using an ensemble of computational particles, each assigned a weight

(i.e., particle multiplicity) to capture the diversity of particle sizes and composition observed in real-world aerosol populations.

As particles age, their composition evolves dynamically. Since PartMC operates as a box model it does not track the spatial90

position of individual particles within a computational grid cell. Instead, particle transport is handled by a stochastic advection
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algorithm that interfaces with WRF’s dynamical core (Curtis et al., 2024). WRF-PartMC has been used in one-dimensional

simulations to resolve vertical gradients in aerosol composition and mixing state (Curtis et al., 2017) and, more recently, in

three-dimensional simulations to study aerosol transport within a regional domain driven by by simulated meteorology (Curtis

et al., 2024).95

LES models explicitly resolve large-scale turbulent motion, typically at the scale of 10–100 m; however, they must param-

eterize sub-grid scale eddies and the down-gradient tendency of turbulent kinetic energy (TKE) as it propagates from large to

small scales, where it ultimately dissipates as heat. This requires the use of closure schemes. In WRF-PartMC-MOSAIC-LES,

turbulent mixing is parameterized using Deardorff’s TKE scheme for eddy diffusivity and eddy viscosity (Deardorff, 1980).

Gas-phase chemistry, gas-aerosol partitioning, and aerosol thermodynamics are represented using the Model for Simulating100

Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et al., 2008). MOSAIC is comprised of multiple sub-models, including

the Carbon Bond Mechanism version Z (CBM-Z) which solves gas phase chemistry (Zaveri and Peters, 1999). Phase-dependent

partitioning of aerosol species is handled by the Multicomponent Equilibrium Solver for Aerosols (MESA) (Zaveri et al.,

2005a). Activity coefficients of electrolytes are parameterized via the Multicomponent Taylor Expansion Method (MTEM)

(Zaveri et al., 2005b). To efficiently solve the numerically stiff set of solid-liquid phase reactions, MOSAIC employs the105

Adaptive Step Time-Split Euler Method (ASTEM) (Zaveri et al., 2008). MOSAIC models aerosol chemistry for both inorganic

and organic compounds such as nitrate, ammonium, sulfate, black carbon (BC), and a limited set of secondary organic aerosol

(SOA) species.

2.2 Computational domain setup

The computational domain extends 10 km in both the x- and y-directions, with a horizontal grid spacing of 100 m. Vertically,110

the domain reaches 2 km and is represented with 100 vertical levels. LES runs in WRF use an η vertical coordinate system,

whereby vertical levels are linearly spaced in pressure. Due to the limited depth of the domain, this results in an effective

vertical resolution of approximately 20 m. Simulations begin on the Vernal Equinox at 09:00 local time (LT) and conclude at

15:00 LT for a total duration of 6 hours to maintain balanced photolysis rates throughout the simulation period. Each grid cell

is initialized with 100 computational particles, resulting in 100 million total particles. As processes such as emission, transport,115

and coagulation modify the number concentration of particles, the total number of computational particles within each grid cell

is dynamically adjusted—doubling when it falls to half the initial value and halving when it reaches twice the initial value—to

maintain computational efficiency and adequate representation of the aerosol state.

In particle-resolved box model studies, a typical choice is Np ∼ 10,000 computational particles to minimize stochastic vari-

ability in aerosol processes (Curtis et al., 2024; Liu et al., 2025). However, for three-dimensional large-eddy simulations (LES)120

coupled with PartMC, the computational burden scales with the number of grid cells, making such high particle counts per cell

impractical. In this study, we used 100 particles per grid cell—a choice that balances computational cost and model fidelity.

While lower Np increases stochastic variability at the individual grid-cell level, our focus is on domain-scale patterns and

contrasts driven by spatial heterogeneity, which are robust to such noise. Simulations were conducted on a high-performance
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computing cluster using 384 CPU cores in parallel. Future studies may explore sensitivity to Np, but we expect the main125

conclusions presented here to remain valid.

The domain is initialized over a flat, uniform land surface absent of topographic features or land-use variations. WRF-

PartMC-MOSAIC-LES is not coupled to one of WRF’s radiation sub-models. Instead, MOSAIC employs idealized parameter-

izations to determine photolysis rates based on the solar zenith angle. Due to the lack of a radiation sub-model, surface heating

is imposed uniformly across the domain using a constant rate of 0.24 Kms−1, which is representative of typical kinematic130

heat fluxes observed during mid-day in clear sky conditions over land (Stull, 1988).

