

1 The Largest Crop Production Shocks: Magnitude, Causes and Frequency

2 Florian Ulrich Jehn^{1,2,3}, James Mulhall¹, Simon Blouin¹, Łukasz G. Gajewski¹, Nico
3 Wunderling^{3,4,5}

4 ¹Alliance to Feed the Earth in Disasters (ALLFED), Lafayette, CO, USA

5 ²Societal Dynamics (SoDy), Remote

6 ³Center for Critical Computational Studies (C³S), Goethe University Frankfurt, Frankfurt am Main, Germany

7 ⁴Earth Resilience Science Unit, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association,
8 Potsdam, Germany

9 ⁵High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA

10 *Correspondence to:* Florian Ulrich Jehn (florian@allfed.info) or Nico Wunderling (wunderling@c3s.uni-frankfurt.de)

11 *This manuscript is a non peer reviewed preprint submitted to EarthArXiv*

12

13 **Abstract** Food is the foundation of our society. We often take it for granted, but stocks are rarely available for longer than a
14 year, and food production can be disrupted by catastrophic events, both locally and globally. To highlight such major risks to
15 the food system, we analyzed FAO crop production data from 1961 to 2023 to find the largest crop production shock for every
16 country and identify its causes. We show that large crop production shocks regularly happen in all countries. This is most often
17 driven by climate (especially droughts), but disruptions by other causes like economic disruptions, environmental hazards
18 (especially storms) and conflict also occur regularly. The global mean of largest country-level shocks averaged -29%, with
19 African countries experiencing the most extreme collapses (-80% in Botswana), while Asian and Central European nations
20 faced more moderate largest shocks (-5 to -15%). While global shocks above 5% are rare (occurring once in 63 years),
21 continent-level shocks of this magnitude happen every 1.8 years on average. These results show that large disruptions to our
22 food system frequently happen on a local to regional scale and can plausibly happen on a global scale as well. We therefore
23 argue that more preparation and planning are needed to avoid such global disruptions to food production.

24 1 Introduction

25 Having enough food available is essential for every society. However, no food is storable forever, and storage is expensive.
26 As a result, there is always only a very finite amount of food in stock. If production were to stop tomorrow, stocks globally
27 would only last just under a year, with Africa and parts of Asia having only around six months of food stored (Laio et al.,
28 2016). Some important staple crops like wheat would even be depleted in two to three months if production ceased in the
29 months of low stocks and consumption stayed constant (Do et al., 2010). Over the last few decades, however, there has been
30 a trend towards maintaining somewhat larger food stocks, increasing resilience (Laio et al., 2016; Marchand et al., 2016).

31

32 One safeguard against the depletion of stocks is the global and interconnected food production and trade system that has
33 developed since the mid-20th century (Ji et al., 2024). In the last few decades, this system has been quite successful in ensuring
34 food security for a majority of the world (Herre et al., 2017). However, in such complex and connected systems, there is always
35 the potential for cascading failures, starting from one local shock and rippling outwards (Bernard de Raymond et al., 2021).
36 Also, the system is highly concentrated among a few key players, like Russia for wheat, the United States for maize, or Brazil
37 for soy. This concentration of food production has historical roots. As Clapp (2023) demonstrates, capitalism and colonialism
38 drove specialization in single crops for efficiency and profitability, while also promoting the distribution of the production
39 system globally, whereby certain regions or countries specialize in producing certain types of goods — grains, fruits, textiles,
40 etc. This required these countries to then become bulk importers of the goods they did not produce themselves. Post-colonial
41 countries inherited economies dependent on food imports rather than local production. This has created a system where
42 disruptions to a few key crops or exporting nations can have cascading global effects, with recent research by Jain (2024)
43 showing that this concentration also happens on a country level, with certain regions in a given country being responsible for
44 most of the production and trade.

45
46 There have been a variety of studies to understand the events that might cause such an abrupt loss in food production. One of
47 the more comprehensive examples is Cottrell et al. (2019), who looked at food production shocks across crops, livestock,
48 fisheries, and aquaculture and found that the frequency of shocks increases over time, and that the shocks are mainly caused
49 by climate and geopolitical disruptions. Another way to analyze these global shocks is the concept of Multiple Breadbasket
50 Failure (MBBF). This term describes the dangers that arise in the food system when several of the main food-producing regions
51 globally experience a yield shock in parallel (Gaupp et al., 2020; Jahn, 2021).

52
53 More recently, a new term has been introduced for another kind of risk to the food system: Global Catastrophic Food Failure
54 (GCFF) (Wescombe et al., 2025). This term is meant to describe the gravest risks our food system could face, disruptions so
55 large that food production would exhaust stocks and lead to widespread famine if not managed well, due to e.g. climate change,
56 war, volcanoes, or pandemics. A shock of this magnitude entails a significant risk of creating famine on a large scale.

57
58 Such grave shocks have not happened since data collection by the FAO started in 1961. For the time before this, data only exist
59 for a small subset of countries (Anderson et al., 2023), so it is considerably more uncertain to what extent food production
60 shocks occurred before that. The most plausible events that might have caused such a global shock in the last century were the
61 two world wars, but data from that period are patchy. Another historical candidate for a GCFF is the eruption of Mount
62 Tambora in 1815 and its climatic consequences, but the records of yields from that time are too sparse to be certain
63 (Brönnimann and Krämer, 2016). Unfortunately, our modern food system is vulnerable to disruptions on global scales by
64 events like nuclear war (Xia et al., 2022), geomagnetic storms or extreme pandemics (Moersdorf et al., 2024) and large volcanic

65 eruptions (Cassidy and Mani, 2022). Also, as we further move towards polycrisis, it becomes more likely that several shocks
66 coincide at the same time (Delannoy et al., 2025).

67
68 Such extreme risks often seem abstract and distant, making them seem implausible. To address this perception gap, this paper
69 aims to ground future catastrophic food security risks in historical data. To do so, we aggregate all major crops based on their
70 caloric value to have an overall measure of food production. We focus on crops because they make up the majority of calories
71 consumed by humans (>85%), and there is very reliable data available. We aggregate the crops by calories because, without
72 enough calories, you cannot prevent famine. This provides us with a time series (1961 to 2023) of calories produced for all
73 countries, from which we can calculate how much the actual yield differs from the expected yield based on long-term trends
74 in food production.

75
76 Our approach builds on previous work, such as Cottrell et al. (2019) and Anderson et al. (2023). However, rather than analyzing
77 climate patterns that might cause shocks like Anderson et al. (2023) or identifying shocks across multiple food sectors like
78 Cottrell et al. (2019), this paper systematically describes the worst crop production shock that each country experienced and
79 why it happened. We believe this unique focus on the largest magnitude shocks highlights the greatest dangers that crop
80 production faces, providing a comprehensive map of actual worst-case vulnerabilities rather than merely describing risk factors
81 in general.

82
83 Our comprehensive shock dataset enables investigation of three key research objectives. First, we aim to quantify the
84 magnitude of the most severe crop production shocks to establish baseline thresholds for extreme events. Second, we aim to
85 analyze temporal trends in shock frequency to identify whether extreme events are becoming more or less common over time.
86 Third, we aim to identify and categorize the primary drivers of these production shocks to understand their underlying
87 mechanisms.

88 **2 Data and Methods**

89 **2.1 Data**

90 To conduct our analysis, we used food production data provided by the Food and Agriculture Organization of the United
91 Nations (FAO). This dataset covers all major crops and contains data from 1961 to 2023. We used the main crops in each of
92 the main crop types as described by FAO (2024):

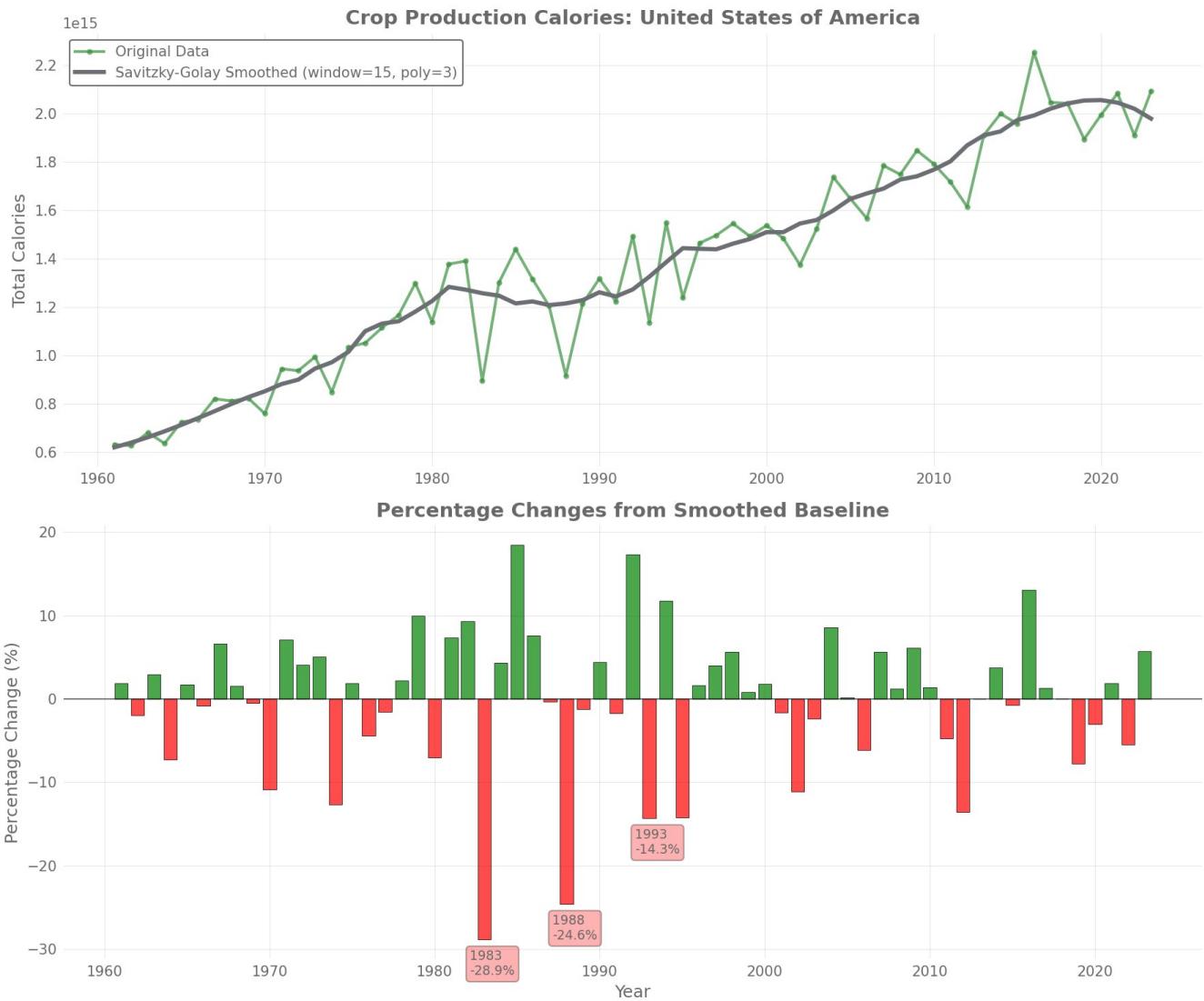
- 93 • Cereals: Maize, rice, wheat, barley, sorghum
- 94 • Sugar crops: Sugar cane, sugar beet
- 95 • Vegetables: Tomatoes, onions (including shallots), cucumbers and gherkins, cabbages, eggplants
- 96 • Oilcrops: Oil palm fruit, soya beans, rapeseed, seed cotton, coconuts

97 • Fruit: Bananas, watermelons, apples, grapes, oranges
98 • Roots and tubers: Potatoes, cassava, sweet potatoes, yams, taro
99

100 Using all these crops means we are considering the vast majority of crops produced globally. We aggregate all of these crops
101 based on their caloric value. To stay consistent with FAO data, we also use FAO caloric density estimates (FAO, 2001a). To
102 get the overall caloric production, we multiply the production values of the foods by their calories and sum all calories produced
103 in a given year and country.