Initial conditions and emissions for both aerosols and the gas phase represent an urban environment and are based on Riemer

et al. (2009). The initial concentrations and emission rates stem from the 1987 Southern California Air Quality Study (SCAQS),

which collected measurements of gas phase species and particulate matter mass concentrations at multiple sites across the Los

Angeles basin (Zaveri et al., 2008). Table 1 provides initial concentrations and emission rates for gas phase species, while135

Table 2 details aerosol initial conditions and emission rates categorized by aerosol modes. Initially, the aerosol consists of an

internal mixture composed of 50% ammonium sulfate and 50% primary organic aerosol (POA) by mass. The three emission

modes representing cooking and vehicular combustion comprise varying mixtures of POA and BC. The three emission modes,

representing cooking and vehicular combustion sources, each consist of distinct fixed mixtures of primary organic aerosol

(POA) and black carbon (BC). To allow for simulation spin-up and the full development of the convective boundary layer,140

emissions remain at zero during the first hour of simulation. Subsequently, surface emissions are released at constant rates as

specified by Tables 1 and 2 for the remainder of simulations.

Meteorological initial conditions are adapted from the base sounding profile provided with WRF’s LES test case; the profile

describes an idealized convective boundary layer structure, where the surface is 5 K warmer than the mixing layer, and an

inversion of 8 K caps the layer at 1 km. The wind profile is set to zero throughout the domain.145

2.3 Emissions Scenarios

To assess the impact of emissions spatial heterogeneity on aerosol properties, we examine multiple emissions scenarios, shown

in Figure 1. The first scenario distributes emissions evenly across the entire domain and thus has no spatial heterogeneity. This

serves as a proxy for coarser-resolution models that do not resolve spatial heterogeneity of emissions and instead assume uni-

form emissions of gases and primary aerosols across grid cells. The remaining scenarios introduce increasing levels of spatial150

heterogeneity, enabling direct comparison against the no heterogeneity scenario to evaluate an emission pattern’s influence on

aerosol properties. The low heterogeneity scenario represents an idealized urban-rural interface, where emissions are released

in half the domain with no emissions occurring in the other half. The medium heterogeneity scenario contains a narrow strip of

emissions running through the center of the domain, corresponding to an emission pattern typical of a major roadway. Lastly,

in the high heterogeneity scenario, all emissions are placed in a single grid cell in the domain center representing a point source155

such as an industrial plume.
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Table 1. Gas phase emissions and initial conditions. Table adapted from Riemer et al. (2009) with permission.

Species Symbol Initial Mole Fraction (ppb) Emissions (nmol m-2 s-1)

Nitric oxide NO 0.1 31.8

Nitrogen dioxide NO2 1.0 1.67

Nitric acid HNO3 1.0

Ozone O3 50.0

Hydrogen peroxide H2O2 1.1

Carbon monoxide CO 21 291.3

Sulfur dioxide SO2 0.8 2.51

Ammonia NH3 0.5 6.11

Hydrogen chloride HCl 0.7

Methane CH4 2200

Ethane C2H6 1.0

Formaldehyde HCHO 1.2 1.68

Methanol CH3OH 0.12 0.28

Methyl hydrogen peroxide CH3OOH 0.5

Acetaldehyde ALD2 1.0 0.68

Paraffin carbon PAR 2.0 96

Acetone AONE 1.0 1.23

Ethene ETH 0.2 7.2

Terminal olefin carbons OLET 2.3 ·10−2 2.42

Internal olefin carbons OLEI 3.1 ·10−4 2.42

Toluene TOL 0.1 4.04

Xylene XYL 0.1 2.41

Lumped organic nitrate ONIT 0.1

Peroxyacetyl nitrate PAN 0.8

Higher organic acid RCOOH 0.2

Higher organic peroxide ROOH 2.5 ·10−2

Isoprene ISOP 0.5 0.23

Alcohols ANOL 3.45

Spatial heterogeneity is quantified using the metric η developed by (Mohebalhojeh et al., 2025). The metric η is a normalized

measure of spatial heterogeneity, ranging from 0 (completely homogeneous) to 1 (maximally heterogeneous). For a discrete

2-dimensional scalar field f over a domain S with lateral dimensions N by M , η is defined as
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Table 2. Aerosol emissions and initial conditions. Table adapted from Riemer et al. (2009) with permission.

Initial/Background N (m−3) Dgn (µm) σg Composition by Mass

Aitken Mode 3.2 · 109 0.02 1.45 50% (NH4)2SO4, 50% POA

Accumulation Mode 2.9 · 109 0.116 1.65 50% (NH4)2SO4, 50% POA

Emissions E (m−2 s−1) Dgn (µm) σg Composition by Mass

Meat cooking 9 · 106 0.086 1.9 100% POA

Diesel vehicles 1.6 · 108 0.05 1.7 30% POA, 70% BC

Gasoline vehicles 5 · 107 0.05 1.7 80% POA, 20% BC

= 0.00
% covered: 100.00%

No heterogeneity

= 0.33
% covered: 50.00%

Low heterogeneity:
Urban-rural interface

= 0.60
% covered: 10.00%

Medium heterogeneity:
Roadway

= 1.00
% covered: 0.01%

High heterogeneity:
Point souce

Figure 1. Emissions spatial heterogeneity scenarios. The pattern of emissions is shown as a cross section of the x-y plane at ground level.