104
105 We do not differentiate between which of these crops are intended for feed or food, because in a famine situation, we assume
106 that most, if not all, of it would be used for human consumption. We recognize that this does not reflect current food
107 consumption patterns, because several of the crops (like maize or soya beans) are mostly used for feed and only 55% of global
108 crop calories reach humans directly (Cassidy et al., 2013). However, our aim is to quantify crop production shocks, rather
109 than current consumption patterns. During severe food crises, feed is often redirected towards human consumption. For
110 example, there are documented cases of this phenomenon for both World Wars (Collingham, 2012; Offer, 1991) and during
111 the Great Chinese Famine (Meng et al., 2015). Depending on the crop, this might take some time and infrastructure, but it
112 represents a sensible crisis response. Most of the crops we consider here are directly edible by humans. The crops used here,
113 which are likely the most difficult for humans to consume, are seed cotton, rapeseed, and soya beans. To assess whether this
114 changes our findings, we redid the analysis excluding seed cotton, rapeseed and soya beans. The results stay almost exactly
115 the same, and for most countries, the results only change by a percentage point or less. This can also be seen in Figure S1,
116 which is a version of Figure 2 but without those crops. The changes are so small that they are almost not detectable visually.
117 We therefore conduct the analysis with the whole set of crops.

118 **2.2 Calculating food shocks**


119 For this analysis, we consider it a food shock if the amount of crops produced in a given year is considerably lower than the
120 amount of crops we would expect for that year. However, to calculate this shock, we must first estimate the expected yield for
121 that year. To do so, we are using a Savitzky-Golay filter (Savitzky and Golay, 1964) as implemented in `scipy v1.15.2` (Virtanen
122 et al., 2020).

123 The Savitzky-Golay filter is a smoothing technique that reduces noise in data while preserving important features like peaks
124 and trends. It works by fitting a polynomial to small subsets (a window) of neighboring data points, then using the polynomial
125 to estimate a smoothed value at the center of each subset. At each position, the filter fits the best polynomial curve through the
126 data points within that window, then takes the value of that curve at the center point as the smoothed result. This process
127 continues across the entire dataset.

128 This process is similar to the food shock calculation in Anderson et al. (2023), who used a Gaussian filter. We chose the
129 Savitzky-Golay filter because it performs better at the edges of the dataset. We use a window length of 15. This means the 7
130 years before and after a given year are used to calculate the expected value for that year. We used this window length to make
131 our approach comparable to Cottrell et al. (2019). Cottrell et al. (2019) considered in their shock calculation the previous 7
132 years. We used a 3rd order polynomial, as this resulted in an overall smoother estimation. Though ultimately, a Gaussian filter
133 and the Savitzky-Golay filter deliver very similar results for our dataset and identify similar magnitudes of shocks, as well as
134 the same years with the largest shocks (Figure S2).

135 For the detection of the largest shocks, we also introduced a conditional constraint. We only count a relative drop in crop
136 production as a shock if the crop production in the shock year is lower than the previous year. This is to avoid detecting a year
137 as having a shock, even though the amount of food produced has increased, which can happen if there is a sudden increase in
138 production in the following years. The additional constraint was added because the initial analysis incorrectly flagged years as
139 shocks when yields had actually increased from the previous year. However, having more crops than the year before can hardly
140 be considered a shock.

141 However, our overall analysis is relatively robust against changes in the window size and polyorder, as the overall trend follows
142 a relatively smooth curve to begin with (see Figure 1 for an example). Smaller windows decrease shock sizes because the
143 smoothed trend follows the yearly data more closely. Larger window sizes lead to larger shock sizes accordingly. The overall
144 trends remain very similar because the positions for potential large derivations do not change, even if the individual shock
145 sizes do. See Figure S3 and S4 for a re-calculation of Figure 1, but with 7 and 21 years for the calculation of the trend line.
146 This shows that the values slightly change, but in all three cases it highlights the same three years, in the same order, as the
147 largest shocks in the time series.

148

149 **Figure 1: Example of crop calorie production in the United States (1961-2023).** Upper plot shows original calorie data in green and
 150 smoothed trendline calculated with Savitzky-Golay filter in grey. The lower plot shows the size of the crop production shock
 151 calculated with our method. Green represents more calories produced than expected, red represents less calories produced than
 152 expected. The three largest shocks are labelled with the year and size of the shock.

153 We used both historical and contemporary countries, which slightly inflates shock counts when borders changed—a shock
 154 affecting one territory before partition now registers across multiple successor states (e.g. the Soviet Union and its successor
 155 states). However, this effect is negligible, and the number of countries stabilized around 1990.

156 For this analysis, we considered a total of 197 countries. We did not exclude countries with small crop production, as there is
157 no clear cut-off point, and exclusion would have been arbitrary. However, for these small countries, it is more difficult to
158 explore reasons for their crop production shocks, as there is less documentation available, and smaller production numbers are
159 more easily skewed.

160 **2.3 Checking the origins of the largest food shocks**

161 To verify if our approach reliably finds the largest food shocks in a country's history, we used Claude 4 Sonnet to search for
162 potential crises in these countries that might have caused the food shocks we had detected (full prompt can be found in the
163 repository of this paper). This provided us with several official sources (e.g. journal articles, FAO reports) that described a
164 crisis in a given year and country. Each search result was verified manually reading through the sources suggested by Claude
165 and confirming whether they described a crisis in the specified country and year specified that could have influenced
166 agriculture on such a scale. While this might produce some false positive results, it is also an approach used by Cottrell et al.
167 (2019) and the magnitude of the events identified fits with the size of the shocks.

168

169 The way this search was conducted means Claude was only used to find sources to verify with, but the actual verification was
170 done by humans with independent sources, avoiding the danger of hallucinations and related problems in large language
171 models. If no reasonable source was provided by Claude, we searched for the reason with a normal internet search. If this also
172 did not bring up anything plausible, we sorted this shock into the "Unknown" category. The reason for the shock had to occur
173 in the year of the shock or the year before to be counted. If reliable sources were found, we used those to classify the shock
174 into one of the following categories:

- 175 • **Conflict** - wars, civil unrest, territorial disputes
- 176 • **Economic** - financial crises, currency devaluation, market collapse
- 177 • **Climate** - droughts, extreme temperatures, late cold spells
- 178 • **Pest/Disease** - crop diseases, locust invasions, livestock epidemics
- 179 • **Policy** - agricultural policy changes, land reforms, trade restrictions
- 180 • **Mismanagement** - soil degradation, overexploitation, poor planning
- 181 • **Environmental Hazard** - storms, tsunamis, earthquakes, volcanoes
- 182 • **Unknown** - insufficient information found

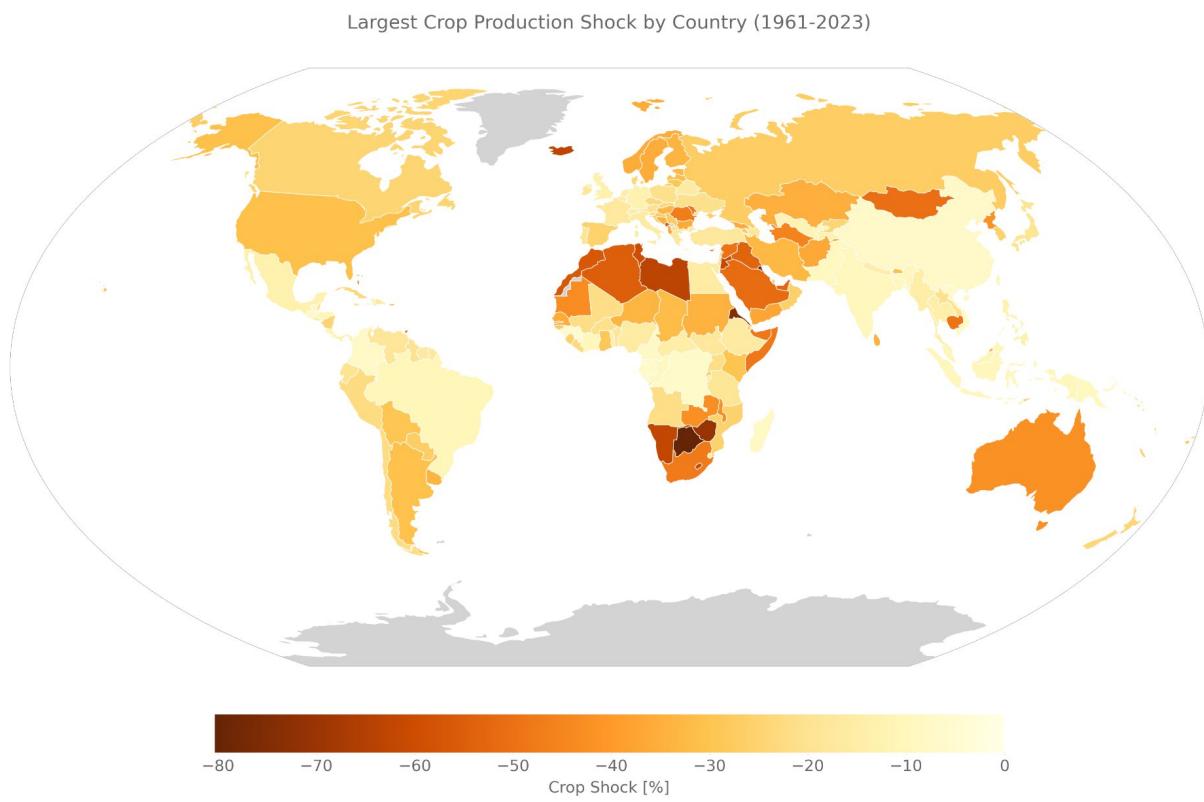
183 We used these categories, following the approach in Cottrell et al. (2019), but disaggregated some of them to get more fine-
184 grained results. This process allowed us to assign a crisis to almost all of the shocks we detected. Also, many of the sources
185 we used to verify the shocks used phrases like "worst drought year... since the mid-15th century"; Tunisia in 2002 (Ghoneim
186 et al., 2017), "most violent and bloody period of the entire armed confrontation"; Guatemala in 1984 (HRDAG, 1999) or

187 “driest hydrological year on record”; Greece in 1977 (Vasiliades and Tzabiras, 2007). This suggests that our method is able to
188 detect the worst shock to have occurred in these countries.

189 We categorized shocks by their primary driver while recognizing that most agricultural crises involve multiple interacting
190 factors. Our classification captures the dominant cause that initiated or most directly drove the production decline. For example,
191 while economic factors often compound climate shocks, we classified droughts as 'climate' when reduced rainfall was the
192 primary trigger, even if currency devaluation worsened the impact. This approach provides clarity about initial drivers while
193 necessarily simplifying complex causal chains. The 'shock' timeframe in our analysis is annual, based on year-to-year
194 production changes. Multi-year cascading effects—where one year's climate shock leads to mismanagement that causes
195 another shock—are captured as separate events in our dataset.

196 For some countries where we could not identify a clear cause, the food shocks were either minor or occurred in nations with
197 low crop production. In these cases, even small absolute declines appeared as major shocks (e.g. Puerto Rico). Additionally,
198 some countries showed data patterns like maintaining low production for decades, then experiencing sudden jumps that
199 increased food production by an order of magnitude from one year to the next, with production remaining at this higher level
200 afterwards (e.g. Oman). These patterns suggest problems with the country-level data rather than flaws in our methodology.

201 The list of the largest food shocks for each country can be found in the repository and in the supplementary materials as a
202 comma-separated values (CSV) file, complete with yield change, year, category, reason, and source.

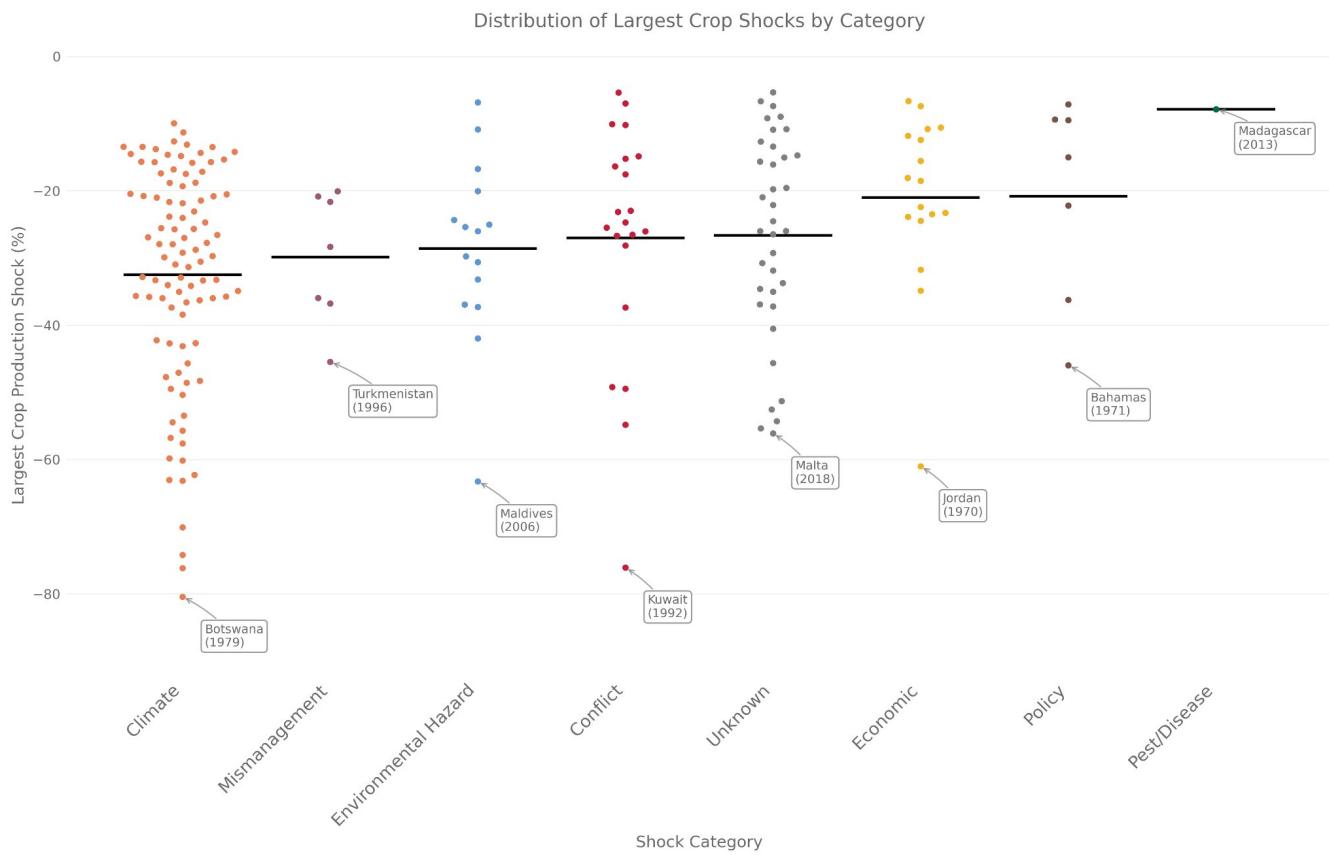

203 **2.4 Calculating global correlations**

204 In order to investigate the relationships between country-level shocks and global shocks, we calculated the Spearman
205 correlation coefficient between each country and the rest of the world. This was done to see which countries experience changes
206 in food production similar to global patterns, and which countries deviate. We chose Spearman over other correlation
207 coefficients, such as Pearson, because we are interested in whether there is a monotonic relationship between countries (e.g.,
208 whether countries experience shocks or surpluses at the same time), but not whether this relationship is linear. This was done
209 for each country by subtracting the annual crop production of that country from the world crop production, applying the
210 Savitzky-Golay filter as described in Section 2.2 to calculate the yield changes for the world minus that country, and then
211 calculating the correlation. This was done to avoid spurious correlations, since each country's production would otherwise be
212 part of the global numbers.

213 **3. Results**214 **3.1 Magnitude of crop production shocks**

215 The magnitude of the largest crop production shocks varies considerably across countries (Figure 2). Africa stands out with
216 several nations experiencing extreme production collapses—Zimbabwe reached -70% in 1992, while other Southern African
217 countries show similarly severe declines exceeding -70%. This geographic concentration of extreme shocks in Southern Africa
218 suggests regional vulnerability to shared climatic or economic disruptions. North Africa and parts of the Middle East also
219 display substantial shocks ranging from -40% to -60%, indicating widespread agricultural vulnerability across the continent.
220 By contrast, countries in Asia and Central Europe typically face more moderate shocks (-5 to -15%), with this being seen in
221 Southeast Asian nations in particular. This pattern partly reflects the temporal scope of our analysis—China, for instance,
222 experienced major crop failures shortly before the FAO dataset began in 1961 (Meng et al., 2015).

223 The majority of countries fall between these extremes, with the global mean of the largest shocks averaging approximately -
224 29%. South America presents an interesting case of relatively mild maximum shocks across most of the continent.

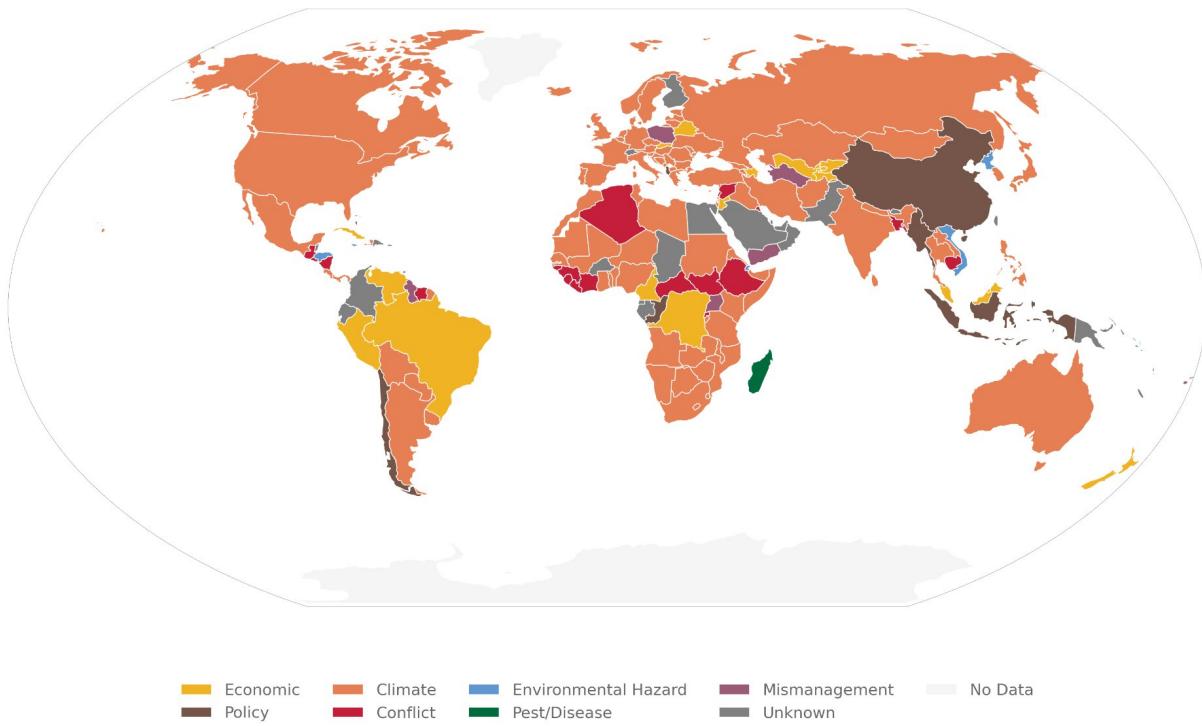

226 **Figure 2: Largest crop production shock in all present-day countries. Darker colors indicate larger shocks. Grey indicates no data.**
227 The shocks are calculated as deviations from expected yield in a given year and are based on the combined calories from all assessed
228 crops.

229 However, the largest crop production shocks differ not only in their geographic distribution, but their magnitude also varies
230 substantially depending on the underlying cause (Figure 3). Climate-related shocks demonstrate the most severe impacts, with
231 a mean around -32% but extreme cases reaching -80%—predominantly driven by droughts. This category shows the widest
232 distribution of impact severity, reflecting the diverse nature of climate hazards, from moderate seasonal variations to
233 catastrophic multi-year droughts.

234 Human-caused shocks generally result in smaller production declines and show more constrained distributions. Policy
235 interventions produce the least severe impacts (mean -21%), while economic disruptions show similar severity (mean -21%).
236 Mismanagement displays a mean of -30% with a relatively tight distribution. Conflict presents moderate average impacts
237 (mean -27%) but high variability, from minor disruptions to catastrophic losses exceeding -70%.

238 Environmental hazards occupy a middle position with a mean of -29%, though their distribution is more concentrated between
239 -10% and -40%, primarily caused by tropical storms. The "Unknown" category shows substantial variability (mean -27%),
240 likely reflecting the diverse mix of unidentified shock types.

241 The distinction between natural and human causes becomes increasingly blurred as anthropogenic climate change intensifies
242 both drought frequency and tropical storm severity. Having only one data point for pests and diseases makes it difficult to
243 compare to the other categories, as it could just be a random occurrence. However, as it is smaller than almost any other data
244 point implies that pests and diseases are not a major factor for the largest shocks. This is likely due to pests and diseases often
245 being specific to a single crop, while we looked at a large aggregation of crops.


246

247 **Figure 3: Swarm plots showing the magnitude of crop production shocks across different cause categories. The black line indicates**
 248 **the mean. Single points show all individual country-level shocks. For each category the largest shock is labelled with year and**
 249 **country it occurred in.**

250 **3.2 Geographic patterns of shock types**

251 Crop production shocks show clear spatial patterns across continents, with distinct regional concentrations of different shock
 252 types (Figures 4, 5). While most shock causes appear on all continents, certain drivers cluster more heavily in specific regions.