Shaded areas correspond to regions of emissions. The hue of shading indicates the intensity of emissions scaling ranging from light blue

(low emissions scaling) to dark blue (high emissions scaling). Both the spatial heterogeneity metric η and the fraction of area covered by

emissions are displayed in the bottom of each scenario.

η(f,S) =
2
∑

S̃∈D |f(S)− f(S̃)|
MNf(S) [3MN −M −N − 1]

, (1)160

where f(S) is the domain mean, f(S̃) is the mean over a subset of the domain S̃, and D is the set of all possible subdomains.

Thus, the metric is computed by averaging the absolute value of the difference between the domain mean f(S) and all domain

subset means f(S̃), normalized by the maximum possible value of this average difference given a fixed domain mean. Mohe-

balhojeh et al. (2025) show that the metric is translationally invariant when the scalar field f is shifted within S. Furthermore,
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they prove that the maximum spatial heterogeneity occurs when the scalar field is zero everywhere except at a single point165

where it takes the value MN × f(S).

The no heterogeneity scenario corresponds to the homogeneous condition (η = 0) while the high heterogeneity scenario—

the point-source emission—represents the maximally heterogeneous case (η = 1). To ensure consistent mass emissions across

scenarios, emission rates are scaled by the fraction of area covered by emissions. For instance, in the high heterogeneity

scenario, this results in a scaling of 10,000 (M = N = 100) for the point-source emission. The fraction of area covered by170

emissions is displayed for each scenario alongside the spatial heterogeneity values in Figure 1.

3 Results

Key findings of this paper are structured as follows. Section 3.1 discusses environmental conditions throughout simulations.

Section 3.2 investigates the relationship between emissions spatial heterogeneity and the gas phase. Section 3.3 presents im-

pacts of emissions spatial heterogeneity on bulk aerosol properties (number and mass concentrations). Section 3.4 discusses175

impacts on aerosol composition, with particular focus on sulfate, ammonium, and nitrate due to their important role in parti-

cle hygroscopicity. Leveraging the particle-resolved framework, we further evaluate how particle hygroscopicity responds to

emissions spatial heterogeneity. Building on these results, Section 3.5 investigates how emissions spatial heterogeneity impacts

CCN activity across a range of supersaturation levels ranging (0.1% to 1.0%). Lastly, we explore the governing role of aerosol

composition–namely, the presence of ammonia—in mediating the impact of emissions spatial heterogeneity on CCN activity.180

3.1 Environmental conditions

Gas-aerosol partitioning of semi-volatile compounds is determined by both temperature and relative humidity (RH). Vertical

profiles of each environmental variable are shown in Figure 2, displaying the average values across each vertical level at regular

2-hour intervals. Near-surface temperature increases from 300 K to 307 K due to constant surface heating, while the the upper

part of the growing boundary layer warms from initially 291 K to 294 K. As the convective boundary layer deepens and warms,185

surface RH decreases from initially 44% to 28% after 6 hours. RH aloft also decreases, from 69% to 48%. Warming and drying

favor partitioning toward the gas phase by increasing vapor pressures and reducing aerosol liquid water. However, ongoing

emissions of condensable vapors and primary particles may still lead to net aerosol formation.

3.2 Impacts of emissions spatial heterogeneity on gas phase species

Figure 3 displays x-y cross sections of ammonia, nitric acid, and the hydroxyl radical (OH) at t = 6 h taken at z ≈ 900 m in190

the upper boundary layer. Among the three species, ammonia exhibits the highest spatial heterogeneity with η values 3–4 times

higher than those of nitric acid and OH. This is primarily because ammonia is emitted while nitric acid and OH are formed due

to chemical reactions. This leads to a marked concentration gradient for ammonia between regions near the emissions plume

(in excess of 10 ppbv directly over the emissions plume in the high heterogeneity scenario) and farther toward the perimeter of

the domain (as low as 0.1 pptv).195
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Figure 2. Vertical profiles of temperature (left) and relative humidity (right) at regular 2-hour intervals showing the mean value at each

vertical level.

Both OH and nitric acid exhibit much lower spatial heterogeneity due to a coupling between chemistry and the heterogeneity

of each compound; however, the chemical mechanism underlying this coupling differs significantly between OH and nitric acid.

OH facilitates rapid oxidation of numerous compounds in the core of the emissions plume. While the concentration of OH is

momentarily lowered due to oxidation reactions, it is quickly replenished via photolysis. As a result, local concentrations of

OH are in near chemical-equilibrium as it is produced and consumed over very short timescales, preventing large scale spatial200

heterogeneity in the domain-wide concentration of OH. Whereas the concentration of OH is rapidly modified by oxidation and

photolysis reactions in the gas phase, nitric acid is governed by equilibrium partitioning between the gas and aerosol phase. For

instance, a nitrate rich particle which enters a parcel of air containing low levels of nitric acid will partition most of the nitrate

into the gas phase to re-establish thermodynamic equilibrium. Conversely, when the gas phase concentration nitric acid is high

such as near an emissions plume, nitrate formation is favored. As a result, the reversible nature of ammonium nitrate formation205

acts as a buffer, regulating the concentration of nitric acid in the gas phase which lowers the degree of spatial heterogeneity.

Figure 4 presents vertical profiles of ammonia, nitric acid, and OH. For ammonia and nitric acid, the profiles show horizontal

averages at each vertical level across the entire domain. As emissions spatial heterogeneity increases, both ammonia and nitric

acid mixing ratios decrease on average. As will demonstrated in Section 3.4, this is due to increased partitioning of these

species into the aerosol phase to form ammonium nitrate.210

For OH, the vertical profiles show the 5th percentile of mixing ratio within each level, rather than the domain-wise mean,

to better capture localized depletion near the emissions plume. Scenarios with high emissions spatial heterogeneity result a

pronounced reduction in OH near the emissions plume. Whereas in the no heterogeneity scenario, the level-mean mixing ratio

of OH is 0.61 pptv at z = 1 km, whereas in the high heterogeneity scenario they drop by 54% to 0.28 pptv.
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Figure 3. Cross sections in the x-y plane of gas phase species NH3 (left column), HNO3 (center column), and OH (right column). Cross

sections are shown at a height of approximately z ≈ 900 m and at t = 6 h. Coloring indicates the mixing ratio of gas species in parts per

billion by volume. The value of the spatial heterogeneity metric η is displayed alongside each cross section plot.
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Figure 4. Vertical profiles of gas phase species NH3 (left), HNO3 (center), and OH (right) at t = 6 h. For NH3 (left) and HNO3, the mean

value is displayed at each vertical level. For OH, the 5th percentile at each vertical level is shown to indicate the local changes to the OH

mixing ratio near the emissions plume. Values for the no heterogeneity scenario are shown as a solid black line while emissions scenarios

1–3 are shown as colored solid lines.

3.3 Aerosol size distributions215

Number and mass distributions for each emissions scenario are shown in Figure 5. Each size distribution is taken from a

vertical level in the upper boundary layer at z ≈ 800 m. When analyzing size distributions for a single grid cell, considerable

stochastic noise is present in the shape of distributions. This is due to the selected number of computational particles per grid

cell (N = 100) alongside the stochastic treatment of aerosol particles in WRF-PartMC. To reduce stochastic noise, number and

mass distributions represent the average distribution in a 1 km2 region centered over the emissions plume (i.e., size distributions220

are averaged over a 10× 10 grid cell region). For the no heterogeneity scenario, the medium heterogeneity scenario, and the

high heterogeneity scenario, this region is directly over the center of the domain. For the low heterogeneity scenario, emissions

are released in one half of the domain that is offset from the center, and thus the averaging region is located in the center of the

emissions patch. For each size distribution, data have been binned into 100 logarithmically spaced bins, ranging in size from

10−9 to 10−3 m.225

To quantify changes in particle populations, the number and mass concentration of Aitken (Dp ≤ 50 nm) and accumulation

(Dp > 50 nm) mode particles were calculated. As the spatial heterogeneity of emissions increases, the number of Aitken mode

particles decreases by up to 81% while the number of accumulation mode particles increases by up to 246%. The decrease in

Aitken mode particles is attributable to enhanced Brownian coagulation due to higher local concentrations near the emissions
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Figure 5. Number (left) and mass (right) distributions for each emissions scenario in the upper boundary layer (z = 800) m and t = 6 h. The

initial condition is shown as the dashed black line. Values for the no heterogeneity scenario are shown as a solid black line while emissions

scenarios 1–3 are shown as colored solid lines.

plume core. The corresponding increase in accumulation mode particles is a result of secondary aerosol formation. Changes to230

aerosol composition due to gas-particle partitioning is explored in further detail in the next section.

Similarly, the mass distribution of Aitken mode particles decreases by up to 74% for high emissions spatial heterogeneity

scenarios, while the accumulation mode mass fraction increases by up to 309%. Coagulation of smaller Aitken mode particles

with accumulation mode particles contributes little change in the mass distribution as indicated by a slight reduction in the

Aitken mode mass concentration. Alongside the increase in the number of accumulation mode particles, the increase in mass235

concentration among these particles is due to gas-particle partitioning.

3.4 Aerosol composition

Figure 6 shows cross sections of aerosol ammonium, nitrate, and sulfate in the upper boundary layer (z ≈ 900 m) at t = 6 h. The

spatial distribution of ammonium and nitrate closely follow the emissions plume, indicating that ammonium nitrate formation

occurs where ammonia and nitric acid are abundant. In these regions, excess gas phase concentrations drive partitioning into the240

aerosol phase. Further out from the emissions plume, ammonium and nitrate concentrations quickly fall off as the equilibrium

condition shifts to the gas phase.