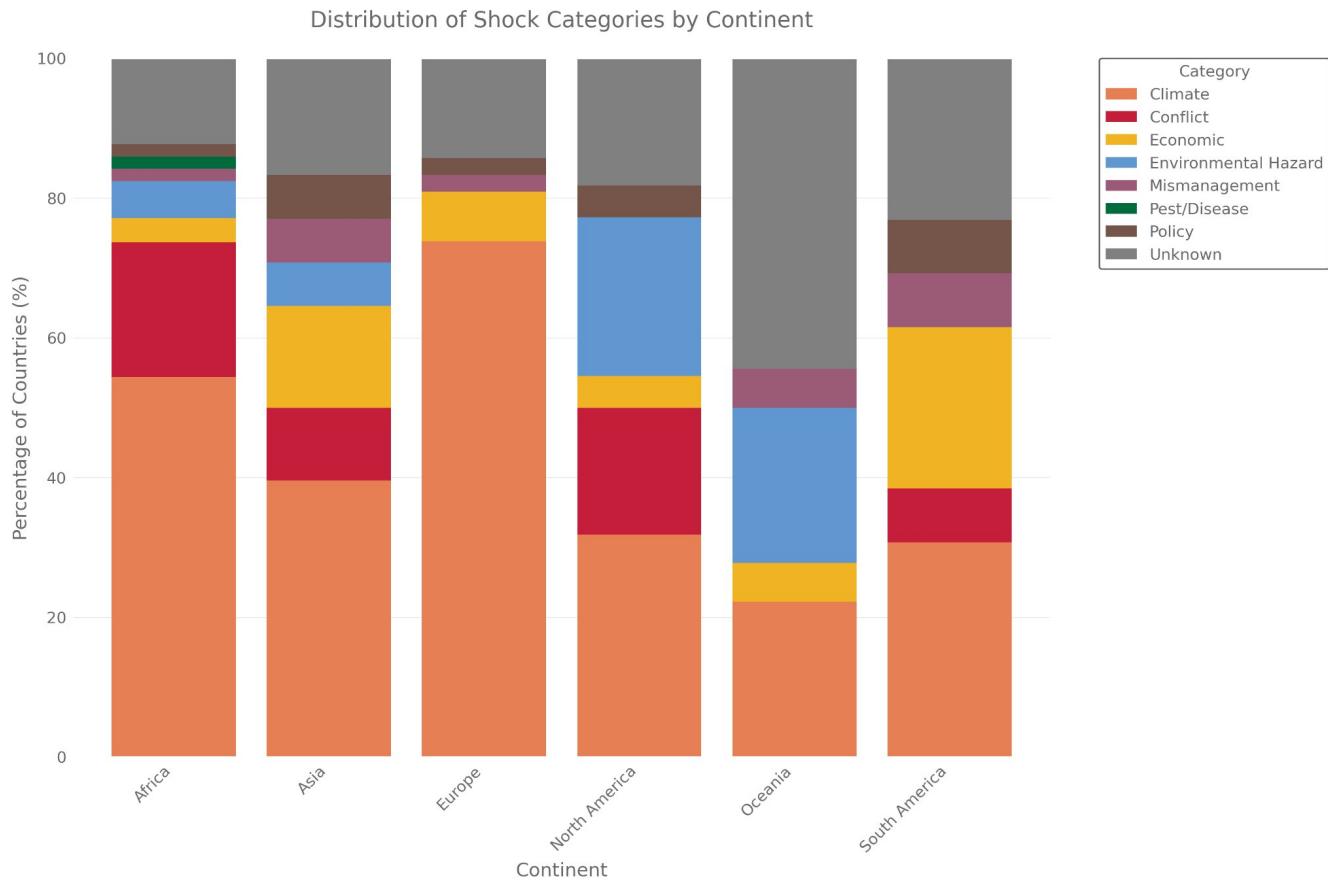
Reason for Largest Crop Production Shock by Country (1961-2023)

253

254 **Figure 4: Global map showing the main reason the largest crop production shock in a given country happened.**

255 Europe is quite homogenous; climate shocks dominate almost entirely, comprising roughly 70% of all major production
256 disruptions. Most trace back to the devastating 2003 heat wave that brought extreme temperatures across nearly the entire
257 continent (IPCC, 2007). The few exceptions reveal Europe's otherwise stable agricultural systems: Poland's failed agricultural
258 reform in 1980 (Mandel, 1982), or Belarus facing spillover from Russia's 1999 financial crisis (FAO, 1999).

259 In North America all the continent's major economies experienced their largest shocks from droughts—Canada in 2002
260 (Wheaton et al., 2008), the United States in 1983 (Zipper et al., 2016), and Mexico in 1979 (Simons, 1980) (Figure 4). In
261 Central America small Caribbean nations are mostly affected by substantial environmental hazard impacts like tropical storms
262 (Figure 5).


263 South America shows the highest proportion of economic disruptions among all continents. Brazil faced severe disruption in
264 1978 from high debt and inflation following oil shocks (Vellutini, 1987), Peru suffered hyperinflation in 1992 due to failed
265 policies and debt burdens (Velazco, 1999), and Venezuela's 1976 focus on oil production came at agriculture's expense (Smith,
266 2019). Policy-driven shocks are also present, for example Chile's 1973 land reform disrupted production systems (U.S. Central
267 Intelligence Agency, 1972). Conflict appeared in Suriname's 1990 civil war (Reuters, 1991), while climate shocks hit Argentina

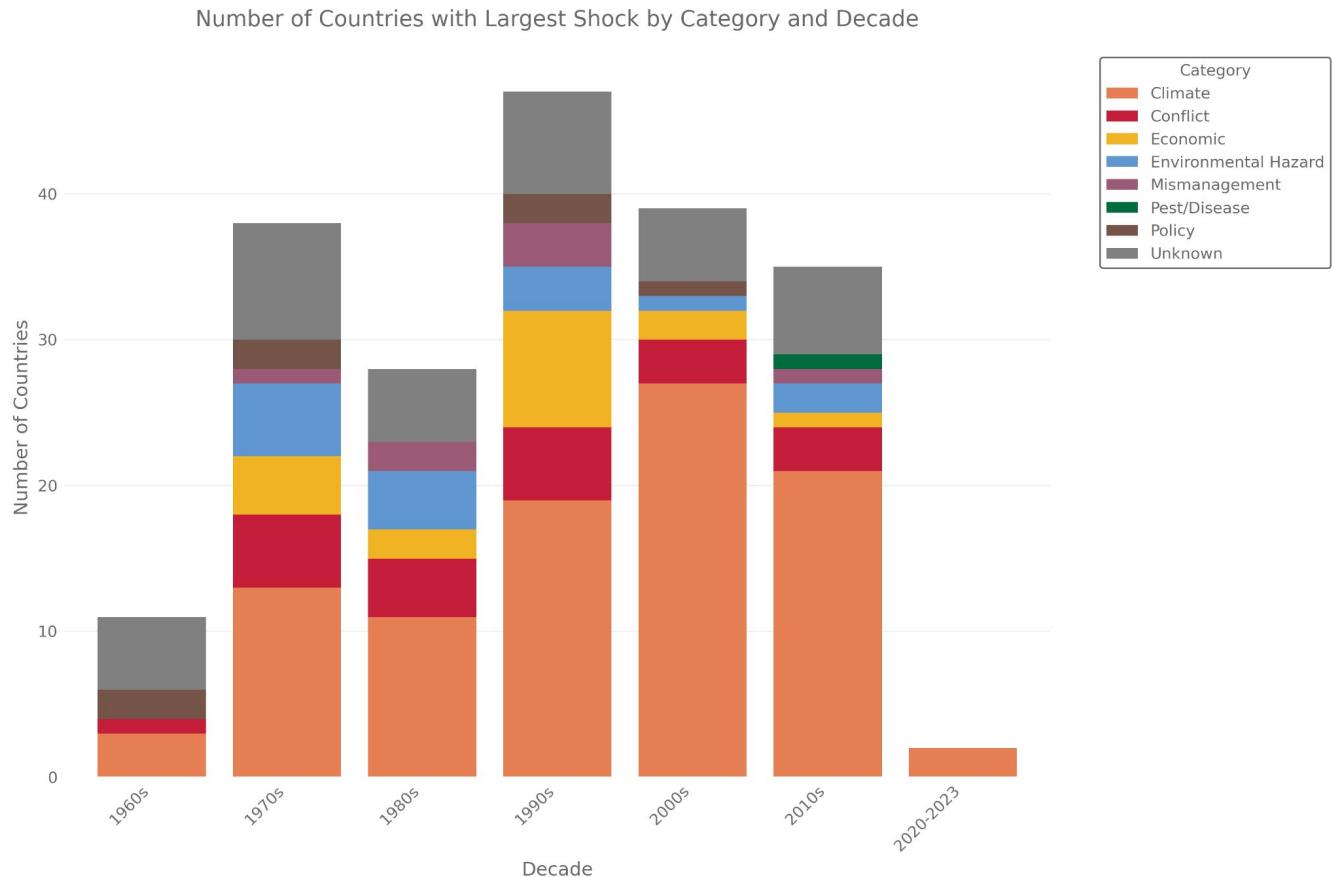
268 in 2009 (Sgroi et al., 2021), Bolivia in 1983 (UN Department of Humanitarian Affairs, 1983), Uruguay in 2018 (Weather
269 Underground, 2018), and Paraguay in 2012 (USDA Foreign Agricultural Service, 2012), all due to drought.

270 Africa also shows a diverse shock distribution, with conflict driving more production disruptions than any other continent.
271 Civil wars devastated agriculture in Algeria in 1994 (Martinez, 2000), military coups and violence disrupted Guinea in 2009
272 (UNDP, 2023), and Rwanda's 1994 genocide destroyed agricultural systems as well (FAO, 1996). Despite this conflict
273 prevalence, Africa also experiences all other shock types. Madagascar's 2013 locust swarms destroyed crops across vast areas
274 (FAO, 2013), Cameroon's 1987 economic crisis rippled through agriculture (Tambi, 2015), Djibouti was hit by massive floods
275 in 1989 (UN Department of Humanitarian Affairs, 1989), Congo's 1991 democratization and switch from a more socialist
276 system likely led to disruption in agriculture (IFES - The International Foundation for Electoral Systems, 1992), and Uganda
277 faced the agricultural consequences of nearly a decade of mismanagement under Idi Amin, ending in 1979 (Honey and
278 Ottaway, 1979). Nevertheless, climate—especially drought—remains the primary shock driver, as across all continents.

279 Asia's shock distribution resembles Africa's, but with fewer conflicts and more economic crises. Conflicts that did disrupt
280 production include Cambodia's 1974 civil war (Defalco, 2014), worsened by US bombing campaigns, and Bangladesh's 1972
281 post-independence aftermath (Dowlah, 2006). Policy changes created major disruptions when China shifted agricultural
282 support policies in 2003 (Yu et al., 2018) and Myanmar nationalized rice production in 1966 (Steinberg, 2019). Environmental
283 hazards struck repeatedly—North Korea faced devastating floods in 1996 for the second consecutive year (FAO, 1997), while
284 Vietnam endured severe storms in 1978 (Cima and Library of Congress, 1989). As elsewhere, drought-driven climate shocks
285 dominated, exemplified by India's massive 1987 drought (FAO, 2001b).

286 Oceania's shock patterns prove difficult to assess due to high proportions of unknown causes, likely reflecting both the region's
287 many small island states and limited data availability. Small agricultural sectors trigger shock detection more frequently, while
288 these nations' limited resources and global attention make information gathering challenging. Where causes are known, climate
289 events and environmental hazards—particularly storms—dominate the region's agricultural disruptions.

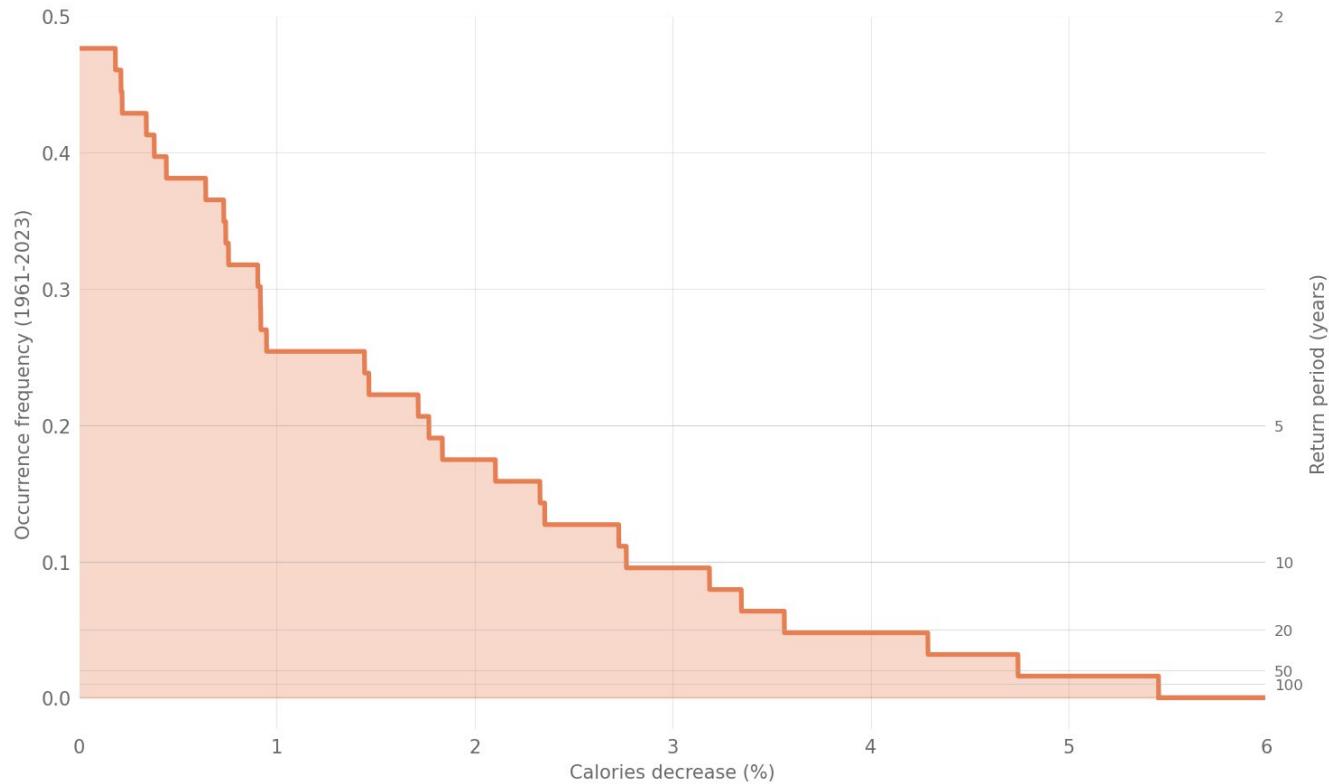
290


291 **Figure 5: Relative distribution of the main reasons why the largest crop production shocks happened in a country separated by**
 292 **continent.**

293 **3.3 Temporal evolution and frequency distribution**

294 When it comes to the temporal evolution of the largest food shock, we can see some clear patterns (Figure 6). All decades
 295 except the 1960s and 2020s have a roughly similar number of shocks. This number is also shaped by how many countries
 296 existed at a given point in time, but even when we correct for the number of countries that existed in that decade, the 1970s to
 297 2010s all have 15-25% of the countries that existed experiencing their largest shock in that decade (Figure S5). This means the
 298 pattern here remains roughly the same, independent of the number of countries which existed.

299 The pattern that the first and last decades show a small number of shocks seems to imply that our method is less able to detect
 300 shocks at the edges of the time series. However, this effect does not happen if we only use the 1970s to 2010s in our analysis
 301 (Figure S6), indicating that this is an actual trend in the data and that, especially the 2020s, have had a surprisingly small
 302 number of very large crop shocks. Given the base rate over the other decades, this implies that we can expect many more large
 303 crop production shocks in the rest of the decade.


304 The reasons for those largest shocks show that climate-caused crop shocks make up a much larger percentage of cases in the
305 more recent decades. Climate-related shocks grew from about 25% in the 1960s to 50-60% by the 2000s-2010s. This increase
306 corresponds with decreases in other categories, including mismanagement and policy failures. Conflict and unknown causes
307 stay on a similar level throughout, while all other categories tend to become less common over time. The levels of shocks
308 which could not be attributed to a specific cause are at a similar level as in Cottrell et al. (2019).

309
310 **Figure 6: Absolute distribution of the main reasons why the largest crop production shocks happened in a country, separated by the**
311 **decade they occurred in. The overall size of a bar indicates the total amount of the largest shocks for a given country in a given**
312 **decade. Note that the last bar only consists of the four years 2020-2023 and not the whole decade like the other bars.**

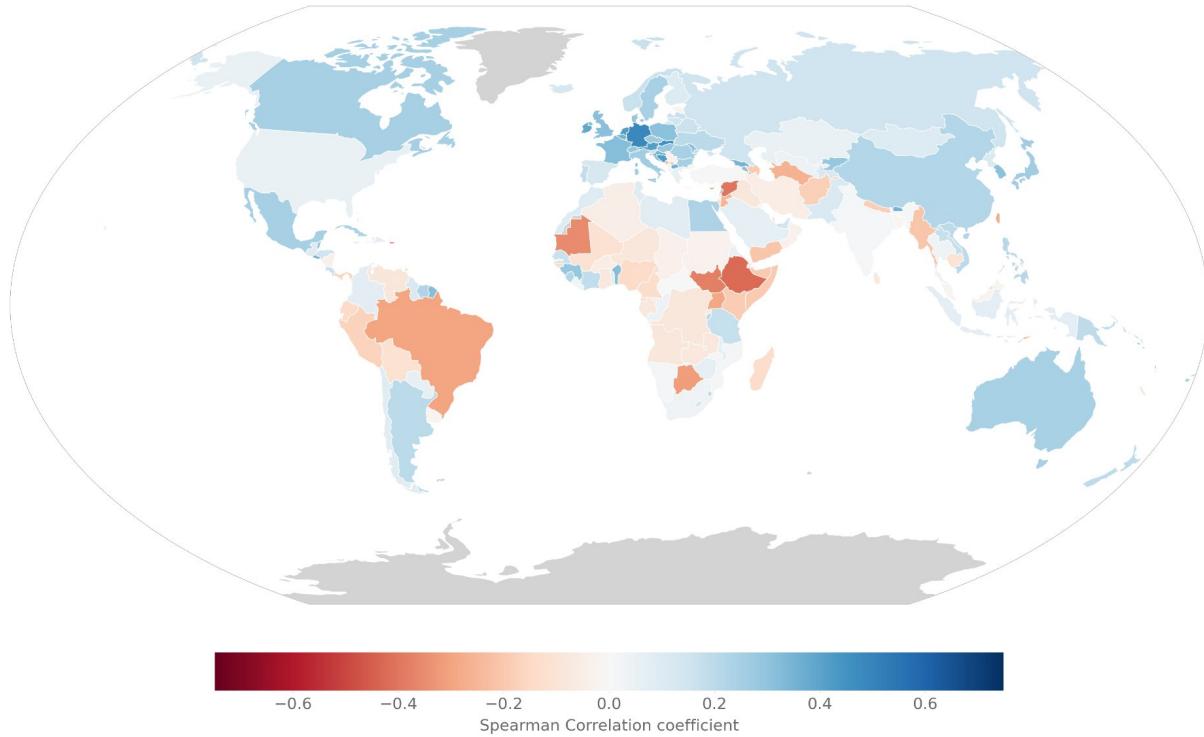
313 We can also look at how the general frequency of the crop shocks varies over the whole time series (Figure 7). This is for
314 shocks on a global level. We can see that crop production shocks happen on a variety of levels, but on a global scale, the largest
315 was just over 5.5%. This was in 1988, mainly caused by a severe and widespread drought in the USA. In this year, the
316 production in the USA declined by 29%, while the USA produced around 20% of all crop calories globally. This highlights
317 how the whole food system can be affected by shocks in even a single country. The distribution shows a sharp decline in

318 frequency as shock size increases - small shocks of 0-1% happen about 48% of the time, while shocks over 3% occur only
319 10% of the time, and those exceeding 5% are rare at less than 2%.

320
321 **Figure 7: Frequency of global-level shocks to overall caloric production. The plot shows how often values of losses are exceeded. For**
322 **example, shocks of 3% or more have been happening 10% of the time. The second y-axis shows the return period of shocks for a**
323 **given size.**

324 While shocks exceeding 5% are rare at the global level, occurring only once in our 63-year dataset, they are much more
325 common at the continent and country level. There were 51 continent-level shocks of 5% or more between 1961 and 2023, with
326 at least one happening every 1.8 years on average. At the country level, shocks over 5% occurred every single year, amounting
327 to a total of 2800 shocks.

328


329 **3.4 Global synchronization**

330 From the previous sections, we know that large shocks regularly happen, but also that they usually cancel each other out on a
331 global level. To understand how this manifests, we also looked at how country-level crop production correlates with global

332 crop production (Figure 8). This shows that there are two groups of countries with opposing production patterns. One group
333 tends to have high crop production when global production is high and low production when global production is low. The
334 other group shows the reverse pattern—low production when global production is high and high production when global
335 production is low. The globally asynchronous countries are most of Africa, parts of the Middle East, Central Asia and the
336 northern part of South America. The synchronous countries are everyone else. European countries are especially synchronous
337 with global production. This is likely due to Europe being a major contributor to global crop production, but not having a large
338 spatial extent. Due to this, if there is a drought in Europe (as for example in 2003), most European countries are affected and
339 thus also global production to a large extent. The asynchronous countries also all share tropical and subtropical climate zones.

340 The high synchrony observed across North America, Europe, and major Asian producers like China and India suggests these
341 regions respond similarly to large-scale climate phenomena such as El Niño/La Niña events. This synchrony, while
342 contributing to global production stability under normal conditions, also implies that extreme events affecting these regions
343 simultaneously could pose significant risks to global food security. The asynchronous regions, despite often having less stable
344 individual production, therefore play an important buffering role in the global food system by providing production when
345 major producing regions experience shortfalls.

346 In addition, many of the most asynchronous countries (like Brazil, Ethiopia, or Syria) have conflict and economic reasons for
347 their largest crop production shock. This suggests that the asynchronicity might also be due to those countries being disrupted
348 by internal problems, while the rest of the world did not have these problems on such a scale.