In contrast, sulfate is more uniformly distributed across all scenarios, resulting in lower spatial heterogeneity for the high

heterogeneity scenario (η = 0.021) compared to ammonium (η = 0.142) and nitrate (η = 0.739). This is due to the extremely

low volatility of sulfuric acid which remains almost entirely in the aerosol phase as sulfate regardless of proximity to the245

emissions plume. Unlike ammonia and nitric acid, which partition dynamically between the gas and aerosol phase, sulfate does
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not re-enter the gas phase. Consequently, the spatial distribution of aerosol species is determined by their volatility, with less

volatile species exhibiting more uniform distributions, while higher volatility species remain clustered near plumes with high

concentrations of corresponding gas phase precursors. Given the sensitivity of nitrate formation to the spatial heterogeneity

of emissions, nitrate levels are extremely low in the no heterogeneity scenario, with most grid cells containing no nitrate.250

Occasionally, some grid cells may briefly contain particles with nitrate. For the spatial heterogeneity metric, this is akin to

the point source scenario. As a result, the spatial heterogeneity of nitrate for the no heterogeneity scenario appears higher

(η = 0.513) than the value of η for ammonium and sulfate (η = 0.010 and η = 0.011, respectively).

Figure 7 shows vertical profiles of aerosol ammonium (NH+
4 ), nitrate (NO−3 ), and sulfate (SO2−

4 ) for each emissions scenario.

These profiles represent the average concentrations within each vertical level at the end of each simulation (t = 6 h).255

Sulfate concentrations are nearly uniform within the boundary layer and rapidly decrease above the entrainment zone due

to limited mixing between the free troposphere and boundary layer. Sulfate concentrations decrease as the emissions spatial

heterogeneity increases. Production of sulfate relies on the oxidation of SO2 by OH. Within the high concentration environment

of the emissions plume, many reactive gas phase compounds including volatile organic compounds (VOCs) complete alongside

SO2 for oxidation. With OH rapidly depleted near the emissions plume, oxidation of SO2 into H2SO4 proceeds at a slower260

rate, reducing sulfate formation. OH from outside the emissions plume is not mixed fast enough into the plume to restore its

concentration (see Figure 3). Thus, segregation of OH and SO2 alters sulfate production due to the spatial heterogeneity of

emissions.

Both ammonium and nitrate concentrations increase with height in the boundary layer due to the strong temperature depen-

dence of ammonium nitrate formation. Nitrate availability depends on the presence of free ammonia, i.e., ammonia not already265

neutralizing sulfate as ammonium sulfate. In the lowest 500 m of the boundary layer, the concentration of NH+
4 decreases

under high emissions spatial heterogeneity due to lower sulfate concentrations at higher emissions spatial heterogeneity.

At higher altitudes (z ∼ 1.2 km), ammonium nitrate formation is enhanced for scenarios with high emissions spatial hetero-

geneity. Under these conditions, the concentration of free ammonia increases due to lower sulfate levels, allowing neutralization

of more nitric acid. In the no heterogeneity scenario, little nitrate is formed due to the overall lower concentrations of nitric270

acid and ammonia, pushing their equilibrium partitioning to the gas phase. This indicates the strong dependence of nitrate

concentrations on the composition of the aerosol and the level of emissions spatial heterogeneity.

Figure 8 shows the size-resolved mass fraction of aerosols in the upper boundary layer (z ≈ 800 m) for the initial condition

and at the end of simulations (t = 6 h) for both the no heterogeneity scenario and the high heterogeneity scenario. After 6

hours, significant differences in composition emerge. Under uniform emissions, particles mainly consist of BC and primary275

organic aerosol (POA) along with some sulfate. By contrast, particles in the high heterogeneity scenario are dominated by

nitrate, ammonium, and sulfate, which together comprise 50–80% of aerosol mass.

The CCN activity of particles in the size range of 50–100 nm is largely governed by their composition. Figure 8 indicates

that, for the no heterogeneity scenario, particles in this size range are primarily composed of low hygroscopicity compounds,

including BC and POA. In the high heterogeneity scenario, the dominant presence of sulfate, nitrate, and ammonium increases280

particle hygroscopicity. This suggests that particles in the size range of 50–100 nm, whose CCN activity depends on aerosol
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composition, exhibit greater hygroscopicity under high emissions spatial heterogeneity, allowing them to activate at lower

supersaturations. We show this is indeed the case by evaluating changes in the 2-dimensional number distribution n(Dp,κ) as

a function of particle diameter Dp and particle hygroscopicity parameter κ.

Figure 9 shows 2-dimensional number distributions n(Dp,κ) for emissions scenario extremes. Each distribution was sam-285

pled in the upper boundary layer (z ≈ 800 m) at the beginning and end of simulations. Initially, all particles possess the same

composition and thus the same hygroscopicity. The right panel compares distributions at t = 6 h for the no heterogeneity

scenario and the high heterogeneity scenario.