349

350 **Figure 8: Correlation of crop production changes between each country and the rest of the world. A positive correlation (blue)**
351 **means a country's crop production tends to move in the same direction as global production. A negative correlation (red) means the**
352 **country's production tends to move opposite to global trends.**

353

4. Discussion and conclusion

354 **4.1 Climate is the main reason for the worst crop production shocks**

355 Our results clearly show that climate is most often the reason for the largest crop production shock in a given country. This is
356 mostly due to drought, but there are also instances of early frosts and torrential rain. This is concerning, as climate is not only
357 the most common reason for the largest crop production shocks, but it also seems to be increasing over time, likely due to
358 climate change making extreme weather, especially droughts and heatwaves, more likely (Fanzo et al., 2025; Grant et al.,
359 2025). Potentially, climate might also be increasing as a cause as other reasons are getting managed better. For example,
360 conflicts have been decreasing from a peak in the 1980s until around 2010 (Szayna et al., 2017), but have seen a steep uptick
361 since then (Davies et al., 2023). Similarly, since the 1990s, after the fall of the Soviet Union, it might be the case that there are
362 fewer policy and economic-caused crop failures, because most of the world is organized under neoliberal capitalism and no

363 new approaches to organizing society and economics have been tried on a major scale. These two things are not mutually
364 exclusive. It could also be that crises are managed better now, but climate change still makes everything worse.

365 Another hint that climate overall is the dominant shaping factor can be found in our results around synchronization. For
366 example, East African countries show the strongest negative correlations. This asynchrony likely reflects distinct regional
367 climate drivers, particularly the Indian Ocean Dipole, which can produce rainfall patterns opposite to those affecting other
368 major agricultural regions (Ummenhofer et al., 2009; Zheng et al., 2025).

369 The earlier food production shock study by Cottrell et al. (2019) also identified climate (and to a lesser extent conflict) as the
370 main driver of disruption in food production. These two drivers may be causally linked. Zhang et al. (2011) showed how
371 climate shocks reduce food production, which in turn triggers famine, conflict, and disease, ultimately leading to population
372 decline. This means climate-driven crop failures can create the conditions for conflict. The prominence of both climate and
373 conflict in our results fits with this pattern of cascading effects in food system disruptions.

374 All of this seems to apply especially to Europe, where many of the largest food shocks were caused by the 2003 heatwave
375 alone. This, and the generally very high rate of climate-related shocks in Europe, highlight these regions as especially
376 vulnerable to these kinds of shocks. However, European shocks are also often relatively small; this could be due to a more
377 benign European climate or potentially because the agricultural systems there are better equipped to handle shocks.

378 The geographic patterns in shock magnitude we observe likely reflect not only differences in climate exposure and governance,
379 but also regional crop composition. Southern Africa's extreme shocks occur in maize-dominated systems, where drought
380 sensitivity is approximately twice that of wheat (Daryanto et al., 2016). Europe's wheat-based systems and Asia's flooded
381 paddy rice systems show greater resilience to moderate water stress, though all crops remain vulnerable to severe drought.
382 These crop-specific vulnerabilities interact with regional climate patterns to shape overall shock magnitudes.

383 **4.2 Large shocks can and do happen**

384 The results here confirm that very large crop production shocks happen quite regularly, with the median of the largest shocks
385 being around 27%. However, this dramatically varies by region, with African countries experiencing the most extreme
386 collapses (up to -80% in Southern Africa), while Asian and Central European nations typically face more moderate largest
387 shocks (-5 to -15%). Global shocks are typically much smaller than this. This does not mean that they cannot reach similar
388 magnitudes. Both the shape of the global shock distribution and our knowledge of history imply that such large shocks can
389 also happen globally. For example, between the start and end of World War 2, global food availability per capita fell by
390 something between 5% (FAO, 1955) to 12% (Collingham, 2012), though exact numbers are hard to come by and the effects
391 were much worse in some locations. This global reduction consisted mostly of countries in Europe losing significant amounts
392 of their production. Their losses often were around 20–40% (FAO, 1955), well within the range of the country-level shocks

393 studied here. Data for World War 1 is much more scarce, but many European countries lost 40% and more of their food
394 production and cut food rations by similar amounts (Offer, 1991). This implies that global shock to the food systems was likely
395 in a similar range as World War 2.

396
397 All this means that future global shocks of 5% or more are both possible and plausible. Given the asynchronous nature of
398 global food production, we seem to have some buffer against this. However, this buffer only works as long as the reason for
399 the shock is not global. If there were an event that could hit all countries globally, or multiple distinct causes hitting different
400 regions at the same time, there would be no buffer left. Also, the largest global shocks (e.g. a geomagnetic storm or high altitude
401 electromagnetic pulses disrupting industry and thus agriculture (Moersdorf et al., 2024)) would likely be on top of the natural
402 variability, meaning that if humanity got unlucky and a global shock hit in a year that already had a big share of large shocks,
403 things would be even worse.

404
405 Our analysis also shows that climate causes both the most shocks and the most severe shocks. The cause here is mostly
406 droughts, but there are also instances of significant disruptions due to cold spells. Several of the worst shocks that could affect
407 agriculture globally also work via the climate. For example, nuclear winter could potentially decrease global land temperature
408 by around 10°C (Coupe et al., 2019), leading to widespread disruption of food production (Xia et al., 2022). Another climate
409 pathway, likely similar in its effects to nuclear winter, would be a large volcanic eruption (Cassidy and Mani, 2022). Finally,
410 there is preliminary research that indicates that AMOC collapse could also lead to massive disruption of European climate and
411 thus agriculture (Lenton et al., 2023).

412 **4.3 The role of trade**

413 Global food production is highly connected and very reliant on trade, with around a quarter of all food being traded
414 internationally (Ji et al., 2024). While trade is generally helpful for food security, it also makes countries vulnerable to
415 disruptions elsewhere (Wang et al., 2023). This is especially a problem in Europe, as it is mainly trading internally, while
416 everybody shares the same climate (Keys et al., 2025). For the largest catastrophes (like large geomagnetic storms or a nuclear
417 war), this could result in many countries losing most of their food imports (Jehn et al., 2024a). Recent modeling by Verschuur
418 et al. (2024) demonstrates how compound 'polycrises' combining multiple shocks can overwhelm the food system's normal
419 adaptive capacity, resulting in consumer price increases of 23–52% across all crops and affecting virtually all countries
420 simultaneously. This shows how the buffering effect of trade becomes less effective during compound, global-scale
421 disruptions.

422 This can become a problem for all those countries that are not able to produce enough food within their own borders. For
423 example, Stehl et al. (2025) show that many countries are not able to produce the staples of their diet. Especially for starchy

424 staples, those countries that are not able to produce enough on their own show a high overlap with those countries experiencing
425 the largest crop production shocks shown in this study.

426 However, successful adaptation is possible with international cooperation. Kuhla et al. (2023) showed how the international
427 community managed to limit wheat price spikes after Russia's invasion of Ukraine through brokered agreements allowing
428 Black Sea exports and alternative European river routes, combined with fortunately high global harvests in 2022. However, it
429 cannot be taken for granted that the global stocks will always be full or coordination will always be possible, as the Ukraine
430 war only influenced a small fraction of global food production.

431 That being said, having sufficient production and trade alone does not necessarily mean that people have enough food to eat.
432 At first glance, South Sudan's largest annual shock of 8.3% in 2017 appears relatively manageable in terms of food production.
433 However, the withholding of food aid as a weapon of war led to a significant famine, with 100,000 facing starvation and over
434 40% of the country in urgent need of food aid (United Nations World Food Programme, 2017). Recent analysis by Bajaj et al.
435 (2025) demonstrates that trade's stabilizing role varies systematically by income level, mitigating future climate impacts for
436 60% of low-income countries while aggravating impacts for 53% of high-income countries. Import-dependent lower-income
437 countries often source from regions where climate change may increase production, whereas wealthier nations face amplified
438 risks from climate impacts in their trading partners.

439 Even in the absence of direct conflict or trade complications, poor management can make food access much worse than any
440 given yield shock. The Great Chinese Famine killed 16.5–45 million people between 1959 and 1961 despite average rural food
441 availability being high enough to prevent severe famine (Meng et al., 2015). Excessive government procurement from rural
442 farmers to urban areas, redirection of labour away from agriculture, and a plethora of other unfortunate policies led to a vast
443 number of unnecessary deaths (Kung and Lin, 2003). The key takeaway from these historical examples is that a future GCFF
444 could lead to disastrous levels of famine if managed poorly, especially considering how difficult cooperation may be during
445 a global crisis.

446 **4.4 Preparation is needed**

447 All this aims to highlight that our food system regularly experiences major shocks that can plausibly happen on a global scale
448 as well. Governments should therefore take such major threats seriously and prepare accordingly. While we have global stocks
449 of food, these usually only last for 0.5 to 1 year (Laio et al., 2016), meaning that they would not be enough for several-year
450 shocks like large volcanic eruptions. Therefore, contingency plans are needed:

451

- 452 • Currently, very few national risk registers even grapple with global disruptions to the food system. For future risk assessments, such events should be included and planned for.

453 ● Many of the shocks presented here also have the potential to influence each other through time, like a mismanagement
454 in one year making a drought more difficult to cope with in the next. Future research could explore these interferences
455 by tracking not only the reasons for the biggest shocks, but all detectable shocks.

456 ● Trade partners should be diversified throughout different climate zones to enhance resilience (Keys et al., 2025). This
457 is especially important, as in the current geopolitical climate, countries are reducing trade in general, while also
458 preferentially trading with their closest allies (Piñeiro and Piñeiro, 2024). This diversification should also include
459 countries that are both synchronous and asynchronous to global food production, e.g. trading with both Brazil and
460 Germany. Similarly, a diversification of crops would also help, as different crops react differently to the same
461 stressors. As Hertel et al. (2021) emphasize, diversification across crops, landscapes, income sources, and trade
462 partners represents a fundamental strategy for building food system resilience at multiple scales. However, increased
463 market integration can encourage production specialization even as it reduces overall risk exposure. Therefore,
464 policies promoting resilience should consider how production, trade, and household diversification interact to avoid
465 creating new vulnerabilities.

466 ● Even after smaller, local food production shocks, countries quickly resort to export bans to ensure enough food for
467 their citizens. These are often done much earlier than actually needed, leading to food insecurity, even if enough food
468 is available globally (Puma et al., 2015). This means trade agreements between countries should explicitly plan out
469 under what circumstances export bans would be considered.

470 ● For some of the catastrophes that could affect the global food system, there is a need to build up alternative food
471 sources to our present-day agriculture, which would be better suited to lower light/temperature or lower tech available.
472 García Martínez et al. (2025) provide a systematic framework for resilient foods that could function under different
473 catastrophic scenarios. This could include seaweed (Jehn et al., 2024b), mass-produced low-tech greenhouses
474 (Alvarado et al., 2020), sugar from fiber (Throup et al., 2022), or protein from natural gas (García Martínez et al.,
475 2022).

476
477 Ultimately, all of this (and likely more) is needed to make this world secure against large disruptions of food production. We
478 should start now with preparation, as we still have time.