In the no heterogeneity scenario, two distinct particle groups emerge: one with low κ values (0–0.3), corresponding to

primary carbonaceous aerosols that have not undergone significant aging, and another with higher κ (0.3–0.6), representing290

particles that have undergone coagulation and gas-particle partitioning. The latter group is enriched in sulfate as seen in Figure

8.

In the high heterogeneity scenario, particles exhibit significantly higher hygroscopicities. For instance, the hygroscopicity

of particles with diameter of 100 nm exceeds κ > 0.6 (indicating highly hygroscopic particles), whereas κ only reaches up to

0.4 in the no heterogeneity scenario. As suggested in discussing the link between aerosol composition and CCN activity for295

particles in the size range of Dp ∼ 50–100 nm, this indicates that spatially heterogeneous emissions indeed lower the critical

supersaturation of such particles, enhancing their CCN activity.

Differences in the κ distributions between the no heterogeneity scenario and the high heterogeneity scenario stem from

the interaction between emissions spatial heterogeneity and sub-grid scale aerosol processes. Enhanced coagulation in emis-

sions plumes reduces Aitken mode particle concentrations, explaining the absence of a low-κ carbonaceous aerosol group in300

the high heterogeneity scenario. Furthermore, spatially heterogeneous emissions promote gas-particle partitioning, increasing

particle hygroscopicity. In particular, higher concentrations of nitric acid and ammonia near spatially heterogeneous emissions

plumes drive the equilibrium condition into the aerosol phase, raising the concentration of ammonium nitrate alongside particle

hygroscopicity.

3.5 CCN activity305

Figure 10 shows vertical profiles of the CCN number per kilogram of dry air for environmental supersaturations Senv ranging

from Senv = 0.1% to Senv = 1.0% across different emissions scenario. Since the ambient RH never exceeds 100% in these

simulations, the reported CCN concentrations represent the number of particles that would activate if RH were raised to the

specified supersaturation.

As noted earlier, emissions spatial heterogeneity influences aerosol processes such as coagulation and gas-particle parti-310

tioning, altering the particle number, size, composition, and hygroscopicity. In turn, these modifications impact CCN activity,

though the dominant processes and their effects vary with supersaturation.

At lower supersaturations (Senv = 0.1–0.3%), CCN concentrations increases with emissions spatial heterogeneity in the

upper boundary layer. This is due to enhanced formation of ammonium nitrate in the cooler, sulfate-poor environment, which

increases activation of ultrafine particles in the range of 50–100 nm due to the high hygroscopicity of ammonium nitrate.315
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At higher supersaturations (Senv = 0.6–1.0%), CCN concentrations still increase in the upper boundary layer for scenar-

ios with lower spatial heterogeneity, however, in the high heterogeneity scenario, CCN concentrations decrease, particularly

at Senv = 1.0%, where CCN concentrations drop below all other scenarios including the no heterogeneity scenario. This is

due to enhanced coagulation in highly heterogeneous emissions scenarios which reduces the number of smaller particles that

would otherwise activate at high supersaturations. Therefore, at sufficiently high supersaturation and emissions spatial hetero-320

geneity, the negative effect on CCN concentration due to coagulation offsets the positive effect of gas-particle partitioning of

hygroscopic material.

Figure 11 illustrates the temporal and vertical evolution of the percent difference between the CCN concentrations relative

to the no heterogeneity scenario for each scenario and supersaturation level. The percent difference is calculated as

% difference
(
[CCN]Scenario, [CCN]No heterogeneity

)
= 100×

(
[CCN](t,z,Senv)Scenario− [CCN](t,z,Senv)No heterogeneity

[CCN](t,z,Senv)No heterogeneity

)
, (2)325

where [CCN](t,z,Senv) is the horizontally averaged concentration of CCN at time t and vertical level z that activate at super-

saturation Senv.

The greatest increase in CCN concentration relative to the no heterogeneity scenario occurs in the high heterogeneity scenario

at Senv = 0.3%, where CCN concentrations increase by more than 25% through t = 6 h. At both high supersaturations and

high emissions spatial heterogeneity, the reduction in CCN activity due to enhanced coagulation becomes evident after t≈ 5 h.330

Across all scenarios, CCN concentrations increase most near the top of the boundary layer. This region grows with time due

to boundary layer development. Notably, shallow cumuli and stratiform clouds tend to form in the upper boundary layer. This

suggests that emissions spatial heterogeneity could enhance cloud albedo through the first indirect effect.

3.6 Influence of ammonia on aerosol composition and CCN activity

To further explore the role of ammonia in CCN activity under spatially heterogeneous emissions, we conducted additional sim-335

ulations for the no heterogeneity scenario and the high heterogeneity scenario, setting total ammonium (NH3, gas+NH4, aerosol)

to zero. Correspondingly, emissions of NH3 were set to zero to ensure that total ammonium remains zero throughout each

simulation.