479 **Author contributions**

480 Conceptualization: FUJ, JM, NW
481 Data curation: FUJ
482 Formal analysis: FUJ, JM, LGG, SB
483 Funding acquisition: FUJ
484 Investigation: FUJ, JM

485 Methodology: FUJ, JM, LGG, SB
486 Project administration: FUJ
487 Software: FUJ, JM, LGG, SB
488 Supervision: FUJ
489 Validation: FUJ, SB
490 Visualization: FUJ, JM, LGG, SB
491 Writing—original draft: FUJ, JM
492 Writing—review & editing: FUJ, JM, LGG, SB, NW

493 **Data and Code Availability**

494 All code and data used for this study are available in the repository: <https://github.com/allfed/Historical-Food-Shocks> (Jehn
495 and Mulhall, 2025)

496 **Acknowledgements**

497 We thank the Research Hub community and Zu-Grama for providing the funding that allowed us to conduct this research
498 project, and Yeshodhara Baskaran for facilitating the connection.

500 We are grateful to Daniel Hoyer, David Denkenberger, Michael Hinge and Juan B. García Martínez for helpful comments on
501 an earlier version of this manuscript.

502
503 We acknowledge the use of artificial intelligence (Claude 4 Sonnet) to assist with sentence-level text revision, coding support,
504 and accelerating literature searches to identify documented causes of the detected crop production shocks.

505 **References**

506 Alvarado, K. A., Mill, A., Pearce, J. M., Vocaet, A., and Denkenberger, D.: Scaling of greenhouse crop production in low
507 sunlight scenarios, *Science of The Total Environment*, 707, 136012, <https://doi.org/10.1016/j.scitotenv.2019.136012>, 2020.

508 Anderson, W., Baethgen, W., Capitanio, F., Ciais, P., Cook, B. I., Cunha, C. G. R. da, Goddard, L., Schauberger, B., Sonder,
509 K., Podestá, G., van der Velde, M., and You, L.: Climate variability and simultaneous breadbasket yield shocks as observed
510 in long-term yield records, *Agricultural and Forest Meteorology*, 331, 109321,
511 <https://doi.org/10.1016/j.agrformet.2023.109321>, 2023.

512 Bajaj, K., Mehrabi, Z., Kastner, T., Jägermeyr, J., Müller, C., Schwarzmüller, F., Hertel, T. W., and Ramankutty, N.: Current
513 food trade helps mitigate future climate change impacts in lower-income nations, *PLOS ONE*, 20, e0314722,
514 <https://doi.org/10.1371/journal.pone.0314722>, 2025.

515 Bernard de Raymond, A., Alpha, A., Ben-Ari, T., Daviron, B., Nesme, T., and Tétart, G.: Systemic risk and food security.
516 Emerging trends and future avenues for research, *Global Food Security*, 29, 100547,
517 <https://doi.org/10.1016/j.gfs.2021.100547>, 2021.

518 Brönnimann, S. and Krämer, D.: Tambora and the “Year Without a Summer” of 1816. A Perspective on Earth and Human
519 Systems Science, CH, <https://doi.org/10.4480/GB2016.G90.01>, 2016.

520 Cassidy, E. S., West, P. C., Gerber, J. S., and Foley, J. A.: Redefining agricultural yields: from tonnes to people nourished
521 per hectare, *Environ. Res. Lett.*, 8, 034015, <https://doi.org/10.1088/1748-9326/8/3/034015>, 2013.

522 Cassidy, M. and Mani, L.: Huge volcanic eruptions: time to prepare, *Nature*, 608, 469–471, <https://doi.org/10.1038/d41586-022-02177-x>, 2022.

523 Cima, R. J. and Library of Congress (Eds.): Vietnam: a country study, 1st ed., Federal Research Division, Library of
524 Congress, Washington, D.C, 386 pp., 1989.

525 Clapp, J.: Concentration and crises: exploring the deep roots of vulnerability in the global industrial food system, *The
526 Journal of Peasant Studies*, 50, 1–25, <https://doi.org/10.1080/03066150.2022.2129013>, 2023.

527 Collingham, L.: *The Taste of War: World War Two and the Battle for Food*, Penguin, London, 672 pp., 2012.

528 Cottrell, R. S., Nash, K. L., Halpern, B. S., Remenyi, T. A., Corney, S. P., Fleming, A., Fulton, E. A., Hornborg, S., Johne,
529 A., Watson, R. A., and Blanchard, J. L.: Food production shocks across land and sea, *Nat Sustain*, 2, 130–137,
530 <https://doi.org/10.1038/s41893-018-0210-1>, 2019.

531 Coupe, J., Bardeen, C. G., Robock, A., and Toon, O. B.: Nuclear Winter Responses to Nuclear War Between the United
532 States and Russia in the Whole Atmosphere Community Climate Model Version 4 and the Goddard Institute for Space
533 Studies ModelE, *Journal of Geophysical Research: Atmospheres*, 124, 8522–8543, <https://doi.org/10.1029/2019JD030509>,
534 2019.

535 Daryanto, S., Wang, L., and Jacinthe, P.-A.: Global Synthesis of Drought Effects on Maize and Wheat Production, *PLoS
536 One*, 11, e0156362, <https://doi.org/10.1371/journal.pone.0156362>, 2016.

537 Davies, S., Pettersson, T., and Öberg, M.: Organized violence 1989–2022, and the return of conflict between states, *Journal
538 of Peace Research*, 60, 691–708, <https://doi.org/10.1177/00223433231185169>, 2023.

539 Defalco, R. C.: Justice and Starvation in Cambodia: The Khmer Rouge Famine – Cambodia Law & Policy Journal, *The
540 Cambodia Law and Policy Journal*, 3, 2014.

541 Delannoy, L., Verzier, A., Bastien-Olvera, B. A., Benra, F., Nyström, M., and Jørgensen, P. S.: Dynamics of the polycrisis:
542 temporal trends, spatial distribution, and co-occurrences of national shocks (1970–2019), *Global Sustainability*, 8, e24,
543 <https://doi.org/10.1017/sus.2025.10008>, 2025.

544 Do, T., Anderson, K., and Brorsen, B. W.: The World’s wheat supply, *Oklahoma Cooperative Extension Service*, 2010.

545 Dowlah, C.: The politics and economics of food and famine in Bangladesh in the early 1970s – with special reference to
546 Amartya Sen’s interpretation of the 1974 famine, *International Journal of Social Welfare*, 15, 344–356,
547 <https://doi.org/10.1111/j.1468-2397.2006.00448.x>, 2006.

548 Fanzo, J., Carducci, B., Louis-Jean, J., Herrero, M., Karl, K., and Rosenzweig, C.: Climate Change, Extreme Weather

550 Events, Food Security, and Nutrition: Evolving Relationships and Critical Challenges, Annual Review of Nutrition,
551 <https://doi.org/10.1146/annurev-nutr-111324-111252>, 2025.

552 FAO: The State of Food and Agriculture 1955, Food And Agriculture Organization of the United Nations, Rome, Italy,
553 1955.

554 FAO: Special Report: FAO/WFP Crop and Food Supply Assessment Mission to Rwanda, Food and Agriculture
555 Organization of the United Nations and World Food Programme, Rome, 1996.

556 FAO: Crop and Food Supply Assessment Mission to Democratic People's Republic of Korea - Democratic People's
557 Republic of Korea | ReliefWeb, 1997.

558 FAO: Food Outlook: Europe, Food and Agriculture Organization of the United Nations, 1999.

559 FAO: Food balance sheets: A handbook, Food and Agriculture Organization of the United Nations, Rome, Italy, 2001a.

560 FAO: Report of the FAO Asia-Pacific Conference on Early Warning, Prevention, Preparedness and Management of
561 Disasters in Food and Agriculture, 2001b.

562 FAO: Assessment of the impact of locust damage on crops and pastures in Madagascar - Madagascar | ReliefWeb, 2013.

563 FAO: Agricultural production statistics 2010–2023, 2024.

564 García Martínez, J. B., Pearce, J. M., Throup, J., Cates, J., Lackner, M., and Denkenberger, D. C.: Methane Single Cell
565 Protein: Potential to Secure a Global Protein Supply Against Catastrophic Food Shocks, *Frontiers in Bioengineering and*
566 *Biotechnology*, 10, 2022.

567 García Martínez, J. B., Behr, J., Pearce, J., and Denkenberger, D.: Resilient foods for preventing global famine: a review of
568 food supply interventions for global catastrophic food shocks including nuclear winter and infrastructure collapse, *Critical*
569 *Reviews in Food Science and Nutrition*, 0, 1–27, <https://doi.org/10.1080/10408398.2024.2431207>, 2025.

570 Gaupp, F., Hall, J., Hochrainer-Stigler, S., and Dadson, S.: Changing risks of simultaneous global breadbasket failure, *Nat.*
571 *Clim. Chang.*, 10, 54–57, <https://doi.org/10.1038/s41558-019-0600-z>, 2020.

572 Ghoneim, E., Dorofeeva, A., Benedetti, M., Gamble, D., Leonard, L., and AbuBakr, M.: Vegetation Drought Analysis In
573 Tunisia: A Geospatial Investigation, *HAES*, 1, 1–9, <https://doi.org/10.24966/aes-8780/100002>, 2017.

574 Grant, L., Vanderkelen, I., Gudmundsson, L., Fischer, E., Seneviratne, S. I., and Thiery, W.: Global emergence of
575 unprecedented lifetime exposure to climate extremes, *Nature*, 641, 374–379, <https://doi.org/10.1038/s41586-025-08907-1>,
576 2025.

577 Herre, B., Samborska, V., Hasell, J., and Roser, M.: Famines, *Our World in Data*, 2017.

578 Hertel, T., Elouafi, I., Tanticharoen, M., and Ewert, F.: Diversification for enhanced food systems resilience, *Nat Food*, 2,
579 832–834, <https://doi.org/10.1038/s43016-021-00403-9>, 2021.

580 Honey, M. and Ottaway, D. B.: Idi Amin Squandered the Wealth of Uganda, *The Washington Post*, 29th May, 1979.

581 HRDAG: Guatemala Memory of Silence: Report of the Commission for Historical Clarification Conclusions and
582 Recommendations, HRDAG - Human Rights Data Analysis Group, 1999.

583 IFES - The International Foundation for Electoral Systems: Elections in Congo: The Winding Road to Democracy, IFES -
584 The International Foundation for Electoral Systems, 1992.

585 IPCC (Ed.): Climate change 2007: impacts, adaptation and vulnerability : contribution of Working Group II to the fourth
586 assessment report of the Intergovernmental Panel on Climate Change, Cambridge university press, Cambridge, U.K. New
587 York, 2007.

588 Jahn, M.: How “Multiple Breadbasket Failure” Became a Policy Issue, *Issues in Science and Technology*, 2021.

589 Jain, S.: Mapping Global Cereal Flow at Subnational Scales Unveils Key Insights for Food Systems Resilience,
590 <https://doi.org/10.21203/rs.3.rs-5204730/v1>, 4 December 2024.

591 Jehn, F. U. and Mulhall, J.: allfed/Historical-Food-Shocks: First full release, , <https://doi.org/10.5281/ZENODO.16962681>,
592 2025.

593 Jehn, F. U., Gajewski, L. G., Hedlund, J., Arnscheidt, C. W., Xia, L., Wunderling, N., and Denkenberger, D.: Food trade
594 disruption after global catastrophes, <https://eartharxiv.org/repository/view/7339/>, 29 June 2024a.