Figure 12 shows vertical profiles of CCN mixing ratios at t = 6 h for supersaturations ranging from Senv = 0.1% to

Senv = 1.0%. Without ammonia, CCN concentrations at each supersaturation level agree much more closely between the340

no heterogeneity scenario and the high heterogeneity scenario. The peak of CCN concentrations in the upper boundary layer

and at lower supersaturations, previously observed in the high heterogeneity scenario, disappears entirely. This underscores

the crucial role of ammonium nitrate formation in modulating CCN concentrations under spatially heterogeneous emissions,

especially at lower supersaturations.

At higher supersaturations (Senv = 1.0%), the high heterogeneity scenario exhibits lower CCN concentrations than the345

ammonia-free no heterogeneity scenario. This further confirms that, in the absence of ammonia-driven gas-particle partitioning,

coagulation-induced particle loss dominates, leading to an overall reduction in the concentration of CCN. The similarity in

CCN profiles between the ammonia-free cases of the high heterogeneity scenario and the no heterogeneity scenario, apart from
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a slight ( 5%) downward shift in the high heterogeneity scenario due to enhanced coagulation, underscores the competing

influences of emissions spatial heterogeneity on aerosol-cloud interactions.350

4 Limitations

This study is based on highly idealized simulations, which were designed to isolate the role of emissions spatial heterogeneity

under controlled meteorological conditions. While this allows for a clear attribution of observed effects to aerosol processes

such as coagulation and gas-particle partitioning, it also introduces limitations. First, the simulations assume a horizontally

homogeneous land surface, no synoptic-scale forcing, and a fixed solar heating profile, which neglects the potential influence355

of surface heterogeneity, wind shear, and diurnal variability. Second, all emissions—both gas-phase and particulate—are tem-

porally constant after spin-up and spatially collocated, which may not reflect the complexity of real urban emission patterns

where different sources (e.g., traffic, industry, biomass burning) are spatially and temporally decoupled. Third, while the chosen

aerosol composition is grounded in past urban measurements (SCAQS), the limited diversity in primary aerosol types and the

exclusion of additional chemical pathways (e.g., aqueous-phase oxidation) constrain the generalizability of the results. Finally,360

the computational particle count per grid cell (Np = 100) and the fixed domain size may underrepresent stochastic variability

in some fine-scale processes, particularly at early times or near the plume edge. These limitations motivate future work incor-

porating more realistic emissions, meteorological variability, and extended simulation times to evaluate the robustness of the

conclusions presented here.

5 Conclusions365

This study investigates the impact of spatially heterogeneous emissions on aerosol properties, including CCN activity, in a con-

vective boundary layer using the particle-resolved large-eddy simulation modeling framework, WRF-PartMC-MOSAIC-LES.

This first-of-its-kind modeling platform enables a detailed process-level analysis of the coupling between emissions spatial

heterogeneity and concentration-dependent aerosol processes such as coagulation and gas-particle partitioning. To assess these

interactions, we compare multiple idealized emissions scenarios against a base case of uniform emissions, which serves as a370

proxy for coarser-resolved models that lack the ability to resolve heterogeneity of emissions.

Our results demonstrate that emissions spatial heterogeneity significantly alters key aerosol processes. In particular, nitrate

formation increases substantially in regions of high emissions heterogeneity due to localized enhancements in nitric acid and

ammonia concentrations near the emissions plume core. This shifts the equilibrium favoring ammonium nitrate formation in

the aerosol phase. In turn, the volatility of aerosol species is coupled with the spatial heterogeneity of emissions and precursor375

species. Low-volatility compounds such as sulfate are more spatially homogeneous due to their tendency to remain in the

aerosol phase even as particles are transported away from the emissions plume. Additionally, higher emissions heterogeneity

intensifies coagulation, accelerating particle growth and modifying the size distribution of aerosols.
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These aerosol process changes have downstream effects on CCN activity. Notably, the influence of emissions spatial het-

erogeneity on CCN concentrations is governed by competing effects of coagulation and gas-particle partitioning. Coagulation380

removes smaller particles that would otherwise activate at high supersaturations, resulting in a decrease in CCN activity at high

supersaturations for scenarios with high emissions spatial heterogeneity. Conversely, coagulation is not as efficient at remov-

ing larger particles that activate at lower supersaturations. In contrast, gas-particle partitioning results in an increase of highly

hygroscopic compounds such as ammonium nitrate under high emissions spatial heterogeneity. As a result, CCN activity at

lower supersaturations (Senv = 0.3—0.6%) increases by up to 25% in the upper boundary layer for emissions scenarios with385

high spatial heterogeneity.