595 Jehn, F. U., Dingal, F. J., Mill, A., Harrison, C., Ilin, E., Roleda, M. Y., James, S. C., and Denkenberger, D.: Seaweed as a
596 resilient food solution after a nuclear war, *Earth’s Future*, 12, <https://doi.org/10.1029/2023EF003710>, 2024b.

597 Ji, G., Zhong, H., Feukam Nzudie, H. L., Wang, P., and Tian, P.: The structure, dynamics, and vulnerability of the global
598 food trade network, *Journal of Cleaner Production*, 434, 140439, <https://doi.org/10.1016/j.jclepro.2023.140439>, 2024.

599 Keys, P. W., Barnes, E. A., Diffenbaugh, N. S., Hertel, T. W., Baldos, U. L. C., and Hedlund, J.: Exposure to compound
600 climate hazards transmitted via global agricultural trade networks, *Environ. Res. Lett.*, 20, 044039,
601 <https://doi.org/10.1088/1748-9326/adb86a>, 2025.

602 Kuhla, K., Puma, M., Schewe, J., Kubiczek, P., and Otto, C.: Learning from the international response to the Russian
603 invasion of Ukraine to avert the next major food crisis, <https://doi.org/10.13140/RG.2.2.30912.00001>, 4 January 2023.

604 Kung, J. K. and Lin, J. Y.: The Causes of China’s Great Leap Famine, 1959–1961, *Economic Development and Cultural
605 Change*, 52, 51–73, <https://doi.org/10.1086/380584>, 2003.

606 Laio, F., Ridolfi, L., and D’Odorico, P.: The past and future of food stocks, *Environ. Res. Lett.*, 11, 035010,
607 <https://doi.org/10.1088/1748-9326/11/3/035010>, 2016.

608 Lenton, T. M., Armstrong McKay, D., Loriani, S., Abrams, J. F., Lade, S. J., Donges, J. F., Milkoreit, M., Powell, T., Smith,
609 S. R., Zimm, C., Bailey, E., Buxton, J. E., Dyke, J. G., Ghadiali, A., and Laybourn, L.: Global Tipping Points Report 2023,
610 University of Exeter, 2023.

611 Mandel, E.: The Roots of the Polish Economic Crisis, *International Viewpoint*, 0, 29–34, 1982.

612 Marchand, P., Carr, J. A., Dell’Angelo, J., Fader, M., Gephart, J. A., Kummu, M., Magliocca, N. R., Porkka, M., Puma, M.,
613 J., Ratajczak, Z., Rulli, M. C., Seekell, D. A., Suweis, S., Tavoni, A., and D’Odorico, P.: Reserves and trade jointly
614 determine exposure to food supply shocks, *Environ. Res. Lett.*, 11, 095009, <https://doi.org/10.1088/1748-9326/11/9/095009>,
615 2016.

616 Martinez, L.: The Algerian civil war: 1990 - 1998, 1. publ. in the UK., Hurst, London, 265 pp., 2000.

617 Meng, X., Qian, N., and Yared, P.: The Institutional Causes of China's Great Famine, 1959–1961, *The Review of Economic
618 Studies*, 82, 1568–1611, <https://doi.org/10.1093/restud/rdv016>, 2015.

619 Moersdorf, J., Rivers, M., Denkenberger, D., Breuer, L., and Jehn, F. U.: The Fragile State of Industrial Agriculture:
620 Estimating Crop Yield Reductions in a Global Catastrophic Infrastructure Loss Scenario, *Global Challenges*, 8, 2300206,
621 <https://doi.org/10.1002/gch2.202300206>, 2024.

622 Offer, A.: *The First World War: an agrarian interpretation*, 1. issued in paperback (with corr.), Clarendon Press, Oxford, 449
623 pp., 1991.

624 Piñeiro, M. and Piñeiro, V.: Geopolitical changes and their implications for agricultural trade negotiations, 2024.

625 Puma, M. J., Bose, S., Chon, S. Y., and Cook, B. I.: Assessing the evolving fragility of the global food system, *Environ. Res.
626 Lett.*, 10, 024007, <https://doi.org/10.1088/1748-9326/10/2/024007>, 2015.

627 Reuters: Suriname's Leader and Rebel Chief Vow to Negotiate Uprising's End, *The New York Times*, 27th March, 1991.

628 Savitzky, Abraham. and Golay, M. J. E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures.,
629 *Anal. Chem.*, 36, 1627–1639, <https://doi.org/10.1021/ac60214a047>, 1964.

630 Sgroi, L. C., Lovino, M. A., Berbery, E. H., and Müller, G. V.: Characteristics of droughts in Argentina's core crop region,
631 *Hydrology and Earth System Sciences*, 25, 2475–2490, <https://doi.org/10.5194/hess-25-2475-2021>, 2021.

632 Simons, M.: Mexican Drought, Frost May Increase Migration, *The Washington Post*, 17th January, 1980.

633 Smith, B.: Dutch disease and the oil boom and bust, *Canadian Journal of Economics/Revue canadienne d'économique*, 52,
634 584–623, <https://doi.org/10.1111/caje.12376>, 2019.

635 Stehl, J., Vonderschmidt, A., Vollmer, S., Alexander, P., and Jaacks, L. M.: Gap between national food production and food-
636 based dietary guidance highlights lack of national self-sufficiency, *Nat Food*, 6, 571–576, <https://doi.org/10.1038/s43016-025-01173-4>, 2025.

638 Steinberg, D. I.: *Burma's Road Toward Development: Growth And Ideology Under Military Rule*, Routledge, New York,
639 256 pp., <https://doi.org/10.4324/9780429048722>, 2019.

640 Szayna, T. S., Watts, S., O'Mahony, A., Frederick, B., and Kavanagh, J.: What Are the Trends in Armed Conflicts, and
641 What Do They Mean for U.S. Defense Policy?, 2017.

642 Tambi, M.: Economic Growth, Crisis, and Recovery in Cameroon: A Literature Review, *Journal of Industrial Distribution &
643 Business*, 6, 5–15, <https://doi.org/10.13106/ijidb.2015.vol6.no1.5>, 2015.

644 Throup, J., García Martínez, J. B., Bals, B., Cates, J., Pearce, J. M., and Denkenberger, D. C.: Rapid repurposing of pulp and
645 paper mills, biorefineries, and breweries for lignocellulosic sugar production in global food catastrophes, *Food and
646 Bioproducts Processing*, 131, 22–39, <https://doi.org/10.1016/j.fbp.2021.10.012>, 2022.

647 Ummenhofer, C. C., England, M. H., McIntosh, P. C., Meyers, G. A., Pook, M. J., Risbey, J. S., Gupta, A. S., and Taschetto,
648 A. S.: What causes southeast Australia's worst droughts?, *Geophysical Research Letters*, 36,
649 <https://doi.org/10.1029/2008GL036801>, 2009.

650 UN Department of Humanitarian Affairs: Bolivia - Drought Aug 1983 UNDRO Situation Reports 1-13 - Bolivia

651 (Plurinational State of) | ReliefWeb, UN Department of Humanitarian Affairs, 1983.

652 UN Department of Humanitarian Affairs: Djibouti - Floods Apr 1989 UNDRO Situation Reports 1-4 - Djibouti | ReliefWeb,
653 UN Department of Humanitarian Affairs, 1989.

654 UNDP: Independent Country Programme Evaluation: Guinea, United Nations Development Programme, 2023.

655 United Nations World Food Programme: Famine Hits Parts Of South Sudan, 2017.

656 U.S. Central Intelligence Agency: Allende's Chile: The Widening Supply-Demand Gap, U.S. Central Intelligence Agency,
657 1972.

658 USDA Foreign Agricultural Service: Drought in Paraguay, USDA Foreign Agricultural Service, 2012.

659 Vasiliades, L. and Tzabiras, J.: Evaluation of Climate Change on Drought Impulses in Thessaly, Greece, European Water,
660 17, 2007.

661 Velasco, J.: Agricultural Production in Peru (1950-1995):: Sources of Growth, FAO, 1999.

662 Vellutini, R.: Macroeconomic adjustments, agricultural performance, and income distribution in Brazil since 1973, United
663 Nations University Press, 1987.

664 Verschuur, J., Murgatroyd, A., Vittis, Y., Mosnier, A., Obersteiner, M., Godfray, C., and Hall, J.: The impacts of polycrises
665 on global grain availability and prices, <https://doi.org/10.21203/rs.3.rs-3969801/v1>, 8 March 2024.

666 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
667 Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E.,
668 Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
669 Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: SciPy
670 1.0: fundamental algorithms for scientific computing in Python, Nat Methods, 17, 261–272, <https://doi.org/10.1038/s41592-019-0686-2>, 2020.

672 Wang, X., Ma, L., Yan, S., Chen, X., and Growe, A.: Trade for Food Security: The Stability of Global Agricultural Trade
673 Networks, Foods, 12, 271, <https://doi.org/10.3390/foods12020271>, 2023.

674 Weather Underground: Most Expensive Weather Disaster of 2018: a \$3.9 Billion Drought in Argentina and Uruguay, 2018.

675 Wescombe, N. J., Martínez, J. G., Jehn, F. U., Wunderling, N., Tzachor, A., Sandström, V., Cassidy, M., Ainsworth, R., and
676 Denkenberger, D.: It's time to consider global catastrophic food failures, Global Food Security, 46, 100880,
677 <https://doi.org/10.1016/j.gfs.2025.100880>, 2025.

678 Wheaton, E., Kulshreshtha, S., Wittrock, V., and Koshida, G.: Dry times: hard lessons from the Canadian drought of 2001
679 and 2002, Canadian Geographies / Géographies canadiennes, 52, 241–262, <https://doi.org/10.1111/j.1541-0064.2008.00211.x>, 2008.

681 Xia, L., Robock, A., Scherrer, K., Harrison, C. S., Bodirsky, B. L., Weindl, I., Jägermeyr, J., Bardeen, C. G., Toon, O. B.,
682 and Heneghan, R.: Global food insecurity and famine from reduced crop, marine fishery and livestock production due to
683 climate disruption from nuclear war soot injection, Nat Food, 1–11, <https://doi.org/10.1038/s43016-022-00573-0>, 2022.

684 Yu, C., Huang, X., Chen, H., Huang, G., Ni, S., Wright, J. S., Hall, J., Ciais, P., Zhang, J., Xiao, Y., Sun, Z., Wang, X., and

685 Yu, L.: Assessing the Impacts of Extreme Agricultural Droughts in China Under Climate and Socioeconomic Changes,
686 *Earth's Future*, 6, 689–703, <https://doi.org/10.1002/2017EF000768>, 2018.

687 Zhang, D. D., Lee, H. F., Wang, C., Li, B., Pei, Q., Zhang, J., and An, Y.: The causality analysis of climate change and
688 large-scale human crisis, *Proceedings of the National Academy of Sciences*, 108, 17296–17301,
689 <https://doi.org/10.1073/pnas.1104268108>, 2011.

690 Zheng, Y., Tam, C.-Y., and Collins, M.: Indian Ocean Dipole Impacts on Eastern African Short Rains Across Observations,
691 Historical Simulations and Future Projections, *Earth's Future*, 13, e2024EF005219, <https://doi.org/10.1029/2024EF005219>,
692 2025.

693 Zipper, S. C., Qiu, J., and Kucharik, C. J.: Drought effects on US maize and soybean production: spatiotemporal patterns and
694 historical changes, *Environ. Res. Lett.*, 11, 094021, <https://doi.org/10.1088/1748-9326/11/9/094021>, 2016.