The sensitivity of CCN activity to emissions spatial heterogeneity is highly influenced by the aerosol and gas phase compo-

sition. Given the key contribution of ammonium nitrate formation in elevating CCN activity under highly spatially heteroge-

neous scenarios, removing ammonia weakens—or in some cases reverses—the trend between emissions spatial heterogeneity

and CCN concentrations.390

This has important implications for global climate models, where nitrate formation is often simplified by assuming equilib-

rium partitioning or omitted altogether. Our findings highlight the necessity of accurately representing nitrate in global climate

models due to the strong coupling between emissions spatial heterogeneity, aerosol composition, and CCN activity. As model

resolution continues to improve, advancing the representation of aerosol chemistry will be critical to capturing the full impact

of emissions spatial heterogeneity on cloud microphysics and climate.395

This study uses highly idealized emission patterns, in which all sources are spatially collocated, and a limited set of aerosol

types under fixed meteorological conditions. While our results show that aerosol composition mediates the impact of spatial

heterogeneity on properties such as CCN activity, future work should expand this analysis to more realistic scenarios. In

particular, it will be important to examine cases with spatially separated emission sources, a broader diversity of primary

aerosol types, and a range of meteorological conditions that influence transport, mixing, and cloud formation. Such studies will400

help determine the generality of our findings across different geographic settings, including urban, agricultural, and remote

regions.

Code and data availability. WRF-PartMC is open source and maintained on GitHub: https://github.com/open-atmos/wrf-partmc.git. The

version of WRF-PartMC used in this paper was coupled with the multiphase chemistry model MOSAIC and custom initialization code

was written for specifying the emissions initial conditions unique to each emissions scenario alongside specific namelist configurations405

for particle-resolved LES. The model code (including the WRF base model v3.9.1, PartMC aerosol model v2.6.1, and MOSAIC chem-

istry model) used for this publication has been archived on Zenodo with the following DOI: https://doi.org/10.5281/zenodo.16850289. All

simulation outputs and scripts used to generate figures in this paper are available via the Illinois Data Bank: https://doi.org/10.13012/B2IDB-

9622921_V1.
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Figure 6. Cross sections in the x-y plane of aerosol species NH+
4 (left column), NO−3 (center column), and SO2−

4 (right column). Cross

sections are shown at a height of approximately z ≈ 900 m and at t = 6 h. Coloring indicates the mixing ratio of aerosol species in parts

per billion by volume. Regions below a trace mixing ratio of 10 pptv are filled in white. The value of the spatial heterogeneity metric η is

displayed alongside each cross section plot.
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Figure 7. Vertical profiles of aerosol species NH+
4 (left), NO−3 (center), and SO2−

4 (right) at t = 6 h and in parts per billion by volume (ppbv).

For each compound, the mean value is displayed at each vertical level. Values for the no heterogeneity scenario are shown as a solid black

line while emissions scenarios 1–3 are shown as colored solid lines.
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Figure 8. Speciated mass fraction as a function of particle diameter for emissions scenario extremes (no heterogeneity scenario and high

heterogeneity scenario). The initial condition is shown on the left, indicating that aerosol begin as an equal mixture of POA and ammonium

sulfate. On the right, emissions scenarios with minimum spatial heterogeneity (top, no heterogeneity scenario) and maximum spatial hetero-

geneity (bottom, high heterogeneity scenario) are shown after 6 hours.
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Figure 9. 2-dimensional number distributions n(Dp,κ) for emissions scenario extremes. The initial condition is shown on the left, indicating

that all aerosol begin as internally mixed particles with uniform κ. On the right, emissions scenarios with minimum spatial heterogeneity

(top, no heterogeneity scenario) and maximum spatial heterogeneity (bottom, the high heterogeneity scenario) are shown after 6 hours. Cell

coloring indicates particle number concentration. Black solid contours indicate supersaturation in %. Particles to the right of a contour line

activate at the indicated supersaturation.
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Figure 10. Vertical profiles for CCN concentrations activating at supersaturations Senv = 0.1,0.3,0.6,1.0% and at t = 6 h. Concentrations

are displayed in number of CCN per kilogram of dry air and are scaled by a factor of 1 · 10−9. Values for the no heterogeneity scenario are

shown as a solid black line while emissions scenarios 1–3 are shown as colored solid lines.
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Figure 11. Time-height plots for the percent difference between CCN concentrations in the no heterogeneity scenario and each emissions

scenario and supersaturation level. Scenarios are organized by column. The supersaturation of CCN activation is organized by row. Red

indicates an increase in CCN relative to the base case while blue indicates a reduction in CCN concentrations. Contour lines indicating

regions of constant percent difference are drawn on each panel in increments of 5%.
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Figure 12. Vertical profiles for CCN concentrations in ammonia-free simulations that activate at supersaturations Senv = 0.1,0.3,0.6,1.0%

and at t = 6 h. Concentrations are displayed in number of CCN per kilogram of dry air and are scaled by a factor of 1 · 10−9. Profiles for

scenarios with ammonia are shown as solid lines while scenarios without ammonia are displayed as dashed lines for the no heterogeneity

scenario (black) and the high heterogeneity scenario (chartreuse).
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